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1 Overview and download

In its latest version the Rational Krylov Toolbox [1℄ 
ontains

� an implementation of Ruhe's rational Krylov sequen
e method [5℄,

� algorithms for the impli
it and expli
it relo
ation of the poles of a rational

Krylov spa
e [2℄, and

� an implementation of RKFIT [2,3℄, a robust algorithm for rational least

squares �tting.

It 
an be downloaded from http://guettel.
om/rktoolbox/rktoolbox.zip

To install simply unpa
k the zip �le and add the folder to the Matlab path.

∗
S
hool of Mathemati
s, The University of Man
hester, Alan Turing Building,

Oxford Road, M13 9PL Man
hester, United Kingdom, m.berljafa�maths.man.a
.uk,

stefan.guettel�man
hester.a
.uk

1



Alternatively one 
an 
opy and paste the following two lines to the MATLAB


ommand window. It will download and unzip the toolbox into the 
urrent

MATLAB dire
tory, and attempt to add it to the path:

unzip('http://guettel.
om/rktoolbox/rktoolbox.zip');

addpath(fullfile(
d, 'rktoolbox')); savepath

2 Computing a rational Krylov basis

Relevant fun
tions: rat_krylov, 
plxsort

A rational Krylov spa
e is a linear spa
e of rational fun
tions in a matrix times

a ve
tor. Let A be a square matrix, v a starting ve
tor of the same dimension,

and let ξ1, ξ2, . . . , ξm be a sequen
e of 
omplex or in�nite poles all distin
t from

the eigenvalues of A. Then the rational Krylov spa
e of order m+ 1 asso
iated

with A, v , ξj is de�ned as

Qm+1(A, v) = [qm(A)]−1span{v , Av , . . . , Am
v},

where qm(z) =
∏m

j=1,ξj 6=∞(z − ξj) is the 
ommon denominator of the rational

fun
tions asso
iated with the rational Krylov spa
e. The rational Krylov se-

quen
e method by Ruhe [5℄ 
omputes an orthonormal basis Vm+1 ofQm+1(A, v).
The basis matrix Vm+1 satis�es a rational Arnoldi de
omposition of the form

AVm+1Km = Vm+1Hm,

where (Hm,Km) is an (unredu
ed) upper Hessenberg pen
il of size (m+1)×m.

Example: Let us 
ompute Vm+1, Km, and Hm using the fun
tion rat_krylov,

and verify that the outputs satisfy the rational Arnoldi de
omposition by 
om-

puting the relative residual norm ‖AVm+1Km − Vm+1Hm‖2/‖Hm‖2. The ma-

trix A will be the tridiag matrix of size 200 from MATLAB's gallery,

v = [1, 0, . . . , 0]T , and the m = 5 poles ξj are −1,∞,−i, 0,+i.

N = 100; % matrix size

A = gallery('tridiag',N); % tridiagonal test matrix

v = zeros(N, 1); v(1) = 1; % starting ve
tor

poles = [-1, inf, -1i, 0, 1i℄; % sequen
e of m = 5 poles

[V, K, H℄ = rat_krylov(A, v, poles);

resnorm = norm(A*V*K - V*H)/norm(H) % residual 
he
k
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resnorm =

5.2008e-15

As some of the poles ξj in this example are 
omplex, the matri
es Vm+1, Km,

and Hm will be 
omplex, too:

real
he
k = [isreal(V), isreal(K), isreal(H)℄

real
he
k =

0 0 0

However, the poles ξj 
an be reordered to appear in 
omplex 
onjugate pairs

using the fun
tion 
plxsort. After reordering the poles we 
an 
all the fun
tion

rat_krylov with the 'real' option, thereby 
omputing a real rational Arnoldi

de
omposition:

poles = 
plxsort(poles); % reorder to 
omplex 
onjugate pairs

[V, K, H℄ = rat_krylov(A, v, poles, 'real');

resnorm = norm(A*V*K - V*H)/norm(H) % residual 
he
k

real
he
k = [isreal(V), isreal(K), isreal(H)℄

resnorm =

6.6422e-15

real
he
k =

1 1 1

Rational Arnoldi de
ompositions are useful for several purposes. For example,

the eigenvalues of the upper m×m part of the pen
il (Hm,Km) 
an be ex
ellent

approximations to some of A's eigenvalues [5℄. Other appli
ations in
lude matrix

fun
tion approximation and rational quadrature, model order redu
tion, matrix

equations, and rational least squares �tting (see below).
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3 Moving poles of a rational Krylov spa
e

Relevant fun
tions: move_poles_expl, move_poles_impl

There is a dire
t link between the starting ve
tor v and the poles ξj of a rational

Krylov spa
eQm+1. A 
hange of the poles ξj to ξ̆j 
an be interpreted as a 
hange
of the starting ve
tor from v to v̆ , and vi
e versa. Algorithms for moving the

poles of a rational Krylov spa
e are des
ribed in [2℄ and implemented in the

fun
tions move_poles_expl and move_poles_impl.

Example: Let us move the m = 5 poles ξj from the above example to ξ̆j = −j,
j = 1, 2, . . . , 5.

poles_new = -1:-1:-5;

[KT, HT, QT, ZT℄ = move_poles_expl(K, H, poles_new);

The poles of a rational Krylov spa
e are the eigenvalues of the lower m × m
part of the pen
il (H̆m, K̆m) in a rational Arnoldi de
omposition AV̆m+1K̆m =

V̆m+1H̆m asso
iated with that spa
e [2℄. By transforming a rational Arnoldi

de
omposition we are therefore e�e
tively moving the poles:

VT = V*QT';

resnorm = norm(A*VT*KT - VT*HT)/norm(H) % residual 
he
k

moved_poles = eig(HT(2:end, :), KT(2:end, :))

resnorm =

9.4761e-15

moved_poles =

-1.0000e+00 - 7.2099e-17i

-2.0000e+00 + 2.3574e-16i

-3.0000e+00 + 9.6545e-16i

-4.0000e+00 - 3.5905e-16i

-5.0000e+00 - 6.6814e-16i
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4 Rational least squares �tting

Relevant fun
tion: rkfit

RKFIT is an algorithm for rational least squares �tting based on rational Krylov

spa
es, see [2,3℄. Given matri
es A and F and a ve
tor v , RKFIT attempts to

�nd a rational fun
tion rm(z) of type (m,m) su
h that

‖Fv − rm(A)v‖2 → min .

Clearly, if A is a diagonal matrix then this minimization is equivalent to a

weighted dis
rete rational least squares problem on the eigenvalues of A, but
RKFIT 
an handle general matri
es. For example, if A has nontrivial Jordan

blo
ks then one would also �t the derivative of rm(z) at (some of) the eigenvalues

of A.

Example: Consider again the tridiagonal matrix A and the ve
tor v from above

and let F = A1/2
.

F = sqrtm(full(A));

exa
t = F*v;

Now let us �nd a rational fun
tion rm(z) of degree m = 10 su
h that ‖Fv −
rm(A)v‖2 is minimal. The fun
tion rkfit requires an input ve
tor of m initial

poles and then tries to return an improved set of poles. If we had no 
lue

about where to pla
e the initial poles we 
an easily set them all to in�nity.

In the following we run RKFIT 5 times and display the relative mis�t ‖Fv −
rm(A)v‖2/‖Fv‖2 after ea
h iteration:

poles = inf*ones(1, 10); % 10 infinite initial poles

for iter = 1:5 % 5 iterations of RKFIT

[poles, ratfun, misfit℄ = rkfit(F, A, v, poles, 'real');

rel_misfit = misfit/norm(exa
t);

disp(sprintf('iter %d: %e',[iter rel_misfit℄))

end

iter 1: 7.055604e-07

iter 2: 1.410851e-10

iter 3: 4.632047e-11

iter 4: 4.563095e-11

iter 5: 4.573434e-11

Apparently the rational fun
tion rm(A)v of degree 10 approximates A1/2
v to

about 10 de
imal pla
es. A useful output of rkfit is the fun
tion handle
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ratfun, whi
h allows one to evaluate the rational fun
tion rm(z). There are

two ways this fun
tion handle 
an be used:

� ratfun(A,v) evaluates rm(A)v as a matrix fun
tion times a ve
tor, or

� ratfun(z) evaluates rm(z) as a s
alar fun
tion in the 
omplex plane.

For example, here is a plot of the error |x1/2 − rm(x)| over the spe
tral interval
of A (approximately [0, 4]), together with the values at the eigenvalues of A:

figure

ee = eig(full(A)).';

xx = sort([logspa
e(-4.3, 1, 500) , ee℄);

loglog(xx,abs(sqrt(xx) - ratfun(xx))); hold on

loglog(ee,abs(sqrt(ee) - ratfun(ee)), 'r.')

axis([4e-4, 8, 1e-14, 1e-3℄); xlabel('x'); grid on

title('| x^{1/2} - r_m(x) |','interpreter','tex')
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As expe
ted the rational fun
tion rm(z) is a good approximation of the square

root over [0, 4]. It is, however, not a uniform approximation be
ause we are

minimizing a least squares error on the eigenvalues of A, and moreover we

are impli
itly using a weight fun
tion given by the 
omponents of v in A's
eigenve
tor basis.
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Example: RKFIT 
an also handle nonnormal matri
es A and F . Let us �nd a

rational fun
tion rm(z) of degree m = 16 whi
h gives an optimal least-squares

approximation to the matrix exponential times ve
tor of the Gr
ar matrix:

N = 100;

A = -5*gallery('gr
ar',N,3); % Gr
ar matrix from gallery

v = ones(N,1); % ve
tor of all ones

F = expm(A); exa
t = F*v;

poles = inf*ones(1, 16); % 16 infinite initial poles

for iter = 1:5 % 5 iterations of RKFIT

[poles, ratfun, misfit℄ = rkfit(F, A, v, poles, 'real');

rel_misfit = misfit/norm(exa
t);

disp(sprintf('iter %d: %e',[iter rel_misfit℄))

end

iter 1: 2.028985e-11

iter 2: 6.861510e-13

iter 3: 6.837506e-13

iter 4: 6.837657e-13

iter 5: 6.839884e-13

RKFIT seems to have found a minimum after 2 iterations. Here is a 
ontour

plot of the error of rm(z) as an approximation to exp(z), together with the poles

of rm and the eigenvalues of A:

[X,Y℄ = meshgrid(linspa
e(-12,18,300),linspa
e(-30,30,300));

Z = X + 1i*Y; E = exp(Z) - ratfun(Z);

figure


ontourf(X,Y,log10(abs(E)),linspa
e(-16,8,25)); hold on

plot(poles,'gx'); plot(eig(full(A)),'r.','MarkerSize',12)

grid on; xlabel('real(z)'); ylabel('imag(z)'); 
olorbar

title('| exp(z) - r_m(z) |','interpreter','tex')

legend('error','poles of r_m','eigenvalues of A','Lo
ation','NorthWest')
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real(z)

im
ag
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5 Planned features

This Rational Krylov Toolbox is under 
ontinuous development and new features

will be added over time. Here is our 
urrent todo list:

� Add support for matrix pen
ils (A,B) in rat_krylov.

� Add 
he
k for 'lu
ky breakdown' in rat_krylov.

� Allow user-spe
i�ed inner produ
t and linear system solver in rat_krylov.

� Make move_poles_expl preserve real pen
ils with 
omplex 
onjugate

eigenpairs.

� Add matrix fun
tion 
odes to the toolbox, like invsqrtmv and logmv


urrently available at

http://guettel.
om/markovfunmv/

.

� Add more unit tests for all fun
tionalities.

� Add an optional waitbar to rat_krylov.

This guide has been 
reated on

disp(date)

29-Nov-2014

8



6 A
knowledgments

This do
umentation was generated using MATLAB's publish 
ommand. The


onvenient 2-line Matlab 
ode for automated download and installation of this

toolbox was adopted from a similar 
ode on the Chebfun website.

7 Referen
es

[1℄ M. Berljafa and S. Güttel, A Rational Krylov Toolbox for MATLAB,

The University of Man
hester, MIMS EPrint 2014.56, 2014. Available at

http://eprints.ma.man.a
.uk/2194/.

[2℄ M. Berljafa and S. Güttel, Generalized rational Krylov de
ompositions with

an appli
ation to rational approximation, The University of Man
hester, MIMS

EPrint 2014.59, 2014. Available at http://eprints.ma.man.a
.uk/2198/.

[3℄ M. Berljafa and S. Güttel, RKFIT: A robust algorithm for rational least

squares �tting, in preparation.

[4℄ S. Güttel and L. Knizhnerman, A bla
k-box rational Arnoldi variant for

Cau
hy�Stieltjes matrix fun
tions, BIT Numer. Math., 53(3):595�616, 2013.

[5℄ A. Ruhe, Rational Krylov: A pra
ti
al algorithm for large sparse nonsym-

metri
 matrix pen
ils, SIAM J. S
i. Comput., 19(5):1535�1551, 1998.

9


