
Numerical Linear Algebra Problems in Structural
Analysis

Kannan, Ramaseshan

2014

MIMS EPrint: 2014.57

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


NUMERICAL LINEAR ALGEBRA

PROBLEMS IN STRUCTURAL ANALYSIS

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2014

Ramaseshan Kannan

School of Mathematics



Contents

Abstract 10

Declaration 12

Copyright Statement 13

Acknowledgements 14

Publications 16

1 Background 17

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Matrices in Structural Analysis . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Oasys GSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.2 Floating Point Arithmetic . . . . . . . . . . . . . . . . . . . . . . 22

1.4.3 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4.4 Matrix Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.5 Forward and Backward Errors . . . . . . . . . . . . . . . . . . . . 24

1.4.6 Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.4.7 The Standard and Symmetric Eigenvalue Problems . . . . . . . . 25

1.4.8 Definiteness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4.9 Cholesky Factorization . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4.10 The QR factorization . . . . . . . . . . . . . . . . . . . . . . . . . 26

2



1.4.11 The Generalized and Symmetric Definite Generalized Eigenvalue

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.5 Problem Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 C++ for Numerical Libraries 30

2.1 Abstraction Through Classes . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Generics and Template Meta-Programming . . . . . . . . . . . . . 32

2.1.2 Reclaiming Performance using Expression Templates . . . . . . . 35

2.1.3 Implementation Example . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 The OneNormEst class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Ill Conditioning in FE Models 42

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Condition Number Estimation . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Ill Conditioning in Structural Stiffness Matrices . . . . . . . . . . . . . . 45

3.4 Using Eigenvectors to Identify Cause of Ill Conditioning . . . . . . . . . 48

3.4.1 Smallest Eigenpairs . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.2 Largest Eigenpairs . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5.1 Roof Truss for Performing Arts Arena . . . . . . . . . . . . . . . 57

3.5.2 Steel Connection Detail . . . . . . . . . . . . . . . . . . . . . . . 59

3.5.3 Façade Panels for a Building . . . . . . . . . . . . . . . . . . . . . 60

3.5.4 Tall Building with Concrete Core . . . . . . . . . . . . . . . . . . 63

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 SI for Sparse GEP and SEP 68

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Subspace Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 Proof of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Existing Software Implementations of SI . . . . . . . . . . . . . . . . . . 75

4.5 Implementation for Symmetric Definite GEP . . . . . . . . . . . . . . . . 76

4.5.1 Existing GSA Implementation . . . . . . . . . . . . . . . . . . . . 76

3



4.5.2 Increasing the Efficiency . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Implementation for Symmetric SEP . . . . . . . . . . . . . . . . . . . . . 85

4.7 esol: The Eigenvalue Solver Library . . . . . . . . . . . . . . . . . . . . 85

4.8 Numerical Experiments and Results . . . . . . . . . . . . . . . . . . . . . 87

4.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Sparse Matrix Multiple-Vector Multiplication 90

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Overview and Comparison of Existing Formats . . . . . . . . . . . . . . . 91

5.3 The Mapped Blocked Row Format . . . . . . . . . . . . . . . . . . . . . 94

5.3.1 Similarity with Other Formats . . . . . . . . . . . . . . . . . . . . 97

5.4 SpMV and SMMV with MBR . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.1 Optimal Iteration over Blocks . . . . . . . . . . . . . . . . . . . . 99

5.4.2 Unrolled Loops for Multiple Vectors . . . . . . . . . . . . . . . . . 101

5.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5.1 Performance against Number of Vectors . . . . . . . . . . . . . . 104

5.5.2 Performance Comparison with Other Kernels . . . . . . . . . . . . 105

5.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Cache-efficient B-orthogonalization 110

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 EVD and Cholesky B-orthogonalization . . . . . . . . . . . . . . . . . . 112

6.3 Gram-Schmidt B-orthogonalization . . . . . . . . . . . . . . . . . . . . . 116

6.4 Parallel Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.5.1 Loss of Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.5.2 Performance Comparison with CGS2 . . . . . . . . . . . . . . . . 124

6.5.3 Scalablity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7 Summary 132

4



Bibliography 136

Word count 38952

5



List of Tables

1.1 Element types in GSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2 Floating point arithmetic parameters . . . . . . . . . . . . . . . . . . . . 22

3.1 s(e) for elements e in the sub-assembly. . . . . . . . . . . . . . . . . . . . 55

3.2 Eigenvalues of the stiffness matrix from the steel connection model. . . . 60

3.3 Eigenvalues of the stiffness matrix from the façade model. . . . . . . . . . 60

3.4 Eigenvalues of stiffness matrix (of size n) from the Tall Building model. . 63

4.1 Runtime comparison between esol and SSPACE (Alg. 4.2) . . . . . . . . 88

4.2 Runtimes for different shifting strategies for computing 150 eigenpairs . . 88

5.1 Comparison of storage bounds for CSR, BCSR and MBR. . . . . . . . . 96

5.2 Ratio of storage for MBR to BCSR and MBR to CSR formats for 8 × 8

blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Test matrices used for benchmarking SMMV algorithms. . . . . . . . . . 103

6.1 Test matrices used for benchmarking chol borth. . . . . . . . . . . . . . 122

6.2 Performance ratios of chol borth vs CGS2 on CPU and MIC. . . . . . . 127

6



List of Figures

3.1 A sub-assembly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 An arbitrary FE model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 3D view of roof-truss model. . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Roof truss model: virtual energies for first eigenvector. . . . . . . . . . . 58

3.5 Connection detail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.6 Contour plots for virtual energies for the connection model . . . . . . . . 61

3.7 Virtual energy plots for the connection model. . . . . . . . . . . . . . . . 62

3.8 A small portion of the façade model. . . . . . . . . . . . . . . . . . . . . 62

3.9 Close-up view of façade model. . . . . . . . . . . . . . . . . . . . . . . . 63

3.10 Virtual energy plots for façade model. . . . . . . . . . . . . . . . . . . . . 64

3.11 Close-up view of the element. . . . . . . . . . . . . . . . . . . . . . . . . 65

3.12 Tall building with stiff core. . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.13 Contour of element virtual energies for the tall building model. . . . . . . 66

3.14 Magnified view of the element with high energy. . . . . . . . . . . . . . . 67

5.1 Performance variation of MBR SMMV on Intel Core i7 . . . . . . . . . . 105

5.2 Performance variation of MBR SMMV on AMD . . . . . . . . . . . . . . 106

5.3 Performance comparison of MBR SMMV on Intel Xeon E5450 . . . . . . 107

5.4 Performance comparison of MBR SMMV on Intel Core i7 2600 . . . . . . 108

5.5 Performance comparison of MBR SMMV on AMD Opteron 6220 . . . . . 109

6.1 High level view of Xeon Phi . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 Loss of orthogonality for random X. . . . . . . . . . . . . . . . . . . . . 125

6.3 Loss of orthogonality for X with eigenvectors of B. . . . . . . . . . . . . 126

6.4 Execution rates for various ` on CPU. Performance in GFlops/sec. . . . . 128

7



6.5 Execution rates for various ` on MIC. Performance in GFlops/sec. . . . . 129

8



List of Algorithms

3.1 Algorithm for model stability analysis. . . . . . . . . . . . . . . . . . . . 49

4.2 Subspace Iteration Method (SSPACE) . . . . . . . . . . . . . . . . . . . . 77

4.3 Basic subspace iteration with orthonormalization and Schur–Rayleigh–

Ritz refinement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Code fragment for locking. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Code fragment for shifting. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 Subspace iteration for computing the smallest and largest eigenpairs of A 86

5.7 Compute y = y + Ax for a matrix A stored in CSR format. . . . . . . . . 92

5.8 Compute y = y + Ax for a BCSR matrix A. . . . . . . . . . . . . . . . . 93

5.9 SpMV for a matrix stored in MBR. . . . . . . . . . . . . . . . . . . . . . 98

5.10 A modification to steps 4–8 Algorithm 5.9. . . . . . . . . . . . . . . . . . 99

5.11 Looping over set bits for a bitmap x of length 8 bits. . . . . . . . . . . . 100

5.12 Multiplying multiple vectors in inner loops. . . . . . . . . . . . . . . . . . 101

6.13 EVD: Stable EVD B-orthogonalization . . . . . . . . . . . . . . . . . . . 114

6.14 CHOLP: Stable pivoted-Cholesky B-orthogonalization . . . . . . . . . . 116

6.15 CGS2: Gram-Schmidt B-orthogonalization with reorthogonalization . . . 117

6.16 FULL SpMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.17 SpMV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.18 BLOCK SpMV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.19 sprow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

9



The University of Manchester

Ramaseshan Kannan
Doctor of Philosophy
Numerical Linear Algebra problems in Structural Analysis
November 20, 2014

A range of numerical linear algebra problems that arise in finite element-based struc-
tural analysis are considered. These problems were encountered when implementing the
finite element method in the software package Oasys GSA. We present novel solutions to
these problems in the form of a new method for error detection, algorithms with superior
numerical efficiency and algorithms with scalable performance on parallel computers.
The solutions and their corresponding software implementations have been integrated
into GSA’s program code and we present results that demonstrate the use of these im-
plementations by engineers to solve real-world structural analysis problems.

We start by introducing a new method for detecting the sources of ill conditioning in
finite element stiffness matrices. The stiffness matrix can become ill-conditioned due to
a variety of errors including user errors, i.e., errors in the definition of the finite element
model when using a software package. We identify two classes of errors and develop a new
method called model stability analysis for detecting where in the structural model these
errors arise. Our method for debugging models uses the properties of the eigenvectors
associated with the smallest and largest eigenvalues of the stiffness matrix to identify
parts of the structural model that are badly defined. Through examples, we demonstrate
the use of model stability analysis on real-life models and show that upon fixing the
errors identified by the method, the condition number of the matrices typically drops
from O(1016) to O(108).

In the second part we introduce the symmetric definite generalized eigenproblem and
the symmetric eigenproblem that are encountered in structural analysis. The symmetric
definite generalized eigenvalue problem is to solve for the smallest eigenvalues and associ-
ated eigenvectors of Kx = λMx for a symmetric positive-definite, sparse stiffness matrix
K and a symmetric semidefinite mass matrix M . We analyse the existing solution algo-
rithm, which uses the subspace iteration method. We improve the numerical efficiency
of the algorithm by accelerating convergence via novel shift strategies and by reducing
floating point operations using selective re-orthogonalization and locking of converged
eigenvectors. The software implementation also benefits from improvements such as the
use of faster and more robust libraries for linear algebra operations encountered during
the iteration. We then develop an implementation of the subspace iteration method for
solving the symmetric eigenvalue problem Kx = λx for the smallest and largest eigen-
values and their eigenvectors; this problem arises in model stability analysis.

In the next part we tackle the main bottleneck of sparse matrix computations in our
eigensolvers: the sparse matrix-multiple vector multiplication kernel. We seek to obtain
an algorithm that has high computational throughput for the operation Y = AX for a
square sparse A and a conforming skinny, dense X which, in turn, depends on the under-
lying storage format of A. Current sparse matrix formats and algorithms have high band-
width requirements and poor reuse of cache and register loaded entries, which restricts
their performance. We propose the mapped blocked row format: a bitmapped sparse ma-
trix format that stores entries as blocks without a fill overhead, thereby offering blocking

10



without additional storage and bandwidth overheads. An efficient algorithm decodes
bitmaps using de Bruijn sequences and minimizes the number of conditionals evaluated.
Performance is compared with that of popular formats, including vendor implementations
of sparse BLAS. Our sparse matrix multiple-vector multiplication algorithm achieves high
throughput on all platforms and is implemented using platform-neutral optimizations.

The last part of the thesis deals with the B-orthogonalization problem, i.e., for a
sparse symmetric positive definite B ∈ Rn×n and a tall skinny matrix X ∈ Rn×`, we
wish to rotate the columns of X such that XTBX = I. This problem arises when the
engineer wishes to orthonormalize the eigenvectors of the generalized eigenproblem such
that they are orthogonal with respect to the stiffness matrix. Conventionally in the
literature Gram-Schmidt like methods are employed for B-orthogonalization but they
have poor cache efficiency. We recall a method that uses the Cholesky factorization
of the inner product matrix XTBX and derive a stable algorithm that increases the
parallel scalability through cache-reuse and is also numerically stable. Our experiments
demonstrate orders of magnitude improvement in performance compared with Gram-
Schmidt family of methods.

11



Declaration

No portion of the work referred to in the thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

12



Copyright Statement

i. The author of this thesis (including any appendices and/or schedules to this thesis)

owns certain copyright or related rights in it (the “Copyright”) and s/he has given The

University of Manchester certain rights to use such Copyright, including for adminis-

trative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy,

may be made only in accordance with the Copyright, Designs and Patents Act 1988

(as amended) and regulations issued under it or, where appropriate, in accordance with

licensing agreements which the University has from time to time. This page must form

part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intellec-

tual property (the “Intellectual Property”) and any reproductions of copyright works in

the thesis, for example graphs and tables (“Reproductions”), which may be described

in this thesis, may not be owned by the author and may be owned by third parties.

Such Intellectual Property and Reproductions cannot and must not be made available

for use without the prior written permission of the owner(s) of the relevant Intellectual

Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and com-

mercialisation of this thesis, the Copyright and any Intellectual Property and/or Re-

productions described in it may take place is available in the University IP Policy

(see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487), in any relevant

Thesis restriction declarations deposited in the University Library, The University

Library’s regulations (see http://www.manchester.ac.uk/library/aboutus/regulations)

and in The University’s Policy on Presentation of Theses.

13



Acknowledgements

I would like to express my hearty gratitude to my supervisors Françoise Tisseur and

Nicholas J. Higham for their expert guidance during the research and writing of this

thesis and for their painstaking efforts in getting it to this form. They have also been

very supportive of the setup of my PhD as I continued to work part-time at Arup alongside

my research and have patiently worked around all constraints. What I have learnt from

them goes beyond just numerical analysis and I could not have asked for finer people to

work with.

At Arup, Chris Kaethner and Stephen Hendry have supported and backed my research

endeavours from the time this project was a fledgling idea. Steve has shown me the ropes

of FE solvers and our numerous discussions have contributed to the results in this thesis.

Chris allowed me enormous flexibility and graciously tolerated my long absences, which

made it feasible for me carry out this PhD.

Colleagues in the Manchester NA group and elsewhere have contributed ideas and

helped with various opportunities all along; an incomplete list would include Nick Dingle,

Iain Duff, Stefan Güttel, Amal Khabou, Lijing Lin, Yuji Nakatsukasa, David Silvester

and Leo Taslaman. My office-mates Mary Aprahamian, Bahar Arslan, Sam Relton and

Natasa Strabic gave me the pleasure of their company and kept me going when spirits

were sagging. A special thanks goes to Jack Dongarra and his team at ICL, UTK for

facilitating access to the Xeon Phi hardware and for valuable technical discussions.

My wife Miriam has ungrudgingly endured the unavailability of a full-time husband

these last four years, something that is hard to express in a short span of words. She

therefore deserves significant credit for this thesis and may also be held responsible for

any copy-editing errors the reader may find, since she has proofread it.

14



To Miriam, who understood.



Publications

• The material covered in chapter 3 is based on the paper

Ramaseshan Kannan, Stephen Hendry, Nicholas J. Higham, Françoise Tisseur, De-

tecting the causes of ill conditioning in structural finite element models, Comput-

ers & Structures, Volume 133, March 2014, Pages 79-89, ISSN 0045-7949, http:

//dx.doi.org/10.1016/j.compstruc.2013.11.014.

• Chapter 5 is based on the paper

Kannan, R., Efficient sparse matrix multiple-vector multiplication using a bitmapped

format, High Performance Computing (HiPC), 2013 20th International Confer-

ence on, pp.286,294, 18-21 Dec. 2013 http://dx.doi.org/10.1109/HiPC.2013.

6799135

16

http://dx.doi.org/10.1016/j.compstruc.2013.11.014
http://dx.doi.org/10.1016/j.compstruc.2013.11.014
http://dx.doi.org/10.1109/HiPC.2013.6799135
http://dx.doi.org/10.1109/HiPC.2013.6799135


Chapter 1

Background

1.1 Introduction

This thesis deals with numerical linear algebra problems that arise in finite element based

structural analysis applications.

The analysis and design of physical structures is one of the oldest, yet one of the most

frequently encountered tasks in engineering. In its most basic form, structural analysis

asks the question: ‘How will a given physical structure and its components behave under

the influence of loads and under the constraints of its environment?’ These problems

are routinely encountered in a range of engineering domains, for example, in aerospace,

automotive, civil or mechanical engineering.

Within civil engineering we are interested in knowing how buildings or bridges will

respond to loading acting upon them and whether they are strong and serviceable under

the influence of these loads. The responses we are usually interested in are displacements,

deflections, forces, bending moments and stresses while the loading can be from natural

phenomena such as gravity or earthquakes, or it could be imposed by human-induced

factors such as moving vehicles or vibrations from machinery. Once the response is pre-

dicted, the engineer turns to the capacity of the structure and designs it to withstand the

forces, moments and stresses retrieved from the analysis. Designing involves computing

optimal member sizes and structural layouts such that strength, stability and serviceabil-

ity requirements are met to a set of prescribed standards. This modelling, analysis and

design cycle is carried out iteratively for a variety of predicted simulations and the final

17



18 CHAPTER 1. BACKGROUND

structural design arrived at is deemed to be safe and fit for the intended use.

Almost all nontrivial, modern-day structural analysis is carried out using the finite

element (FE) method. In broad terms, as the name suggests, this method involves

discretizing the mathematical model of the structure by dividing it into finite elements.

A finite element [13, p. 4] “is a region in space in which a function φ is interpolated from

nodal values of φ on the boundary of the region in such a way that interelement continuity

of φ tends to be maintained in the assemblage”. Within each element, the response is

approximated using piecewise-smooth functions. Solving for these functions yields a set

of simultaneous algebraic equations which can be linear or nonlinear depending on the

behaviour modelled or the response being predicted.

More specifically, the FE-based analysis methodology is comprised of the following

steps:

• Idealize the behaviour of the structure, loading and supports and identify initial

conditions.

• Build a geometrical representation and create a mathematical model using differ-

ential equations.

• Discretize the model.

• Solve the discretization numerically for the desired response.

The solution must satisfy the conditions of equilibrium of forces, constitutive relations of

materials and compatibility of strains. Where these criteria are not met, we must refine

one or more steps in the above procedure and solve the problem again.

The equations that arise out of the discretization can be solved by recasting them as

matrix equations and then employing matrix algorithms and floating point computations

to find their solutions. Thus, numerical linear algebra (NLA) and numerical analysis play

a central role in the entire structural analysis process.

1.2 Matrices in Structural Analysis

Historically, the appearance and use of matrices in structural analysis pre-dates the use

of finite element method in structural mechanics. Engineers as far back as the 1930s [17]



1.2. MATRICES IN STRUCTURAL ANALYSIS 19

used the Force-Displacement methods to formulate and solve stiffness matrices for models

made up of beams. Felippa’s paper “A historical outline of matrix structural analysis:

a play in three acts” [20] presents an enlivening account of the history of matrices in

structural analysis starting with the early, pre-FE approaches and following through to

more modern formulations.

The most common implementation of the finite element method in structural engi-

neering is the Direct Stiffness Method (DSM) [19, chap. 2]. DSM is a way of automating

the FE procedure that allows setting up and handling the equations from the discretiza-

tion using a library of element types. These element types are templates into which the

practitioner can plug-in parameters like the geometry and material properties to obtain

a matrix representing each part of the discretized model. The element type encapsulates

the spatial dimensionality and the piecewise-smooth basis functions that approximate

the differential equations. Spatial dimensionality means that elements can be defined in

one-, two- or three-dimensional space. The basis functions, also known as shape func-

tions in engineering literature, are usually polynomials of a low degree. The choice of the

element type depends on the structural behaviour, the desired accuracy in the solution

and the computational capability available at hand. Based on the element connectivity,

the individual matrices are assembled into a global matrix called the Stiffness matrix

(hence the name Direct Stiffness Method). The DSM therefore allows all parts of the

discretization to be handled in a uniform manner regardless of their complexity. Since

this property makes it amenable to computer programming, it is the method of choice

for most FE structural analysis codes.

The stiffness matrix, often denoted by K, is a real, sparse matrix and is symmetric

provided the behaviour being modelled is elastic. Once the global stiffness matrix is set

up, we compute the structural response to a variety of loading. These loads can either be

static or dynamic in nature and using physical laws of force equilibrium we obtain matrix

equations involving the stiffness matrix and load and response vectors. NLA methods

are then employed to solve these matrix equations. For example, for a vector f ∈ Rn

representing static loads on the structure with stiffness K ∈ Rn×n, the displacement

u ∈ Rn×n is the solution of the linear system

Ku = f.



20 CHAPTER 1. BACKGROUND

On the other hand, for a time varying load f(t) ∈ Rn, the response u(t) ∈ Rn, disregarding

damping, is the solution to the ordinary differential equation

Mü+Ku = f

where M ∈ Rn×n represents the lumped mass of the structure at discretization points.

In this thesis, we consider NLA problems that have arisen in FE structural analysis

and develop algorithms and software implementations to solve them. In particular, we

are interested in techniques that help engineers to create structural models that return

more accurate results or gain algorithmic efficiency or obtain results more quickly by

making better use of parallel computer architectures.

1.3 Oasys GSA

The iterative modelling–analysis–design workflow described in Section 1.1 has to be re-

alized in software. Such software should not only implement codes to build the math-

ematical model and solve it, but should also provide the user an interface, typically

graphical, to model the structure geometrically, mesh it and allow ‘post-processing’ of

results—visualization and reporting of forces, moments and stresses derived from the

solution.

An example of such a program is Oasys GSA [49], which is a finite element-based

structural analysis package for modelling, analysis and design of buildings, bridges, sta-

diums and other structures. GSA is a Windows, desktop-based program written in C

and C++ and it supports the following analysis features:

• Materials: Isotropic, orthotropic and fabric.

• Analysis types:

– Linear and dynamic analysis

– Linear and nonlinear buckling analysis

– Seismic response analysis

– Static analysis of moving vehicle loads

– Form finding analysis



1.4. DEFINITIONS 21

Table 1.1: Element types in GSA

Element type Number
of nodes

Spatial
dimensionality

Order of shape
functions

SPRING 2 1-D Linear
BEAM, BAR

2 1-D Cubic
STRUT, TIE
QUAD4 4 2-D Linear
TRI3 3 2-D Linear
QUAD8 8 2-D Quadratic
TRI6 6 2-D Quadratic

– Dynamic relaxation analysis

– Footfall and vibration analysis.

• Element types listed in Table 1.1 are supported.

• Constraints: Rigid constraints, rigid links, constraint equations.

• Loading: Point loads, line loads, area and surface loads, moving loads.

The problems we tackle in this thesis have all been encountered during the develop-

ment of this software program. Therefore the algorithms and codes we present have also

been implemented into this package and, with the exception of chapter 5, are currently

being used by practitioners to analyse industrial structural models. The implementa-

tions are either new features in the package or improvements to existing features. In

the cases where they are improvements to existing features they significantly reduce ex-

ecution times needed for analysis and increase the numerical robustness of the solution

methodology.

1.4 Definitions

1.4.1 Notation

Throughout, we make use of the Householder notation: capital letters such as A or K

denote matrices, a subscripted lower case Roman letter such as aij indicates element (i, j)

of A, lower case Roman letters such as x or u denote column vectors, Greek letters denote

scalars, AT denotes the transpose of the matrix A and ‖ · ‖ is any vector norm and its



22 CHAPTER 1. BACKGROUND

corresponding subordinate matrix norm. Algorithms are presented in psuedocode and use

syntax and keywords from the C and MATLAB programming languages. The expression

i = 1:n indicates that i can take the values from 1 to n and A(p :q, r :s) represents a block

of the matrix A from rows p to q and from columns r to s. S(k) represents the matrix

S at the k-th step of an iterative algorithm and Ŝ is used to differentiate the computed

value in, say, floating point arithmetic, from the exact arithmetic representation S.

1.4.2 Floating Point Arithmetic

A floating point number system F is a bounded subset of the real numbers whose elements

have the representation

y = ±m× βe−t,

where m, β, e and t are integers known as the significand, base, exponent and precision,

respectively. To ensure that a nonzero y ∈ F is unique, m is selected such that βt−1 ≤
m ≤ βt − 1. The quantity u := β1−t is called the unit roundoff. The boundedness of F

implies the existence of the integers emin and emax such that emin ≤ e ≤ emax.

Theorem 1.4.1. [33, Thm. 2.2] If x ∈ R lies in the range of F then

fl(x) = x(1 + δ), |δ| < u.

The range of the nonzero floating point numbers in F is given by βemin−1 ≤ |y| ≤
βemax(1− β−t). For IEEE 754 single and double precision numbers [1], the values of β, t,

e and u are given in Table 1.2.

Table 1.2: Floating point arithmetic parameters

Type β t emin emax u
single 2 24 −125 128 6× 10−8

double 2 53 −1021 1024 1× 10−16

1.4.3 Norms

Norms are a means of obtaining a scalar measure of the size of a vector or a matrix.

Vector norms are functions ‖ · ‖ : Cn → R and satisfy the vector norm axioms:

• ‖x‖ ≥ 0 for all x ∈ Cn and ‖x‖ = 0 if and only if x = 0.



1.4. DEFINITIONS 23

• ‖αx‖ = |α|‖x‖ for all α ∈ C, x ∈ Cn.

• ‖x+ y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ Cn.

The Hōlder p-norm is defined as

‖x‖p =

(
n∑

i=1

|xi|p
)1/p

.

This definition gives the following vector norms:

‖x‖1 =
n∑

i=1

|xi|,

‖x‖2 =

(
n∑

i=1

|xi|2
)1/2

= (x∗x)1/2,

‖x‖∞ = max
1≤i≤n

|xi|.

The 2-norm is invariant under orthogonal or unitary transformations, i.e.

‖Qx‖2 =
√
x∗Q∗Qx =

√
x∗x = ‖x‖2

for a unitary or orthogonal matrix Q.

1.4.4 Matrix Norms

Matrix norms are functions ‖ · ‖ : Cm×n → R and satisfy the matrix norm axioms:

• ‖A‖ ≥ 0 for all A ∈ Cm×n, and ‖A‖ = 0 if and only if A = 0.

• ‖αA‖ = |α|‖A‖ where α ∈ C, A ∈ Cm×n.

• ‖A+B‖ ≤ ‖A‖+ ‖B‖ for all A,B ∈ Cm×n.

The simplest example is the Frobenius norm

‖A‖F =

(
m∑

i=1

n∑

j=1

|aij|2
)1/2

.

An important class of matrix norms are those subordinate to vector norms, defined

as

‖A‖ = max
x 6=0

‖Ax‖
‖x‖

for given vector norms on Cm in the numerator and Cn in the denominator. The following

subordinate matrix norms are useful:



24 CHAPTER 1. BACKGROUND

• 1-norm: ‖A‖1 = max1≤j≤n
∑m

i=1 |aij|, the maximum column sum.

• ∞-norm: ‖A‖∞ = max1≤i≤m
∑n

j=1 |aij|, the maximum row sum.

• 2-norm: ‖A‖2 = (ρ(A∗A))1/2, the spectral norm, where the spectral radius

ρ(A) = max{|λ| : det(A− λI) = 0}.

A matrix norm is consistent if

‖AB‖ ≤ ‖A‖‖B‖.

All the above matrix norms are consistent.

The Frobenius and 2-norm are invariant under orthogonal and unitary transforma-

tions, that is, for orthogonal or unitary matrices U and V ,

‖UAV ‖2 = ‖A‖2 and ‖UAV ‖F = ‖A‖F .

1.4.5 Forward and Backward Errors

Error analysis in numerical linear algebra uses two types of errors known as forward

and backward errors. Given a numerical algorithm that approximates the scalar function

y = f(x) by ŷ, the quantities |f(x)− ŷ| and |f(x)− ŷ|/|f(x)| are the absolute and relative

forward errors.

However, we may wish to assess the quality of the computed solution by asking the

question “For what set of data have we actually solved our problem?”. If there exists

a ∆x such that ŷ = f(x + ∆x), then |∆x| and |∆x|/|x| are the absolute and relative

backward errors, where if ∆x is not unique we take the smallest such ∆x.

If the forward or the backward errors are small, the algorithm is said to be forward

or backward stable respectively.

1.4.6 Conditioning

The relationship between forward and backward error for a problem is governed by its

conditioning, i.e., the sensitivity of the solution to perturbations in the data. If the

function f in the previous section is twice continuously differentiable,

ŷ − y = f(x+ ∆x)− f(x) = f
′
(x)∆x+

f
′′
(x+ θ∆x)

2!
(∆x2), θ ∈ (0, 1).



1.4. DEFINITIONS 25

Hence for small a ∆x,

y − y′

y
≈ f

′
(x)∆x

f(x)
=

(
f

′
(x)x

f(x)

)
∆x

x
,

and the magnification factor

c(x) =

∣∣∣∣
xf

′
(x)

f(x)

∣∣∣∣
is called the relative condition number of f .

When backward error, forward error and the condition number are defined consis-

tently, the following rule of thumb relates the three:

forward error . condition number× backward error.

1.4.7 The Standard and Symmetric Eigenvalue Problems

The eigenvalue problem for A ∈ Cn×n, x 6= 0 ∈ Cn and λ ∈ C is defined as

Ax = λx,

where λ is an eigenvalue and x the corresponding eigenvector. The equation (A−λI)x = 0

is equivalent to det(A − λI) = 0, the solutions of which are the roots of the n degree

polynomial p(λ) = det(A− λI), called the characteristic polynomial of A.

When A ∈ Rn×n is symmetric, all eigenvalues of A are real and there is an orthonormal

basis of eigenvectors.

Theorem 1.4.2. [25, Thm. 8.1.1] If A ∈ Rn×n is symmetric, then there exists an

orthogonal matrix Q ∈ Rn×n such that

Q∗AQ = Λ = diag(λ1, . . . , λn).

Moreover, for k = 1 : n,AQ(:, k) = λkQ(:, k).

1.4.8 Definiteness

A symmetric matrix A is said to be positive definite if xTAx > 0 for any x 6= 0 and

positive semidefinite if the inequality is not strict.

Theorem 1.4.3. If A ∈ Rn×n is symmetric and positive definite all its eigenvalues are

real and positive.



26 CHAPTER 1. BACKGROUND

The terms negative definite and negative semidefinite are used analogously whereas

symmetric indefinite denotes a general symmetric matrix that can have both positive and

negative eigenvalues.

1.4.9 Cholesky Factorization

For a symmetric positive definite matrix A ∈ Rn×n, the Cholesky factorization is an

important property that is useful as both a theoretical as well as an algorithmic tool.

Theorem 1.4.4. [25, Thm. 4.2.5] If A ∈ Rn×n is symmetric positive definite, then

there exists a unique upper triangular R ∈ Rn×n with positive diagonal entries such that

A = RTR.

1.4.10 The QR Factorization

For A ∈ Rm×n the QR factorization is given by

A = QR,

where Q ∈ Rm×m is orthogonal and R ∈ Rm×n is upper trapezoidal. The QR factorization

always exists and an existence proof can be established as follows: if A is full rank and

ATA = RTR is a Cholesky factorization, then A = AR−1 · R is a QR factorization. The

QR factorization is unique if A has full rank and we require R to have positive diagonal

elements.

1.4.11 The Generalized and Symmetric Definite Generalized

Eigenvalue Problems

The generalized eigenvalue problem (GEP) for A,B ∈ Cn×n is of the form

Ax = λBx (1.1)

where λ ∈ C is an eigenvalue and x 6= 0 ∈ Cn is an eigenvector. Analogously to the

standard problem, λ is a root of the pencil det(A − λB) and x is a corresponding null

vector. This matrix pencil is nonregular if det(A− λB)x = 0 for all λ, else it is regular.



1.5. PROBLEM DESCRIPTIONS 27

We can write (1.1) as

αAx = βBx,

with λ = β/α. If α = 0, we call the eigenvalue infinite and this is a result of B being

singular. For such an eigenvalue, a null vector of B is an eigenvector of (1.1). If α 6= 0

then the eigenvalue is finite and β = 0 is a zero eigenvalue of the pencil. In this case,

A is singular and a null vector of A is the eigenvector of (1.1) corresponding to the zero

eigenvalue, provided the same vector does not belong to the null space of B. Where A

and B do share a null vector, i.e., Ax = Bx = 0, x 6= 0, then (αA− βB)x = 0 so α and

β could take any value and the pencil is then nonregular.

When A and B are symmetric and B is positive definite, we call the problem the

symmetric definite GEP. Using the Cholesky decomposition of B := RTR, we can trans-

form (1.1) into a standard eigenvalue problem R−TAR−1y = λy, where y = Rx. Since

R−TAR−1 is symmetric, the eigenvalues of the symmetric-definite GEP are real.

1.5 Problem Descriptions

We now list the problems discussed in the thesis. Although the issues tackled in each

chapter have a common origin, we note that they are fairly self-contained investigations

and therefore are presented as such. All chapters deal only with real matrices since that

is the nature of our problems.

A significant component of this research is the programming of the software implemen-

tations of the algorithms we develop. Therefore we start the thesis with an introduction

to software development techniques for numerical programming using the C++ program-

ming language in chapter 2. We demonstrate that the use of these techniques results in

high-level code that is readable, maintainable and yet has performance that is competitive

with equivalent C and Fortran codes.

In chapter 3, we discuss the issue of ill-conditioning in stiffness matrices from an FE

model. The presence of ill conditioning in these matrices was discovered when we imple-

mented a condition number estimator in GSA, which reported the condition estimate of

the stiffness matrix when engineers carried out linear/static analysis. We develop a new

technique to detect the causes of ill-conditioning in these models which helps engineers



28 CHAPTER 1. BACKGROUND

to rectify the errors that caused the ill-conditioning. We give the theoretical background

for this method, which has also been implemented in the software package. We illustrate

our discussion with real-life examples of structural models to which this tool has been

applied.

In chapter 4, we investigate solution algorithms for the sparse, symmetric definite

generalized eigenvalue problem that arises in structural dynamics and buckling analysis

and the sparse, symmetric eigenvalue problem arising in model stability analysis. In

the former, we seek to find the smallest eigenvalues and associated eigenvectors of the

equation Kx = λMx, where K (the stiffness matrix) and M (the mass matrix) are

symmetric and sparse and K is positive definite. For the latter, we wish to find the

smallest and largest eigenvalues and corresponding eigenvectors for the problemKx = λx,

where K is positive semidefinite. We use the subspace iteration method to compute

these eigenpairs and investigate accelerating the algorithm through shifting and locking

of converged vectors.

Chapter 5 follows on from chapter 4 by investigating the bottleneck of computa-

tions in our eigenvalue solvers: the sparse matrix multiple-vector product (SMMV) ker-

nels. Our goal in this investigation is to obtain high computational throughput from the

SMMV kernel, which in turn depends on the storage format of the sparse matrix. Current

sparse matrix formats and algorithms have high bandwidth requirements and poor reuse

of cache and register loaded entries, which restrict their performance. We propose the

mapped blocked row format: a bitmapped sparse matrix format that stores entries as

blocks without a fill overhead, thereby offering blocking without additional storage and

bandwidth overheads. An efficient algorithm to decode bitmaps is developed and perfor-

mance is compared with that of popular formats, including vendor implementations of

sparse BLAS.

In chapter 6, we tackle the ‘B-orthogonalization’ problem that also arises in sparse

eigenvalue solvers. For a tall, skinny n × ` dense matrix X and a sparse symmetric

positive-definite n × n matrix B, we wish to compute a dense matrix S of the same

dimensions and column space as X such that STBS = I. The columns of the matrix X,

in our case, may represent the eigenvectors of B although our solution algorithm works for

any general matrix and assumes no specific properties. Current solvers in the literature



1.5. PROBLEM DESCRIPTIONS 29

use the modified Gram-Schmidt method for B-orthogonalization but these have poor

cache-efficiency. We derive a new algorithm based on the Cholesky decomposition of the

matrix XTBX, taking care to remove a stability limitation in the case where B and/or

X are ill-conditioned. We show that our algorithm achieves better cache performance

than existing algorithms by creating parallel multithreaded library implementations for

manycore and multicore architectures.

We conclude the thesis with a summary of our findings in chapter 7 and identify

directions for future work.



Chapter 2

C++ for Numerical Libraries

A significant part of work for this thesis comprises of creating software implementations

of the algorithms presented in standalone code. This software is designed for use in li-

braries in the lowest layer of GSA’s software stack, a requirement that brings software

engineering challenges. Our objective, therefore, is to create libraries that are compre-

hensible, maintainable and usable, i.e., they allow code to be composed in a way that

maps closely to the mathematical operations they represent. In addition they must, of

course, deliver high performance.

We use C++ for creating these implementations. C++ [65], an ISO standardized

language, offers the dual advantages of performance benefits of C, of which it is a superset,

and the benefits of a multi-paradigm language. Multi-paradigm (see [14, chap. 1] or [64])

simply means being able to use multiple programming styles like procedural, functional or

object-oriented within the same programming environment. The programming paradigms

most relevant to numerical software development are abstraction, encapsulation, compile-

time genericity (templates) and task-based programming, which we combine to create

code that satisfies the objectives identified above. We describe each of these paradigms

briefly and demonstrate how they are implemented using C++ features. Our list is by

no means exhaustive, but it illustrates a few key features of this versatile programming

environment.

30



2.1. ABSTRACTION THROUGH CLASSES 31

2.1 Abstraction Through Classes

In [64], Stroustrup defines abstraction as “the ability to represent concepts directly in a

program and hide incidental details behind well-defined interfaces”. We use C++ classes

to provide abstraction and encapsulation, which allow high-level interfaces and syntaxes

that naturally resemble mathematical operations. Consider, for example, the task of

storing and manipulating dense matrices. Our data comprises the size of the matrix, the

datatype of the scalar and the matrix entries held as an array of the scalar datatype. We

need routines to carry out basic operations on this matrix, e.g. addition, multiplication

or scaling. We can create a class that holds the data and bundle the operations with the

class, making it easy to develop, maintain and use these routines. A minimal example

of such a matrix class is listed below; it holds the entries as an array of doubles, has

size rows × cols, and offers functions for multiplication, scaling and addition. Using

operator overloading, we can define operator* for matrix multiplication and scaling and

operator+ for addition.

class Matrix

{

int rows , cols;

double *data;

/∗ . . ∗/

public:

Matrix (); // c o n s t r u c t o r

Matrix(int r,int c); // c o n s t r u c t o r

~Matrix (); // d e s t r u c t o r

double& Coeff(int r, int c) // e l ement a c c e s s

{ return data[r*rows+c]; }

const Matrix operator *(const Matrix& m, const double& d);

const Matrix operator *(const Matrix& lhs , const Matrix& rhs);

const Matrix operator +(const Matrix& lsh , const Matrix& rhs);

/∗ . . ∗/

};

The implementation of the Matrix::operator* function would contain the matrix mul-

tiplication code.

const Matrix operator *(const Matrix& lhs , const Matrix& rhs)

{

Matrix temp(lhs.rows , rhs.cols);

/∗ imp l ementa t i on o f matr ix m u l t i p l i c a t i o n

. . . ∗/

return temp;

}



32 CHAPTER 2. C++ FOR NUMERICAL LIBRARIES

A program that calls the Matrix class (the ‘client code’) to compute matrix multiplication

would then have the following syntax.

Matrix A, B, C;

double alpha , beta;

// i n i t i a l i z a t i o n , e t c .

C = alpha*A*B + beta*C;

This contrasts in readability with, for example, using the BLAS interface in C code for

achieving the same task:

double *A, *B, *C;

// i n i t i a l i z a t i o n

cblas_dgemm(CblasRowMajor , CblasNoTrans , CblasNoTrans ,

m, n, k, alpha , A, k, B, n, beta , C, n);

Classes, return-by-reference and operator overloading are used extensively to allow

chaining of function calls, which produces readable code. As an example, the following

statement computes the sum of absolute values of the coefficients in a matrix S:

sum = S.cwiseAbs ().colwise ().sum().sum();

2.1.1 Generics and Template Meta-Programming

Generic programming can further extend abstraction by enabling the creation of class

‘templates’, i.e., code that generates other classes at compile time, based on template

parameters supplied by the library user. We give three examples to illustrate this. In all

cases, the goals are to obtain a single source base that reduces code replication, which

leads to fewer bugs and reduced maintenance and also allows for uniformity in the client

code.

Parametrizing the Datatype of Matrix

Our Matrix class can be extended to work with multiple precisions by making the scalar

type a template parameter.

template <typename Scalar >

class Matrix

{

int rows , cols;

Scalar *data;

/∗ . . ∗/

public:

Matrix(int r, int c); // c o n s t r u c t o r



2.1. ABSTRACTION THROUGH CLASSES 33

~Matrix (); // d e s t r u c t o r

const Matrix <Scalar > operator *(const Matrix <Scalar >& m,

const Scalar& d);

const Matrix <Scalar > operator *(const Matrix <Scalar >& lhs ,

const Matrix <Scalar >& rhs);

const Matrix <Scalar > operator +(const Matrix <Scalar >& lhs ,

const Matrix <Scalar >& rhs);

/∗ . . ∗/

};

Such an interface can now be used uniformly for all scalar types (real, complex, single

precision or double precision), enabling the client code to stay the same in each case.

Matrix <float > A, B, C;

float alpha , beta;

// i n i t i a l i z a t i o n , e t c .

C = alpha*A*B + beta*C;

Fixed-sized Optimizations

Templates are also useful for optimizing performance. Since template parameters are

available at compile-time, making this information available to the compiler can allow

it to perform optimizations. For instance, the number of rows and columns of Matrix

can be made optional template parameters, thereby enabling fixed sized matrices to be

created at compile time.

template <typename Scalar , int RowsAtCompile =-1, int ColsAtCompile =-1>

class Matrix

{

int rows , cols;

Scalar *data;

const static int nr_ = RowsAtCompile;

const static int nc_ = ColsAtCompile;

/∗ . . ∗/

public:

/∗ c o n s t r u c t and t r e a t as f i x e d s i z e i f n r and nc

a r e g r e a t e r than 0 , e l s e c o n s t r u c t with runt ime

( r , c ) and t r e a t as dynamica l l y s i z e d . ∗/

Matrix ();

Matrix(int r, int c);

/∗ . . ∗/

};

The resultant class template can be used to create a 4× 4 class type that can be instan-

tiated as follows.

typedef Matrix <double ,4,4> Matrixd4x4;



34 CHAPTER 2. C++ FOR NUMERICAL LIBRARIES

Matrixd4x4 A, B; // A and B a re i n s t a n c e s o f a 4 x4 Matr ix

/∗ i n i t i a l i z a t i o n , e t c . ∗/

Matrixd4x4 C = A*B;

This lets the compiler optimize the matrix multiplication code (in the previous section)

by unrolling loops or by automatic vectorization, since it knows the loop bounds during

compilation. In fact, since C++ templates are Turing complete, they can themselves be

used to create a loop unroller, a technique we exploit in chapter 5.

Other examples of parameters that can be templatized are the storage order (row

major vs. column major) or the structure (symmetric/banded/full).

Explicit Vectorization

Templates are used not only for high level abstractions but also to simplify low level code

like SIMD programming. Consider a snippet for computing the vectorized inner product

of two float arrays a and b, of length N using SSE compiler intrinsics1.

__m128 X, Y;

__m128 acc = _mm_setzero_ps ();

float inner_prod (0.), temp [4];

for(int i(0); i<N; i+=4) {

X = _mm_load_ps (&a[i]); // l oad chunk o f 4 f l o a t s

Y = _mm_load_ps (&b[i]);

acc = _mm_add_ps(acc , _mm_mul_ps(X, Y)); // m u l t i p l y X with Y

// and accumulate i n t o acc

}

_mm_store_ps (&temp[0], acc); // s t o r e acc i n t o an a r r a y o f f l o a t s

inner_prod += temp [0] + temp [1] + temp [2] + temp [3]; // r educe

This code is specific to processors that support SSE instructions. The code for AVX or

newer instructions would call different intrinsic functions and since the number of SIMD

architectures is only increasing, this gives rise to repetition and extensive branching. The

above can however be rewritten using Vc [41], a template-based C++ library for SIMD

vectorization, as shown below. Vc provides the class float v for handling SIMD 32-bit

floating point vectors agnostic of the length of the vector or architecture.

float_v acc (Vc::Zero);

for(int i(0); i<N; i+= float_v ::Size)

{

float_v X(&a[i]);

1We assume N is a multiple of 4.



2.1. ABSTRACTION THROUGH CLASSES 35

float_v Y(&b[i]);

acc += X * Y;

}

inner_prod = acc.sum();

The above snippet works for all SIMD instruction sets supported by Vc and has the same

performance characteristics as the hand-crafted intrinsics code.

2.1.2 Reclaiming Performance using Expression Templates

Object orientation and generic programming are neither new nor unique to C++, but

the reason object based-abstractions are not popular in linear algebra codes is that they

can incur performance penalties. Consider the following expression in the light of the

implementation of operator* in section 2.1.

C = alpha*A*B + beta*C;

This assignment of matrix-matrix multiplication incurs four temporary Matrix object

creations: one each to store the results of A*B (t1), alpha*t1 (t2), beta*C (t3) and

t2+t3 (t4). The temporary allocations and deallocations decrease performance because

they destroy cache locality and incur data copying costs. To overcome this performance

limitation, we use a technique called ‘expression templates’ [35].

The expression template approach involves creating a parse-tree of the whole expres-

sion, removing any temporary objects and deferring evaluating the expression until it is

assigned to the target. An expression template-based multiplication routine would return

a lightweight temporary object that acts as a placeholder for the operation:

class MatMul

{

const Matrix& _lhs;

const Matrix& _rhs;

public:

MatMul(const& Matrix left , const Matrix& right)

:_lhs(left), _rhs(right)

{}

int Rows() const

{ return _lhs.rows; }

int Cols() const

{ return _rhs.cols; }

double Coeff(int r, int c)

{



36 CHAPTER 2. C++ FOR NUMERICAL LIBRARIES

double val =0.;

for(int i=0; i<_lhs.rows; ++i)

val += _lhs.Coeff(r,i)*_rhs.Coeff(i,c);

return val;

}

};

const MatMul operator *(const Matrix& lhs , const Matrix& rhs)

{

return MatMul(lhs , rhs);

}

Instead of computing the matrix multiplication, operator* returns a type that has const

references to the two operands. By overloading the assignment operator for Matrix to

accept a MatMul argument, we can allow this type to be assigned to C.

Matrix C = A*B;

The assignment constructor is implemented such that the product is computed at the

time the assignment is invoked.

class Matrix

{

/∗ o t h e r code ∗/

public:

Matrix& operator =( const MatMul& prod)

{

_rows = prod.Rows();

_cols = prod.Cols();

for(int i=0; i<rows; ++i)

for(int j=0; j<cols; ++j)

this ->Coeff(i, j) = prod.Coeff(i, j); // a c t u a l m u l t i p l i c a t i o n

// happens he r e

return *this;

}

};

In [35], the authors present performance comparisons and demonstrate that expression

template-based C++ codes are capable of achieving the same performance as hand-

crafted C code.

Several C++ linear algebra libraries implement expression-templates, for example

Boost uBlas2, MTL3 and Eigen [26]. We use Eigen for our work because of its extensive

functionality and excellent performance [27]. Therefore, where we implement algorithms

as library code, they are designed to use Eigen matrices as inputs and outputs and offer

a similar level of genericity as Eigen does.

2http://www.boost.org/doc/libs/1_55_0b1/libs/numeric/ublas/doc/index.htm
3http://www.simunova.com/en/node/24

http://www.boost.org/doc/libs/1_55_0b1/libs/numeric/ublas/doc/index.htm
http://www.simunova.com/en/node/24


2.1. ABSTRACTION THROUGH CLASSES 37

2.1.3 Implementation Example

As an example code that demonstrates the software benefits discussed above, we list an

implementation developed using Eigen. In Chapter 3, we describe our use of Higham

and Tisseur’s block 1-norm estimation algorithm [34, Alg. 2.2] in GSA. This algorithm

estimates the 1-norm of a matrix using only matrix-vector or matrix-matrix operations.

It does not need access to the entries of the matrix as long as it can access a routine that

computes the matrix vector products; therefore it can be used to estimate the norm of

the inverse of a matrix.

This algorithm is implemented in the template class OneNormEst in Section 2.2. The

template parameter is the data type of the scalar of the square matrix A whose norm we

wish to estimate; therefore the class can work with matrices of both float and double.

The OneNormEst class takes as constructor arguments the size of A and the number of

vectors to be used for the estimation (t in [34, Alg. 2.2]). The equivalent FORTRAN

implementation, DLACN1, for double precision only, is listed in [12]. On comparison,

it is clear that OneNormEst is more concise, generic and comprehensible (assuming the

programmer understands C++ syntax).

To invoke the norm estimation routine, the client calls OneNormEst::ANorm, which

takes two anonymous functions as arguments. The anonymous functions, called lambda

in C++, return the effect of applying A and AT on a vector and emulate a functional-

style of programming. We present a sample snippet that demonstrates their use. For a

sparse symmetric matrix A held as an instance of Eigen::SparseMatrix and a matrix

of column vectors X, also held as an instance of the dense matrix class Eigen::Matrix,

the following lambda functor returns the product Y = A×X.

// Create o b j e c t A

Eigen:: SparseMatrix <double > A(n, n);

/∗ i n i t i a l i z e as a symmetr ic matr ix o b j e c t

. . .

∗/

// d e c l a r e lambda

auto applyA = [&] (Eigen::Matrix <double >& X, Eigen::Matrix <double >& Y)

{

Y = A * X;

};

To invoke the norm estimator, we call the ANorm function and pass the lambda functor as



38 CHAPTER 2. C++ FOR NUMERICAL LIBRARIES

one of the arguments. These functors are then invoked within the ANorm function body

at lines 38 and 99.

// norm e s t i m a t o r o b j e c t

OneNormEst <double > norm_estimator(n);

// the output

double est (0.);

// c a l l f u n c t i o n ANorm

norm_estimator.ANorm(applyA , applyA , est);

Thus, the client code consists of a single call to the ANorm function with the appropri-

ate lambda functions to retrieve the norm estimate. This contrasts with the reverse

communication-style interface of DLACN1, which passes the control back to the calling

code at the end of each iteration, resulting in code that looks more complicated than the

lambda approach.

2.2 The OneNormEst class

1 template <typename Scalar >

2 class OneNormEst

3 {

4 public:

5 OneNormEst(const int& n, const int& t=4): m_n(n), m_t(t) {}

6 ~OneNormEst () {}

7

8 template <typename A_operator , typename A_transpose_operator >

9 bool ANorm(const A_operator& applyA , A_transpose_operator& ←↩
applyA_trans , Scalar& norm)

10 {

11 Eigen::Matrix <Scalar > X(m_n , m_t), Y(m_n , m_t), Z(m_n , m_t);

12

13 std:: uniform_int_distribution <int > rand_gen(0, m_n -1);

14 auto random_plus_minus_1_func = [&]( const Scalar& ) -> Scalar

15 {

16 if (rand_gen(engine)>m_n /2)

17 return 1;

18 else

19 return -1;

20 };

21

22 X = X.unaryExpr(random_plus_minus_1_func);

23 X.col(0).setOnes ();

24 X /= m_n;

25

26 Eigen::Matrix <Scalar > S(m_n , m_t), S_old(m_n , m_t); // s i g n matr ix

27 Eigen:: MatrixXi prodS(m_t , m_t);



2.2. THE ONENORMEST CLASS 39

28 S.setZero ();

29

30 Scalar est=0., est_old = 0.;

31

32 int ind_best (0);

33 std::vector <int > indices(m_n);

34 std::vector <int > ind_hist;

35 Eigen:: VectorXd h(m_n);

36

37 for (int k(0); k<itmax; ++k) {

38 applyA(X, Y); // Y = A ∗ X

39

40 int ind(-1);

41 for(int i(0); i<m_t; ++i) {

42 Scalar norm = Y.col(i).cwiseAbs ().sum(); // norm = { | |Y | | } 1

43 if (norm > est) {

44 est = norm;

45 ind = indices[i];

46 }

47 }

48

49 if (ind != -1 && (est > est_old || k==1))

50 ind_best = ind;

51

52 if(ind_best > m_n) {

53 std:: stringstream message;

54 message <<"OneNormEst: Error in accessing vector index";

55 throw std:: exception(message.str().c_str ());

56 }

57

58 if (est < est_old && k >= 1) {

59 norm = est_old;

60 return true;

61 }

62

63 est_old = est;

64 S_old = S;

65

66 // S = s i g n (Y)

67 S = Y.unaryExpr ([&] (const Scalar& coeff) -> Scalar

68 {

69 if(coeff >= 0.) return 1.;

70 else return -1.;

71 });

72

73 prodS = (S_old.transpose () * S).matrix ().cast <int >();

74

75 // i f a l l c o l s a r e p a r a l l e l , prodS w i l l have a l l e n t r i e s = n

76 if (prodS.cwiseAbs ().colwise ().sum().sum() == m_n*m_n*m_t) {

77 norm = est;

78 return true;

79 }

80

81 // i f S o l d ( i ) i s p a r a l l e l to S ( j ) , r e p l a c e S ( j ) with random



40 CHAPTER 2. C++ FOR NUMERICAL LIBRARIES

82 for(int i(0); i<m_t; ++i) {

83 for(int j(0); j<m_t; ++j) {

84 if(prodS.coeff(i, j)==m_n)

85 S.col(j) = S.col(j).unaryExpr(random_plus_minus_1_func);

86 }

87 }

88

89 // i f S ( i ) i s p a r a l l e l to S ( j ) , r e p l a c e S ( j ) with random

90 prodS = (S.transpose ()*S).matrix ().cast <int >();

91

92 for(int i(0); i<m_t; ++i) {

93 for(int j(i+1); j<m_t; ++j) {

94 if(prodS.coeff(i, j)==m_n)

95 S.col(j) = S.col(j).unaryExpr(random_plus_minus_1_func);

96 }

97 }

98

99 applyA_trans(S, Z);//Z = A t r a n s p o s e ∗ S

100

101 h.matrix () = Z.cwiseAbs ().rowwise ().maxCoeff ();

102

103 if (k >= 1 && h.maxCoeff () == h.coeff(ind_best) ) {

104 norm = est;

105 return true;

106 }

107

108 for(int i(0); i<m_n; ++i)

109 indices[i] = i;

110

111 // s o r t i n d i c e s by e n t r i e s i n h

112 std::sort(indices.begin(), indices.end(), [&]( int& left , int& ←↩
right)

113 {

114 return h.coeff(left) > h.coeff(right);

115 });

116

117 int n_found (0);

118 for(auto i=indices.begin(); i!= indices.begin()+m_t; ++i) // i s ←↩
i n d i c e s c o n t a i n e d i n i n d h i s t ?

119 if(std::find(ind_hist.begin(), ind_hist.end(), *i) != ind_hist←↩
.end())

120 ++ n_found;

121

122 if(n_found == m_t) {

123 norm = est;

124 return true;

125 }

126

127 std::vector <int > new_indices;

128

129 if(k>0) {

130 new_indices.reserve(m_t);

131 int count (0);



2.2. THE ONENORMEST CLASS 41

132 for(auto it=indices.begin()+m_t; it!= indices.end() && count <←↩
m_t; ++it)

133 {

134 if(std::find(ind_hist.begin(), ind_hist.end(), *it) == ←↩
ind_hist.end()) {

135 new_indices.push_back (*it); ++count;

136 }

137 }

138 }

139 assert(indices.size() >0);

140

141 X.setZero ();

142 for(auto i=0; i<m_t && k>0; ++i) {

143 X.coeffRef(indices[i], i) = 1; // Set X( : , j ) = e ind−j

144 }

145 std::copy(new_indices.begin(), new_indices.end(), std::←↩
back_inserter(ind_hist));

146 new_indices.clear ();

147 }

148 norm = est;

149 return true;

150 }

151 static int itmax =5;

152

153 private:

154 int m_n; // rows

155 int m_t; // c o l s

156

157 };



Chapter 3

Detecting the Causes of Ill

Conditioning in Structural Finite

Element Models

3.1 Introduction

Modelling structural response using the finite element (FE) method involves idealizing

structural behaviour and dividing the structure into elements. The solution obtained

from such a procedure is therefore inherently approximate. The errors are of a variety of

types, such as error in the choice of mathematical model (when the physical system being

modelled does not obey the assumptions of the mathematical model chosen), discretiza-

tion errors (arising from representing infinite dimensional operators in finite spaces), and

numerical errors (those caused by representing real numbers as finite precision numbers

on a computer). Techniques for understanding, analysing and bounding these errors have

developed in pace with the method itself and their study is part of any standard text

on finite element analysis—see [7] or [13, chap. 18] for example. User errors (errors in

the definition of the model within the software from say, erroneous input), on the other

hand, have received significantly less attention in the literature. This is partly due to the

practitioner using FE analyses being disconnected with the process of developing it or

implementing it in software but mainly because such errors can arise arbitrarily, which

poses a barrier to understanding and analysing them. Examples of such errors include

42



3.2. CONDITION NUMBER ESTIMATION 43

• Lack of connectivity: adjacent elements that are supposed to share a common node

but are connected to different nodes that are coincident, resulting in one of the

elements acquiring insufficient restraints.

• Failure to idealise member end connections correctly, which can occur if a beam

is free to rotate about its axis, although in the physical model there is a nominal

restraint against rotation.

• Modelling beam elements with large sections and/or very small lengths, often the

result of importing FE assemblies from CAD models.

Irrespective of whether the error arose from approximation or from erroneous input

data, it can lead to an ill-conditioned problem during its analysis, that is, one for which

the stiffness matrix of the model has a large condition number with respect to inversion. In

this work, we show how errors that lead to an ill-conditioned problem can be detected, i.e.,

we present a technique to identify the parts of the model that cause the ill conditioning.

Our method has been implemented in Oasys GSA and we demonstrate its efficacy with

examples of how it has been used to identify errors in user-generated ill-conditioned

models.

3.2 Condition Number Estimation

Linear systems of equations arise in many problems in structural analysis. For a structural

model with symmetric positive definite (or semidefinite) stiffness matrix K ∈ Rn×n,

elastic static analysis for calculating the displacement u ∈ Rn under the action of loads

f ∈ Rn yields the system Ku = f . Other types of analysis that involve solving linear

equations with the stiffness matrix include dynamic, buckling, P–Delta, and nonlinear

static analysis. Solving a linear system on a computer involves approximating the entries

of K as floating point numbers, which introduces an error ∆K (we disregard, without

loss of generality, the error introduced in f due to the same process). Denoting the

corresponding change to u by ∆u, the equation we solve is

(K + ∆K)(u+ ∆u) = f.



44 CHAPTER 3. ILL CONDITIONING IN FE MODELS

Rearranging, taking norms and dropping the second order term ∆K∆u gives the inequal-

ity, correct to first order,

‖∆u‖
‖u‖ ≤ κ(K)

‖∆K‖
‖K‖ , (3.1)

where κ(K) = ‖K‖‖K−1‖ is the condition number (with respect to inversion). The norm

‖ · ‖ can be any subordinate matrix norm, defined in terms of an underlying vector norm

by ‖K‖ = max‖x‖=1 ‖Kx‖.

Condition numbers measure the maximum change of the solution to a problem with

respect to small changes in the problem. Inequality (3.1) tells us that the relative error

in u is bounded by the relative error in K times its condition number. This bound is

attainable to first order for a given K and f [33, Thm. 7.2], so the change in the solution

caused simply by storingK on the computer can be large ifK is ill-conditioned. Rounding

errors in the solution process can be shown to correspond to an increased ‖∆K‖ in (3.1)

and so are also magnified by as much as κ(K).

In IEEE 754 double precision binary floating point arithmetic [1] we have a maximum

of the equivalent of 16 significant decimal digits of precision available and we therefore

have as little as 16 − log10 κ(K) digits of accuracy in the computed solution. When

a matrix has a condition number greater than 1016, the solution algorithm can return

results with no accuracy at all—such a matrix is numerically singular and linear systems

with this matrix should not be solved. Therefore it is essential to compute or estimate

the condition number of the stiffness matrix K to ensure it is well conditioned.

Since K is symmetric and positive definite (or positive semidefinite), its 2-norm

condition number κ2(K) is the ratio of its extremal eigenvalues λmax = maxi λi and

λmin = mini λi [33, Chap. 6]:

κ2(K) =
λmax

λmin

.

Computing the maximum and minimum eigenvalues is an expensive operation, particu-

larly since K is large. In practice we need just an estimate of the condition number that

is of the correct order of magnitude, and we can choose any convenient norm to work

with [33, chap. 15]. LAPACK [2] offers the xLACON routine that computes a lower bound

for the 1-norm of a matrix, based on the algorithm of Higham [32]. Higham and Tisseur

[34] develop a block generalization of this algorithm and demonstrate that it produces



3.3. ILL CONDITIONING IN STRUCTURAL STIFFNESS MATRICES 45

estimates accurate to one or more significant digits at a nominal cost of a few matrix–

vector multiplications. The algorithm does not need to access the elements of the matrix

explicitly, as long as it can access a routine that returns the matrix–vector product. Thus

it can be used to estimate the norm of the inverse of a matrix K as long as one can form

the product K−1v =: g, which is equivalent to solving the linear system Kg = v.

We incorporated a procedure in GSA that uses this algorithm to calculate an estimate

of the 1-norm condition number of K. This method is invoked and the condition number

is reported for all analysis types that involve assembling K. It first computes ‖K‖1

and then computes the estimate of ‖K−1‖1, making use of the Cholesky factors of K.

Since the analysis already requires the Cholesky factorization of K to be computed, the

condition estimate comes at a nominal cost of a few triangular system solves.

Once the software had been released, users were informed when they had a model with

an ill-conditioned stiffness matrix. As a result, the developers were subsequently faced

with the question: “how do we detect where in the FE model the ill conditioning lies?”.

To answer this question we first need to look at the possible causes of ill conditioning.

3.3 Ill Conditioning in Structural Stiffness Matrices

The stiffness matrix is constructed by summing up stiffnesses at each degree of freedom

(dof) in the model and each dof corresponds to a row (or a column) in the matrix. The

dofs are based at nodes and each node has 6 dofs corresponding to 3 translations and

3 rotations. The stiffnesses at each dof come from elements that connect to the nodes

at which the dofs are defined. The stiffness contributed by an element e is defined in

its element stiffness matrix K(e) and depends on the element type and its physical and

geometrical properties. Let the element stiffness matrix contributed by each element e

in the domain Ω be K(e). The matrix K(e) ∈ Rne×ne is symmetric and it is defined in a

coordinate system (of displacements) and degrees of freedom (dofs) local to the element.

To map the displacements to the global coordinate system we use the coordinate trans-

formation matrix T (e); we also use a set me of ne variables that map the locally numbered

dofs to the global dof numbering. The stiffness matrix K is the sum of contributions from



46 CHAPTER 3. ILL CONDITIONING IN FE MODELS

all elements in the domain Ω transformed to global:

K =
∑

e∈Ω

G(e), (3.2)

where

G(e)(me,me) = T (e)TK(e)T (e).

If an element connects dof i with dof j, then kii, kjj, and kij = kji are all nonzero,

assuming an element with nonzero stiffness in directions of i and j connects the dofs.

Because of its construction K is symmetric, with very few nonzero entries per row.

The matrix K becomes ill-conditioned when its columns are nearly linearly dependent.

This can happen when

(a) the structure has one or more pairs or tuples of dofs that do not have sufficient

connectivity with the rest of the model or

(b) certain dofs have stiffnesses disproportionate with the rest of the model.

We say a pair (i, j) of dofs connected to each other has insufficient connectivity when

the stiffness contributions of terms kis and krj for r, s ∈ (1, n) with r, s /∈ (i, j) are either

very small or at roundoff level compared with kii, kjj, and kij. (The definition can be

easily expanded for higher tuples of dofs.)

Possibility (a) occurs when elements do not have sufficient connectivity, for example

a beam element that is connected to nodes at which there is no torsional restraint.

Typically the resultant matrix would be singular since the structure is a mechanism, but

it is possible that due to rounding during coordinate transformations, entries in columns

ki or kj acquire small nonzero values. If i and j are the dofs corresponding to axial

rotation at the two ends of the column member, such a model would result in a matrix

with columns i and j > i resembling (with ki denoting the ith column of K)

ki = [0, . . . , 0, a, 0, . . . , 0, −a, 0, . . . ]T

and

kj = [0, . . . , ε, −a, ε, . . . , ε, a, 0, . . . ]T ,

where the entries kii = kjj = a > 0 and kij = kji = −a and all other entries ε in kj

arising from other dofs connected to dof j are such that |ε| � a. More generally, a tuple

S ⊆ {1, . . . , n} of dofs can arise such that for i ∈ S, kij is nonzero only for j ∈ S.



3.3. ILL CONDITIONING IN STRUCTURAL STIFFNESS MATRICES 47

The situation that would result in (b) is when certain elements that are disproportion-

ately stiff in particular directions connect with more flexible elements in the neighbour-

hood. This results in a badly scaled matrix, and can be seen, for example, when beam

or column members are split in numerous line elements—usually the result of importing

a CAD drawing as an FE assembly.

It is impossible to obtain a full list of modelling scenarios that will result in an ill-

conditioned stiffness matrix, but in section 3.5 we present a few examples of real life

models we have encountered. For now, we focus on how the properties of the matrix

can be exploited to identify the location of the anomalies that cause ill conditioning. By

location of anomalies, we mean the identification of the errant dofs S, and subsequently

problematic elements, such that an examination of the model defined in the vicinity of

these elements can help the user identify the issue.

Past work has focused on identifying mechanisms in finite element models. Mech-

anisms render the stiffness matrix singular, so the problem is the same as finding the

null space of the matrix, though in the case of floating structures the matrix can also

have a nontrivial null space corresponding to its rigid body modes. Farhat and Géradin

[18] and Papadrakakis and Fragakis [50] deal with the computation of the null space of

stiffness matrices using a combination of algebraic and geometric information specific to

the discretization, whereas Shklarski and Toledo [58] use a graph theoretic approach for

computing the null space.

Whilst the identification of mechanisms is useful, rectifying the error is a case of

fixing the unconstrained dof. Moreover, since a mechanism results in a singular stiffness

matrix, an attempt to find its Cholesky factors (during, say, linear static analysis) is

likely to break down and hence signal the problem [33, Chap. 10]. An ill-conditioned

matrix, however, poses more challenges. Ill conditioning can result from subtler errors

that might be hard to detect, but their presence can lead to numerical inaccuracies in

results.

Our technique for diagnosing user errors works for both ill conditioning errors as well

as mechanisms. It provides the user with qualitative information about the location of

these errors in the structure being modelled. The method uses eigenvectors of the stiffness

matrix, so it does not need new algorithms to be deployed in software packages but rather



48 CHAPTER 3. ILL CONDITIONING IN FE MODELS

can make use of existing well-known techniques for solving eigenvalue problems.

3.4 Using Eigenvectors to Identify Cause of Ill Con-

ditioning

We now describe our method to identify elements and dofs that cause ill conditioning

in the stiffness matrix. The key insight is that the eigenvectors corresponding to ex-

tremal eigenvalues of K (which, with a slight abuse of notation, we will refer to as the

smallest/largest eigenvectors) contain rich information about the dofs that cause ill con-

ditioning. We assume the model does not have rigid body modes, i.e., K does not have

a nontrivial null space corresponding to rigid body motion. If the ill conditioning of K

is due to the reasons outlined in section 3.3, the smallest and/or the largest eigenvectors

are numerically sparse. We call a normalized vector numerically sparse when it has only

a small number of components significantly above the roundoff level. In the remainder

of this section, we show that when ill conditioning is caused by insufficient connectivity

the eigenvectors corresponding to the one or more smallest eigenvalues are numerically

sparse, whereas when the ill conditioning is from the presence of elements with dispro-

portionately large stiffnesses the largest eigenvectors exhibit numerical sparsity. If we

define the inner product terms

v(e) =
1

2
ui(me)

Tui(me), e ∈ Ω (3.3)

and

s(e) =
1

2
ui(me)

TT (e)TK(e)T (e)ui(me), e ∈ Ω (3.4)

for a normalized eigenvector ui and element e, then the elements that cause ill condition-

ing are those that have large relative values of either v(e) for the smallest eigenvectors or

s(e) for the largest eigenvectors. The element-wise scalars v(e) and s(e), respectively, can

be thought of as virtual kinetic and virtual strain energies associated with the modes of

displacements defined by the eigenvectors; therefore we refer to them as virtual energies

later on in the text.

Our method for identifying ill conditioning in a finite element assembly is outlined in

Algorithm 3.1. We call it model stability analysis, since it analyses the numerical stability



3.4. USING EIGENVECTORS TO IDENTIFY CAUSE OF ILL CONDITIONING 49

of the underlying model.

Algorithm 3.1 Algorithm for model stability analysis.

This algorithm has the following user-defined parameters:

• ns ≥ 0: the number of smallest eigenpairs;

• n` ≥ 0: the number of largest eigenpairs;

• τ > 1: the condition number threshold for triggering analysis;

• gf ≥ 1: the order of the gap between a cluster of smallest eigenvalues and the next
largest eigenvalue.

1. Compute a condition number estimate est ≈ κ1(K).

2. If est < τ , exit.

3. Issue ill conditioning warning.

4. Compute the ns smallest eigenvalues λ1, λ2, . . . , λns and n` largest eigenvalues
λn−n`+1, . . . , λn of K and normalize the associated eigenvectors.

5. With the smallest eigenpairs: determine if a gap exists, i.e., if there is a k < ns
such that

λk−1

λk
> gf × λk

λk+1

If no such k is found go to step 7.

6. For each eigenvector ui, i = 1 to k, calculate v(e) for all elements.

7. With the largest eigenpairs: for each eigenvector ui, i = n− nl to n, compute s(e).

Once the algorithm finishes executing, the user must find elements with large virtual

energies for each eigenpair. Isolating elements with large relative values of v(e) or s(e) is

based on visual inspection of the values. This is done by graphically colour-contouring

the scalars on elements as discs whose radii and colour depend on the relative values

of the scalars. Once the elements with large relative energies are identified the user

must examine their definition (e.g., support conditions, nodal connectivity or section

properties) for anomalies and fix discrepancies. This should result in κ(K) decreasing,

hence the proposed workflow is iterative: execute Algorithm 3.1, fix anomalies, check if

est < τ , and repeat the steps if necessary.

We now explain the reasoning behind our method by relating the ill conditioning to

properties of the largest and smallest eigenvectors.



50 CHAPTER 3. ILL CONDITIONING IN FE MODELS

3.4.1 Smallest Eigenpairs

In the case of a few insufficiently connected dofs, the sparsity of eigenvectors stems from

their continuity over perturbations. An ill conditioned matrix K is a small relative

distance from a singular matrix K̂, as shown by the following result of Gastinel and

Kahan [33, Thm. 6.5].

Theorem 3.4.1. For any n× n matrix A the distance

dist(A) = min

{‖∆A‖
‖A‖ : A+ ∆A singular

}

is given by

dist(A) = κ(A)−1,

where the norm is any subordinate matrix norm.

For an ill conditioned K, the eigenvectors of K corresponding to the smallest eigen-

values are the perturbed null vectors of a nearby singular matrix K̂, and since the null

vectors of K̂ can reveal unconstrained dofs, as shown by Lemma 3.4.2 below, the smallest

eigenvectors of K contain the same information as long as the perturbation is small.

We first show that the null vector of a singular matrix with a specific property has

a predefined structure. We then demonstrate how a small perturbation to this singular

matrix does not change the structure of the null vector. The proof is then generalized

for an invariant subspace of a matrix and we show that under mild assumptions the

eigenvectors of an ill conditioned matrix reveal dofs that are insufficiently restrained.

We start with the following lemma. All norms used throughout are 2-norms.

Lemma 3.4.2. Let A = [a1, . . . , an] ∈ Rn×n have columns a1, . . . , an−1 linearly indepen-

dent and an−1 and an dependent. Then

Null(A) = {x ∈ Rn : Ax = 0} = span{u},

where u has the form

u = [0, . . . 0, α, β]T (3.5)

for α, β ∈ R with β 6= 0.



3.4. USING EIGENVECTORS TO IDENTIFY CAUSE OF ILL CONDITIONING 51

Proof. By assumption, rank(A) = n− 1 and hence dim null(A) = 1.

Write an = γan−1 (this is always possible since an−1 6= 0). Then

Au = 0⇐⇒ u1a1 + u2a2 + · · ·+ un−2an−2 + (un−1 + γun)an−1 = 0,

and since a1, . . . , an−1 are linearly independent, u1 = · · · = un−2 = 0 and un−1 = −γun.

So u 6= 0 if un 6= 0 and in that case u has the required form.

The matrix A in Lemma 3.4.2 has a simple eigenvalue 0 and the null vector u is a

corresponding eigenvector. Now suppose A is, additionally, symmetric and consider a

perturbed matrix Ã = A + E for a symmetric perturbation E. The next result shows

that if ũ is the smallest eigenvector of Ã then for small perturbations the structure of ũ

is similar to that of the null vector u.

Theorem 3.4.3. Let A, as defined in Lemma 3.4.2, be symmetric positive semidefinite

and perturbed with a symmetric E ∈ Rn×n to Ã = A+E such that Ã is positive definite.

Let 0, λ2, . . . , λn be the eigenvalues of A in increasing order and u be a null vector of

A with ‖u‖ = 1. Let t be the smallest eigenvalue of Ã and ũ be an eigenvector of

unit 2-norm associated with t. Then, provided t � λ2, ũ has the structure ψũT =

[δ1, . . . , δn−1, α + δn−1, β + δn] for some scalar ψ ∈ R, with the δi of order ‖E‖/(λ2 − t).

Proof. Since the columns a1 to an−1 of A are linearly independent, the eigenvalue λ2 is

positive. Let M := diag(λ2, . . . , λn) and let an eigenvector matrix with orthonormal

columns corresponding to eigenvalues in M be denoted by U ∈ Rn×(n−1). We then have

u

T

UT


A

[
u U

]
=


0 0

0 M


 , (3.6)

with [u U ] orthogonal and M ∈ R(n−1)×(n−1).

Let (t, ũ) be an eigenpair of Ã. Then Ãũ = tũ. We can write ũ = ψu+Up, ψ ∈ R and

p ∈ Rn−1, with ‖[ψ pT ]‖2 = 1, to be determined. Noting that Au = 0 and AU = UM ,

we can rewrite Ãũ = tũ as

UMp+ ψEu+ EUp = ψtu+ tUp. (3.7)

Premultiplying (3.7) by UT yields

Mp+ ψUTEu+ UTEUp = tp,



52 CHAPTER 3. ILL CONDITIONING IN FE MODELS

since UTu = 0. Rearranging,

(tI −M)p = UTE(ψu+ Up),

so

p = (tI −M)−1UTE(ψu+ Up),

as tI −M is nonsingular because of the assumption t < λ2. Taking norms on both sides

gives

‖p‖ ≤ ‖(tI −M)−1‖‖E‖(|ψ|+ ‖p‖).

Since |λ2 − t| < |λi − t| for i > 2, ‖(tI −M)−1‖ = (λ2 − t)−1. Therefore we can rewrite

the inequality as:

‖p‖ ≤ ‖E‖(ψ + ‖p‖)
λ2 − t

≤
√

2‖E‖
λ2 − t

, (3.8)

since |ψ|+ ‖p‖ ≤
√

2(ψ2 + ‖p‖2
2)

1/2
=
√

2 using Cauchy-Schwarz inequality. Since t� λ2

from the assumptions of the theorem, ‖p‖ = ‖ũ − ψu‖ is small and hence ũ has nearly

the same structure as u.

We apply the result above to a symmetric positive semidefinite K with a simple

eigenvalue 0 that is perturbed by a symmetric E such that K̃ = K+E is positive definite.

If (0, u) is the smallest eigenpair of K, with λ2 being the next largest eigenvalue, then the

perturbed eigenvector ũ differs from the original null vector by a distance proportional

to the product of the norm of the perturbation and the reciprocal of d = λ2. In other

words, if the null vector u has the structure defined in (3.5), its perturbation ũ has the

form

ũT = [δ1, . . . , δn−1, α + δn−1, β + δn],

with δi of order ‖E‖2/(λ2 − t). Therefore, the smallest eigenvector of an ill-conditioned

stiffness matrix will have large components corresponding to the nearly dependent columns.

It is easy to show that elements that share these dofs have large values of the inner pro-

duct/virtual energy v(e) as defined in (3.3). Let D be the set of dependent dofs and let

element e have a mapping me that has a larger intersection with D than the mapping set

of any other element in the assembly, i.e.,

|D ∩me| > |D ∩mi| ∀i ∈ Ω, i 6= e,



3.4. USING EIGENVECTORS TO IDENTIFY CAUSE OF ILL CONDITIONING 53

where | · | is the cardinality of the set. Then, ũ(me)
T ũ(me) > ũ(mi)

T ũ(mi) for i ∈ Ω,

i 6= e.

We applied the bound in Theorem 3.4.3 to the special case of K with two columns

dependent, resulting in a simple eigenvalue 0. More generally, there could be p ≥ 2

columns that are dependent, corresponding to p dofs that are badly restrained. If K is

scaled such that the largest eigenvalue is 1, then it has a cluster of eigenvalues close to 0

and these eigenvalues have eigenvectors with few large components. For eigenvalues that

are clustered, the eigenvectors are sensitive to perturbations but the invariant subspace

corresponding to the cluster is less sensitive. Our result is therefore easily generalized

for a cluster of eigenvalues and the invariant subspace of the associated eigenvectors:

the clustered eigenvalues of an ill conditioned symmetric matrix are a perturbation of

repeated zero eigenvalues of a nearby singular matrix and the eigenvectors form a basis

for the subspace that is in the neighbourhood of the null space. The following theorem,

which is a special case of [25, Thm. 8.1.10], states this result. Here, we need the Frobenius

norm, ‖A‖F =
(∑n

i,j=1 |aij|
2)1/2

.

Theorem 3.4.4. Let a symmetric positive semidefinite matrix A ∈ Rn×n have the eigen-

decomposition

A = UTΛU,

where Λ = diag(λi) with λ1 ≤ λ2 ≤ · · · ≤ λn and U is a matrix of eigenvectors. Assume

the spectrum of A is such that the first r eigenvalues in Λ are 0 and λr+1 > 0, and

partition U = [U1 U2], so that the columns of U1 ∈ Rn×r span the null space of A. Let

E ∈ Rn×n be a symmetric matrix and partition UTEU conformably with U as

UTEU =


E11 E12

E21 E22


 .

If

‖E‖F ≤
λr+1

5
,

then there exists a matrix P ∈ R(n−r)×r with

‖P‖F ≤ 4
‖E21‖F
λr+1

such that the columns of Ũ1 = (U1 + U2P )(I + P TP )
− 1

2 form an orthonormal basis for a

subspace invariant for A+ E.



54 CHAPTER 3. ILL CONDITIONING IN FE MODELS

Theorem 3.4.4 suggests that where the ill conditioning is associated with a cluster

of small eigenvalues we need to examine all the eigenvectors associated with the cluster

to gain an understanding of the causes of ill conditioning. The identification of the gap

is important and so is its size—a large gap ensures that the perturbed eigenvectors are

“close” to the null vectors, and hence contain useful information about the errors.

3.4.2 Largest Eigenpairs

When K is ill-conditioned because a few elements possess large stiffnesses in comparison

with other elements in the model, the largest eigenvectors are numerically sparse and we

can use the element-wise virtual strain energy s(e) from (3.4) to identify such elements.

The relationship between λmax(K) and maxe{λmax(K(e))} is already well known from

the results of Wathen [68] and Fried [22]. Here, we show the connection between the

largest eigenvector of K and the largest eigenvector of K(e) and use the relationship to

demonstrate that the stiffest element has the largest virtual strain energy. We start with

a localized sub-assembly of elements and then extend the argument for the entire model.

Consider an FE sub-assembly as in Figure 3.1, with a stiffness matrix S. We assume,

without loss of generality, that each element in the sub-assembly has stiffness only in

one direction at each end, so there is only one dof at nodes d1, . . . , d6, and that no other

coupling exists between these nodes and the rest of the model. Let the transformed

stiffness matrix of element r in the direction of the dofs at the nodes be kr
[

1 −1
−1 1

]
. Since

the ill conditioning scenario we are interested in is one where a few elements have much

larger stiffnesses than most other neighbouring elements (that in turn have stiffnesses

comparable with each other), let k = k1 = k2 = k4 = k5 and let element 3 be the stiffest,

with k3 = µk for µ� 1. Then the stiffness matrix S of the sub-assembly is

S = k




2 −1 0 0

−1 µ+ 1 −µ 0

0 −µ µ+ 1 −1

0 0 −1 2



. (3.9)

We note here that the simplification of using elements with only one dof at each node

is only to keep the dimension of S low and it does not affect the discussion: we can use

any element as long as it has at least one dof about which it has a large relative stiffness.



3.4. USING EIGENVECTORS TO IDENTIFY CAUSE OF ILL CONDITIONING 55

d1 d2 d3 d4 d5 d6

1 2
3

4 5

Figure 3.1: A sub-assembly. Element 3 is the stiffest, with a large difference in stiffness.

Table 3.1: s(e) for elements e in the sub-assembly.

Element e 1 2 3 4 5

s(e) 1 1 + γ2 4γ2 1 + γ2 1

We are interested in the largest eigenvector and the corresponding energies of elements

when the assembly deforms in that mode.

Using the MATLAB Symbolic Math Toolbox the largest eigenvector of S is found to

be (unnormalized)

u = [−1, γ,−γ, 1]T , where γ = µ+ (
√

4µ2 − 4µ+ 5− 1)/2.

Table 3.1 provides expressions for s(e) when the sub-assembly is in a displacement mode

given by u. Clearly, s(3) > s(e) for e = 1, 2, 4, 5 for all µ > 1. Hence the stiffest element

has the largest virtual energy. We also observe that the components of the eigenvector

vary as polynomials of the ratio of stiffnesses, therefore the larger the variation in stiffness

magnitudes, the larger the difference in the order of the components of the vector, making

it more numerically sparse.

To generalize this observation, we show that when such an assembly is part of a larger

structure, the largest eigenvector of the larger model has a form similar to that of the

largest eigenvector of the sub-assembly.

Assume the structure in Figure 3.1 is embedded in an arbitrary FE model as in Figure

Figure 3.2: An arbitrary FE model.



56 CHAPTER 3. ILL CONDITIONING IN FE MODELS

3.2, with stiffnesses at nodes d3 and d4 larger than those at any other dof. The fixities at

the ends of elements 1 and 5 in Figure 3.1 become shared nodes between the sub-assembly

and the rest of the model. We represent the stiffness matrix of the entire structure as

K ∈ Rn×n. Let b be the maximum number of nonzeros in any row of K. The quantity b

represents the element connectivity in the structure.

We can order K as

K =


M F

F T S


 , (3.10)

where S is the same as in (3.9) and represents the sub-assembly and M ∈ R(n−4)×(n−4)

contains dofs from the rest of the model. The stiffness terms for shared dofs are in

F ∈ R(n−4)×4, which is of low rank and small norm compared with S (and can be written

out explicitly). Then, assuming b � µ, the largest eigenvector of the block-diagonal

matrix

K̂ =


M 0

0 S


 (3.11)

is of the form v̂T := [0, . . . , 0, u] ∈ Rn, where u is the largest eigenvector of S. To show

this we need to show that ‖M‖2 < ‖S‖2. If K is scaled using its construction in (3.2)

such that

max
e∈Ω
e 6=2

‖K(e)‖ = 1,

we have

‖K(3)‖ � 1,

since element 3 is the stiffest. Then informally, maxi,j |mij| = O(1) and maxi,j |sij| =

O(µ). Using [33, Prob. 6.14] and the definition of b and the symmetry of M , we have

‖M‖2 ≤ b1/2 max
j
‖M(:, j)‖2 ≤ b1/2 · b1/2 max

i,j
|mij|

= bmax
i,j
|mij| = O(b) < O(µ) = max

i,j
|sij| ≤ ‖S‖2,

since b� µ. This assumption is reasonable since the number of nonzeros is typically of a

smaller order compared with the stiffness of the element causing the ill conditioning and

conforms with our observations. We also note that b is akin to the factor pmax in [22,



3.5. EXAMPLES 57

Lemma 2] or dmax in [68, Equation 3.7]. The matrix

K = K̂ +


 0 F

F T 0


 ,

is a small perturbation of K̂ (of norm ε, say). Therefore, using Theorem 3.4.3, the

largest eigenvector v of K has a small distance (proportional to ε) from v̂ and so retains

the structure. This implies v is numerically sparse, leading to large relative values of

virtual strain energies for elements that cause ill conditioning of the stiffness matrix.

3.5 Examples

The method described in section 3.4 has been implemented as an analysis option in

GSA [49]. Eigenvalues and eigenvectors are computed using subspace iteration with

deflation of converged vectors. The following examples illustrate how the feature has

been used on structural models created by engineers on real-life projects. Since the

illustrations make use of models created in GSA, we use software-specific definitions of

common entities and concepts encountered in FE modelling and define new terms when

we introduce them. In all but the last example, examining element virtual energies for

the small eigenvalues revealed the causes of the ill conditioning.

3.5.1 Roof Truss for Performing Arts Arena

Figure 3.3 shows the roof truss model of a performing arts arena that was analysed in

GSA. The roof is modelled as ‘beam’ and ‘bar’ elements, which are both one dimensional.

Beam elements have 6 dofs at each end, 3 each for translation and rotation, whereas bars

have two dofs corresponding to axial extensions only. The main trusses run along the

shorter diameter of the oval, with longitudinal bracing connecting each truss at the top

and bottom chord to provide lateral stability. The model is supported on pins and rollers

at joints close to the circumference.

On an initial version of the model, the condition number was estimated to be O(1017),

meaning that the stiffness matrix was numerically singular. Model stability analysis was

executed and the smallest eigenvalues of the matrix are λ1 = 0.0, λ2 = 1.142 × 10−13,

and λ3 = 1.396× 105.



58 CHAPTER 3. ILL CONDITIONING IN FE MODELS

Figure 3.3: 3D view of the arena roof-truss model. The lines in blue represent truss
elements.

(a) Element virtual energies (b) Exploded view

Figure 3.4: Roof truss model: virtual energies for first eigenvector.

Figure 3.4a shows the contour plot for element-wise virtual kinetic energies associated

with the first eigenvector. The contour shows the largest values for exactly 6 amongst

850 elements in the model.

Figure 3.4b shows a closer view of three of those nodes along with the elements con-

nected to them. Elements 589 and 590 are beams, whereas all other elements connecting

at node 221 are bars, which is a modelling oversight. As a result, the dof corresponding to

rotation about the X-axis at node 200 is unrestrained, which leads to a mechanism at the

node. Restraining rotation about the X-axis at nodes 220 and 222 fixes the beams 589

and 590 from spinning about their axis. After the restraints are applied, the condition

number estimate reported drops to O(105).



3.5. EXAMPLES 59

(a) 3d view (b) Plan

Figure 3.5: Connection detail. Blue quadrilaterals are plate elements.

3.5.2 Steel Connection Detail

The model in Figure 3.5 is a steel connection detail. The flange and the web of the

connection are modelled using parabolic (eight noded, quadrilateral) plate elements [59,

sec. 12.11.7]. Adjacent webs are connected with bolts, modelled as beams.

Initially, the stiffness matrix for the static analysis had a condition number estimate

of O(1020). Model stability analysis returned a distribution of eigenvalues tabulated in

Table 3.2. We notice a cluster of eigenvalues of order 10−11 and a large gap between the

40th and 41st eigenvalues. When element virtual kinetic energies (v(e) in (3.3)) associated

with the first 40 eigenvectors are contoured on the model, a handful of elements are seen

to have large relative values in each mode. Figures 3.6 and 3.7 illustrate four of these

plots.

The matrix is numerically singular and it arises from the choice of the element type

for modelling the web and their connection to the beams. Eight noded plate elements

have only five dofs per node, three for displacements and two for bending: rotation about

the normal axis (drilling dof) is not supported. When such an element is connected to a

beam, which has six dofs, oriented perpendicular to it, the connecting node acquires an

active dof in the rotational direction about its axis. Since the plate does not have stiffness

in this direction, the dof is unconstrained and this renders the matrix singular. The 41st

eigenvalue is not small compared with the first 40, so the element virtual energies for a

corresponding eigenvector are more evenly distributed (mode 41, Figure 3.7).



60 CHAPTER 3. ILL CONDITIONING IN FE MODELS

Table 3.2: Eigenvalues of the stiffness matrix from the steel connection model.

λ1 λ2 · · · λ6 λ7 λ8 · · ·
2.80E-12 2.30E-12 1.70E-11 5.40E-11 5.50E-11

· · · λ23 · · · λ40 λ41
7.28E-11 7.70E-11 1.99E+3

Table 3.3: Eigenvalues of the stiffness matrix from the façade model.

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8
1.001 1.001 1.001 1.001 1.001 1.001 171.788 271.649

Restraining the beams against rotation about their X-axis brings the condition num-

ber estimate of the stiffness matrix down to O(108).

3.5.3 Façade Panels for a Building

Whereas the previous examples involved singular stiffness matrices, this example deals

with an ill-conditioned matrix arising from erroneous nodal connectivity. Figure 3.8

shows a portion of a larger model of façade cladding of a structure that consists of about

32000 elements and 21000 nodes resting on pinned supports. Our screenshot reproduces

only a small part. The glass façade panels are modelled using four noded plane-stress

elements, supported on a grid of beam elements. Each panel rests on the grid of beams

through springs at each of its four corners, as shown in the zoomed in view in Figure 3.9.

An early version of the model triggered a condition number warning upon linear static

analysis. The estimated condition number was O(1012). Model stability analysis reported

eigenvalues tabulated in Table 3.3. We notice a cluster at 1.001 with six eigenvalues and a

gap of O(100) between the sixth and seventh eigenvalues. Correspondingly, the contours

of element virtual energies show isolated large values at very few elements for the first

six eigenpairs, whereas for the seventh eigenpair the energies are more evenly spread, as

is evident from Figure 3.10.

On close examination of the elements, we discover an error in the nodal connectivity.

Figure 3.11 shows the part of the model where nodes have large rotations. A zoomed-

in view of nodal connectivity in Figure 3.11b reveals that the element is connected to

a nearby node rather than to the node that connects the spring. The same error is

repeated on the other node along the same edge of the element. As a result, the element

is supported on only two corners on springs, which makes this part of the model highly



3.5. EXAMPLES 61

Figure 3.6: Contour plots for virtual energies for the connection model. Clockwise from
top: energies associated with eigenvector 1, eigenvector 14, eigenvector 30, eigenvector
16 and eigenvector 6. Figures for eigenpairs 6, 14, 16 and 30 are magnified views of the
encircled part in eigenvector 1.



62 CHAPTER 3. ILL CONDITIONING IN FE MODELS

Figure 3.7: Contour plots for virtual energies for eigenvector corresponding to the 41st
smallest eigenvalue for the connection model.

Figure 3.8: A small portion of the façade model.



3.5. EXAMPLES 63

Figure 3.9: Close-up view of the element connectivity for façade model. Blue quadrilat-
erals are elements modelling the façade panels, green lines represent beams and springs
are drawn as coils. Gaps between the elements are a graphic view setting and are only
for visual clarity.

Table 3.4: Eigenvalues of stiffness matrix (of size n) from the Tall Building model.

λ1 λ2 · · · λ25 · · · λ49 λ50 · · · λn−1 λn
1.22E3 1.70E3 9.73E3 1.24E4 1.25E4 2.02E17 2.02E17

flexible compared to surrounding parts, but not a mechanism.

Connecting the plane element to the two springs at the corners reduces the estimated

condition number of the model to O(108).

3.5.4 Tall Building with Concrete Core

In this example, the ill conditioning was from the presence of elements that were very stiff

in comparison with other elements. The GSA model in Figure 3.12 is of a tall building

with a concrete core and has about 46000 elements using over a 1000 beam and slab

sections with different properties. The model reported an initial condition number of

order 1015.

Model stability analysis for up to the 50 smallest eigenvalues did not show a gap in

the spectrum; a few of these are listed in Table 3.4. We therefore examine element virtual

strain energies for the largest modes.

These highlight a handful of elements, as shown in Figure 3.13. An examination of the



64 CHAPTER 3. ILL CONDITIONING IN FE MODELS

(a) Eigenpair 1

(b) Eigenpair 7

Figure 3.10: Element virtual energies for the first and seventh eigenpairs from the façade
model.



3.5. EXAMPLES 65

(a) A closer view of element 13828 (b) Corner node connec-
tivity

Figure 3.11: Close-up view of the element with large energy in Figure 3.10a.

Figure 3.12: Tall building with stiff core.



66 CHAPTER 3. ILL CONDITIONING IN FE MODELS

Figure 3.13: Contour of element virtual energies for the largest eigenvector of the stiffness
matrix of tall building model.

section properties of the elements reveals that certain members are modelled as strings

of short beam elements (Figure 3.14), resulting in these elements acquiring large stiffness

values. Rectifying the model in this case involves replacing the string of elements by single

beam elements wherever they occur, which results in the condition number decreasing by

several orders of magnitude.

Unlike in the case of smallest eigenvectors, the number of largest eigenvectors to be

examined is arbitrary. This is because identification of elements with “large” stiffness

is relative to the stiffness of the other elements in the model. Developing a criterion

for selecting the number of largest eigenpairs is left to future work. At present we

recommend iterating by correcting anomalies, re-analysing the model to find the new

condition number and repeating the process until the condition number falls below the

threshold τ used in the method in section 3.4.



3.6. CONCLUSION 67

Figure 3.14: Magnified view of the element with high energy. The encircled beam has
large stiffness.

3.6 Conclusion

We have demonstrated a method for detecting a class of ill-conditioned problems in struc-

tural analysis. These problems arise when there are dofs that contribute stiffnesses that

are disproportional in magnitude and when there are tuples of dofs that have insufficient

connectivity with the rest of the FE assembly, both of which are scenarios that com-

monly arise as user errors during model generation. We exploit the sparsity structure of

the smallest and largest eigenpairs and use element virtual energies to highlight elements

that cause the ill conditioning. This method has been implemented in a commercial FE

analysis package and we have shown through examples of real-life models that it works

in practice. Further work will focus on developing a criteria for determining the number

of largest eigenpairs used for investigating ill conditioning from large element stiffnesses.



Chapter 4

The Subspace Iteration method for

the Symmetric Definite GEP and

Symmetric SEP

4.1 Introduction

This chapter presents the eigenvalue problems that GSA solves, and develops algorithms

and the corresponding software implementations. These problems are as follows.

• The Symmetric-Definite Generalized Eigenvalue Problem

The equilibrium equation governing the linear dynamic response of a system of

finite elements can be written in the form Mü+Ku = 0, [7, sec. 4.2], where

– M ∈ Rn×n represents the mass matrix of the structure

– K ∈ Rn×n represents the stiffness matrix of the structure; and

– u ∈ Rn is the vector of displacements of degrees of freedom.

Any solution of this equation is of the form u = eiwx, x ∈ Cn, which on substitution

yields the symmetric-definite generalized eigenvalue problem (GEP)

Kx = λMx, λ = ω2.

The matrices K and M are both symmetric, sparse and typically large in size.

Further, K is positive definite and M is semidefinite. The eigenvalues of interest

68



4.2. SOLUTION 69

are the ones closest to 0 since the most critical modes of vibration are the ones with

the lowest frequency. Since K is positive definite, all eigenvalues of our system are

real and since M is semidefinite, they are all positive. Furthermore, we assume that

eigenvalues of interest are finite.

• The Symmetric Eigenvalue Problem

In chapter 5 we developed the Model Stability analysis method that uses the ex-

tremal eigenpairs of an ill conditioned stiffness matrix to detect the part of the

structural model that causes ill conditioning. We compute a few smallest and

largest eigenvalues and the corresponding eigenvectors of the positive definite (or

semidefinite) stiffness matrix K, i.e., we solve the symmetric eigenvalue problem

(SEP)

Ku = λu

for a few eigenvalues with the smallest and largest absolute values.

4.2 Solution

For notational simplicity, we use A and B for the stiffness and mass matrices instead of K

and M in the rest of this chapter. Owing to the potentially very large dimensions of A and

B, it is not possible to find all the eigenvalues of the system since most direct 1 methods

(i.e. methods based on similarity transformations) such as the QR algorithm and its

variants, operate on the entire matrix and have O(n3) cost. Further, the eigenvectors of a

sparse matrix are not necessarily sparse and hence it is expensive to hold all eigenvectors

in memory. Therefore we resort to using methods that compute specific parts of the

spectrum, for example, eigenpairs at the ends or in the interior. These iterative methods

also take advantage of the sparse matrix storage.

A common technique is to transform the problems Ax = λBx or Ax = λx into a

reduced system of dimension m (m < n) using projections on invariant subspaces. The

1Direct methods must still iterate, since the problem of finding the eigenvalues is mathematically
equivalent to finding the zeros of a polynomial for which no noniterative methods exist when the poly-
nomial is of degree greater than 4. We can call a method direct if experience shows that it almost always
converges in a fixed number of iterations.



70 CHAPTER 4. SI FOR SPARSE GEP AND SEP

eigenvectors of the smaller system can then be projected back to give an approximation

to the eigenvectors of the original system.

The subspace iteration method, also known as the simultaneous iteration method

in some literature, (see, for example, [61], [5]) is one such technique that is simple to

implement and works robustly. By robust, we mean that the ability of the method to

find the eigenvalues of interest does not depend on the conditioning of the problem.

4.3 Subspace Iteration

Subspace iteration (SI) is a block generalization of the power method applied simulta-

neously on many vectors, which converge to approximations to the eigenvectors of the

matrix. For presentational simplicity, we consider the standard eigenvalue problem for

A ∈ Rn×n. Beginning with an n ×m matrix S0, we compute the powers AkS0. It turns

out that the powered subspace R(AkS0) contains an approximation to the dominant

eigenvectors of A. However, the vectors of AkS0 will need to be orthogonalized otherwise

they will tend towards linear dependence. Thus, in its simplest form the SI method to

compute an invariant subspace of A is as follows:

1. Choose S0 = [s1, . . . , sm] of full rank.

2. Iteration: for k = 1, 2, . . . till convergence,

(a) compute Sk+1 = ASk,

(b) form the QR factorization Sk+1 = QR and set Sk+1 = Q.

Then, assuming the eigenvalues of A are ordered as

|λ1| ≥ · · · ≥ |λm| > |λm+1| ≥ · · · ≥ |λn|,

with a gap |λm| > |λm+1|, the columns of Sk converge to a basis for the invariant sub-

space of A corresponding to the m dominant eigenvalues. Convergence is linear, with a

convergence rate of |λm+1/λm|.



4.3. SUBSPACE ITERATION 71

4.3.1 Proof of Convergence

We now establish the proof of convergence for SI. The following results will help us in

constructing the proof. We first define the notion of distance between subspaces and

state a result that provides a measure of this distance. Throughout the proof, we shall

use the 2-norm.

Angle between subspaces Let U and V be two subspaces of Rn whose dimensions

satisfy

p = dim(U) ≥ dim(V) = q ≥ 1.

The principal angles θ1, · · · , θq ∈ [0, π/2] between U and V are defined recursively by

cos(θk) = max
u∈U

max
v∈V

uTv = uTk vk

subject to ‖u‖ = ‖v‖ = 1 with uTui = 0, vTvi = 0 for i = 1 : k − 1.

Distance between Subspaces Let U and V be two m-dimensional subspaces of Rn.

We define the distance between U and V as

d(U ,V) := max
u∈U
‖u‖=1

d(u,V) = max
u∈U
‖u‖=1

min
v∈V
‖u− v‖. (4.1)

Theorem 4.3.1. ([69, Thm. 2.6.9]) Let U and V be m-dimensional subspaces and let U ,

U⊥, V , V ⊥ be matrices with orthonormal columns such that U = R(U), U⊥ = R(U⊥),

V = R(V ), V⊥ = R(V ⊥), where R(A) denotes the range of A ∈ Rn×m given by R(A) =

{Ax | x ∈ Rm}. Define θm as the largest principal angle between U and V. Then

d(U ,V) = ‖(U⊥)
T
V ‖ = ‖UTV ⊥‖ = ‖(V ⊥)

T
U‖ = ‖V TU⊥‖ = sin θm.

The following intermediate lemma provides a relationship for the distance between a

subspace whose basis has a specific structure and the subspace spanned by unit vectors.

Lemma 4.3.2. ([69, Proposition 2.6.16]) Let Ŝ be an m-dimensional subspace of Rn,

and suppose Ŝ = R(Ŝ), where Ŝ = [ IX ]. Then

‖X‖ = tan θm,

where θm is the largest principal angle between Em = R(e1, · · · , em) (ei being unit vectors

of the appropriate dimension) and Ŝ.



72 CHAPTER 4. SI FOR SPARSE GEP AND SEP

Since it is often convenient to work with subspaces in terms of bases, the following

results are useful when transforming a given subspace from one coordinate system to

another.

Lemma 4.3.3. Let S ∈ Rn×n be nonsingular and let Ũ = S−1U and Ṽ = S−1V. Then

d(U ,V) ≤ κ(S)d(Ũ , Ṽ).

Proof. Pick u ∈ U such that ‖u‖ = 1 and the maximum is attained in (4.1), i.e., d(U ,V) =

d(u,V). If d(u,V) = minv∈V ‖u − v‖ is attained at v′, then ‖u − v′‖ ≤ ‖u − v‖ for all

v ∈ V . So we can write

d(U ,V) ≤ ‖u− v‖. (4.2)

Then, let û = S−1u ∈ Ũ , α = ‖û‖ > 0, and ũ = α−1û ∈ Ũ . Since α = ‖S−1u‖ ≤
‖S−1‖‖u‖ = ‖S−1‖, we have α ≤ ‖S−1‖. Similarly, let v̂ = S−1v ∈ V and û = α−1v̂.

Substituting for u and v in ‖u− v‖, we get

‖u− v‖ = ‖(αSũ− αSṽ)‖

= α‖S(ũ− ṽ)‖

≤ α‖S‖‖ũ− ṽ‖

≤ ‖S−1‖‖S‖‖ũ− ṽ‖

≤ κ(S)‖ũ− ṽ‖, (4.3)

where κ(S) = ‖S−1‖‖S‖.
Now, pick ṽ ∈ V such that ‖ũ − ṽ‖ = d(ũ, Ṽ). Since d(Ũ , Ṽ) = maxw̃∈Ũ d(w̃, Ṽ) ≥

‖ũ− ṽ‖, we have

‖ũ− ṽ‖ ≤ d(Ũ , Ṽ). (4.4)

Combining (4.2), (4.3) and (4.4), we get d(U ,V) ≤ κ(S)‖ũ− ṽ‖ ≤ κ(S)d(Ũ , Ṽ).

Lemma 4.3.4. Let U = R(U) and V = R(V ) be m-dimensional subspaces of Rn such

that U ∩ V = {0}. Let A ∈ Rn×n be a nonsingular matrix and let Ũ = AU , Ṽ = AV.

Then,

Ũ ∩ Ṽ = {0}. (4.5)

Proof. The proof is by contradiction. Let there be an n-dimensional nonzero vector

x ∈ Ũ ∩ Ṽ . Since Ũ = R(AU), there exists u ∈ Rm s.t. x = AUu and similarly there



4.3. SUBSPACE ITERATION 73

exists v ∈ Rm s.t. x = AV v. This implies AUu = x = AV v, which is impossible since

Uu 6= V v for any u, v 6= 0. Hence Ũ ∩ Ṽ = {0}.

Theorem 4.3.5 (Convergence of subspace iteration). Let A ∈ Rn×n be nonsingular and

let p be a polynomial of degree < n. Let λ1, . . . , λn denote the eigenvalues of A, ordered

such that |p(λ1)| ≥ |p(λ2)| ≥ · · · ≥ |p(λn)|. Suppose m is an integer satisfying 1 ≤ m < n

for which |p(λm)| > |p(λm+1)| and let ρ = |p(λm+1)
p(λm)

| < 1. Let U and V be invariant

subspaces of A associated with λ1, . . . , λm and λm+1, . . . , λn, respectively. Consider the

subspace iteration

Si = p(A)Si−1, i = 1, 2, 3, . . . ,

where S0 = S is an m-dimensional subspace satisfying S ∩ V = {0}. Then there is a

constant C such that

d(Si,U) ≤ Cρi, i = 1, 2, 3, . . . .

Proof. Let J denote the Jordan form of A [69, Thm. 2.4.11]. Assume that the Jordan

blocks are ordered in such a way that J = diag(J1, J2), where J1 is m×m and contains

the Jordan blocks corresponding to eigenvalues λ1, . . . , λm and J2 is (n −m) × (n −m)

and contains blocks corresponding to λm+1, . . . , λn.

We have A = V JV −1 for some nonsingular matrix V . Partition V = [V1 V2] such

that V1 ∈ Rn×m. Then the equation AV = V J implies AV1 = V1J1 and AV2 = V2J2.

R(V1) and R(V2) are therefore invariant subspaces of A associated with λ1, . . . , λm and

λm+1, . . . , λn respectively.

Now we make a change of coordinate system. For each i let S̃i = V −1Si, Ũ =

V −1U and Ṽ = V −1V . This yields Ũ = V −1R(V1) = span{e1, . . . , em} = Em and Ṽ =

span{em+1, . . . , en} = E⊥m. The subspace iteration

p(A)Si−1 = Si

is equivalent to

p(J)S̃i−1 = S̃i.

Let p̂i(x) = p(x)i. Then,

S̃i = p̂i(J)S̃0. (4.6)



74 CHAPTER 4. SI FOR SPARSE GEP AND SEP

Let S =
[
S1
S2

]
∈ Rn×m be the full rank matrix representing the subspace vectors in S̃,

(i.e., R(S) = S̃ = S̃0), partitioned such that S1 is m ×m. Then S1 is nonsingular. (To

prove this, assume that S1 is singular. Let y ∈ Rm 6= 0 be such that S1y = 0. Then,

Sy =
[
S1
S2

]
y =

[
0
S2y

]
∈ S̃. But since

[
0
S2y

]
∈ span{em+1, . . . , en}, Sy ∈ Ṽ . This implies

S̃ ∩Ṽ 6= {0}, which would mean S∩V 6= {0} by Lemma (4.3.4), which is a contradiction.)

Letting X = S2S
−1
1 , we have

S =


 I
X


S1,

so [ IX ] represents S̃ as well, in the sense that its columns span S̃. Since we wish to

analyse iteration (4.6), we note that

p̂i(J)


 I
X


 =


 p̂i(J1)

p̂i(J2)X


 =


 I

p̂i(J2)Xp̂i(J1)−1


 p̂i(J1), (4.7)

assuming that p̂1(J1) is nonsingular. This assumption is valid as long as none of the

eigenvalues of A are 0. Let

Si =


 I

p̂i(J2)Xp̂i(J1)−1


 .

Then, by (4.6) and (4.7), S̃ = R(Si). Thus by Lemma (4.3.2),

‖p̂i(J2)Xp̂i(J1)−1‖ = tan θ(i)
m ,

where θ
(i)
m is the largest principal angle between S̃i and Ũ . Consequently

d(S̃, Ũ) = sin θ(i)
m ≤ tan θ(i)

m ≤ ‖X‖‖p̂i(J2)‖‖p̂i(J1)−1‖.

Using the result from Lemma (4.3.4), we have

d(Si,U) ≤ κ(V )‖X‖‖p̂i(J2)‖‖p̂i(J1)−1‖. (4.8)

The bound obtained above can be used to show convergence of the subspace itera-

tion both when A is semisimple or non-semisimple. We show the convergence for the

semisimple case. The convergence of non-semisimple A has been shown in [69, chap. 5].

For a semisimple matrix A, the Jordan blocks J1 and J2 are diagonal, i.e., p̂i(J2) =

diag{p(λm+1)i, . . . , p(λn)i} and ‖p̂i(J2)‖ = |p(λm+1)|i. Similarly, ‖p̂i(J1)−1‖ = |p(λm)|−i.



4.4. EXISTING SOFTWARE IMPLEMENTATIONS OF SI 75

Substituting the value of norms into (4.8), we get

d(Si,U) ≤ κ(V )‖X‖|p(λm+1)|i

|p(λm)|i
= Cρi.

Thus subspace iteration on A with m vectors, as shown above, converges with the

rate |p(λm+1)/p(λm)|, (which is proportional to |λm+1/λm|r, r being the degree of p), to

the dominant eigenvectors of A. In [62, chap. 6], Stewart shows informally that if the

convergence of m eigenpairs is sought, iterating with ` (> m) subspace vectors results in

a convergence rate

|λ`+1/λm|. (4.9)

This is potentially faster than iterating with m vectors and also overcomes the possibility

of |λm| being very close to |λm+1|, which can slow convergence.

4.4 Existing Software Implementations of SI

Much of the current state-of-the-art in subspace iteration methods is aimed at the stan-

dard eigenvalue problem and has been comprehensively summarized by Stewart in [62,

Chap. 6 ] (we note that the reference is not recent but the material covered in it stays cur-

rent). The use of subspace iteration originated in Bauer’s Trepperniteration [10] in 1955.

Early implementations of the algorithm for the standard eigenproblem were published

by Rutishauser [53] and by Stewart [60]. More recently, Duff and Scott [16] published

the algorithm EB12 (part of the Harwell Subroutine Library [63]) to compute selected

eigenvalues and eigenvectors of a standard eigenproblem Ax = λx for sparse unsymmet-

ric matrices. The program uses novel iteration controls and stopping criteria and allows

the user to provide a function to form the sparse matrix-vector product A× x instead of

supplying an explicitly stored A. Chebyshev polynomials are employed for accelerating

convergence. Bai and Stewart published SRRIT [3], [4], initially in 1978 and then a re-

vised version in 1997. The algorithm is similar to those of EB12 but SRRIT focusses on

being modifiable by allowing the user access to control parameters and by being more

modular. Even though the algorithms were developed for standard eigenproblems, the

authors state they can be used for the generalized case Ax = λBx by solving Ax = By



76 CHAPTER 4. SI FOR SPARSE GEP AND SEP

for subspace vectors x, in effect forming A−1B. However such transformations do not

preserve properties like symmetry.

Within the engineering literature, Bathe pioneered a variant of subspace iteration for

the generalized eigenvalue problem, published as a series of algorithms in the 70’s and

early 80’s [9], [7], [8], and subsequently revisited and improved upon by other engineers

(for example, [74], [39]). A key deficiency common to most of these works is the lack of

orthogonalization of subspace vectors, without which they tend towards linear dependence

after a few iterations. They also rely on heuristics for details such as shifting strategies,

which raises questions about the robustness of these implementations to a wide range

of problems. Despite these misgivings, SI remains a very popular algorithm within the

engineering FE community and this is the primary reason for its existing implementation

in GSA.

4.5 Implementation for Symmetric Definite GEP

In this section we describe our implementation of SI for solving the symmetric definite

GEP in GSA.

4.5.1 Existing GSA Implementation

Prior to the work in this chapter, GSA implemented the algorithm SSPACE, as described

in [7, chap. 9]. This is listed in Algorithm 4.2.

The algorithm projects the matrices A and B onto the subspace S using Si to obtain

matrices M and N respectively. It then solves for the eigenpairs (Q,Λ) of the projected

system. The call to the Jacobi solver invokes the generalized Jacobi method as imple-

mented in ‘Subroutine Jacobi’ from [7, p. 924]. The generalized Jacobi method solves for

the eigenvalues Λ and eigenvectors Q of the projected problem MQ = NQΛ. The eigen-

vectors in Q are multiplied by U to obtain a better approximation of the next iteration

of subspace vectors.

The algorithm works with ` (> m) subspace vectors to obtain a faster convergence.

The value of ` is chosen to be min(m+ 8, 2m) [7, p. 960]. The starting subspace vectors

are determined as follows:



4.5. IMPLEMENTATION FOR SYMMETRIC DEFINITE GEP 77

Algorithm 4.2 Subspace Iteration Method (SSPACE)

Given A ∈ Rn×n symmetric and positive definite, B ∈ Rn×n symmetric, the number of
eigenvalues desired m, convergence tolerance tol, the starting subspace vectors S1 ∈ Rn×`,
the number of Jacobi sweeps nJacobi, the tolerance for the Jacobi iterations tolJacobi
and maximum number of iterations iter, this algorithm solves the symmetric general-
ized eigenvalue problem AS = BSΛ for m smallest eigenvalues Λ and corresponding
eigenvectors S.

1 Set p = 0
2 Factorize A = LDLT

3 for k = 1:iter
4 T = A−1Sk. (triangular system solves)
5 M = T TAT .
6 N = T TBT .
7 Call Jacobi(M, N, Λ, Q, nJacobi, tolJacobi) to compute the
8 eigendecomposition MQ = NQΛ for eigenvectors Q and eigenvalues Λ.
9 S = BTQ

10 for i = 1:m (convergence test)

11 if |(λ(k)
i − λ(k−1)

i )/λ
(k)
i | ≤ tol

12 p = p+ 1
13 end.
14 end.
15 if p = m
16 quit
17 end
18 end



78 CHAPTER 4. SI FOR SPARSE GEP AND SEP

• The first vector comprises of all diagonal entries from B, i.e.,

sT1 = [b11, b22, . . . , bnn].

• The vectors s2, . . . , s` are unit vectors ei of appropriate dimensions, where i = r1 : rp

and rj, j = 1 : p correspond to the p smallest values of bgg/agg for g ∈ (1, n).

The main issues with the algorithm are:

• There is no orthogonalization of the subspace vectors, hence the final eigenvector

approximations are not guaranteed to be orthonormal.

• The convergence criterion checks eigenvalue estimates against the values obtained

in the previous iteration and does not check the residuals ri = ‖Asi − λiBsi‖2.

Though the program does report the unscaled residuals after the iteration, it does

not ensure the resulting vectors approximate the eigenvectors of the pair (A,B).

• Since the algorithm uses a fixed value of ` to compute m eigenpairs, convergence can

be arbitrarily slow and the user has no opportunity to use any a priori knowledge

of the spectrum to accelerate the convergence.

4.5.2 Increasing the Efficiency

The main focus of the new algorithm is to improve on the following aspects:

• Increased efficiency of the iteration by shifting the spectrum, delaying orthogonal-

ization and locking converged vectors,

• Increased reliability of the computed solution by using a better convergence test

and orthogonalization,

• Use of modern industry-standard software libraries for better efficiency and

• Greater user control of iteration parameters and better feedback on the progress of

the iteration and on the quality of the computed results.

The following subsections describe these improvements. We start with a simple im-

plementation for the GEP and make a series of changes to arrive at a final, efficient



4.5. IMPLEMENTATION FOR SYMMETRIC DEFINITE GEP 79

algorithm. For all algorithms, the inputs are the matrices A ∈ Rn×n (symmetric, positive

definite), B ∈ Rn×n (symmetric, semidefinite), m (the number of eigenvalues desired), iter

(the maximum number of iterations), tol (the convergence tolerance) and S ∈ Rn×`(the

starting vectors).

We first describe the convergence test used, since it is common throughout our ex-

periments.

The Convergence Criterion

The convergence test for a given Ritz pair (λi, si) for our SI algorithms is

‖Asi − λiBsi‖
‖si‖(‖A‖+ |λi|‖B‖)

≤ tol, (4.10)

where tol is a user defined tolerance and the norm is the 1-norm. This expression is the

standard normwise backward error for an approximate eigenpair (λi, si) for the general-

ized eigenproblem [31] and ensures that we solve the nearby system

(A+ ∆A)si = λi(B + ∆B)si,

where ‖∆A‖ ≤ tol‖A‖ and ‖∆B‖ ≤ tol‖B‖.
This is a more reliable test of convergence of the iterative solution than the conver-

gence test of Algorithm 4.2. It gives an upper bound for the backward error in the system

we have actually solved for, i.e., if we set tol to u, the machine precision, we have solved a

problem within the rounding distance of the original problem. The tolerance is supplied

as user input with a default value of 10−10.

The Basic Algorithm

We start with a näıve implementation of the SI method in Alg. 4.3.

The powering of subspace vectors by A and B is achieved by multiplying them by

B and then solving for AS = T . The multiplication with A−1 is realized using LDLT

factorization and back substitution. We use the parallel sparse direct solver ‘Pardiso’ [57],

[56] from the Intel Math Kernel Library (MKL) package [37] for this purpose. Pardiso

uses 1× 1 and 2× 2 Bunch and Kaufman [57] pivoting for symmetric indefinite matrices.

As we keep multiplying the vectors in S by A−1B, they start aligning themselves

along the dominant eigenvector of the system. This can potentially make the matrix S



80 CHAPTER 4. SI FOR SPARSE GEP AND SEP

Algorithm 4.3 Basic subspace iteration with orthonormalization and Schur–Rayleigh–
Ritz refinement.
Given symmetric, pos-def A ∈ Rn×n, symmetric, semidefinite B ∈ Rn×n, starting vectors
S ∈ Rn×`, this algorithm calculates m smallest eigenvalues and associated approximate
eigenvectors of the GEP AS = BSΛ.

1 Determine ‖A‖1 and ‖B‖1.
2 Compute the factorization A = LDLT .
3 Set p = 0.
4 for k = 1:iter
5 T = BS.
6 S = A\T .
7 S = QR;S = Q (orthonormalization using QR factorization).
8 M = STAS;N = STBS.
9 Calculate the eigendecomposition MV = NV Λ.

10 Reorder Λ and V in ascending order according to absolute values in diag(Λ).
11 S = SV .
12 Test convergence for (si, λii), i = 1:m using relation (4.10).
13 Set p = number of pairs converged.
14 if p = m, exit.
15 end

ill-conditioned and lead to loss of information in the projection step. To avoid such a

situation, we must orthogonalize the vectors to ensure the projection uses an orthogonal

basis. This is done by factorizing S into orthonormal Q and upper triangular R using

the QR algorithm. S is then set to Q.

The projection steps, which Stewart [62] calls Schur-Rayleigh-Ritz (SRR) refine-

ment, are equivalent to calculating the Rayleigh quotient matrices for the Ritz vectors

in S. Once we have a projected pair (M,N), we solve the generalized eigenproblem

MV = NV Λ for eigenvectors qi and eigenvalues λii. We then reorder the eigenvalues

and eigenvectors based on |λii|. We reorder because the dominant eigenpairs converge

first and hence we can bring them to the left. The Ritz vectors in S are then refined by

multiplying back by the ordered vectors in V .

The QR factorization and generalized eigenproblem are solved using the LAPACK

routines dgeqrf and dsygvd [2] respectively. dgeqrf uses a blocked Householder QR

algorithm similar to the one described in [24, sec. 5.2.2] and dsygvd uses a divide and

conquer algorithm [24, sec. 8.5.4].



4.5. IMPLEMENTATION FOR SYMMETRIC DEFINITE GEP 81

Locking

Locking refers to isolating parts of the solution that have converged and not modifying

them any further. Once the first p eigenpairs have converged, we can lock these vectors

in the powering step to save computational cost. If S = [S1 S2] and if the vectors in S1

have converged, the powering step 5 in Alg. 4.3 can be modified as

[T1 T2] = [S1 A−1BS2].

We must, however, use the entire subspace for the SRR projection/refinement steps.

Therefore we arrive at Algorithm 4.4 (the missing parts are same as algorithm 4.3).

Algorithm 4.4 Code fragment for locking.

1 · · ·
2 p = 0
3 for k = 1:iter
4 S2 = S(: , p+ 1: `)
5 T2 = BS2

6 S2 = A\T2

7 S(: , p+ 1: `) = S2

8 S = QR;S = Q (orthonormalization using QR factorization)
9 M = STAS;N = STBS

10 · · ·
11 Test convergence.
12 Set p = number of pairs converged.
13 if p == m, exit
14 end

Shifting

The idea with shifting is to power the vectors in S with a shifted system (A− µB)−1

instead of A−1 so as to accelerate convergence. When we shift A close to an eigenvalue

and repeatedly multiply S by its inverse, the Ritz vectors rapidly grow richer in the

direction of the eigenvector corresponding to the eigenvalue closest to the shift. More

specifically, if each vector si converges with the ratio c|λi/λ`| for some constant c in

unshifted SI, then by shifting to a µ > 0 ∈ R, we can decrease the convergence ratio to

c|(λi − µ)/(λ` − µ)|. For a detailed analysis, see, for example, [24, sec. 7.6.1].

The shift must be chosen carefully taking into account the following:



82 CHAPTER 4. SI FOR SPARSE GEP AND SEP

• Shifting would necessitate factorizing the shifted matrix A−µB, which is an O(n3)

operation. Hence the shift must cause enough2 acceleration to justify the cost.

• Shifting to an exact eigenvalue λi results in A becoming singular.

• Since in SI eigenvalues converge from left to right, shifting can result in missing a

few eigenvalues.

• When shifting to accelerate convergence for λp, choosing µ � λp can have the

detrimental effect of increasing the convergence ratio instead of decreasing it.

A natural choice for the shift is the location (λp+1 + λp)/2, where p is the number of

eigenpairs that have converged at any stage. But we would like for the shift to accelerate

convergence not just for the pth eigenpair but also for the succeeding ones.

We therefore derive a novel shifting strategy to ensure rapid convergence of eigenpairs

as follows. The upper bound for the convergence ratio (for a shifted pair (λp, sp)) for any

shift to be beneficial is λp/λ`, the natural rate without any shifting. Hence we have the

requirement ∣∣∣∣
λp − µ
λ` − µ

∣∣∣∣ ≤
λp
λ`
.

Since the eigenvalues we are interested in are positive and finite, we have

µ ≤ µlimiting =
2λpλ`
λp + λ`

.

The shift µ can then be chosen as

µ = λr := max{λi | λi < µlimiting , i ∈ (p, `]}, (4.11)

using the estimates of λi’s we have from previous iterations.

In practice though, we find that this value of µ could sometimes be aggressive, i.e.,

it may not cause enough decrease in the convergence rate. Since the convergence of the

iteration is sensitive to the location of the shift, it is possible for an aggressive shift to

stagnate the progress of the iteration. In such an event, the shift is brought back to its

safe, conservative value of

(λp+1 + λp)/2. (4.12)

2We cannot measure the exact acceleration in convergence.



4.5. IMPLEMENTATION FOR SYMMETRIC DEFINITE GEP 83

The variable count (algorithm 4.5) keeps track of the number of iterations the algorithm

spends without any change in the number of converged pairs.

It must also be ensured that µ is not too close to any of the existing eigenvalue

estimates to avoid forming a singular matrix A−µB. If µ calculated from (4.11) returns

a value too close to any λi for i ∈ (p, r), then r in (4.11) is decremented continuously till

a safe value of µ is obtained (Algorithm 4.5 step 9).

Finally, since the convergence rates depends on the distribution of the eigenvalues,

the choice of shifting is made a user-controllable parameter as follows.

• Aggressive: using (4.11) for µ and moving to conservative (using relation (4.12)

for µ) shifting if the iteration stagnates. This is the default strategy.

• Conservative: relation (4.12) shifts only.

• None.

In the event of non-convergence, this gives the user an opportunity to restart the iteration

with a different shifting strategy.

Delayed Orthonogonalization

In SI, we multiply S by A−1B and then orthonormalize it to prevent it from becoming

ill-conditioned. However, the orthogonalization need not be carried out at every iteration

and can be put off until there is an imminent possibility of ill conditioning resulting from

the columns pointing in the same direction. Therefore we can orthogonalize the columns

of the matrix (A−1B)
p
S instead of (A−1B)S, which amounts to a significant saving of

flops. The power p has to be chosen optimally since a value too small would result in

unnecessary work whereas if the orthogonalization is put off for too long we might lose

information about the subspace.

The loss of orthogonality is measured by observing the inner product matrix X :=

STS, with the columns of S set to unit 1-norm. For an S with perfectly orthonormal

columns,

‖X − I‖ = O(u).



84 CHAPTER 4. SI FOR SPARSE GEP AND SEP

Algorithm 4.5 Code fragment for shifting.

1 · · ·
2 Set p = pprev = 0; count = 0; µ = 0.
3 for k = 1:iter
4 if count > 1
5 µ = (λp + λp+1)/2
6 elseif p > 0
7 µlimiting = 2λpλ`/(λp + λ`).
8 Pick λr using (4.11). Set µ = λr.
9 if µ ≈ λi for any i ∈ (p+ 1, r)

10 Update r = r − 1 and repeat from 9.
11 end
12 end
13 A = A− µB
14 T = BS
15 S = A\T
16 · · ·
17 for i = 1:n, λi = λi + µ, end
18 · · ·
19 pprev = p
20 Test convergence.
21 Set p = number of pairs converged.
22 if p = m
23 exit
24 else
25 if pprev = p, count = count + 1
26 else count = 0
27 end.
28 end



4.6. IMPLEMENTATION FOR SYMMETRIC SEP 85

Therefore we orthogonalize S when ‖X − I‖1 becomes large enough. We use a threshold

of
√
u for this check, i.e., we orthogonalize S when

‖STS − I‖1 >
√
u.

4.6 Implementation for Symmetric SEP

In the case of the standard eigenvalue problem, we are required to compute both the small-

est and the largest eigenvalues and eigenvectors of the semidefinite matrix A. Therefore

we use SI in two passes. In the first pass, we compute the smallest eigenvalues of A

using inverse subspace iteration, i.e. we power the subspace with A−1. In the next pass,

we compute the largest eigenvalues of A using powers of A. Since A can sometimes be

singular we use a user-defined shift to avoid solving singular systems when powering by

A−1.

Algorithm 4.6 lists the details of our implementation. The algorithm locks converged

eigenvectors in Ss and S` during the iteration to save the redundant work of powering

them. The algorithm uses the driver routine dsyevr from LAPACK to compute the

eigenvalues Λs and Λ` and eigenvectors Q of the projected symmetric matrix M .

To test convergence for an eigenpair (λ, s), we calculate the scaled residual

ρ =
‖As− λs‖1

|λ|‖A‖1

, where ‖s‖1 = 1, (4.13)

and compare it with the user-supplied tolerance.

4.7 esol: The Eigenvalue Solver Library

We combine the implementations in sections 4.5 and 4.6 in a C++ library called esol.

Our library is written using Eigen and makes use of LAPACK and Intel MKL [37].

It accepts the stiffness and mass matrices as sparse symmetric Eigen::Sparse matrix

objects stored in the Compressed Sparse Row format and returns eigenvalues as an array

of doubles and eigenvectors as an Eigen::Dense matrix objects. In addition, we also

compute the quantity

sr =
‖Asi − λiBsi‖2

‖Asi‖2

(4.14)



86 CHAPTER 4. SI FOR SPARSE GEP AND SEP

Algorithm 4.6 Subspace iteration for computing the smallest and largest eigenpairs of
A
Given a sparse, symmetric matrix A ∈ Rn×n, a tolerance tol and shift α, this algorithm
computes the ns smallest eigenvalues diag(Λs) and nl largest eigenvalues diag(Λ`) of A
and their corresponding eigenvectors Ss and S`, respectively.

1 Initialize Ss ∈ Rn×2ns and S` ∈ Rn×2n` with random vectors.
2 % Smallest eigenvalues
3 Set t = 0 % Number of converged eigenpairs
4 Compute the factorization A− αI = LDLT .
5 Do
6 S1 = Ss[: , 1: t]. S2 = Ss[: , t+ 1:ns].

7 Ss = [S1 (A− αI)−1S2] % triangular system solve using factorization in 4.
8 Orthonormalize Ss
9 M = STs ASs

10 Compute all eigenvalues Λs and eigenvectors Q of M
11 Ss[: , t+ 1:ns] = S2Q
12 Test convergence and Set t = number of converged eigenpairs.
13 Repeat Until t = ns
14 % Largest eigenvalues
15 Set t = 0
16 Do
17 S1 = S`[: , 1: t]. S2 = S`[: , t+ 1:n`].
18 S` = [S1 AS2]
19 Orthonormalize S`
20 M = ST` AS`.
21 Compute all eigenvalues Λ` and eigenvectors Q of M
22 S`[: , t+ 1:ns] = S2Q
23 Test convergence and Set t = number of converged eigenpairs.
24 Repeat Until t = n`



4.8. NUMERICAL EXPERIMENTS AND RESULTS 87

for each computed eigenpair (λ1, si). The scaled residual sr for an eigenpair is used by

Bathe [7, p. 884] as a measure of error in the computed solution, since it signifies the

ratio of the out of balance forces to the nodal forces. Additionally, it also returns the

backward errors for each computed eigenpair calculated from equations (4.10) and (4.13)

and streams the progress of the iteration to the console.

The eigensolver esol offers the user control over the following aspects of the algo-

rithms:

• `, the number of subspace vectors for GEP,

• the choice of shifting strategy – aggressive/conservative/none – to be used,

• convergence tolerance tol and

• the shift α used in SEP.

4.8 Numerical Experiments and Results

The performance of esol (GEP) was measured for a variety of real-world structural mod-

els analysed in GSA and compared with SSPACE, the implementation of Algorithm 4.2.

Here we present the results of this comparison for a few problems of different sizes that

are representative of the range of models that are analysed in GSA. The models vary not

only in size (of the stiffness and mass matrices) but also differ in the number of eigenpairs

required for satisfying design criteria. The tests were conducted on a workstation with

Intel Sandy Bridge-based Core i7 processor with 4 cores and 2 hyperthreads per core and

24 GB of RAM. We used vendor-supplied multithreaded sparse BLAS by linking to Intel

MKL version 10.3.

Table 4.1 lists the results of this comparison. We note that since the convergence

test used in esol (4.10) is different from the convergence test used in Algorithm 4.2,

the comparison is not exactly ‘like-for-like’. Therefore we also compute the largest angle

between eigenvectors computed by each algorithm, i.e., for each eigenvector si,esol and

si,SSPACE, we compute

maxangle = max
i

∣∣∣∣∣arccos

(
sTi,esolsi,SSPACE

‖si,esol‖‖si,SSPACE‖

)∣∣∣∣∣



88 CHAPTER 4. SI FOR SPARSE GEP AND SEP

and report it in Table 4.1. We compare the performance of both algorithms for computing

15 and 100 eigenvalues and eigenvectors. Where the algorithm ran for longer than 4 hours,

we stop the iteration and report the time taken as being greater than 14400 seconds.

Table 4.1: Runtime comparison between esol and SSPACE (Alg. 4.2)

Model
Time (sec)

Angle
Degrees of freedom 15 eigenpairs 100 eigenpairs

(problem size) SSPACE esol SSPACE esol (in degrees)
bairport 67537 82.1 19.9 1334.1 132.12 0.03427

tallbuilding 267176 2798.6 95.5 13279 669.8 0
limest 298831 139.5 67 > 14400 396.8 0.0213

RG 1,446,230 > 14400 102 > 14400 1818.3 0.01417

As it can be seen, esol is about 2x faster when only 15 eigenpairs are requested but

for larger problems, the difference between the runtime is more than 10x. This can be

attributed to efficiency gains from shifting, delayed orthogonalization and locking. We

note that despite the relatively expensive operation of factorizing A− αI into LDLT at

every shift the benefits outweigh the costs. Because the convergence ratio at any point

in the iteration depends on the ratio λp/λ`, decreasing the ratio results in a reduction in

the number of iterations.

Also of interest is the effect of shifting strategy on the speed of convergence. In Table

4.2, we list the performance for computing 150 eigenpairs for each problem with the

‘conservative’ and ‘aggressive’ shifting strategy described in section 4.5.2. In all cases

but ‘tallbuilding’ using the aggressive shifting strategy accelerates convergence. Since

the actual effect of the shifts depends on the distribution of the eigenvalues, we therefore

give the control of this parameter to the user and use a heuristic as a default.

Table 4.2: Runtimes for different shifting strategies for computing 150 eigenpairs

Model
Time (sec)

Conservative Aggressive
bairport 172 160

tallbuilding 1045 1070
limest 550 498

RG 17206 16340



4.9. CONCLUSIONS 89

4.9 Conclusions

We have created an efficient implementation of the subspace iteration method for solving

the sparse symmetric-definite GEP and symmetric SEP that arise in structural analysis

applications. Our implementation supersedes the previous implementation of the same

method in Oasys GSA and is between 2 and 10 times faster in our tests.

The Subspace Iteration method is simple to implement yet is numerically robust and

our convergence test ensures the computed eigenpairs have O(u) backward error. Since

it is a block method, it benefits from level 3 BLAS during the powering and projection

steps. Our implementation also uses optimizations brought about by a novel shifting

strategy, locking and delaying orthogonalization of subspace vectors.

Further work will involve investigating the use of an iterative solution scheme to solve

linear systems during inverse subspace iteration as proposed in [72], [73]. These methods

link the accuracy of the linear system solves to the convergence of the main iteration. An

important advantage of this approach is that it eliminates the dependence on a sparse

direct solver and only uses sparse matrix vector multiplication as the main computational

kernel. This allows us to work with different sparse matrix formats for storing the sparse

matrix and these can bring greater computational throughput to the execution. The main

challenge with these methods, however, is their dependence on a suitable preconditioner

for the type of problems encountered in GSA. The practical applicability for an industrial-

strength black-box solver will therefore need to be carefully evaluated.



Chapter 5

Efficient Sparse Matrix

Multiple-Vector Multiplication using

a Bitmapped Format

5.1 Introduction

The sparse matrix × vector (SpMV) and sparse matrix × multiple-vector (SMMV) multi-

plication routines are key kernels in many sparse matrix computations used in numerical

linear algebra, including iterative linear solvers and sparse eigenvalue solvers. For exam-

ple, in the subspace iteration method used for solving for a few eigenvalues of a large

sparse matrix A, one forms the Rayleigh quotient (projection) matrix M = STAS, where

A ∈ Rn×n and S ∈ Rn×p is a dense matrix with p� n. The computational bottleneck in

such algorithms is the formation of the SMMV products. SpMV/SMMV routines typi-

cally utilize only a fraction of the processor’s peak performance. The reasons for the low

utilisation are a) indexing overheads associated with storing and accessing elements of

sparse matrices and b) irregular memory accesses leading to low reuse of entries loaded

in caches and registers.

Obtaining higher performance from these kernels is an area of active research owing to

challenges posed by hardware trends over the last two decades and significant attention

has been paid to techniques that address the challenges. This hardware trend is outlined

by McKee in the famous note ‘The Memory Wall’ [71], [47] and can be summarized as

90



5.2. OVERVIEW AND COMPARISON OF EXISTING FORMATS 91

follows: the amount of computational power available (both the CPU cycle time and

the total number of available cores) is increasing with a rate that is much higher than

the rate of increase of memory bandwidth. It will therefore lead to a scenario where

performance bottlenecks arise not because of processors’ speeds but from the rate of

transfer of data to them. The implication of this trend is that there is an increasing

need for devising algorithms, methods and storage formats that obtain higher processor

utilization by reducing communication. Such techniques and approaches will hold the

key for achieving good scalability in serial and parallel execution, both on existing and

emerging architectures.

In this chapter we introduce a blocked sparse format with an accompanying SMMV

algorithm that is motivated by the above discussion of reducing communication cost. The

format improves on an existing blocked sparse format by retaining its advantages whilst

avoiding the drawbacks. An algorithm that computes SMMV products efficiently for a

matrix in this format is developed and its performance is compared with the existing

blocked and unblocked formats. The algorithm achieves superior performance over these

formats on both Intel and AMD based x86-platforms and holds promise for use in a

variety of sparse matrix applications. The current discussion is in the context of Oasys

GSA.

5.2 Overview and Comparison of Compressed Sparse

Row and Block Compressed Sparse Row Formats

The Compressed Sparse Row (CSR) format [6] (or its variant, the Compressed Sparse

Column format) can be regarded as the de-facto standard format for storing and manip-

ulating sparse matrices. The CSR format stores the nonzero entries in an array val of

the relevant datatype (single precision, double precision or integers). The column indices

of the entries are stored in col idx and the row indices are inferred from the markers



92 CHAPTER 5. SPARSE MATRIX MULTIPLE-VECTOR MULTIPLICATION

into col idx, stored as row start. For example, with array indices starting with 0:

A =




a00 a01 a02 a03

a10 a11 0 0

0 0 a22 a23

0 0 a32 0




val = (a00, a01, a02, a03, a10, a11, a22, a23, a32)

col idx = (0, 1, 2, 3, 0, 1, 2, 3, 2)

row start = (0, 4, 6, 8, 9)

If the number of nonzeros in A is z and if A is stored in double precision, the storage

cost for A in the CSR format is 3z + n+ 1 words. (We assume a word size of 32 bits for

the entire discussion.) An unoptimized SpMV algorithm is shown in snippet 5.7.

Algorithm 5.7 Compute y = y+Ax for a matrix A stored in CSR format and conforming
vectors x and y stored as arrays.

1 for i = 0 to n− 1
2 yi = y[i]
3 for j = row start[i] to row start[i+ 1]
4 yi += val[j] * x[col idx[j]]
5 y[i] = yi

The SpMV implementation in Algorithm 5.7 suffers from the problem of irregular

memory use, which results in reduced data locality and poor reuse of entries loaded in

registers. It performs a single floating point addition and multiplication for every entry

val and x loaded, thus has a low ‘computational intensity’, i.e., it performs too few flops

for every word of data loaded. This aspect of CSR SpMV has been well studied in the

past, see [66] or [51] for example.

The Block Compressed Sparse Row (BCSR) format [51] is intended to improve the

register reuse of the CSR. The BCSR format stores nonzero entries as dense blocks in

a contiguous array val. These blocks are of size r × c where r and c are respectively

the number of rows and columns in the dense blocks. For indexing it stores the col-

umn position of the blocks in an array (col idx) and row-start positions in col idx in

row start.



5.2. OVERVIEW AND COMPARISON OF EXISTING FORMATS 93

A =




a00 a01 a02 a03

a10 a11 0 0

0 0 a22 a23

0 0 a32 0




r = 2, c = 2

val = (a00, a01, a10, a11, a02, a03, 0, 0,

a22, a23, a32, 0)

col idx = (0, 1, 1)

row start = (0, 2, 3)

A sparse matrix stored in the BCSR format takes up u 2brc + b + n
r

words to store,

where b is the number of nonzero blocks (for a given r and c) stored when the matrix is

held in BCSR.

Algorithm 5.8 Compute y = y + Ax for a BCSR matrix A with r, c = 2 and bm
block-rows and vectors x, y.

1 for i = 1 to bm
2 ir = i× r
3 y0 = y[ir]
4 y1 = y[ir + 1]
5 for j = row start[i] to row start[i+ 1]
6 jc = col idx[j]× c
7 y0 += val[0] * x[jc]
8 y1 += val[2] * x[jc]
9 y0 += val[1] * x[jc+ 1]

10 y1 += val[3] * x[jc+ 1]
11 increment pointer val by 4
12 y[ir] = y0

13 y[ir + 1] = y1

The SpMV routine for BCSR with r, c = 2 is presented in Algorithm 5.8. Since the

val array is stored as a sequence of blocks, the algorithm loads all entries in a block into

registers and multiplies them with corresponding entries in x. The increase in spatial

locality results in the reuse of register–loaded entries of x, reducing the total number of

cache accesses. The inner loop that forms the product of the block with the corresponding



94 CHAPTER 5. SPARSE MATRIX MULTIPLE-VECTOR MULTIPLICATION

part of the vector is fully unrolled, reducing branch penalties and allowing the processor

to prefetch data. There is, however, a tradeoff involved in selecting the right block size

for BCSR. The reuse of loaded registers increases in number with an increase in r and

c but having larger block sizes may increase the fill, leading to higher bandwidth costs

and extra computations involving zeros, which decrease performance. The amount of fill

for a given block size depends on the distribution of the nonzeros in the matrix. The

efficiency gains from increasing the block size will depend on the size of the registers and

the cache hierarchy of the machine the code is running on. There is, therefore, an optimal

block size for a given matrix (or set of matrices with the same nonzero structure) and a

given architecture. This suggests using a tuning based approach to picking the optimum

block size and such approaches have been studied extensively in [36], [67] and [42]. The

dependence of the performance of the SpMV routine on the structure of the matrix make it

a complex and tedious process to extract enough performance gains to offset the overheads

of maintaining and manipulating the matrix in a different format, such as implementing

kernels for other common matrix operations for a given block size. Additionally, the

prospect of storing zeros increases the storage costs, making it dependent on the matrix

structure, which is information that is available only at runtime. The arguments above

motivate a blocked format that offers the benefits of BCSR’s performance without the

associated storage and bandwidth penalties.

5.3 The Mapped Blocked Row Format

We now introduce the mapped blocked row sparse (MBR) format for storing sparse

matrices. For a matrix

A =




a00 a01 a02 a03

a10 a11 0 0

0 0 a22 a23

0 0 a32 0



,

we represent the 2 × 2 block on the top right as a combination of the nonzero elements

and a boolean matrix representing the nonzero structure:

a02 a03

0 0
⇒

a02 a03
+

1 1

0 0
.



5.3. THE MAPPED BLOCKED ROW FORMAT 95

The bit sequence 0011 can be represented in decimal as 3 and this representation is stored

in a separate array. Thus, for our example, the MBR representation can be written as

follows:

r = 2, c = 2

val = (a00, a01, a10, a11, a02, a03, a22, a23, a32)

col idx = (0, 1, 1)

b map = (15, 3, 7)

row start = (0, 2, 3)

The bit structures of the blocks are stored in b map, the array of their corresponding

decimal representations. The bitmaps are encoded in left-to-right and top-to-bottom

order, with first position in the block (i.e. the bit on top left) being stored as the lowest

bit and the bottom right position being the highest.

The datatype maptype of the b map array can be chosen to fit the size of the blocks;

hence if the block size is 8 × 5, 40 bits are required and a int64 [48] will be used but

if the block size is 4 × 4, a maptype of short will suffice for the 16 bits needed. For

block sizes where the number of bits are less than the corresponding variable that stores

the bitmap, the excess bits are left unused. With built-in C++ datatypes, up to 8 × 8

blocks can be supported. Larger blocks can be constructed by combining two or more

adjacent instances in an array of built-in types or by using a dynamic bitset class like

boost::dynamic bitset 1.

The storage cost of an n× n matrix in the MBR format is bounded by

2z︸︷︷︸
val

+ b︸︷︷︸
col idx

+

b map︷︸︸︷
b

δ
+

n

r︸︷︷︸
row start

words

where z is the number of nonzeros, b the number of blocks and r the size of the blocks.

δ is the ratio sizeof(int)
sizeof(maptype)

to convert the size of maptype into words. b lies in a range

that is given by the following lemma.

Lemma 5.3.1. For an n×n sparse matrix with z nonzeros and at least one nonzero per

row and per column, the minimum number bmin of r×r blocks required to pack the entries

is ceil(z/r2) and the maximum bmax is min(z, ceil(n/r)2).

1http://www.boost.org/doc/libs/1_36_0/libs/dynamic_bitset/dynamic_bitset.html

http://www.boost.org/doc/libs/1_36_0/libs/dynamic_bitset/dynamic_bitset.html


96 CHAPTER 5. SPARSE MATRIX MULTIPLE-VECTOR MULTIPLICATION

Proof. Since z > n, z entries can be arranged such that there is at least one nonzero per

row and column. This can be done in z/r2 blocks but no less, hence bmin = ceil(z/r2) is

the minimum number of blocks. The n × n matrix contains ceil(n
r
)2 blocks. If z > n2

r2
,

then bmax = ceil(n
r
)2, otherwise each nonzero can occupy a block of its own, so we have

bmax = z blocks.

Although these bounds would be seldom attained in practice, they can provide an

intuitive feel for when a particular format can become advantageous or disadvantageous.

The storage costs of CSR, BCSR and MBR are compared in Table 5.1. For the lower

Table 5.1: Comparison of storage bounds for CSR, BCSR and MBR.

CSR BCSR MBR

3z + n 2br2 + b+ n
r 2z + b

(
1 + 1

δ

)
+ n

r

Lower bound 3z + n 2z + z
r2 + n

r 2z + z
r2

(
1 + 1

δ

)
+ n

r

Upper bound 3z + n 2n2 + n2

r2 + n
r 2z + n2

r2

(
1 + 1

δ

)
+ n

r

bound of b, the MBR format takes up storage comparable with the CSR format but more

than BCSR. For b close to the upper bound, MBR requires significantly less storage than

BCSR term but more than CSR. However, for all our test matrices, the number of blocks

arising from the conversion to blocked formats resulted in MBR requiring less storage

than both BCSR and CSR. Table 5.2 lists the storage costs (in words) and their ratios

arising for 8× 8 blocking of the test matrices (the matrices are introduced in Table 6.1).

Table 5.2: Ratio of storage for MBR to BCSR and MBR to CSR formats for 8×8 blocks.

Matrix n b
MBR MBR

BCSR CSR
sp hub 143,460 249,267 0.171 0.759
rajat29 643,994 991,244 0.1 0.839

nlpkkt80 1,062,400 2,451,872 0.205 0.744
hamrle3 1,447,360 906,839 0.119 0.774
ecology1 1,000,000 622,750 0.149 0.75

dielFilterV3 1,102,824 11,352,283 0.145 0.791
dielFilterV2 1,157,456 8,106,718 0.116 0.828

asic 680k 682,862 728,334 0.106 0.814



5.4. SPMV AND SMMV WITH MBR 97

5.3.1 Similarity with Other Formats

Buluç et al. independently propose a format called the ‘bitmasked CSB’ [11], based

around the idea of storing blocks that are compressed using a bit structure representation.

The format partitions the matrix into “compressed sparse” blocks of bit-mapped register

blocks, resulting in two levels of blocking. The nonzero entries in each register block

are stored contiguously and their positions within the block are marked using a bitwise

representation. There is no storage of zeros (i.e. the fill), which improves on BCSR in

the same way that MBR does, but the CSB SpMV algorithm does perform multiply-add

operations on zeros so as to avoid conditionals. The storage cost for MBR is slightly less

than that of bitmasked CSB because of higher bookkeeping arising from two levels of

blocking and there are subtle differences in the encoding of bit structure of the blocks.

In order to perform the multiplication of a block with the relevant chunk of a vector,

bitmasked CSB uses SIMD instructions to load matrix entries, which we avoid. Instead, in

MBR SpMV, we minimize the conditionals evaluated using de Bruijn sequences. Overall,

whilst bitmasked CSB is geared towards optimizing parallel execution, the aim of this

work is to obtain a high throughput for multiple vectors in the sequential case.

5.4 SpMV and SMMV with MBR

As noted in the first section, the SMMV kernels are employed in sparse eigensolvers, and

our interest is in their eventual use in GSA. This software is required to run on a variety

of x86 architectures both old and new. The aim with implementing SpMV and SMMV

for the MBR format, therefore, was to obtain a clean but efficient routine subject to the

following considerations.

• Not employing optimizations that are specific to a platform or hardware, for exam-

ple, prefetching.

• Obtaining kernels with parameters such as the type of scalar (single, double, higher

precision), block sizes, number of dense vectors and maptype datatypes bound at

compile time. C++ templates offer metaprogramming techniques that allow such

kernels to be generated at the time of compilation from a single source base. This



98 CHAPTER 5. SPARSE MATRIX MULTIPLE-VECTOR MULTIPLICATION

approach is advantageous compared with the use of external code generators for

generating kernels in a parameter space since the programmer can write code for

generating kernels in the same environment as generated code, thus making it easier

to maintain and update.

• Focussing on sequential execution; this will inform the approach for a parallel ver-

sion, which will be tackled as future work.

The programming language used was C++, using templates for kernel generation and

to provide abstractions for optimizations like loop unrolling. The compilers used were

Microsoft Visual C++ and Intel C++.

A näıve algorithm for SpMV for MBR is shown in Algorithm 5.9. The notation *val

indicates dereferencing the C pointer val to obtain the value of the nonzero entry it

currently points to. Let zb be the number of nonzeros in a given block, represented as

Algorithm 5.9 SpMV for a matrix stored in MBR with block dimensions (r, c) and
vectors x, y.

1 for each block row bi
2 for each block column bj in block row bi
3 map = b mapbj
4 for each bit mapp in map
5 if mapp = 1
6 i: = p%r + bi× r, j: = p%c+ bj × c
7 y(i)+ = *val× x(j)
8 increment val
9 end

10 end
11 end
12 end

set bits in map. It is easy to show that the minimum number of register loads required

to multiply a block by a corresponding chunk of vector x and add the result to y will be

O(3zb) in the worst case. Algorithm 5.9 attains this minimum and also minimizes flops

since it enters the block–vector product loop (steps 6–8) exactly zb times.

However, the algorithm is inefficient when implemented, because steps 4–11 contain

conditionals that are evaluated r2 times, which the compiler cannot optimize. The pres-

ence of conditionals also implies a high number of branch mis-predictions at runtime since



5.4. SPMV AND SMMV WITH MBR 99

the blocks can have varying sparsity patterns. Mispredicted branches necessitate removal

of partially-completed instructions from the CPU’s pipeline, resulting in wasted cycles.

Furthermore, step 6 is an expensive operation because of modulo (remainder) calculation

(denoted using the binary operator %) and the loop does not do enough work to amortize

it.

We introduce a set of optimizations to overcome these inefficiencies.

5.4.1 Optimal Iteration over Blocks

The for loop in step 4 and the if statement in line 5 contain conditionals (in case of

the for loop, the conditional is the end-of-loop check) that present challenges to branch

predictors. The true/false pattern of the second conditional is the same as bit-pattern of

the block, the repeatability of which decreases with increasing size of the block.

One workaround is to use code replication for each bit pattern for a given block size,

such that all possible bit structures are covered exhaustively. It would then be possible

to write unrolled code for each configuration, thus completely avoiding conditionals.

However this quickly becomes impractical since there are 2r arrangements for a block

of size r× r and generating explicit code can become unmanageable. Additionally, since

it is desirable to not restrict the kernel to square blocks, the number of configurations to

be covered increases even further. The solution therefore is to minimize the number of

conditionals evaluated and fuse the end-of-loop check with the check for the set bit. In

other words, instead of looping r2 times over each block (and evaluating r2 conditionals),

we loop over them zb times, thus evaluating only zb conditionals. Algorithm 5.10 shows

the modification to the relevant section from Algorithm 5.9.

Algorithm 5.10 A modification to steps 4–8 Algorithm 5.9.

1
...

2 for each set bit p in map
3 i: = p%r + bi× r, j: = p%c+ bj × c
4 y(i)+ = *val× x(j)
5 increment val

The key detail is iterating over set bits in ‘for each’. This is achieved by determining

the positions of trailing set bits using constant time operations. Once the position is



100 CHAPTER 5. SPARSE MATRIX MULTIPLE-VECTOR MULTIPLICATION

determined, the bit is unset and the process is repeated till all bits are zero. To determine

the positions of trailing bits, we first isolate the trailing bit and then use de Bruijn

sequences to find its position in the word, based on a technique proposed by Leiserson et

al in [43].

A de Bruijn sequence of n bits, where n is a power of 2, is a constant where all

contiguous substrings of length log2 n are unique. For n = 8, such a constant could be

C := 00011101, which has all substrings of length 3 (000, 001, 011,. . ., 101, 010, 100)

unique. A lone bit in an 8-bit word, say x, can occupy any position from 0 to 7, which

can be expressed in 3 bits. Therefore, by operating x on C, a 3-bit distinct word can be

generated. This word is hashed to the corresponding position of 1 in x and such a hash

table is stored for all positions, at compile time. At run time, the procedure is repeated

for an x with a bit at an unknown position to yield a 3-bit word, which can then be

looked up in the hash table.

Algorithm 5.11 Looping over set bits for a bitmap x of length 8 bits.

1 Pick an 8 bit de Bruijn sequence C and generate its hashtable h
2 while map 6= 0
3 y = map & (−map)
4 z = C × y
5 z = z >> (8− log2 8)
6 p = h(z)
7 compute i and j from p and multiply (Alg. 5.9 steps 6–8)

8
...

9 map = map & (∼y)
10 end

Algorithm 5.11 lists the realization of ‘for each’ and the decoding of map. Step 3

isolates the trailing bit into y using the two’s complement of map, steps 4 − 6 calculate

the index of the bit and step 9 clears the trailing bit. The operators used in the algorithm

are standard C/C++ bitwise operation symbols: & for bitwise AND, << and >> for left shift

and right shift by the number denoted by the second operand, ∼ for bit complement.

Steps 3–6 can be carried out in constant time and bitwise operations execute in a constant

number of clock cycles [21]. The constant time decoding, combined with a reduction in

the number of conditionals evaluated, gives huge performance gains.



5.4. SPMV AND SMMV WITH MBR 101

5.4.2 Unrolled Loops for Multiple Vectors

At every iteration of the inner loop, Algorithm 5.10 calculates the position of the nonzero

entry in the block and multiply-adds with the source and destination vector. The cost of

index-calculation and looping can be amortized by increasing the amount of work done

per nonzero decoded. This can be achieved by multiplying multiple vectors per iteration

of the loop.

Algorithm 5.12 Multiplying multiple vectors in inner loops.

1 Given . . . and x1 · · · x` , y1 · · · y` ∈ Rn

2 for each block row bi
3 for each block column bj in row bi
4 map = b mapbj
5 for each set bit p in map
6 i: = p%r + bi× r, j: = p%c+ bj × c
7 y1(i)+ = *val× x1(j)

8
...

9 y`(i)+ = *val× x`(j)
10 increment val

For the kernel to work with any value of `, either the mutiply-add operations would

need to be in a loop, which would be inefficient at runtime or we would need to write `

versions of the kernel, which can be tedious and expensive to maintain. This is overcome

by using templates that generate code for many kernels at compile time, each varying

in the number of vectors and each unrolling the innermost loop ` times. There is a

close relationship between the performance of the kernel, the size of blocks (r, c) and

the number of vectors multiplied `. For a given block size, performance increases with

increase in the number of vectors in the inner loop, since it increases the reuse of the

nonzero values loaded in the registers and on lower levels of cache, till such a point where

loading more vector entries displaces the vectors previously loaded, thereby destroying

the benefit blocking brings in the first place. This suggests a need for tuning based either

on comparative performance of the kernels or on heuristics gathered from the architecture

(or indeed, on both). We use the former approach, leaving the investigation of the latter

to future work.



102 CHAPTER 5. SPARSE MATRIX MULTIPLE-VECTOR MULTIPLICATION

5.5 Numerical Experiments

The experimental setup consists of x86-based machines based on Intel and AMD platforms

intended to be representative of the target architectures the kernel will eventually run

on. The code is compiled using the Intel C++ compiler v12.1 Update 1 on Windows

with full optimization turned on. We note however, that this does not apply to the pre-

compiled Intel MKL code (used for benchmarking) that takes advantage of vectorization

using SIMD instructions available on all our test platforms. The test platforms consist

of machines based on AMD Opteron, Intel Xeon and Intel Sandy Bridge processors. The

AMD Opteron 6220, belonging to the Bulldozer architecture, is an 8-core processor with

a clock speed of 3.0 GHz and 16 MB of shared L3. Each core also has access to 48 KB

of L1 cache and 1000 KB of L2 cache. The Intel Harpertown-based Xeon E5450 on the

other hand has access to 12 MB of L2 cache, shared between 4 cores on a single processor,

each operating at 3 GHz. Each core has 256 KB of L1 cache. Both the Opteron and

Xeon support the 128-bit SSE4 instruction set that allows operating on 2 double-precision

floating point numbers in a single instruction. The third test platform is the Intel Core

i7 2600 processor, based on the recent Sandy Bridge architecture, which is the second

generation in the Intel Core line of CPUs. This processor has 4 cores sharing 8 MB of

shared L3 cache with two levels private caches of 32 KB and 256 KB for each core. The

cores operate at a peak clock speed of 3.8 GHz, with Turbo Boost turned off. The Core

i7 processor uses the AVX instruction set, supporting 256-bit wide registers that enable

operating on 4 double precision variables in a single instruction.

The test matrices consist of a set of matrices from the University of Florida Sparse

Matrix collection [15] as well as from problems solved in Oasys GSA. These are listed in

Table 6.1.

The final algorithm for MBR SMMV was a combination of all optimizations described

in the previous section. The C++ implementation of this was run on the matrices via

a test harness for different values of block sizes upto a maximum of 8 × 8 and multiple

vectors. Where matrix sizes are not multiples of the block size, the matrix is padded

with zeros on the right and on the bottom, such that the increased dimensions are a

multiple. This merely involves modifying the arrays storing the indices and does not

affect the storage or the performance, since the blocks are sparse. The performance of



5.5. NUMERICAL EXPERIMENTS 103

Table 5.3: Test matrices used for benchmarking SMMV algorithms.

Matrix Source Dimension Nonzeros Application

1 ASIC 680k U.Florida 682,862 3,871,773 Circuit simulation
2 atmosmodm U.Florida 1,489,752 10,319,760 Atmospheric modeling
3 circuit5M U.Florida 5,558,326 59,524,291 Circuit simulation
4 dielfilterV2real U.Florida 1,157,456 48,538,952 Electromagnetics
5 dielfilterV3real U.Florida 1,102,824 89,306,020 Electromagnetics
6 ecology1 U.Florida 1,000,000 4,996,000 Landscape ecology
7 G3 circuit U.Florida 1,585,478 7,660,826 Circuit simulation
8 hamrle3 U.Florida 1,447,360 5,514,242 Circuit simulation
9 nlpkkt80 U.Florida 1,062,400 28,704,672 Optimization
10 rajat29 U.Florida 643,994 4,866,270 Circuit simulation
11 sp hub GSA 143,460 2,365,036 Structural engineering
12 watercube GSA 68,598 1,439,940 Structural engineering

the implementation was compared with that of CSR SMMV and BCSR SMMV. For

all our tests, a near-exclusive access is simulated by ensuring that the test harness is

the only data-intensive, user-driven program running on the system during the course of

benchmarking.

We do not study the effect of reordering on the performance of the kernels, since in

applications, the specific choice of the reordering algorithm may not always be governed

by SMMV, instead it could be governed by other operations that the application performs.

We do however note that any reordering approach that decreases the bandwidth of a

matrix2 will, in general, increase performance of a blocked format. Furthermore, we

do not consider the costs of conversion between various formats since applications can

generate a sparse matrix in the MBR format and use the format for an entire application,

thereby negating expensive data transformations. This does, however, necessitate the

availability of software for matrix manipulations and factorizations that the application

uses.

In the case of CSR, a standard SpMV implementation based on Algorithm 5.7 and

the functions available from the Intel MKL library [37] are used for comparison. The

sparse BLAS Level 2 and Level 3 routines available within the MKL library are regarded

as highly optimized implementations and achieve performance higher than corresponding

reference implementations, especially on Intel platforms. The library offers the functions

mkl cspblas dcsrgemv and mkl dcsrmm that perform SpMV and SMMV operations.

2In this context, the term bandwidth refers to the maximum distance of a matrix nonzero element
from the diagonal.



104 CHAPTER 5. SPARSE MATRIX MULTIPLE-VECTOR MULTIPLICATION

Since our objective is to obtain benchmarks for SMMV, mkl dcsrmm would appear to

be the right candidate. However, in almost all our experiments, mkl cspblas dcsrgemv

outperformed mkl dcsrmm, hence mkl cspblas dcsrgemv was used as the benchmark.

Since the MKL library is closed-source software, it is not possible to determine why

mkl dcsrmm is not optimized to take advantage of multiple vectors.

For BCSR SMMV, an implementation of Algorithm 5.8 that is optimized for multiple

vectors is used. This uses unrolled loops and multiplies each block with multiple vectors.

The right number of vectors to be multiplied within each loop depends on the architecture

and has been studied in [42]. Similar to the MBR algorithm, the optimal number of

vectors depends on the architecture and needs to be selected via tuning. For the purpose

of this comparison, we run BCSR SMMV kernels with fixed blocks of sizes 4 × 4 and

8× 8, with increasing number of multiple vectors, going from 1 to 20, and select the best

performance as being the representative performance of the format.

5.5.1 Performance against Number of Vectors

The performance of the MBR format depends on amortizing the cost from decoding the

blocks, and this is achieved by multiplying multiple vectors. Therefore it is important to

know the behaviour of the algorithm with respect to varying `, the number of vectors.

Figures 5.1 and 5.2 present how the performance varies on the Core i7 and Opteron

respectively. In both cases, there is a sharp increase in performance initially, followed

by a plateau and then a drop as the implementations go from single-vector kernels to

ones handling 20 vectors. The reason for this behaviour is that when the number of

vectors is increased, more vector entries stay loaded in the cache, reducing misses when

the algorithm tries to load them again. The performance peaks and starts decreasing

when the number of vectors reaches a point where loading more entries into the cache

displaces previously loaded entries, leading to increased misses. The performance peaks

for a different number of vectors, depending on the size of the cache hierarchy and to a

lesser extent, matrix sizes and sparsity patterns.

On the Opteron, most matrices exhibit peak performance around the range of 12 to

16 vectors whilst on i7, the range is around 5 to 6. Both processors have a comparable

L1 cache size but the Opteron has almost four times L2 cache as Core i7. This allows for



5.5. NUMERICAL EXPERIMENTS 105

Figure 5.1: Performance variation of MBR SMMV across multiple vectors for test matri-
ces on Intel Core i7 2600

more reuse of loaded entries and hence the performance tops at a higher value of `.

A small number of matrices in graph 5.1 show an increase in performance after hitting

a trough in the post-peak part of their curves. These matrices are watercube, sp hub,

dielfilterV2real and dielfilterV3real, from structural engineering and circuit simulation

applications. They have the highest nonzero density amongst all matrices but are within

the lower half when arranged by increasing order of matrix sizes. This combination of

smaller sizes and low sparsity could result in higher performance—the size ensures that

a larger number of vector chunks or entire vectors are resident in L3 caches, whereas the

higher density results in higher flops per loaded vector entry. Indeed, the best perfor-

mance is attained for watercube on both processors, which is the smallest matrix but has

the highest nonzero density.

5.5.2 Performance Comparison with Other Kernels

The performance of the kernels is compared with that of other SMMV routines and the

results for different platforms are presented in Figures 5.3, 5.4 and 5.5 for Xeon, Core i7

and Opteron respectively. In the case of MBR and BSR, the kernels used are the ones

that yield the maximum performance for the given matrix and for the given block size,

i.e., the peaks of graphs for each matrix in figures 5.1 or 5.2.



106 CHAPTER 5. SPARSE MATRIX MULTIPLE-VECTOR MULTIPLICATION

Figure 5.2: Performance variation of MBR SMMV across multiple vectors for test matri-
ces on AMD Opteron 6220

On the Xeon, MBR is faster than MKL by factors of 1.3 to 1.9. It is also more efficient

than BCSR for all matrices except watercube. The Xeon has the largest L2 cache of all

test platforms. The large L2 cache and the small size of the matrix ensures that BCSR

is faster, since it has fully unrolled loops with no conditionals, thus ensuring very regular

data access patterns that aid prefetching. Furthermore, watercube also has the highest

nonzero density and highest number of entries-per-block (z/b from Table 5.2) so the ratio

of redundant flops (i.e. operations involving 0 entries) to useful flops is low, which helps

the BCSR routine.

The performance trends for Core i7 are somewhat similar to those of Xeon, but

a key difference is that it is the only architecture where MKL outperforms MBR for

some matrices. The MKL to MBR performance ratios vary from 0.72 to 1.71. MKL

is faster than MBR on four matrices: dielfilterV2real, dielfilterV3real, ASIC 680k and

nlpkkt80, which come from different applications. There are no specific properties of these

matrices or their sparsity patterns that gives us a suitable explanation for why MBR is

slower. For two of the four matrices–dielfilterV2real and dielfilterV3real–the MBR SMMV

performance vs. number of vectors graph (Figure 5.1) indicates that higher performance

could be gained by using more than 20 vectors, although such a kernel may not always

be relevant, especially in applications with small number of right hand sides. Evidently,



5.6. CONCLUSIONS AND FUTURE WORK 107

Figure 5.3: Performance comparison of MBR SMMV on Intel Xeon E5450

MKL’s use of AVX instructions on Sandy Bridge allows for good efficiency gains that

lead to a higher throughput. It will need a closer evaluation using experimental data

from hardware counters combined with performance modelling to explain the reasons for

this discrepancy, which will be looked at in future work.

Finally, on the AMD processor, MBR outperforms MKL by factors of 1.5 to 3.2 and

BCSR by factors of 1.3 to 3.9. This demonstrates that while the MKL routines use

architecture–specific and platform–specific optimization to gain efficiency, MBR SMMV

is capable of attaining high efficiency through platform–neutral optimizations that deliver

a good performance on all platforms.

5.6 Conclusions and Future Work

This work introduces mapped blocked row as a practical blocked sparse format that can

be used with sparse matrix programs. The storage requirements of the format have been

studied and they are significantly less than the two popular formats we have compared

with. The MBR format offers the distinct advantage of being a blocked format that does

not incur the computational and storage overheads of other formats. This holds promise

for applications that involve very large problem sizes where holding the matrix in memory

is an issue, for example iterative solvers for linear systems.



108 CHAPTER 5. SPARSE MATRIX MULTIPLE-VECTOR MULTIPLICATION

Figure 5.4: Performance comparison of MBR SMMV on Intel Core i7 2600

A fast algorithm has been developed for multiplying sparse matrices in the MBR

format, with several optimizations for minimizing loop traversals and evaluations of con-

ditionals, for increasing cache reuse and to amortize the decoding costs. By virtue of

operating on a blocked format, the algorithm obtains high computational intensity. A

C++ implementation of the algorithm offers compile–time parameters like the block size,

number of vectors and the datatypes of the scalars and of the bitmap, making it generic

in scope for a wide range of applications. The templates also makes it possible to produce

code that has fully unrolled loops and kernels that bind to parameters at compile-time,

unifying the code generator with the generated code for greater transparency and main-

tainability.

The performance results presented in the previous section prove that these perfor-

mance optimizations can achieve good efficiency gains on all platforms by increasing reg-

ister and cache reuse. The reference implementation attains performance over 3× that

of the Intel MKL libraries and better performance on most test platforms over existing

optimized BCSR and CSR implementations. There is ample scope to tune performance

by modifying parameters such as the block size and effects of such tuning will be the topic

of future work. A key motivation for communication reducing algorithms is the desire for

improved parallel scalability. This article has focussed on establishing the performance



5.6. CONCLUSIONS AND FUTURE WORK 109

Figure 5.5: Performance comparison of MBR SMMV on AMD Opteron 6220

of the MBR format and the algorithm for sequential execution, paving the way for its

parallelization, which will be explored in future work. Also of interest is the question

“to what extent is a blocked sparse format of relevance for sparse direct solutions?” and

whether it can offer advantages for storing and manipulating the factors from a Cholesky

or symmetric indefinite factorization. These will be examined in due course.



Chapter 6

Cache-efficient B-orthogonalization

for Multicore and Manycore

Architectures

6.1 Introduction

Let B be a symmetric positive definite n×n matrix and X be a tall skinny matrix n× `
(n � `) matrix of full column rank. We wish to compute a matrix S, with the same

dimensions and column space as X, such that S is orthogonal with respect to the inner

product defined by B, i.e. STBS = I. We call this problem the ‘B-orthogonalization of

a matrix’ in this discussion. There are several applications for the B-orthogonalization

problem. The one most relevant to us is the Lanczos method for the sparse GEP [5], [30],

where it is used to transform the generalized eigenproblem into a standard eigenproblem.

A related use occurs in structural engineering when we compute the eigenvectors of

the equation Kx = λMx. If the eigenvalues of interest are the ones closest to the

origin, an algorithm like the subspace iteration method (chapter 4) might compute the

eigenvectors to be M -orthogonal. However, if the engineer requires the eigenvectors to be

K-orthogonal, the K-orthogonalization can be performed as a post-processing step after

solving the eigenvalue problem. Yet another use is in the weighted GMRES method [28].

A more extensive list of applications can be found in [52] and the references therein.

For the case of B = I, the problem reduces to the well known QR factorization:

110



6.1. INTRODUCTION 111

computing a set of orthonormal columns Q spanning the same space as X such that

X = QR, where R is an upper triangular matrix. Several methods exist for the QR

factorization and their efficiency and stability is well studied in the literature, including

classical and modified Gram-Schmidt and the Householder QR factorization [24, chap.

5].

To solve the B-orthogonalization problem, however, we do not have an analogue of

the Householder QR method to use. This is because the product of two B-orthogonal

matrices is not in general B-orthogonal. Since B is positive definite, an intuitive approach

is to compute the Cholesky factor of B = UTU . We can then find an orthonormal basis Y

of the matrix XU using QR factorization XU = Y R and obtain the B-orthogonal matrix

S = U−1Y . This can however become expensive for large scale problems, since the O(n3)

cost of the Cholesky factorization governs the total cost. In many applications, `� n and

we would have done nothing to take advantage of this structure. Therefore a frequently

used method is the Gram-Schmidt method that uses B-inner products to orthogonalize

the columns of X; this has been studied in [52]. Gram-Schmidt B-orthogonalization

works by computing projections using matrix-vector and vector-vector products and con-

secutively B-orthogonalizes columns of X against the previously computed columns.

A drawback of the Gram-Schmidt scheme is its use of vector-vector and matrix-vector

operations, which lead to cache-inefficient implementations and offer limited paralleliza-

tion opportunities. These reasons motivate the need for more efficient strategies and we

look at a class of methods that use either a Cholesky-like factorization or the eigenvalue

decomposition (EVD) of the positive definite matrix XTBX for the orthgonalization.

By Cholesky-like factorizations, we mean either the Cholesky or pivoted Cholesky fac-

torization or their square root-free counterpart, the LDLT factorization. In contrast to

Gram-Schmidt, these methods use matrix-matrix or matrix-block-vector operations and

subsequently have better parallel scalability. In our experiments, we observe that this re-

sults in orders-of-magnitude speedup over Gram-Schmidt methods both in the sequential

as well as in the parallel case and that the method is stable under reasonable assump-

tions. Lowery and Langou [45] present the stability analysis for the Cholesky-based B-

orthogonalization. Here we present algorithms that have a smaller loss of orthogonality

than current Cholesky B-orthogonalization methods in the presence of ill-conditioning



112 CHAPTER 6. CACHE-EFFICIENT B-ORTHOGONALIZATION

in X and/or B and we develop a software library implementation for multicore and

manycore architectures for a sparse B.

6.2 EVD and Cholesky B-orthogonalization

We now introduce our method for B-orthogonalization using the EVD and Cholesky-like

factorization. We start by computing the symmetric positive definite `× ` matrix

M := XTBX. (6.1)

If M = QΛQT is the EVD of M, then the main idea is to form the matrix

S := XQΛ−1/2. (6.2)

Mathematically, S is then B-orthogonal since

STBS = Λ−1/2QTXTBXQΛ−1/2 = Λ−1/2QTMQΛ−1/2 = I.

Analogously, the Cholesky based variant uses the Cholesky factor of M to form a B-

orthogonal matrix S as follows:

S = XR−1, R = chol(M). (6.3)

For both methods to work numerically, we need M to be numerically nonsingular, i.e.

κ(XTBX) < u−1, where u is the machine precision. Forming the product XTBX may

lead to loss of information about the column space of X but we recover this information

by multiplying with X when we form S in the final step. In finite precision, the columns

of S may not be perfectly B-orthogonal because of rounding errors in the process, but it

is easy to show that the computed S is more B-orthogonal than X. Indeed if S is close

to being B-orthogonal, the inner product matrix STBS will be nearly diagonal with the

diagonal entries close to 1, i.e., κ(STBS) is close to 1. Therefore, to show S is more

B-orthogonal than X, it suffices to show that STBS is better conditioned than XTBX.

Assume the eigendecomposition of XTBX yields

XTBX = Q̃Λ̂Q̃T + E (6.4)



6.2. EVD AND CHOLESKY B-ORTHOGONALIZATION 113

where Λ̂ is the matrix of computed eigenvalues for some exactly orthogonal Q̃ and E is

the error matrix of appropriate dimensions. We also assume, without loss of generality,

that X is scaled such that ‖Λ̂‖2 = 1. If XTBX is full rank,

κ2(XTBX) = O

(
1

d

)
,

where d is the smallest diagonal entry in Λ̂.

If Ŝ := XQ̃Λ̂−1/2, we have

ŜTBŜ = Λ̂−
1
2 Q̃XTBXQ̃T Λ̂−

1
2

= Λ̂−
1
2 Q̃T (Q̃Λ̂Q̃T + E)Q̃T Λ̂−

1
2

= I + Λ̂−
1
2 Q̃EQ̃T Λ̂−

1
2 =: N.

To bound κ2(N), we need bounds on ‖N‖2 and ‖N−1‖2. The former is straightfor-

ward: if ‖E‖2 = ε, then

‖N‖2 ≤ 1 +
ε

d
. (6.5)

To bound ‖N−1‖2, we use [24, Lemma 2.3.3] to observe that

‖N−1‖2 ≤
1

1− ‖E‖‖Λ̂−1‖2

=
1

1− ε/d ≈ 1 +
ε

d
.

Therefore

κ2(ŜTBŜ) ≈
(

1 +
ε

d

)2

= 1 +
2ε

d
+O(ε2) (6.6)

and assuming ε� d, κ2(ŜTBŜ) < κ2(XTBX) as required.

The analysis also allows us to bound the loss of orthogonality ‖ŜTBŜ − I‖2 informally.

If we assume B is normalized such that ‖B‖2 = 1, from (6.5) we have

‖ŜTBŜ − I‖2 ≤
ε

d
≤ ε

λmin(B)
= εκ2(B).

The bound is sharp as it is attained if Ŝ contains the eigenvectors associated with the

smallest and the largest eigenvalues of B. We present a more formal bound in [40]. The

stability of the Cholesky-based process has been analysed in [45] and the following result

provides an upper bound for the loss of orthogonality. The bound is shown to be tight

in the experiments of [45].



114 CHAPTER 6. CACHE-EFFICIENT B-ORTHOGONALIZATION

Theorem 6.2.1. [45, Thm. 2.1] The computed factors Ŝ and R̂ in the sequence (6.3)

satisfy

‖ŜTBŜ − I‖2 ≤ cn`u‖R̂−1‖2‖X‖2(‖R̂−1‖2‖BX‖2 + ‖Ŝ‖2‖B‖2) +O(u2).

The EVD and Cholesky B-orthogonalization process has an obvious limitation. In the

case where B and/or X have large enough condition numbers such that κ2(XTBX) >

O(u−1) the algorithm is unstable, since Λ could have negative or O(u) entries and there-

fore Λ−1/2 could be ill-conditioned or may not be real. This affects the practical applica-

bility of the algorithm, since in real world applications we often encounter ill conditioned

B or X. To stabilize the algorithm, we make the following modifications.

• We run the process more than once.

• We perturb Λ such that entries smaller than a certain threshold are replaced by a

small positive multiple of u.

As a result, Λ, and subsequently, S, stays numerically nonsingular and the algorithm

does not break down. The updated procedure is listed in Algorithm 6.13.

Algorithm 6.13 EVD: Stable EVD B-orthogonalization

Given a symmetric positive definite B ∈ Rn×n and an n×` matrix X of full rank, compute
S ∈ Rn×` s.t. ‖STBS − I‖ ≤ tol for a tolerance tol and stability threshold h.

1 k = 1.
2 S(k) = X.

3 M = S(k)TBS(k)

4 while (‖M − I‖1 ≤ tol and k < maxiter)
5 [Q,Λ] = eig(M).

6 for i = 1: `
7 if |λi| < h, λi = λi + h.
8 S(k+1) = S(k)QΛ−1/2

9 M = S(k+1)TBS(k+1).
10 k = k + 1.
11 S = S(k)

On line 4, a tolerance of tol = uκ(B) for the loss of orthogonality is a reasonable

target. In our experiments, a value of 2 or 3 for maxiter was sufficient to achieve this

and further iterations did not make the residual smaller. The stability threshold h is a



6.2. EVD AND CHOLESKY B-ORTHOGONALIZATION 115

modest multiple of u; we use 100u. To see why the perturbation technique works, we can

recast the analysis that led to (6.6) such that E is the perturbation we induce, i.e. E is a

diagonal matrix with eii = h where λ̂ii = O(u) and 0 everywhere else. Then, from (6.6),

the condition number of the resultant product ŜTBŜ is

κ(ŜTBŜ) ≈ 1 +
2ε

d
= 1 +

2h

O(u)
,

which, qualitatively, is significantly better than κ(XTBX) = O(1/d) = O(1/u) that we

had started with. We present a more detailed analysis of algorithm 6.13 in [40]; for

the rest of this article we focus on efficiency gains that our algorithm offers over Gram-

Schmidt. The efficiency is a result of using level 3 BLAS operations to compute the inner

product matrix, subsequent to which we can work with an ` × ` matrix. The EVD in

Algorithm 6.13 can be computed using either the divide and conquer algorithm or the

QR algorithm [24, chap. 8], both of which are available through LAPACK [2] and require

reducing the matrix M to tridiagonal form, which costs 4`3/3 flops. We can avoid this

cost by replacing the EVD by a Cholesky factorization, which can be computed in as few

as `3/3 flops and has excellent numerical stability [33, chap. 10]. Since the matrix M can

be semidefinite, we use a pivoted Cholesky factorization that computes the factorization

of a permuted matrix P TMP = RTR, as given by the following theorem.

Theorem 6.2.2. [33, Thm. 10.9] Let A ∈ Rn×n be a positive semidefinite matrix of rank

r. (a) There exists at least one upper triangular R with nonnegative diagonal elements

such that A = RTR. (b) There is a permutation Π such that ΠTAΠ has a unique Cholesky

factorization, which takes the form

ΠTAΠ = RTR, R =


R11 R12

0 0


 , (6.7)

where R11 is r × r upper triangular with positive diagonal elements.

In [46], Lucas presented a pivoted form of Cholesky factorization for semidefinite

matrices that was implemented [29] and incorporated into LAPACK version 3.2 as the

routine xPSTRF. We make use of this routine to derive Algorithm 6.14.

As with algorithm 6.13, we use a value of h = 100u. In our numerical experiments,

Algorithm 6.14 was stable for a range of problems. As with Algorithm 6.13, it requires

at most 2 or 3 iterations.



116 CHAPTER 6. CACHE-EFFICIENT B-ORTHOGONALIZATION

Algorithm 6.14 CHOLP: Stable pivoted-Cholesky B-orthogonalization

Given a symmetric positive definite B ∈ Rn×n and an n×` matrix X of full rank, compute
S ∈ Rn×` s.t. ‖STBS − I‖ ≤ tol for a tolerance tol and stability threshold h.

1 k = 1.
2 S(k) = X.

3 M = S(k)TBS(k).
4 while (‖M − I‖1 ≤ tol and k < maxiter)
5 [R,P ] = dpstrf(M).

6 for i = 1: `
7 if |rii| < h, rii = rii + h.
8 S(k+1) = S(k)PR−1.

9 M = S(k+1)TBS(k+1)

10 k = k + 1.
11 S = S(k).

6.3 Gram-Schmidt B-orthogonalization

We briefly summarize the Gram-Schmidt family of B-orthogonalization methods here,

which is a generalization of the Gram-Schmidt family for the standard inner product.

Whilst the latter have been studied in great detail (see [23] and references therein), the

B-inner product case has been analysed in Rozložńık et al. in [52].

To form a B-orthogonal S from X using classical Gram-Schmidt (CGS), we compute

si = s′i/rii, (6.8)

where

s′i = xi −
i−1∑

j=1

rijxj, rij = sTj Bxi, rii = ‖s′i‖B.

The CGS process is known to suffer from loss of orthogonality, which is usually remedied

in one of the following two ways. The first is to change the order of the computations such

that when si is computed at the ith step all remaining vectors in X are orthogonalized

against it; this alteration is known as the modified Gram-Schmidt method. The other

remedy is to reorthogonalize the vectors computed from CGS, i.e. run CGS twice, which

is sufficient to ensure a small loss of orthogonality, a principle informally referred to as

“twice-is-enough” [23]. The twice-CGS algorithm (CGS2) has a smaller loss of orthog-

onality compared with MGS B-orthogonalzation [52]; we therefore use this method for

our comparisons. The CGS2 algorithm is listed in Alg 6.15.



6.4. PARALLEL IMPLEMENTATION 117

Algorithm 6.15 CGS2: Gram-Schmidt B-orthogonalization with reorthogonalization

Given a symmetric positive definite B ∈ Rn×n and an n×` matrix X of full rank, compute
S ∈ Rn×` with the same column space as X s.t. ‖STBS − I‖ < ‖XTBX − I‖.

1 k = 0.
2 S(k) = X.
3 while (k < 2)
4 for i = 1: `

5 s
(k+1)
i = s

(k)
i .

6 for j = 1: i− 1

7 r = sj
(k+1)TBs

(k)
i .

8 s
(k+1)
i = s

(k+1)
i − rs(k+1)

j .

9 s
(k+1)
i = s

(k+1)
i /s

(k+1)
i

T
Bs

(k+1)
i .

10 k = k + 1.
11 S = S(k).

The next theorem bounds the loss of orthogonality for the CGS2 algorithm.

Theorem 6.3.1. [52, Thm. 5.2] Assuming cn3/2`uκ1/2(B)κ(BX) < 1, the computed Ŝ

from Alg. 6.15 satisfies

‖ŜTBŜ − I‖2 ≤ cn3/2`uκ(B). (6.9)

We note that (6.9) does not depend on κ(X), which allows the CGS2 method to handle

problems where X has a large condition number. This contrasts with the Cholesky-based

bound of Theorem 6.2.1. However, we observe in our experiments that for both CGS2

and the pivoted Cholesky version, the loss of orthogonality varies proportionally with

uκ(B).

6.4 Parallel Implementation

Since the main motivation for using Cholesky based B-orthogonalization was its supe-

rior cache-efficiency, we are interested in knowing how its performance compares with

Gram-Schmidt and how well it scales with increasing problem size. In particular, we

are interested in accelerator-based heterogeneous architectures and SMP-based shared

memory models. The use of accelerators/coprocessors has gained significant popularity



118 CHAPTER 6. CACHE-EFFICIENT B-ORTHOGONALIZATION

in recent years and as many as 53 computers in the November 2013 Top5001 list of su-

percomputers use them, including the supercomputers ranked 1 and 2. This is because

they not only achieve good performance but also reduce energy usage per computation.

Indeed all 10 of the top supercomputers in the Green500 list2 are based on heterogeneous

memory. The other factor that motivates using accelerators is the use of thread-based

programming models, which is intuitively more natural than the distributed memory

programming.

Amongst accelerators, Intel’s Xeon Phi coprocessor, also known as Knight’s Corner,

is a recent development that is becoming popular in HPC applications. Based on Intel’s

Many Integrated Core architecture, Xeon Phi is a coprocessor with more than 50 cores

that support multiple in-order hardware threads with 512-bit wide vector units and with

local caches attached to them. A block diagram is shown in Figure 6.1. Being an

x86 SMP-on-a-board architecture, Xeon Phi offers the possibility to use the same tools,

programming languages and programming models as on x86 CPUs, like OpenMP or

Intel Cilk. This is a crucial difference between Xeon Phi and GPU accelerators, which

use programming extensions and frameworks like CUDA or OpenCL that are significantly

different.

The MIC architecture supports a new SIMD instruction set that is different from the

SSE and AVX instruction sets found on x86 CPU chips. Many of these instructions are

syntactically similar to their CPU counterparts although a key difference is the addition

of a masking flag parameter to include/exclude operands from the vectors. Of the new

instructions, the ones of interest are scatter and gather of SIMD vectors from unaligned

noncontiguous memory locations, prefetch hints and fused multiply-add instructions.

Our library implementation of Algorithm 6.14 is called chol borth. It is written

in C and C++, using Eigen [26] for providing a C++ library interface and C for low-

level SIMD intrinsics. chol borth takes as inputs a sparse positive definite matrix B,

a dense matrix X and a stability threshold for perturbation. We also created an imple-

mentation of Algorithm 6.15 for comparison, using multithreaded sparse BLAS kernels

for parallelization.

The main bottleneck in the execution of Algorithm 6.14 is the formation of the inner

1http://www.top500.org/lists/2013/11/highlights/
2http://www.green500.org/lists/green201311



6.4. PARALLEL IMPLEMENTATION 119

Figure 6.1: High level view of Xeon Phi

product matrix STBS on line 9. This involves formation of a Sparse Matrix-Vector

product, which has been studied extensively in literature, see, for example, the references

in chapter 5. More recently its performance has also been studied for Xeon Phi in [44]

and [55]. In this work we aim to create a library implementation. Hence, unlike the

cited articles, we avoid changing the storage format of the sparse matrix and only use

the Compressed Sparse Row (CSR) storage. This is because the B-orthogonalization

algorithm is usually part of a “larger” program, for example, a routine for computing

the eigenpairs of a sparse GEP, and hence the storage format needs may be governed

by other operations in the parent algorithm, for example, a sparse direct solution, and

such software may not exist for the new format. Changing the sparse matrix format to

accelerate the B-orthogonalization may also slow down other parts of the calling program

that are not optimized to work with a different format.

The inner product M = XTBX can be computed in three ways depending on how

loops are ordered. In the first (Algorithm 6.16), we simply evaluate a temporary dense

matrix Y = BX and then form M = XTY . Both the matrices are computed using

multithreaded BLAS kernels.

For larger problems or smaller cache hierarchies, it may not be efficient to form Y if it

causes S to be evicted. Therefore, alternatively, we loop over the columns of X, evaluate

a Sparse Matrix-Vector product (SpMV) and use the resultant vector to compute an



120 CHAPTER 6. CACHE-EFFICIENT B-ORTHOGONALIZATION

Algorithm 6.16 FULL SpMM

Given Sparse B ∈ Rn×n and Dense S ∈ Rn×`, compute M = STBS.

1 Y = BS /*dcsrmm */
2 M = Y TS /* dgemm */

inner product with X, thereby reusing the computed vector that is loaded in the cache.

Algorithm 6.17 presents this approach.

Algorithm 6.17 SpMV

Given Sparse B ∈ Rn×n and Dense S ∈ Rn×`, compute M = STBS.

1 for i = 1: `
2 y = Bsi /* dcsrmv */
3 for j = 1: i
4 M(j, i) = sTj y /*ddot */

We can also design a method to reuse the loaded entries of B as well as the computed

entries of BS. This can be done by evaluating M in blocks, which divides the columns

of X into `/b blocks made up of b contiguous columns. For each block X( : , k : k+ b), we

compute Yk = BX( : , k : k + b) first and then form X( : , k : `)TYk. Each block becomes

a work chunk for a thread in the OpenMP thread pool. Since the number of blocks is

dependent on the problem size, it is possible for number of threads to exceed the number of

blocks. Therefore, we create a nested threaded region where each inner product between

rows of B and a block is processed on a different thread.

Algorithm 6.18 BLOCK SpMV

Given Sparse B ∈ Rn×n, Dense X ∈ Rn×` and block size b, compute M = XTBX.

1 for block index jj = 1: `/b in Parallel
2 Xjj = X(: , jj: jj + 1)
3 for i = 1:n in Parallel
4 Yjj = bTi Xjj /* sprow Alg. 6.19 */

5 M(jj: `/b, jj: jj + 1) = X(: , jj: `/b)TYjj /*dgemm*/

The inner product sprow between the sparse rows of B and block column Xjj is

evaluated using a SIMD kernel shown in Algorithm 6.19. This algorithm makes of use of

the new gather instruction that is supported on MIC, which allows loading words from



6.5. EXPERIMENTS 121

unaligned memory locations given by a vector of indices simd ind. Firstly, the inner

product loop is peeled to reach an aligned location in val and col. Then we load aligned

data from val and col into MIC’s 512-bit SIMD vectors simd val and simd ind, which

we use for a gather. Subsequently, we multiply the loaded data using mul and finally

sum the vector entries with a reduce. The inner loops that multiply individual vectors

in a block are unrolled using compiler pragmas.

Algorithm 6.19 sprow

Given row i of sparse B held as CSR (row ptr, col, val) and Xjj held as array x as
in Alg. 6.18, compute Yjj = bTi Xjj, held as array y.

1 // peel loop to reach aligned position
2 aligned start = row ptr[i] + row ptr[i]%8
3 for j = row ptr[i]: aligned start
4 for k = 1: b Unroll
5 y[k × n+ i] = y[k × n+ i] + val[j]× x[k × n+ col[j]]
6 aligned end = row ptr[i+ 1] + 8− row ptr[i+ 1]%8
7 for j = aligned start: aligned end
8 simd ind = load(&col[j])
9 simd vals = load(&vals[j])

10 for k = 1: b Unroll
11 simd x = gather(simd ind,&x[k × n])
12 simd y = mul(simd vals, simd x)
13 y[k × n+ i] = y[k × n+ i] + reduce(simd y)
14 j = j + 16
15 for j = aligned end: row ptr[i+ 1]
16 for k = 1: b Unroll
17 y[k × n+ i] = y[k × n+ i] + val[j]× x[k × n+ col[j]]

The other operations in Algorithm 6.14 are parallelized either using OpenMP loops

or using threaded BLAS from MKL.

6.5 Experiments

The library chol borth was compiled using Intel C++ Compiler version 14.0 and we use

CMAKE as the build system for cross compilation for MIC. The code is compiled with

-O3 optimization level, with autovectorization turned on for both CPU and MIC. We

used the following hardware for the experiments.



122 CHAPTER 6. CACHE-EFFICIENT B-ORTHOGONALIZATION

Table 6.1: Test matrices used for benchmarking chol borth.

Name Application Size Nonzeros Nonzeros/row
apache2 finite difference 715,176 2,766,523 3.86
bairport finite element 67,537 774,378 11.46
bone010 model reduction 986,703 47,851,783 48.50
G3 circuit circuit simula-

tion
1,585,478 7,660,826 4.83

Geo 1438 finite element 1,437,960 60,236,322 41.89
parabolic fem CFD 525,825 2,100,225 3.99
serena finite element 1,391,349 64,131,971 46.09
shipsec8 finite element 114,919 3,303,553 28.74
watercube finite element 68,598 1,439,940 20.99

Xeon Phi 7120P The instance of MIC we use is the 7120P. This coprocessor

is connected through the system PCI bus and has 61 cores connected to each other

and to the memory controllers via a bidirectional ring. The card we use has 16 GB of

memory. Each core has a 64-bit Pentium based architecture that has been upgraded to

support 4-way in-order multithreading with full coherent 32 KB L1 cache and 512 KB

L2 cache. Much of the processing power of the core comes from the 512-bit SIMD Vector

Processing Unit that can operate on 8 doubles in a single cycle. The measured peak

dgemm performance of the coprocessor is 950 GFlops/sec.

Xeon E5-2670 Our shared memory system has Intel Sandy Bridge-based sym-

metric multiprocessors. There are 2 processors with 8 cores per processor, each with 2

hyperthreads that share a large 20 MB L3 cache. Each core also has access to 32 KB

of L1 cache and 256 KB of L2 cache and runs at 2.6 GHz. They support the AVX

instruction set with 256-bit wide SIMD registers, resulting in 10.4 GFlop/s of double

precision performance per core or 83.2 GFlop/s per processor and a dgemm performance

of 59 GFlop/sec.

We run experiments to gauge both numerical stability and computational perfor-

mance. The former is tested using MATLAB implementations of Algorithms 6.14 and

6.15, with specially-constructed B and X matrices. For measuring computational perfor-

mance, we use chol borth where the test problems are positive definite sparse matrices

from structural FE models and from the University of Florida [15] collection, as listed in

Table 6.1.



6.5. EXPERIMENTS 123

6.5.1 Loss of Orthogonality

We are interested in the loss of orthogonality in using Algorithm 6.14 and how it com-

pares with Algorithm 6.15 and, for reference, Algorithm 6.13. We study this by increas-

ing the conditioning of the problem, i.e. κ2(XTBX) and plot the loss of orthogonality

‖STBS − I‖2 against κ2(B). We construct B of size 5000 × 5000 using the MATLAB

command gallery(’randsvd’). We take 500 vectors in X and consider three cases:

1. X has random vectors and has a condition number that increases with κ2(B). It is

generated using randsvd.

2. X has linear combinations of the eigenvectors of unit 2-norms associated with the

`/2 smallest and `/2 largest eigenvalues of B, with κ2(X) = κ2(B). It is generated

in the following way:

% k_B is the condition number of B

X = gallery(’randsvd’,[n l],k_B);

[~,R] = qr(X,0);

[V,D] = eig(B);

% Fill X with extremal evectors

X = [V(:, 1:l/2) V(:, (n-l/2+1):n)];

% Multiply by R to obtain desired condition number

X = X*R;

3. Same as 2 but with κ2(X) varying as
√
κ2(B).

Cases 2 and 3 represent the worst case bound for the loss of orthogonality. The variation

of κ2(X) with κ2(B) in case 2 will indicate the behaviour in the extreme scenario, whereas

case 3 is for comparison with experiments in [45].

Figure 6.2 shows the loss of orthogonality for the random X case and the loss of

orthogonality is very similar for pivoted Cholesky and CGS2. The EVD based version

has a larger error when κ2(B) grows towards O(u−1), a phenomenon we are currently

unable to explain. In Figure 6.3, we plot the worst case, i.e., when X contains extremal

eigenvectors of B. As expected, all three algorithms behave similarly and the error is

independent of the conditioning of X. They lose almost all orthogonality as κ(B) reaches



124 CHAPTER 6. CACHE-EFFICIENT B-ORTHOGONALIZATION

O(u)−1 but we observe that when κ(X) varies as κ(B), the algorithms are still usable up

to κ(B) = 1015. chol borth always takes 2 or 3 iterations to reach the desired tolerance

for orthogonality.

6.5.2 Performance Comparison with CGS2

The motivation for investigating Cholesky-based B-orthogonalization was the efficiency

of the latter, hence it is important to know what performance gains can be achieved

against CGS2. Therefore we measure the performance of chol borth on CPU and MIC

by varying the size of X and compare the results with those from CGS2. On the CPU, the

tests are run by scheduling all threads on a single processor by using the OpenMP ‘com-

pact’ thread affinity, which is set using KMP SET AFFINITY. On MIC, we use OpenMP’s

‘balanced’ thread affinity and place 2 threads each on 60 cores using KMP PLACE THREADS.

Since we are interested in the speedup that is brought about by chol borth, we use X

with 16 and 256 vectors in order to estimate the lower and upper bounds of the efficiency

gains.

Table 6.2 shows the results for our performance comparisons. On the CPU, chol borth

was faster than CGS2 by a minimum of 3.7 times for 16 vectors and a maximum of 40

times for 256 vectors. This contrasts with the MIC where we gain over 8x performance for

the smallest problem and over 200x for X with 256 vectors. The large performance gains

on MIC show the importance of minimizing irregular accesses during manycore/hetero-

geneous execution and demonstrate the importance of targeting cache-efficiency in algo-

rithm development.

On the MIC, with apache, chol borth gained the highest speedup over CGS2 when

the problem size was increased. The reason for this is the low number of nonzeros-

per-row for the apache2 matrix. On the other hand, bone010 gained the least since it

has the highest ratio of nonzeros per row. On CPUs, CGS2 benefits from the larger

cache hierarchy which leads to greater reuse, hence the improvements performance of

chol borth over CGS2 are not as drastic.



6.5. EXPERIMENTS 125

4 6 8 10 12 14 16 18
−16

−15

−14

−13

−12

−11

−10

−9

−8

log10κ(B) [κ(X) = κ(B)]

lo
g 1

0
‖S

T
B
S
−

I
‖ 2

Loss of orthogonality for random X with κ(X) = κ(B)

 

 cholp
cgs2
eig

4 6 8 10 12 14 16 18
−15.2

−15

−14.8

−14.6

−14.4

−14.2

−14

−13.8

−13.6

log10κ(B) [κ(X) =
√
κ(B)]

lo
g 1

0
‖S

T
B
S
−
I
‖ 2

Loss of orthogonality for random X with κ(X) =
√

κ(B)

 

 

cholp
cgs2
eig

Figure 6.2: Loss of orthogonality for random X.



126 CHAPTER 6. CACHE-EFFICIENT B-ORTHOGONALIZATION

4 6 8 10 12 14 16 18
−14

−12

−10

−8

−6

−4

−2

0

log10κ(B) [κ(X) =
√
κ(B)]

lo
g 1

0
‖S

T
B
S
−
I
‖ 2

Loss of orthogonality for X=span{evectors(B)} with κ(X) =
√

κ(B)

 

 

cholp
cgs2
eig

4 6 8 10 12 14 16 18
−14

−12

−10

−8

−6

−4

−2

0

2

log10κ(B) [κ(X) = κ(B)]

lo
g 1

0
‖S

T
B
S
−
I
‖ 2

Loss of orthogonality for X=span{evectors(B)} with κ(X) = κ(B)

 

 

cholp
cgs2
eig

Figure 6.3: Loss of orthogonality for X with eigenvectors of B.



6.5. EXPERIMENTS 127

Table 6.2: Performance ratios of chol borth vs CGS2 for small and large problems on
CPU and MIC (ratios of runtime of each algorithm).

Name
CPU MIC

` = 16 ` = 256 ` = 16 ` = 256
apache2 5.7 40.9 16.6 219.4
bairport 3.7 28.8 9.9 24.9
bone010 3.7 28.8 6.9 9.4
G3 circuit 6.6 15.6 14.6 31.8
Geo 1438 4.1 23.9 15.5 66.5
parabolic fem 17.7 39.7 15.7 65.5
serena 4.0 39.8 8.1 87.2
shipsec8 3.8 21.4 14.1 99.7
watercube 3.7 25.1 14.1 99.7

6.5.3 Scalablity

We are also interested to know the execution rates that chol borth is capable of on

MIC and CPUs and how these scale with increase in the number of vectors ` to be or-

thognalized. In section 6.4, we discussed three strategies for parallelizing the formation

of the inner product matrix, which is the main bottleneck in chol borth. These are

FULL SpMM (Algorithm 6.16), SINGLE SpMV (Algorithm 6.17) and BLOCK SpMV

(Algorithm 6.18). We profile chol borth while using each of these strategies for increas-

ing sizes of X. All tests are run with the same thread placement and affinity settings

that were used in the previous section.

In Figure 6.4, we show the effect of increasing ` on the CPU and Figure 6.5 contains

the comparisons for MIC.

On the CPU, FULL SpMM is the most efficient strategy on most problems. BLOCK SpMV

comes close for larger problems, i.e., when ` = 256. We attribute the efficiency of

FULL SpMM to the large L3 cache on CPUs that ensures that more entries from Y = BX

stay loaded before they are multiplied with XT . The inner product operation has a flop

count of 2z`+ 2`2n, z being the number of nonzeros in B. Therefore for large `, the cost

of XTY dominates and since FULL SpMM uses dgemm for this operation, it is the most

efficient. The matrix bone010 has the lowest flop rate because it has the highest nonzeros

per row, which displace the computed values of Y from the cache. As the problem size

decreases, SINGLE SpMV starts becoming as competitive as FULL SpMM.

On MIC, SINGLE SpMV is more efficient for some problems than FULL SpMM



128 CHAPTER 6. CACHE-EFFICIENT B-ORTHOGONALIZATION

Figure 6.4: Execution rates for various ` on CPU. Performance in GFlops/sec.



6.5. EXPERIMENTS 129

Figure 6.5: Execution rates for various ` on MIC. Performance in GFlops/sec.



130 CHAPTER 6. CACHE-EFFICIENT B-ORTHOGONALIZATION

because of the smaller cache sizes. For large (n > 109) matrices like G3 circuit and

Geo 1438, SINGLE SpMV is always more efficient, which is a result of the 512 KB L2

cache being too small to keep elements of more than 1 vector loaded, therefore multiply-

ing more than 1 vector destroys any locality. For other matrices, SINGLE SpMV is more

efficient as ` gets smaller.

Our BLOCK SpMV implementation is competitive on MIC for large ` but for smaller

sizes of X, it is far slower than the fastest algorithm of the three. We use thread local

storage for the column blocks Yjj in Algorithm 6.18, with the expectation that memory

is allocated on the closest controller, thereby reducing the latency; but we cannot be

certain if this happens in practice. To better understand the reason for its slowness,

we must analyse the cache misses for BLOCK SpMV execution, an exercise we leave for

[40]. The performance of any blocked algorithm is sensitive to the size of the block; in

our experiments we used a fixed size of 8 but varying the blocksize to suit the sparsity

pattern can improve performance.

Another factor that has a significant impact on the performance on MIC is the thread

placement. The Xeon Phi has 4 in-order threads per core but using all 4 with a memory

latency-bound computation increases contention. We therefore run 2 threads per core

with a ‘balanced’ distribution, which placed threads 0 and 1 on core 1, threads 2 and 3 on

core 2, and so on. Other thread placement strategies yield different results. The thread

placement options together with variable block sizes offer a large search space for choosing

the optimal runtime parameters to achieve the best performance with BLOCK SpMV–

tuning of these parameters will be looked at in our future work.

6.6 Conclusion

We have developed a new, stable Cholesky-based B-orthogonalization algorithm that

overcomes the stability limitation using perturbations and iteration. For a random matrix

X the algorithm is experimentally shown to have a loss of precision that is independent

of κ(B) and is no larger than a modest multiple of O(u). In the worst case of κ(B) =

κ(X), our experiments show that the loss of orthogonality is proportional to κ(B) but

independent of κ(X), similar to Gram-Schmidt with reorthogonalization. In all cases the



6.6. CONCLUSION 131

algorithm needs only 2 or 3 iterations.

The pivoted Cholesky-based algorithm has superior efficiency compared with Gram-

Schmidt. In testing our multithreaded implementations for CPUs and Intel’s MIC-based

accelerator, we find the Cholesky implementations outperform Gram-Schmidt by a factor

of up to 40 and 200 respectively.

Even though the Xeon Phi card has a peak dgemm performance of 1.1 TFlop/s, our

kernels have been able to extract only up to 21 GFlops/s with manual vectorization. This

contrasts with the 24 GFlop/s we achieve on an SSE-enabled CPU using just compiler

auto-vectorization, which suggests that computations on Xeon Phi are memory-latency

bound. Better performance is possible by using a different sparse matrix format [55],[44]

to reduce bottlenecks arising from memory-latency overheads.

The incentive for choosing Intel’s MIC accelerator over GPGPU-based accelerators

is that we can use the same code base as the CPU to exploit the coprocessor. We find

that while this is sufficient for getting an unoptimized version running on the MIC, such

code may not necessarily return the best performance. Since tuning the program to ex-

tract good performance is a non-trivial task, the final code may diverge significantly from

the CPU code, thereby negating the advantages of the single source base. Architectural

choices that have been made in the design of Xeon Phi imply that several runtime pa-

rameters must have optimal values to get good performance, making the performance

sensitive to the execution settings, especially when dealing with sparse matrix computa-

tions. Future iterations of the Intel MIC architecture [38] will feature low-powered cores

sharing the same main memory as the CPU cores which will reduce the latency problems

that restrict the performance of our algorithm.



Chapter 7

Summary

The conditioning of a problem that is solved numerically using floating point comput-

ing is critical for the accuracy and the reliability of the results. We developed a novel

method called Model Stability Analysis (Alg. 3.1) to debug the causes of ill condition-

ing in stiffness matrices arising from finite element applications. This method has been

implemented in the FE software package Oasys GSA and has been successfully used by

practitioners to detect where in their models the cause of the ill conditioning lies. The

existence of ill conditioning came to light because we introduced the estimation of the

condition number of the stiffness matrix, a practise that we have not seen in other finite

element codes both commercial and academic. A major source of ill conditioning is errors

made by practitioners while creating FE models. The properties of the eigenvectors of

ill-conditioned stiffness matrices led us back to the parts of the model that are badly

defined. In our examples the condition numbers of stiffness matrices reduced to O(108)

from O(1016) when the identified errors were fixed.

Although our method identifies elements that cause the ill conditioning, rectifying

the errors is a manual task. The engineer must sift through all plausible causes to

identify the remedy. An automatic, algorithmic fix for user errors is highly desirable

and this is an open question that needs to be addressed in future. The applicability

of our method to other finite element applications, for example in convection-diffusion

problems or in nonlinear finite element analysis, is also of interest since user errors are

a common occurrence wherever practitioners use software packages as black-boxes. In

problems where the discretizations yield non-symmetric matrices, the singular vectors of

132



133

the smallest or largest singular values might be of more interest than the eigenvectors.

The subspace iteration method for sparse eigenvalue problems is popular within the

engineering community because of its ease of implementation and robustness in finding

eigenvalues in the desired range. The previous implementation of subspace iteration in

GSA, Algorithm 4.2, was unoptimized and dated. Algorithms 4.3, 4.4 and 4.5, which

have been implemented in the package, improved the numerical efficiency of the solution

by an order of magnitude. They also increased the users’ confidence in the results by

using a robust shift strategy and by using a better convergence test (4.10) that related

the convergence tolerance to the backward error in the solution. The speed improvements

over the previous implementation were especially significant: about 10x for large problems

with more than a million degrees of freedom and where a large number of eigenpairs

were sought. By making these improvements to an existing implementation of subspace

iteration we could take advantage of existing program codes wherever possible, thereby

reducing the development and maintenance time.

It is possible to accelerate convergence further through other shift strategies like

Chebyshev acceleration [54] and by using the inexact subspace iteration family of algo-

rithms. The latter has the advantage of depending only on sparse matrix vector multipli-

cation kernels for the entire iteration and significant speedups are possible, especially on

emerging parallel architectures using different storage formats. However inexact methods

need good preconditioners and real world problems are often ill-conditioned, as our expe-

rience demonstrates. Hence the challenge is to use these methods to develop algorithms

that can be used without significant intervention from the user.

An important consideration while designing numerical algorithms for recent and

emerging computer architectures is that the cost of moving data far exceeds the cost

of performing flops on it. Therefore algorithms and their software implementations need

to be economical with data movement and should seek to increase the computational

intensity, i.e., the ratio of flops to bytes moved. Our new sparse matrix format, Mapped

Blocked Row, combines the advantages of being a blocked format without any of the

disadvantages that affect these formats, namely fill-in. In addition to a memory effi-

cient storage format, a sparse matrix multiple-vector multiplication kernel for computing

Y = AX for a sparse A and a dense X also needs a fast algorithm to load the matrix and



134 CHAPTER 7. SUMMARY

vector entries. Our kernel is an implementation of Algorithms 5.9, 5.10 and 5.11 and it

outperforms the Intel MKL sparse kernel by a factor of up to 2x on Intel processors and

up to 3x on AMD processors. To minimize the conditionals evaluated, we iterate over

only set bits in a bitmapped block using de Bruijn sequences. The kernel library uses

C++ templates to parametrize scalar types, number of right hand vectors and the size

of the blocks.

The natural extension of our sparse matrix kernel is an algorithm that takes advan-

tage of multithreading. Since our blocked format has sparse blocks it lends itself well to

variable blocking, i.e., using blocks of variable dimensions for different parts of a sparse

matrix and this area is worthy of attention in future work. Yet another strand of inves-

tigation would be the applicability of the format to other sparse matrix operations such

as sparse direct solvers.

Our investigation of B-orthogonalization algorithms is also motivated by the theme of

developing cache-efficient algorithms that reduce data movement. The orthogonalization

of basis vectors with respect to a nonstandard inner product crops up in structural

analysis and current approaches use the Gram-Schmidt family of algorithms which rely

on matrix-vector operations (level 2 BLAS). Our Cholesky-based B-orthogonalization

approach involves both numerical and computational contributions. On the numerical

front, we developed Algorithm 6.14 that is stable in practice and converges to a tolerable

loss of orthogonality within two or three iterations, even though the Cholesky-based

orthogonalization method is inherently unstable. We do so by using a combination of

perturbing O(u) diagonal entries and by iterating to reduce the residual of orthogonality

‖STBS − I‖2. On the computational front, our algorithm gains efficiency because it

is rich in level 3 BLAS operations. Our multithreaded implementations for the CPU

and Intel Xeon Phi coprocesor are fully vectorized using compiler intrinsics in the inner

product loop of the kernel (Algorithm 6.19). As a result the stabilized Cholesky B-

orthogonal implementation is 40 and 200 times faster than the Gram-Schmidt based

implementations on the CPU and Xeon Phi respectively.

Future work lies in the area of improving the performance of the inner product kernel

XTBX by using sparse matrix formats that are designed for the Xeon Phi architecture.

However since Intel’s next iteration of this architecture will be significantly different,



135

obtaining optimal performance on this platform might be a moving target.



Bibliography

[1] IEEE Std 754-2008, Standard for Floating-Point Arithmetic. IEEE, New York, NY,

USA, August 2008. 1-58 pp.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’

Guide. Third edition, Society for Industrial and Applied Mathematics, Philadelphia,

PA, 1999. ISBN 0-89871-447-8 (paperback).

[3] Z. Bai and G.W. Stewart. SRRIT – a Fortran subroutine to calculate the dominant

invariant subspace of a nonsymmetric matrix. Technical report, Department of

Computer Science, University of Maryland, College Park, Maryland, USA., 1992.

[4] Z. Bai and G.W. Stewart. Algorithm 776: SRRIT: A Fortran subroutine to calculate

the dominant invariant subspace of a nonsymmetric matrix. ACM Trans. Math.

Softw., 23:494–513, 1997.

[5] Zhaojun Bai, James Demmel, Jack Dongarra, Axel Ruhe, and Henk van der Vorst,

editors. Templates for the Solution of Algebraic Eigenvalue Problems. Society for

Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.

[6] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,

R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution of Linear

Systems: Building Blocks for Iterative Methods, 2nd Edition. Society for Industrial

and Applied Mathematics, Philadelphia, PA, USA, 1994.

[7] Klaus-Jürgen Bathe. Finite Element Procedures. Prentice-Hall International, Engle-

wood Cliffs, NJ, USA, 1996.

136

http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://doi.acm.org/10.1145/279232.279234
http://doi.acm.org/10.1145/279232.279234


BIBLIOGRAPHY 137

[8] Klaus-Jürgen Bathe and Seshadri Ramaswamy. An accelerated subspace method.

Comput. Methods in Appl. Mech. Engrg., 23:313–331, 1980.

[9] Klaus-Jürgen Bathe and Edward L. Wilson. Solution methods for eigenvalue prob-

lems in structural mechanics. International Journal for Numerical Methods in En-

gineering, 6(2):213–226, 1973.

[10] Friedrich L. Bauer. Das Verfahren der Treppeniteration und verwandte Verfahren

zur Lösung algebraischer Eigenwertprobleme. Zeitschrift für angewandte Mathematik

und Physik ZAMP, 8(3):214–235, 1957.

[11] Aydin Buluc, Samuel Williams, Lenny Oliker, and James Demmel. Reduced-

bandwidth multithreaded algorithms for sparse matrix-vector multiplication. In

International Parallel & Distributed Processing Symposium (IPDPS), IEEE Inter-

national, May 2011, pages 721–723.

[12] Sheung Hun Cheng and Nicholas J. Higham. Implementation for LAPACK of a

block algorithm for matrix 1-norm estimation. Numerical Analysis Report No. 393,

Manchester Centre for Computational Mathematics, Manchester, England, August

2001. 19 pp. LAPACK Working Note 152.

[13] Robert D. Cook, David S. Malkus, and Michael E. Plesha. Concepts and Applications

of Finite Element Analysis. Third edition, Wiley, New York, 1989. ISBN 0471847887.

[14] James O. Coplien. Multi-Paradigm Design. PhD thesis, Faculteit Wetenschappen,

Vrije Universiteit Brussel, July 2000. Available from https://sites.google.com/

a/gertrudandcope.com/info/Publications.

[15] Timothy A. Davis and Yifan Hu. The University of Florida Sparse Matrix Collection.

ACM Trans. Math. Softw., 38(1):1:1–1:25, 2011.

[16] I. S. Duff and J. A. Scott. Computing selected eigenvalues of sparse unsymmetric

matrices using subspace iteration. ACM Transactions on Mathematical Software,

19:137–159, 1993.

[17] W.J. Duncan and A.R. Collar. LXXIV. A method for the solution of oscillation

problems by matrices. Philosophical Magazine Series 7, 17(115):865–909, 1934.

http://dx.doi.org/10.1002/nme.1620060207
http://dx.doi.org/10.1002/nme.1620060207
http://dx.doi.org/10.1007/BF01600502
http://dx.doi.org/10.1007/BF01600502
https://sites.google.com/a/gertrudandcope.com/info/Publications
https://sites.google.com/a/gertrudandcope.com/info/Publications
http://doi.acm.org/10.1145/2049662.2049663
http://www.tandfonline.com/doi/abs/10.1080/14786443409462445
http://www.tandfonline.com/doi/abs/10.1080/14786443409462445


138 BIBLIOGRAPHY

[18] Charbel Farhat and Michel Géradin. On the general solution by a direct method

of a large-scale singular system of linear equations: application to the analysis of

floating structures. International Journal for Numerical Methods in Engineering, 41

(4):675–696, 1998.

[19] C.A. Felippa. Introduction to Finite Element Methods. Available from http://

www.colorado.edu/engineering/cas/courses.d/IFEM.d/. Course notes for the

graduate course ASEN 5007: Finite Element Methods.

[20] C.A. Felippa. A historical outline of matrix structural analysis: a play in three acts.

Computers and Structures, 79(14):1313–1324, 2001.

[21] Agner Fog. Optimizing software in C++. http://www.agner.org/optimize/

optimizing_cpp.pdf, Feb 2012. Retrieved on August 07, 2012.

[22] I. Fried. Bounds on the extremal eigenvalues of the finite element stiffness and mass

matrices and their spectral condition number. Journal of Sound and Vibration, 22

(4):407–418, 1972.

[23] Luc Giraud, Julien Langou, and Miroslav Rozloz̆ńık. On the round-off error anal-

ysis of the Gram-Schmidt algorithm with reorthogonalization. Technical Report

TR/PA/02/33, CERFACS, Toulouse, France, 2002.

[24] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Third edition,

Johns Hopkins University Press, Baltimore, MD, USA, 1996. xxvii+694 pp. ISBN

0-8018-5413-X (hardback), 0-8018-5414-8 (paperback).

[25] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Fourth edition,

Johns Hopkins University Press, Baltimore, MD, USA, 2013. xxi+756 pp. ISBN

978-1-4214-0794-4.

[26] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.org,

2010.

[27] Gaël Guennebaud, Benôıt Jacob, et al. Benchmarking results for Eigen vs. other

libraries. http://eigen.tuxfamily.org/index.php?title=Benchmark, July 2011.

http://dx.doi.org/10.1002/(SICI)1097-0207(19980228)41:4<675::AID-NME305>3.0.CO;2-8
http://dx.doi.org/10.1002/(SICI)1097-0207(19980228)41:4<675::AID-NME305>3.0.CO;2-8
http://dx.doi.org/10.1002/(SICI)1097-0207(19980228)41:4<675::AID-NME305>3.0.CO;2-8
http://www.colorado.edu/engineering/cas/courses.d/IFEM.d/
http://www.colorado.edu/engineering/cas/courses.d/IFEM.d/
http://www.sciencedirect.com/science/article/pii/S0045794901000256
http://www.agner.org/optimize/optimizing_cpp.pdf
http://www.agner.org/optimize/optimizing_cpp.pdf
http://www.agner.org/optimize/optimizing_cpp.pdf
http://www.sciencedirect.com/science/article/pii/0022460X7290452X
http://www.sciencedirect.com/science/article/pii/0022460X7290452X
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org/index.php?title=Benchmark


BIBLIOGRAPHY 139

[28] Stefan Güttel and Jennifer Pestana. Some observations on weighted GMRES. Nu-

merical Algorithms, pages 1–20, 2014.

[29] Sven Hammarling, Nicholas J. Higham, and Craig Lucas. LAPACK-style codes for

pivoted Cholesky and QR updating. In Applied Parallel Computing. State of the Art

in Scientific Computing. 8th International Workshop, PARA 2006, Bo K̊agström,

Erik Elmroth, Jack Dongarra, and Jerzy Waśniewski, editors, number 4699 in Lecture

Notes in Computer Science, Springer-Verlag, Berlin, 2007, pages 137–146.

[30] V. Hernández, J.E. Román, A. Tomás, and V. Vidal. Lanczos Methods in

SLEPc. Technical Report SLEPc Technical Report STR-5, Universidad Politec-

nica De Valencia, October 2006. Available at http://www.grycap.upv.es/slepc/

documentation/reports/str5.pdf.

[31] Desmond J. Higham and Nicholas J. Higham. Structured backward error and condi-

tion of generalized eigenvalue problems. SIAM J. Matrix Anal. Appl., 20(2):493–512,

1998.

[32] Nicholas J. Higham. FORTRAN codes for estimating the one-norm of a real or

complex matrix, with applications to condition estimation (Algorithm 674). ACM

Trans. Math. Software, 14(4):381–396, 1988.

[33] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Second edi-

tion, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2002.

xxx+680 pp. ISBN 0-89871-521-0.

[34] Nicholas J. Higham and Françoise Tisseur. A block algorithm for matrix 1-norm

estimation, with an application to 1-norm pseudospectra. SIAM J. Matrix Anal.

Appl., 21(4):1185–1201, 2000.

[35] Klaus Iglberger, Georg Hager, Jan Treibig, and Ulrich Rüde. Expression Templates

Revisited: A Performance Analysis of Current Methodologies. SIAM J. Sci. Com-

put., 34(2):42–69, 2012.

[36] Eun-Jin Im and Katherine A. Yelick. Optimizing sparse matrix computations for

register reuse in SPARSITY. In Proceedings of the International Conference on

http://dx.doi.org/10.1007/s11075-013-9820-x
http://www.grycap.upv.es/slepc/documentation/reports/str5.pdf
http://www.grycap.upv.es/slepc/documentation/reports/str5.pdf
http://dx.doi.org/doi/10.1137/S0895479896313188
http://dx.doi.org/doi/10.1137/S0895479896313188
http://dx.doi.org/10.1137/110830125
http://dx.doi.org/10.1137/110830125


140 BIBLIOGRAPHY

Computational Science, volume 2073 of LNCS, San Francisco, CA, May 2001, pages

127–136. Springer.

[37] Intel Corporation. Intel Math Kernel Library (Intel MKL). http://software.

intel.com/en-us/articles/intel-mkl/, 2012. Version 10.3 Update 7.

[38] Intel Corporation. Intel re-architects the fundamental building block for high-

performance computing. http://bit.ly/intel-knightslanding-announce, June

2014.

[39] Hyung-Jo Jung, Man-Cheol Kim, and In-Won Lee. An improved subspace iteration

method with shifting. Computers & Structures, 70(6):625–633, 1999.

[40] Ramaseshan Kannan and Yuji Nakatsukasa. Cache-efficient B-orthogonalization us-

ing Cholesky factorization and its parallel implementation for manycore architec-

tures. In preparation, Aug. 2014.

[41] Matthias Kretz and Volker Lindenstruth. Vc: A C++ library for explicit vectoriza-

tion. Software: Practice and Experience, 42(11):1409–1430, 2012.

[42] Benjamin C. Lee, Richard W. Vuduc, James W. Demmel, Katherine A. Yelick,

Michael deLorimier, and Lijue Zhong. Performance optimizations and bounds for

sparse symmetric matrix-multiple vector multiply. Technical Report UCB/CSD-03-

1297, University of California, Berkeley, CA, USA, November 2003.

[43] Charles E. Leiserson, Harald Prokop, and Keith H. Randall. Using de Bruijn Se-

quences to Index a 1 in a Computer World. Technical report, MIT, July 1998. Un-

published manuscript, available from http://supertech.csail.mit.edu/papers/

debruijn.pdf.

[44] Xing Liu, Mikhail Smelyanskiy, Edmond Chow, and Pradeep Dubey. Efficient sparse

matrix-vector multiplication on x86-based many-core processors. In Proceedings of

the 27th International ACM Conference on International Conference on Supercom-

puting, ICS ’13, New York, NY, USA, 2013, pages 273–282. ACM.

http://software.intel.com/en-us/articles/intel-mkl/
http://software.intel.com/en-us/articles/intel-mkl/
http://newsroom.intel.com/community/intel_newsroom/blog/2014/06/23/intel-re-architects-the-fundamental-building-block-for-high-performance-computing
http://newsroom.intel.com/community/intel_newsroom/blog/2014/06/23/intel-re-architects-the-fundamental-building-block-for-high-performance-computing
http://bit.ly/intel-knightslanding-announce
http://www.sciencedirect.com/science/article/pii/S0045794998002016
http://www.sciencedirect.com/science/article/pii/S0045794998002016
http://dx.doi.org/10.1002/spe.1149
http://dx.doi.org/10.1002/spe.1149
http://supertech.csail.mit.edu/papers/debruijn.pdf
http://supertech.csail.mit.edu/papers/debruijn.pdf
http://supertech.csail.mit.edu/papers/debruijn.pdf
http://supertech.csail.mit.edu/papers/debruijn.pdf
http://doi.acm.org/10.1145/2464996.2465013
http://doi.acm.org/10.1145/2464996.2465013


BIBLIOGRAPHY 141

[45] Bradley R. Lowery and Julien Langou. Stability analysis of QR factorization in

an Oblique Inner Product. arXiv preprint arXiv:1401.5171, 2014. Available from

http://arxiv.org/abs/1401.5171.

[46] Craig Lucas. Algorithms for Cholesky and QR factorizations, and the semidefinite

generalized eigenvalue problem. PhD thesis, School of Mathematics, University of

Manchester, Manchester, England, 2004.

[47] Sally A. McKee. Reflections on the memory wall. In Proceedings of the 1st conference

on Computing frontiers, CF ’04, New York, NY, USA, 2004, pages 162–167. ACM.

[48] Microsoft Corporation. Visual C++ Language reference, available from

http: // msdn. microsoft. com/ en-us/ library/ vstudio/ 3bstk3k5( v= vs.

100) .aspx , 2011. Retrieved on January 26, 2012.

[49] Oasys Limited. Oasys GSA, available from http://www.oasys-software.com/gsa.

Retrieved on January 20, 2012.

[50] M. Papadrakakis and Y. Fragakis. An integrated geometric–algebraic method for

solving semi-definite problems in structural mechanics. Comput. Methods in Appl.

Mech. Engrg., 190(49-50):6513 – 6532, 2001.

[51] Ali Pinar and Michael T. Heath. Improving performance of sparse matrix-vector

multiplication. In Proceedings of the 1999 ACM/IEEE conference on Supercomputing

(CDROM), Supercomputing ’99, New York, NY, USA, 1999. ACM.

[52] Miroslav Rozloz̆ńık, Miroslav Tu̇ma, Alicja Smoktunowicz, and Jĭŕı Kopal. Numer-

ical stability of orthogonalization methods with a non-standard inner product. BIT

Numerical Mathematics, 52(4):1035–1058, 2012.

[53] H. Rutishauser. Simultaneous iteration method for symmetric matrices. Numerische

Mathematik, 16:205–223, 1970.

[54] Youcef Saad. Chebyshev acceleration techniques for solving nonsymmetric eigenvalue

problems. Mathematics of Computation, 42(166):pp. 567–588, 1984.

http://arxiv.org/abs/1401.5171
http://doi.acm.org/10.1145/977091.977115
http://msdn.microsoft.com/en-us/library/3bstk3k5%28VS.100%29.aspx
http://msdn.microsoft.com/en-us/library/3bstk3k5%28VS.100%29.aspx
http://msdn.microsoft.com/en-us/library/vstudio/3bstk3k5(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/3bstk3k5%28VS.100%29.aspx
http://msdn.microsoft.com/en-us/library/vstudio/3bstk3k5(v=vs.100).aspx
http://www.oasys-software.com/gsa
http://www.oasys-software.com/gsa
http://www.sciencedirect.com/science/article/pii/S0045782501002341
http://www.sciencedirect.com/science/article/pii/S0045782501002341
http://doi.acm.org/10.1145/331532.331562
http://doi.acm.org/10.1145/331532.331562
http://dx.doi.org/10.1007/s10543-012-0398-9
http://dx.doi.org/10.1007/s10543-012-0398-9
http://dx.doi.org/10.1007/BF02219773
http://www.jstor.org/stable/2007602
http://www.jstor.org/stable/2007602


142 BIBLIOGRAPHY

[55] Erik Saule, Kamer Kaya, and Ümit V. Çatalyürek. Performance Evaluation of Sparse

Matrix Multiplication Kernels on Intel Xeon Phi. In Proc of the 10th Int’l Conf.

on Parallel Processing and Applied Mathematics (PPAM), September 2013, page 10.

(to appear).

[56] O. Schenk and K. Gartner. On fast factorization pivoting methods for sparse sym-

metric indefinite systems. Electron. Trans. Numer. Anal., 23:158–179, 2006.

[57] Olaf Schenk and Klaus Gärtner. Solving unsymmetric sparse systems of linear equa-

tions with PARDISO. Future Gener. Comput. Syst., 20:475–487, 2004.

[58] Gil Shklarski and Sivan Toledo. Computing the null space of finite element problems.

Comput. Methods in Appl. Mech. Engrg., 198(37-40):3084–3095, 2009.

[59] Oasys Software. GSA Version 8.6 reference manual. Arup, 13 Fitzroy Street Lon-

don W1T 4BQ, 2012. Available from http://www.oasys-software.com/media/

Manuals/Latest_Manuals/gsa8.6_manual.pdf.

[60] G. W. Stewart. Simultaneous iteration for computing invariant subspaces of non-

Hermitian matrices. Numer. Math., 25:123–136, 1976.

[61] G. W. Stewart. Matrix Algorithms. Volume I: Basic Decompositions. Society for

Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001.

[62] G. W. Stewart. Matrix Algorithms. Volume II: Eigensystems. Society for Industrial

and Applied Mathematics, Philadelphia, PA, USA, 2001. xix+469 pp. ISBN 0-

89871-503-2.

[63] Numerical Analysis Group STFC Rutherford Appleton Laboratory. Hsl, a collection

of fortran codes for large-scale scientific computation. http://www.hsl.rl.ac.uk/

index.html.

[64] Bjarne Stroustrup. Why C++ is Not Just an Object-oriented Programming Lan-

guage. In Addendum to the Proceedings of the 10th Annual Conference on Object-

oriented Programming Systems, Languages, and Applications (Addendum), OOP-

SLA ’95, New York, NY, USA, 1995, pages 1–13. ACM.

http://dx.doi.org/10.1016/j.future.2003.07.011
http://dx.doi.org/10.1016/j.future.2003.07.011
http://www.sciencedirect.com/science/article/pii/S0045782509001996
http://www.oasys-software.com/media/Manuals/Latest_Manuals/gsa8.6_manual.pdf
http://www.oasys-software.com/media/Manuals/Latest_Manuals/gsa8.6_manual.pdf
http://www.oasys-software.com/media/Manuals/Latest_Manuals/gsa8.6_manual.pdf
http://www.hsl.rl.ac.uk/index.html
http://www.hsl.rl.ac.uk/index.html
http://www.hsl.rl.ac.uk/index.html
http://www.hsl.rl.ac.uk/index.html
http://doi.acm.org/10.1145/260094.260207
http://doi.acm.org/10.1145/260094.260207


BIBLIOGRAPHY 143

[65] Bjarne Stroustrup. The C++ Programming Language. Fourth edition, Addison-

Wesley, 2013. xiv+1346 pp. ISBN 978-0-321-56384-2.

[66] S. Toledo. Improving the memory-system performance of sparse-matrix vector mul-

tiplication. IBM Journal of Research and Development, 41(6):711–726, 1997.

[67] Richard Vuduc, James W. Demmel, Katherine A. Yelick, Shoaib Kamil, Rajesh

Nishtala, and Benjamin Lee. Performance optimizations and bounds for sparse

matrix-vector multiply. In Proceedings of Supercomputing, Baltimore, MD, USA,

November 2002.

[68] A.J. Wathen. An analysis of some element-by-element techniques. Comput. Methods

in Appl. Mech. Engrg., 74(3):271–287, 1989.

[69] David S. Watkins. The Matrix Eigenvalue Problem. Society for Industrial and

Applied Mathematics, Philadelphia, PA, USA, 2007.

[70] David S. Watkins. Fundamentals of Matrix Computations. Third edition, Wiley,

New York, 2010.

[71] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: implications of the

obvious. SIGARCH Comput. Archit. News, 23(1):20–24, 1995.

[72] Fei Xue and Howard C. Elman. Fast inexact subspace iteration for generalized eigen-

value problems with spectral transformation. Linear Algebra and its Applications,

435(3):601–622, 2011.

[73] Qiang Ye and Ping Zhang. Inexact inverse subspace iteration for generalized eigen-

value problems. Linear Algebra and its Applications, 434(7):1697–1715, 2011.

[74] Qian-Cheng Zhao, Pu Chen, Wen-Bo Peng, Yu-Cai Gong, and Ming-Wu Yuan.

Accelerated subspace iteration with aggressive shift. Computers & Structures, 85

(19-20):1562–1578, 2007.

http://www.sciencedirect.com/science/article/pii/0045782589900522
http://doi.acm.org/10.1145/216585.216588
http://doi.acm.org/10.1145/216585.216588
http://www.sciencedirect.com/science/article/pii/S0024379510003174
http://www.sciencedirect.com/science/article/pii/S0024379510003174
http://www.sciencedirect.com/science/article/pii/S0024379510004015
http://www.sciencedirect.com/science/article/pii/S0024379510004015
http://www.sciencedirect.com/science/article/pii/S0045794907000405

