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Matrix Function 107

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
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The University of Manchester

Samuel David Relton
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tion Numbers
July 23, 2014

We discuss several new theoretical results and algorithms relating to the computa-
tion of matrix functions, their Fréchet derivatives, and their condition numbers. First,
we provide novel algorithms for the matrix cosine and sine based upon backward error
analysis in exact arithmetic. This is in contrast to current alternatives based upon
forward error bounds. Our new algorithms exploit triangularity in the input matrix
and use Padé approximants to the exponential in conjunction with approximants to
the sine.

Second, a new algorithm for computing the matrix logarithm using only real arith-
metic is given, based upon the algorithm of Al-Mohy and Higham [SIAM J. Sci.
Comput. 34(4):C153–C169, 2012]. We also extend these algorithms to compute both
the Fréchet derivatives and condition number of the matrix logarithm, making ef-
ficient reuse of intermediate computation. A backward error analysis of the method
used to compute the Fréchet derivative is performed and a single backward error result
applicable to both the matrix logarithm and its Fréchet derivative is obtained.

Third, we investigate higher order Fréchet derivatives of matrix functions and the
level-2 condition number. Whilst higher order Fréchet derivatives have been researched
in the context of Banach spaces there appears to be no previous research specifically
focused on matrix functions. We provide proofs for the existence and continuity of
such derivatives under certain conditions on the function and input matrix in question;
the constructive nature of the proof allows us to derive an algorithm for computing
higher order Fréchet derivatives. We also define higher order Kronecker forms and give
an algorithm for their computation.

The level-2 condition number (the condition number of the condition number)
for matrix functions is also defined and an upper bound is obtained in terms of the
second Kronecker form. This bound is applicable to arbitrary functions with the
necessary differentiability properties. Furthermore we analyze the properties of the
level-2 condition number more closely for general nonsingular matrices with the matrix
inverse, for normal matrices with the matrix exponential, and for Hermitian matrices
on functions with a strictly monotonic derivative. This latter class of functions includes
the logarithm and square root, for example. Numerical experiments show that the
relationships we derive may hold approximately in more general circumstances.

Finally, we define the condition number of computing the Fréchet derivative of a
matrix function. Using our new results on higher order Fréchet derivatives we derive
an algorithm to estimate the condition number for a wide class of functions including
the exponential, logarithm, and real matrix powers. The algorithm produces estimates
to within a factor 6n for an n× n input matrix and successfully exploits structure in
the second Kronecker form. Our numerical experiments show this algorithm to be
more reliable than a heuristic estimate used previously.
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Chapter 1

Introduction

Matrices, in various guises, have been used to solve linear equations for thousands

of years but it was only in 1858 that Arthur Cayley realised matrices are interesting

objects of study in their own right. In “A Memoir on the Theory of Matrices” [22]

Cayley laid the foundations for both matrix algebra and matrix functions. In partic-

ular this included an investigation into the square root of 2 × 2 and 3 × 3 matrices.

Other major advancements in the 19th century include Laguerre defining the matrix

exponential via its power series in 1867 and Sylvester defining matrix functions f(A)

for general f using interpolating polynomials—see equation (1.1.7)—in 1883 [101].

Matrices were of mainly theoretical interest until 1938 when the book “Elementary

Matrices and Some Applications to Dynamics and Differential Equations” by Frazer,

Duncan, and Collar [41] showed how matrices could be utilized in applied mathematics.

This was “the first book to treat matrices as a branch of applied mathematics” [26]

and (among other things) highlighted the importance of the matrix exponential in

solving differential equations.

After the arrival of the digital computer researchers were primarily focused on

other aspects of matrices until the 1970s when interest in matrix functions began to

grow. One particularly noteworthy paper from this period is “Nineteen Dubious Ways

to Compute the Exponential of a Matrix” by Moler and Van Loan [82], [83], which

critiques a variety of ways to compute the matrix exponential. Since then the amount

of literature focused on matrix functions and their use in applications has increased

rapidly [57, p. 379]. A detailed history of the early contributions to the field can be

found in [57, Sec. 1.10].
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Today matrix functions can be found in many areas of applied mathematics with a

plethora of applications spanning the natural sciences, engineering, optimization, and

social sciences. For example, the matrix exponential is used to design real-time reduced

order models [10], to analyze the importance of nodes in networks [37], [38], [39],

to track the flow of contaminants within buildings [87], and to determine nuclear

burnup [91]. Meanwhile the matrix logarithm is used in image identification [12], [68],

model reduction [90], and computer graphics [93], [94]. Additionally matrix powers

(At for t ∈ R) have been used in areas including the numerical solution of fractional

partial differential equations [16], [20], for example. Other functions such as the matrix

square root, matrix cosine and sine, and the matrix sign function are also used.

Increasingly the Fréchet derivative (defined in section 1.2) is also required, with re-

cent examples including computation of correlated choice probabilities [1], registration

of MRI images [13], computing linearized backward errors for matrix functions [29],

Markov models applied to cancer data [43], matrix geometric mean computation [70],

model reduction [89], [90], and tensor-based morphometry [108]. Higher order Fréchet

derivatives have been used to solve nonlinear equations on Banach spaces by general-

izing the Halley method [9, Sec. 3].

The growing interest in matrix functions is reflected by the increasing amount

of numerical software containing matrix function algorithms. The Matrix Function

Toolbox [51], the NAG library [76], SciPy [96], and ExpoKit [100], are examples of

some popular libraries containing matrix function routines. The recent catalogue of

numerical software for matrix functions by Higham and Deadman [59] surveys the

algorithms used in many commercial and freely available libraries, including those

mentioned above.

This thesis explores both theoretical and computational aspects of matrix func-

tions, their derivatives, and condition numbers. The remaining sections within this

chapter give a succinct introduction to matrix functions and related results to be built

upon in the subsequent chapters. The rest of the thesis is organized as follows.

Chapter 2 identifies novel algorithms for computing the matrix cosine and sine

functions which improve upon the current alternatives in terms of both accuracy and

stability. We show that our new algorithms are backward stable in exact arithmetic

15



(defined in section 1.4) which leads to increased reliability when compared with alter-

native algorithms using forward error bounds, as shown by our extensive numerical

experiments.

When computing any matrix function a natural question arises: if the input matrix

A is perturbed by some small amount ∆A how close are f(A) and f(A+∆A)? Such a

situation might arise if the elements of the matrix are subject to some uncertainty or

obtained from another calculation in which there might be experimental or rounding

errors, for example. This notion of sensitivity is encapsulated by the condition number

of a matrix function, which we describe in section 1.3, and is the theme of the next

three chapters.

Chapter 3 contains algorithms for computing the matrix logarithm, its derivatives,

and condition number in an accurate and efficient manner. We perform backward error

analysis on a new algorithm for computing the derivatives of the matrix logarithm and

use this to estimate the 1-norm condition number of the logarithm at a low cost, by

recycling large amounts of computation. Our new algorithms for the derivatives and

condition number are shown to be significantly more accurate and cost-effective than

alternatives in numerical experiments. We also show how optimizations made for

real matrices can significantly improve performance when compared to a more general

algorithm applicable to both real and complex matrices.

Chapter 4 provides a more theoretical discussion on higher order derivatives of ma-

trix functions and the level-2 condition number (the condition number of the condition

number). We present theorems regarding the existence of arbitrarily many derivatives

of a given matrix function and an algorithm for their computation. We also generalize

the Kronecker form (see section 1.2) to higher order derivatives. Our investigations into

the level-2 condition number include a bound for general matrix functions, a bound

for the exponential of normal matrices, bounds for a class of functions including the

matrix logarithm and square root of Hermitian matrices, and numerical experiments

which could lead to an interesting avenue of future research.

Chapter 5 uses the concepts established in chapter 4 to design an algorithm that es-

timates the condition number of computing the derivatives of a matrix function. There

are a number of applications where these derivatives are required and, to our knowl-

edge, nobody has previously analyzed how accurately one might expect to compute

16



them. Our numerical experiments show that our new algorithm is far more reliable

than the heuristic approximations that have been used previously.

Finally we summarise our findings in chapter 6.

We now introduce the basic concepts forming the foundation of our research.

1.1 Matrix functions

There are many notions of matrix functions to be found in the literature. In the most

general sense a matrix function is any function with a matrix input such as the norm,

the eigenvalues, and the rank of a matrix. However, throughout this thesis we are

primarily interested in functions f : Cn×n 7→ Cn×n where both the inputs and outputs

are square matrices and the function f is a generalization of some underlying scalar

function. For instance, the underlying scalar function of the square root is f(x) = x1/2

and we say X is a square root of A when X2 = A.

For polynomials and rational functions, since addition, multiplication, and division

translate readily to matrices, we can evaluate p(x) =
∑

k αkx
k at a matrix argument

as p(A) =
∑

k αkA
k and p(x)/q(x) as q(A)−1p(A), respectively. If the function has a

power series expansion f(x) =
∑

k αkx
k then we can define f(A) :=

∑
k αkA

k if all

eigenvalues of A lie within the radius of convergence. This allows us to define the

matrix exponential and logarithm as

eA = I + A+
A2

2!
+
A3

3!
+ · · · , (1.1.1)

log(I + A) = A− A2

2
+
A3

3
− A4

4
+ · · · , ρ(A) ≤ 1, (1.1.2)

where ρ(A) denotes the spectral radius. Similar expansions can be used for the matrix

cosine and sine, for example. The criteria for convergence of an arbitrary Taylor series

expanded about a point α ∈ C can be found in [57, Thm. 4.7].

There are a number of, essentially equivalent, ways in which we can define more

general matrix functions. We will focus on the three most popular definitions which

use the Jordan canonical form, Hermite interpolating polynomials, and the Cauchy

integral formula.

The Jordan canonical form of a matrix A ∈ Cn×n is

Z−1AZ = J := diag(J1, . . . , Jp),
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where each Jordan block Jk ∈ Cmk×mk is of the form

Jk =


λk 1

λk
. . .

. . . 1

λk

 , (1.1.3)

Z is nonsingular, and
∑

kmk = n. The values λk are the eigenvalues of A.

We now define f(A) using this decomposition as

f(A) := Zf(J)Z−1 = Z diag(f(Jk))Z
−1, (1.1.4)

where we define

f(Jk) :=


f(λk) f ′(λk) · · ·

f (mk−1)(λk)

(mk − 1)!

f(λk)
. . .

...
. . . f ′(λk)

f(λk)


, (1.1.5)

and f (j)(λk) denotes the jth derivative of f at λk.

Note that we have made the implicit assumption that f and all necessary derivatives

are defined at the eigenvalues of A. More precisely f is said to be defined on the

spectrum of A if all the required values

f (j)(λk), j = 0 : mk − 1, k = 1 : p, (1.1.6)

exist. When this condition fails f(A) is undefined.

Some further comments on this definition of a matrix function are in order. Firstly,

it can be shown that the definition is independent of the Jordan canonical form used,

which is not unique. Secondly, for multivalued functions such as the square root

and logarithm, even though we are required to choose the same branch of the function

within a single Jordan block, we may use different branches on separate Jordan blocks,

even if they involve the same eigenvalue. Using different branches of a function on

the same eigenvalue results in a nonprimary matrix function. For example, [ −1 0
0 1 ] is

a nonprimary square root of the 2× 2 identity matrix. We will restrict our attention

to primary matrix functions from this point onward; additional detail on nonprimary

matrix functions can be found in [57, Sec. 1.4].
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Our second definition of a matrix function uses interpolating polynomials. Let f

be defined on the spectrum of A and let the polynomial p(x) satisfy

p(j)(λk) = f (j)(λk), j = 0 : mk − 1, k = 1 : p, (1.1.7)

then f(A) is defined as p(A). If two polynomials p(x) and q(x) both satisfy the

interpolation conditions (1.1.7) then p(A) = q(A) [57, Thm. 1.3]. Furthermore there is

a unique polynomial of minimal degree satisfying these conditions called the Hermite

interpolating polynomial. Note that the coefficients of the polynomial p(A) depend

upon A themselves so that, in general, a new polynomial must be constructed for each

input matrix.

Finally we can define matrix functions using the Cauchy integral formula. When f

is analytic on and inside some closed contour Γ enclosing the eigenvalues of A we say

f(A) :=
1

2πi

∫
Γ

f(z)(zI − A)−1dz. (1.1.8)

This definition is particular popular in functional calculus, where the matrix A can be

replaced by a more general operator acting on a Banach space, for example.

All three definitions, modulo the requirement for an analytic function f in (1.1.8),

are equivalent [57, Thm. 1.12].

We also mention some basic properties of matrix functions which will be used

throughout this thesis, the proofs of which can be found in [57, Thm. 1.13]. Each

proof follows easily from one of three definitions above.

Theorem 1.1.1. Let A ∈ Cn×n and let f be defined on the spectrum of A. Then

1. f(A) commutes with A;

2. f(XAX−1) = Xf(A)X−1 for any invertible X ∈ Cn×n;

3. the eigenvalues of f(A) are f(λi) where λi are the eigenvalues of A;

4. if A = (Aij) is block triangular then F = f(A) is also block triangular with the

same block structure and moreover Fii = f(Aii).
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1.2 Fréchet derivatives

Much of this thesis will be concerned with the sensitivity of matrix functions to per-

turbations in the input matrix A. To analyze this we make frequent use of the Fréchet

derivative. The Fréchet derivative of a matrix function at A is a linear function

Lf (A, ·) : Cn×n 7→ Cn×n which, for any direction E, satisfies

f(A+ E)− f(A)− Lf (A,E) = o(‖E‖), (1.2.1)

where o(‖E‖) means the left-hand side tends to 0 as ‖E‖ → 0. If the Fréchet derivative

exists at A then it is unique. Some authors refer to the Fréchet derivative as Df(A)(·),

however our notation is used throughout much of the matrix function literature.

Closely related to the Fréchet derivative is the Gâteaux derivative (also known as

the directional derivative) given by

Gf (A,E) := lim
t→0

f(A+ tE)− f(A)

t
. (1.2.2)

The Fréchet derivative is stronger than the Gâteaux derivative: if the Fréchet deriva-

tive exists at A then it implies the existence of the Gâteaux derivative and is equal to

it. On the other hand, if the Fréchet derivative does not exist, then the existence of

the Gâteaux derivative depends upon the direction E. The following result gives the

criterion under which the existence of the Gâteaux derivative implies the existence of

the Fréchet derivative.

Theorem 1.2.1. Given a matrix function f which is Gâteaux differentiable at A, if

the Gâteaux derivative Gf (A,E) is both linear in all directions E and continuous in

A, then the Fréchet derivative exists and Lf (A,E) = Gf (A,E).

Proof. See, for example, [17, Sec. X.4] and [86, Sec. 8, Rem. 3].

The Fréchet derivative also satisfies the sum, product, and chain rules; the proofs

of which can be found in [57, Chap. 3], for example.

Another useful property of Fréchet derivatives that we will use repeatedly is the

existence of the Kronecker form. Since the Fréchet derivative is a linear operator it

can be viewed as a matrix Kf (A) ∈ Cn2×n2
satisfying

Kf (A) vec(E) = vec(Lf (A,E)), (1.2.3)

where vec is the operator stacking the columns of a matrix vertically from left to right.

We refer to Kf (A) as the Kronecker form of f at A.
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Figure 1.3.1: Shows the sensitivity of f at two points A and B, the centres of the two

circles SA and SB, respectively.

1.3 Condition numbers

The condition number of a matrix function measures the sensitivity of f at a given

matrix A, depending on a norm ‖ · ‖. A familiar example is the relative condition

number of the matrix inverse κ2(A) = ‖A‖2‖A−1‖2 which uses f(X) = X−1 and the

2-norm. The condition number is a real scalar which measures the maximal sensitivity

of the function over all possible perturbations. Following the style of Rice [92], the

absolute condition number of a matrix function is defined as

condabs(f, A) := lim
ε→0

sup
‖E‖≤ε

‖f(A+ E)− f(A)‖
ε

, (1.3.1)

and the relative condition number is defined as

condrel(f, A) := lim
ε→0

sup
‖E‖≤ε‖A‖

‖f(A+ E)− f(A)‖
ε‖f(A)‖

. (1.3.2)

Problems with a small condition number are called well conditioned, whereas those

with a large condition number are called ill conditioned. Whether a particular condi-

tion number is deemed small or large is highly problem dependent.

To illustrate this, Figure 1.3.1 shows the sensitivity of a matrix function f at

two matrices A and B. For some small δ > 0 let SA = {A+∆ : ‖∆‖ ≤ δ} and

SB = {B +∆ : ‖∆‖ ≤ δ} denote a set of small perturbations to A and B with f(SA)

and f(SB) representing the image of the two sets under f . Since f(SA) is small we

conclude that small perturbations to A result in small perturbations to f(A) and

hence f is well conditioned at A. However, small perturbations to B can result in

large changes to f(B) and so f is ill conditioned at B.
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Using the Fréchet derivative (1.2.1) it is easy to see that the condition numbers

can be expressed as

condabs(f, A) = max
‖E‖=1

‖Lf (A,E)‖, (1.3.3)

condrel(f, A) = max
‖E‖=1

‖Lf (A,E)‖ ‖A‖
‖f(A)‖

. (1.3.4)

Furthermore we note that the relative condition number is simply a scaled version

of the absolute condition number, a fact which often helps in the analysis of these

quantities.

By choosing specific norms in (1.3.3) and (1.3.4) we can relate the condition number

to the Kronecker form. For instance, the Frobenius norm condition number is equal

to the 2-norm of the Kronecker form since

condabs(f, A) = max
‖E‖F=1

‖Lf (A,E)‖F

= max
‖ vec(E)‖2=1

‖Kf (A) vec(E)‖2

= ‖Kf (A)‖2, (1.3.5)

where we have used the fact that ‖X‖F = ‖ vec(X)‖2 for any matrix X.

Forming Kf (A) explicitly and taking its norm costs O(n5) flops [57, Alg. 3.17],

which is prohibitively expensive. Instead we often apply norm estimation techniques,

such as the power method.

Usually we will be interested in the 1-norm, rather than the Frobenius norm, to

take advantage of the computational efficiency offered by the block 1-norm estimator

of Higham and Tisseur [66], which is available in MATLAB as function normest1.

This algorithm estimates the 1-norm of an n× n matrix B by evaluating products of

B and B∗ with n× t matrices, where t is a parameter whose significance is explained

below. In the 1-norm we have the following lemma.

Lemma 1.3.1. For A ∈ Cn×n and any matrix function f , using the 1-norm,

condabs(f, A)

n
≤ ‖Kf (A)‖1 ≤ n condabs(f, A).

Proof. See [57, Lem. 3.18].

Using the block 1-norm estimation algorithm with B = Kf (A), we now employ the

same idea as [3] and approximate condabs(f, A) ≈ ‖Kf (A)‖1.
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Algorithm 1.3.2. This algorithm estimates the 1-norm of Kf (A) using Fréchet deriva-

tive evaluations of the matrix function f at A [57, Alg. 3.22].

1 Apply [66, Alg. 2.4] with parameter t = 2 to the Kronecker matrix

B = Kf (A), noting that By = vec(Lf (A,E)) and B∗y = vec(L?f (A,E)),

where vec(E) = y.

Here, ? denotes the adjoint. For the class of functions f satisfying f(z) = f(z)

we have L?f (A,E) = Lf (A
∗, E) = Lf (A,E

∗)∗ and so it is straightforward to compute

L?f (A,E). This large class of functions includes the exponential, logarithm, real powers

xt (t ∈ R), the sign function, and trigonometric functions, for example.

Known properties of Algorithm 1.3.2 are that it requires 4t Fréchet derivative

evaluations on average and is rarely more than a factor of 3 away from ‖Kf (A)‖1
[57, p. 67]. Higher values of t give greater accuracy at the cost of more derivative

evaluations. This means that we can estimate the condition number in the 1-norm to

within a factor of 3n in O(n3) flops.

1.4 Forwards and backward errors

Throughout this thesis we will use the forward error and backward error to both design

and test algorithms.

Given an algorithm that approximates f(X) by Y , the quantities ‖f(X)−Y ‖ and

‖f(X) − Y ‖/‖f(X)‖ are called the absolute and relative forward error, respectively.

If there exists a matrix ∆X such that Y = f(X + ∆X) then ‖∆X‖ and ‖∆X‖/‖X‖

are called the absolute and relative backward error, respectively. Furthermore when

the forward or backward error of a numerical algorithm is guaranteed to be sufficiently

small (typically less than a small multiple of the unit roundoff1) we say the algorithm

is forward or backward stable, respectively.

The relative forward error, backward error, and condition number are related by

the approximate relationship

forward error . condition number× backward error. (1.4.1)

1In IEEE floating point arithmetic the unit roundoff is u = 2−24 for single precision and u = 2−53

for double precision.
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Typically we will aim to minimize the backward error in our algorithm design in order

to attain good forward errors, assuming the condition number of the problem is not too

large. For a full treatment of forward errors, backward errors, and condition numbers

we refer the reader to the excellent book by Higham [55].
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Chapter 2

New Algorithms for Computing the

Matrix Cosine and Sine Separately

or Simultaneously

2.1 Introduction

In recent years research into the computation of matrix functions has primarily focused

on the matrix exponential, the logarithm, and matrix powers. Also of interest are the

matrix sine and cosine, which can be defined for A ∈ Cn×n by their Maclaurin series

sinA = A− A3

3!
+
A5

5!
− A7

7!
+ · · · , (2.1.1)

cosA = I − A2

2!
+
A4

4!
− A6

6!
+ · · · . (2.1.2)

Their importance stems from their role in second order differential equations. For

example, the second order system

y′′(t) + Ay(t) = g(t), y(0) = y0, y′(0) = y′0, (2.1.3)

which arises in finite element semidiscretization of the wave equation, has solution

y(t) = cos(
√
At)y0 + (

√
A)−1 sin(

√
At)y′0 +

∫ t

0

(
√
A)−1 sin

(√
A(t− s)

)
g(s) ds, (2.1.4)

where
√
A denotes any square root of A [42, p. 124], [97]; see also [57, Prob. 4.1]

for the case g(t) = 0. More generally, (2.1.3) arises with a right-hand side of the

form g(t, y(t), y′(t)) in a wide variety of applications and these problems can have
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highly oscillatory solutions [106] or be stiff with A having large norm [81]. Further

generalizations of (2.1.3) whose solutions involve the matrix sine and cosine have a

right-hand side f(t, y(t)) +Bu(t), where u(t) is a control vector and B a matrix [99],

possibly with a delayed linear term Ay(t− τ) for a constant delay τ > 0 [32].

Serbin and Blalock [98] proposed the following algorithm for the matrix cosine,

which has served as a basis for several subsequent algorithms. It employs the double

angle formula cos(2X) = 2 cos2X − I [57, Thm. 12.1].

Algorithm 2.1.1. Given A ∈ Cn×n this algorithm computes an approximation Y to

cosA.

1 Choose an integer s ≥ 0 such that X = 2−sA has small norm.

2 C0 = r(X), where r(X) approximates cosX.

3 for i = 1 : s

4 Ci = 2C2
i−1 − I

5 end

6 Y = Cs

The algorithm has two parameters: the amount of scaling s and the function r,

which is usually either a truncated Taylor series or a Padé approximant.

Serbin and Blalock do not propose any specific algorithmic parameters. Higham

and Smith [65] develop an algorithm based on the [8/8] Padé approximant with the

scaling parameter s chosen with the aid of a forward error bound. Hargreaves and

Higham [46] derive an algorithm with a variable choice of Padé degree (up to degree

20), again based on forward error bounds. They also give an algorithm that computes

cosA and sinA simultaneously at a lower computational cost than computing the two

functions separately. However they do not give an algorithm to compute sinA alone

because the double angle formula sin(2X) = 2 sinX cosX for the sine involves the co-

sine. Indeed, as far as we are aware, no algorithm of the general form in Algorithm 2.1.1

has been proposed for computing sinA directly.

Recently Sastre et al. [95] have derived a new algorithm for the cosine that combines

Taylor series approximations of degree up to 40 with sharper forward error bounds

derived using ideas similar to those in [4, Sec. 4].
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In this chapter we develop three new algorithms for the sine and cosine that are

based on backward error analysis and are backward stable in exact arithmetic. Our

backward error analysis has two advantages over the forward error analyses used in

the derivation of existing algorithms. First, the backward error analysis applies to the

overall algorithm, whereas the forward error analyses bound the forward error of the

function of the scaled matrix only, and the best overall forward error bound contains

a term exponential in the number of double-angle steps [57, Thm. 12.5]. Second,

the current forward error-based algorithms actually bound the absolute error of the

function of the scaled matrix rather than the relative error, which is a heuristic choice

based on numerical experiments. With backward error analysis there is no need for

such considerations, as relative backward errors are unequivocally appropriate.

A second key feature of our algorithms is that they exploit triangularity. They op-

tionally reduce the original matrix to Schur form, but particular benefits are obtained

when the original matrix is (real quasi-)triangular.

The algorithm for the matrix cosine follows the outline of Algorithm 2.1.1 but uses

Padé approximants of the exponential rather than the cosine. The algorithm for the

matrix sine scales by powers of 3 rather than 2, employs Padé approximants to the

sine and the exponential, and uses the triple angle formula to undo the effects of the

scaling. The algorithm for computing the cosine and the sine simultaneously makes

use of a new choice of double angle formula that improves stability.

The outline of this chapter is as follows. In section 3.3 we perform backward

error analysis of the Padé approximants for the sine and cosine and show how certain

limitations can be overcome using alternative rational approximations based upon the

matrix exponential. In section 2.3 we give explicit formulas for the cosine and sine

of 2 × 2 (real quasi-)triangular matrices, which are used in the algorithms for better

accuracy. In sections 2.4–2.6 we design cost effective methods for computing the matrix

cosine and sine (separately and simultaneously) using the double and triple angle

formulas. We then compare our algorithms numerically against existing alternatives

in section 2.7.
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2.2 Backward error analysis for the sine and cosine

We begin by analyzing the backward error of Padé approximants to the matrix sine

and cosine. We find that the backward error analysis restricts the range of applicability

of the Padé approximants—so much so for the cosine as to make the approximants

unusable. We therefore propose and analyze an alternative method of approximation

based upon Padé approximants to the exponential.

2.2.1 Padé approximants of matrix sine

Let rm(x) = pm(x)/qm(x) denote the [m/m] Padé approximant to the sine function.

Since the sine function is odd the Padé table splits into 2×2 blocks containing identical

entries having odd numerator pm and even denominator qm [15, p. 65]. From this we

can show that for k ≥ 2 the number of matrix multiplications required to form r2k

is equal to that for forming r2k+1 and hence we need only consider diagonal Padé

approximants of odd order after r1 and r2. For a similar discussion on the Padé table

of the cosine see [77] and [104, p. 245].

We begin our analysis by defining h2m+1 : C 7→ C as

h2m+1(x) = arcsin rm(x)− x, (2.2.1)

where arcsinx denotes the principal arc sine, that is, the one for which arcsinx ∈

[−π/2, π/2] for x on the interval [−1, 1]. For x ∈ C with |x| ≤ 1 we have sin arcsinx =

x. It follows that for X ∈ Cn×n with ρ(rm(X)) ≤ 1, where ρ denotes the spectral

radius, arcsin rm(X) is defined and, from (2.2.1),

rm(X) = sin(X + h2m+1(X)) =: sin(X +∆X). (2.2.2)

This means that ∆X = h2m+1(X) represents the backward error of approximating

sinX by the [m/m] Padé approximant, assuming that ρ(rm(X)) ≤ 1.

Figure 2.2.1 shows the order stars for the Padé approximants rm, that is, the regions

of the complex plane where |rm(x)| ≤ 1, for a range of m [25], [69]. For a given value

of m, if all the eigenvalues of X lie within this region then our backward error analysis

holds. Since the regions are not circular it is difficult to check this criterion in practice,

but we found numerically that for m = 1: 13 the largest circular disk centered at the
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Figure 2.2.1: The boundary of the region within which |rm(x)| ≤ 1, where rm(x) is

the [m/m] Padé approximant to the sine function, for m = 1, 3, 5, 7.

origin that lies within all the regions has radius approximately arcsinh 1 ≈ 0.881.

Therefore it is sufficient to check that ρ(X) ≤ arcsinh 1 for our analysis to hold.

Since rm(x) = sinx+O(x2m+1) we have h2m+1(x) = arcsin rm(x)− x = O(x2m+1),

and because arcsin and sin are odd functions we can write

h2m+1(X) = X
∞∑
k=0

cm,kX
2(m+k), (2.2.3)

for some coefficients cm,k. Taking the norm of this equation, using [4, Thm. 4.2(b)],

and recalling that ∆X = h2m+1(X), we can bound the normwise relative backward

error by
‖∆X‖
‖X‖

≤
∞∑
k=0

|cm,k|αp(X)2(m+k), (2.2.4)

where

αp(X) = max
(
‖X2p‖1/(2p), ‖X2p+2‖1/(2p+2)

)
(2.2.5)

and the integer p ≥ 1 is such that m ≥ p(p− 1). Note that we have ρ(X) ≤ αp(X) ≤

‖X‖ and αp(X) can be much smaller than ‖X‖ for nonnormal X, so the gains from

working with (2.2.4) instead of the corresponding bound expressed solely in terms

of ‖X‖ can be significant. It is easy to show that α3(X) ≤ α2(X) ≤ α1(X) and

α4(X) ≤ α2(X), but the relationship between α3(X), α4(X), and α5(X) depends upon
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X, so we need to compute or estimate all of the latter three quantities and use the

smallest, subject to the constraint m ≥ p(p−1). For example, to show α3(X) ≤ α2(X)

we know from [4, Lem. 4.1] that ‖X8‖1/8 ≤ ‖X4‖1/4 and therefore

α3(X) = max(‖X6‖1/6, ‖X8‖1/8) ≤ max(‖X6‖1/6, ‖X4‖1/4) = α2(X).

To ensure maximum accuracy we would like to bound the backward error (2.2.4)

by the unit roundoff u = 2−53 ≈ 1.1 × 10−16 in IEEE double precision arithmetic. If

we define

βm = max

{
β :

∞∑
k=0

|cm,k|β2(m+k) ≤ u

}
, (2.2.6)

then αp(X) ≤ βm ≤ arcsinh 1 implies that ‖∆X‖/‖X‖ ≤ u for m ≤ 13. In the second

row of Table 2.5.1 we show the values βm calculated using variable precision arithmetic

in the Symbolic Math Toolbox for several values of m. We have βm > arcsinh 1 ≈ 0.881

for m ≥ 9, but our backward error bounds require that ρ(X) ≤ arcsinh 1. This means

that for β7 < αp(X) ≤ arcsinh 1 we can use m = 9, but for arcsinh 1 < αp(X) ≤ β9 our

backward error results are not applicable, so we artificially reduce β9 to 0.881. From

this point on we will not consider m > 9.

In the algorithm of section 2.5 we will use both Padé approximants and another

class of rational approximations introduced in section 2.2.3.

2.2.2 Padé approximants of matrix cosine

For the matrix cosine we can attempt a similar analysis. Let rm(x) be the [m/m] Padé

approximant to the cosine and define h2m(x) = arccos rm(x)−x, where arccos denotes

the principal arc cosine, which maps [−1, 1] to [0, π]. Analogously to the argument in

the previous section, in order to obtain a backward error relation we need |x| ≤ 1.

Figure 2.2.2 shows the order stars of rm for a range of m. Requiring the eigenvalues

of X to lie inside the order stars imposes tight restrictions on them. Even more

prohibitively, the eigenvalues must also lie in the strip of the right half-plane with real

part between 0 and π, so that the principal branch of arccos gives arccos cosx = x.

As we are not aware of any satisfactory way to overcome these restrictions we will

use an alternative rational approximation whose backward error analysis is applicable

for every set of eigenvalues.
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Figure 2.2.2: The boundary of the region within which |rm(x)| ≤ 1, where rm(x) is

the [m/m] Padé approximant to the cosine function, for m = 2, 4, 6, 8.

2.2.3 Exploiting Padé approximants of the exponential

Let rm(x) denote the [m/m] Padé approximant to ex. Al-Mohy and Higham [4, Sec. 3]

show that if ρ(e−xrm(X)− I) < 1 and ρ(X) < min{ |t| : qm(t) = 0 } then

rm(X) = eX+h2m+1(X), (2.2.7)

where h2m+1(X) := log(e−Xrm(X)), with log the principal logarithm. As shown in

[4, Sec. 5], h2m+1 is an odd function, so h2m+1(−X) = −h2m+1(X). Hence

rm(−X) = e−(X+h2m+1(X)). (2.2.8)

Furthermore, writing h2m+1(X) =
∑∞

k=m cm,kX
2k+1 one can easily show that

h2m+1(iX) = i
∞∑
k=m

(−1)kcm,kX
2k+1 =: iφ(X). (2.2.9)

Now [57, (12.2)]

cosX =
eiX + e−iX

2
, sinX =

eiX − e−iX

2i
, (2.2.10)

which suggests using as approximations the rational functions with real coefficients

cm(x) =
rm(ix) + rm(−ix)

2
, sm(x) =

rm(ix)− rm(−ix)

2i
. (2.2.11)
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From (2.2.7) and (2.2.9) we have

cm(X) =
rm(iX) + rm(−iX)

2
=
ei(X+φ(X)) + e−i(X+φ(X))

2
= cos(X + φ(X)) (2.2.12)

and

sm(X) =
rm(iX)− rm(−iX)

2i
=
ei(X+φ(X)) − e−i(X+φ(X))

2i
= sin(X + φ(X)), (2.2.13)

so the two approximations have the same backward error, φ(X). To bound this back-

ward error, for a power series p(x) let p̃(x) be the power series where each coefficient

of p(x) is replaced by its modulus. Then φ̃(x) =
∑∞

k=m |ck,m|x2k+1 and so we have

‖φ(X)‖
‖X‖

≤ φ̃(‖X‖)
‖X‖

=
h̃2m+1(‖X‖)
‖X‖

, (2.2.14)

since φ̃(x) = h̃2m+1(x). From [4, Sec. 3] it follows that ‖φ(X)‖/‖X‖ ≤ u if αp(X) ≤ θm,

where the θm are given in Table 2.4.1 (reproduced from [56, Table 2.1]) and p is chosen

to minimize αp in (2.2.5) subject to m ≥ p(p− 1).

For the cosine we will use cm but for the sine we will use a mixture of sm and Padé

approximants to sinx. We now need to devise a strategy for choosing the parameters

s and m. We have θm ≥ βm for m ≤ 21, as can partially be seen from Tables 2.4.1 and

2.5.1, which means that less scaling is required if we approximate sinX by sm than

by the Padé approximant rm. On the other hand, the numerator and denominator

polynomials of cm and sm are of higher degree than those of the Padé approximants

of the cosine and sine, so cm and sm will be more expensive to evaluate. In all cases

considered here, sm is a [2m−1/2m] order rational approximant whereas cm is of order

[2m/2m]. For example

s3(x) =
x+ 7x3/60− x5/600

1 + x2/20 + x4/600 + x6/14400
,

c3(x) =
1− 9x2/20 + 11x4/600− x6/14400

1 + x2/20 + x4/600 + x6/14400
.

In sections 2.4–2.6 we explain how to balance the degree of the rational approximant

with the amount of scaling in order to achieve the desired backward error at minimal

cost.
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2.2.4 Backward error propagation in multiple angle formulas

We have shown how to achieve a small backward error for the rational approximation

of the sine or cosine of the scaled matrix. We now show that this backward error

propagates linearly through the multiple angle formula phase of the algorithm (lines

3–5 of Algorithm 2.1.1), resulting in a small overall backward error. We state the

result for the cosine; an analogous result holds for the sine.

Lemma 2.2.1. Let A ∈ Cn×n and X = η−sA for a positive integer η and nonnegative

integer s, and suppose that r(X) = cos(X +∆X) for a rational function r. Then the

approximation Y from the “scaling and multiple angle” method satisfies Y = cos(A+

∆A), where ∆A = ηs∆X in exact arithmetic, and hence ‖∆A‖/‖A‖ = ‖∆X‖/‖X‖.

Proof. We prove the result for η = 2 (the double angle formula) for simplicity, though

the same argument can be applied for any integer η (and the corresponding multiple

angle formula).

By assumption, the initial approximation to the cosine from the rational approxi-

mant is C0 = cos(X + ∆X), where X = 2−sA. Applying the double angle formula s

times gives

C1 = 2C2
0 − I = cos(2X + 2∆X),

C2 = 2C2
1 − I = cos(4X + 4∆X),

...

Cs = 2C2
s−1 − I = cos(2sX + 2s∆X).

Therefore we have cosA ≈ Y = Cs = cos(A + ∆A) where ∆A = 2s∆X, and

‖∆X‖/‖X‖ = ‖2s∆X‖/‖2sX‖ = ‖∆A‖/‖A‖.

Lemma 2.2.1 shows that there is no growth in the relative backward error during

the multiple angle phase in exact arithmetic. Hence by choosing the parameters s and

m so that ‖∆X‖/‖X‖ ≤ u we achieve an overall backward error bounded by u. This

contrasts with the algorithms for the matrix cosine in [46], [57, Alg. 12.6], [95], which

choose r to make ‖r(X) − cosX‖ small, since the overall error ‖r(A) − cosA‖ bears

no simple relation to ‖r(X)− cosX‖.
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2.3 Recomputing the cosine and sine of 2× 2 ma-

trices

If we begin with an initial (real) Schur decomposition of our input matrix A, so that we

are working with upper (quasi-)triangular matrices, then we can obtain higher overall

accuracy by explicitly computing (instead of approximating) the diagonal blocks (in-

cluding all of the first superdiagonal) explicitly throughout the algorithm. This idea

has been used to good effect in recent algorithms for the matrix exponential [4], the

logarithm1 [6], and matrix powers [60], [61].

For 2× 2 triangular matrices T =
[
λ1 t
0 λ2

]
it is known that [57, (4.16)]

f(T ) =

f(λ1) tf [λ1, λ2]

0 f(λ2)

 , (2.3.1)

where f [λ1, λ2] is the divided difference

f [λ1, λ2] =

(f(λ1)− f(λ2))/(λ1 − λ2), if λ1 6= λ2,

f ′(λ1), if λ1 = λ2.

(2.3.2)

For the cosine and sine we can avoid subtractive cancellation when λ1 ≈ λ2 by com-

puting

cos[λ1, λ2] = −
[
sin

(
λ1 + λ2

2

)
sin

(
λ1 − λ2

2

)] / (λ1 − λ2
2

)
, (2.3.3)

sin[λ1, λ2] =

[
sin

(
λ1 − λ2

2

)
cos

(
λ1 + λ2

2

)] / (λ1 − λ2
2

)
. (2.3.4)

A 2 × 2 block of a real upper quasi-triangular matrix computed by the LAPACK

Schur decomposition code dgees [11] has the form

B =

a b

c a

 , bc < 0. (2.3.5)

We can use the polynomial definition of a matrix function [57, Def. 1.4] to show that

cosB =

 cos a cosh θ −θ−1b sin a sinh θ

−θ−1c sin a sinh θ cos a cosh θ

 , (2.3.6)

sinB =

 sin a cosh θ b cos a sinh θ

θ−1c cos a sinh θ sin a cosh θ

 , (2.3.7)

1We will also use this technique in chapter 3 within our algorithms for the matrix logarithm and
its Fréchet derivatives.
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where θ = (−bc)1/2. Assuming that accurate implementations of sinh and cosh are

available these formulae will compute the cosine and sine of 2 × 2 matrices to high

componentwise accuracy without any subtractive cancellation.

2.4 Algorithm for the matrix cosine

We now build an algorithm for the matrix cosine based upon the rational approxima-

tion cm of (2.2.11) along with the double angle formula.

The cost of our algorithm will be dominated by the matrix multiplications per-

formed when forming the rational approximant and during the repeated application

of the double angle formula. Each multiplication costs 2n3 flops for full matrices or

n3/3 flops for (quasi-)triangular matrices if a Schur decomposition is used.

We choose the two parameters m, the order of approximation, and s, the number of

scalings, to minimize the number of matrix multiplications whilst ensuring a backward

error of order u (in exact arithmetic).

First we discuss which values of m need to be considered for the approximant

cm(X). We will consider m = 1: mmax, where mmax is defined as the largest m for

which the denominator of cm(X) has condition number, in the appropriate norm,

smaller than 10 for any X in the region where αp(X) ≤ θm. The appropriate norm is

as follows: for any ε > 0 there exists a norm ‖ ·‖ε satisfying ‖X‖ε ≤ ρ(X)+ ε ≤ αp+ ε,

where we will choose ε = u to be the unit roundoff. The corresponding condition

number of the denominator qm(X) can be bounded above (see [4, p. 982]) as

‖qm(X)‖ε‖qm(X)−1‖ε ≤ q̃m(αp(X) + ε)
∞∑
k=0

|ak|(αp(X) + ε)k (2.4.1)

≤ q̃m(θm + ε)
∞∑
k=0

|ak|(θm + ε)k =: κm, (2.4.2)

where
∑∞

k=0 akx
k is the Taylor series of qm(x)−1 and q̃m is the same polynomial as qm

with all coefficients replaced by their absolute values.

Using 250 digit arithmetic from the Symbolic Math Toolbox and calculating the

first 350 terms of the Taylor series in the bound (2.4.2), we found that for the matrix

cosine this means considering mmax = 21, where θ21 is reduced from 13.95, which has

corresponding condition number 10.75, to 13 with condition number 7.86 for additional
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Table 2.4.1: The number of matrix multiplications π(cm(X)) required to evaluate

cm(X), values of θm, values of p to be considered, and an upper bound κm for the

condition number of the denominator polynomial, in the ‖X‖ε norm, of cm (and sm)

for αp(X) ≤ θm. Values of m for which π(cm(X)) = π(cm+1(X)) are not shown as

they provide no benefit. For m = 21, θ21 is artificially reduced from 13.95 to 13 in

order to ensure κ21 ≤ 10.

m 1 2 3 4 6 8

π(cm(X)) 1 2 3 4 5 6

θm 3.6e-8 5.3e-4 1.5e-2 8.5e-2 5.4e-1 1.47

p 1 2 2 2 3 3

κm 1 1 1 1 1.01 1.07

m 10 12 15 18 21

π(cm(X)) 7 8 9 10 11

θm 2.8 4.46 7.34 10.54 13.95 (13)

p 3 3, 4 3, 4 3, 4 3, 4, 5

κm 1.2 1.54 2.53 4.89 7.86

stability. Note that this part of our analysis also applies to the matrix sine since cm

and sm share the same denominator polynomial.

This condition ensures that solving the multiple right-hand side system to form the

rational approximant does not introduce significant errors into the computation—at

least as long as ‖ · ‖ε is not too badly scaled. The condition numbers κm for each m

of interest are shown in Table 2.4.1.

Now that we have a range of m to consider, we must find those values for which

cm can be formed in the smallest number of matrix multiplications. There are many

ways to evaluate the rational approximants: in section 2.8 we show that applying

the Paterson–Stockmeyer scheme [57, pp. 73–74], [88] is more efficient than explicit

computation of the necessary powers. Evaluating the numerator and denominator

polynomials using the Paterson–Stockmeyer scheme as described we see that, for ex-

ample, c7(X) and c8(X) can both be formed using a minimum of 6 matrix multiplica-

tions. Since c8(X) can be applied to X with a larger value of αp(X) it renders c7(X)

redundant.
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Table 2.4.1 contains the relevant values of m and θm along with the number of

matrix multiplications required to form cm(X). It also shows the values of p that we

need to consider in order to minimize αp(X) in (2.2.5) for each m.

Finally, we consider the choice of the parameters s (where X = 2−sA) and m.

It may sometimes be cheaper to perform a stronger scaling on A and use a lower

order approximant. In particular, each invocation of the double angle formula costs

one matrix multiplication and therefore it is worth increasing s by q if more than q

multiplications can be saved when evaluating the rational approximant. (Note that this

logic applies equally well to full matrices and triangular matrices.) From Table 2.4.1

we see that there are a number of places where such an increase in s is desirable. For

example when θ10 < α3(X) ≤ 2θ8 we can perform one extra scaling and use c8(X)

instead of c12(X), saving one multiplication.

We also point out that computing αp(X) can sometimes require more powers of

X than the rational approximant. For instance when m = 2 we need α2(X) =

min(‖X4‖1/4, ‖X6‖1/6), but forming c2(X) requires only X4 (we use explicit pow-

ers for m ≤ 4, which have the same cost as the Paterson–Stockmeyer scheme: see

Table 2.8.1).

However, we will use the 1-norm, for which we can estimate the norm of X` for any

integer ` > 0, without calculating the matrix power explicitly, using the block 1-norm

estimator of Higham and Tisseur [66]. A further optimization is that after eliminating

m = 1 as a possibility, for example, all higher order approximants cm(X) require X4

so we can compute and store X4 and hence use ‖X4‖1/41 rather than an estimate of it

in the logical tests. A similar optimization can be performed after eliminating m = 2

and m = 6. Taking all these issues into account leads to the following algorithm to

determine the parameters s and m. The many logical tests are the price we pay for

making the most efficient choice of parameters.

Algorithm 2.4.1. Given A ∈ Cn×n this algorithm determines the parameters s and

m such that the algorithm for approximating cosA based on cm(2−sA) and the double

angle formula produces (in exact arithmetic) a backward error bounded by u. The

algorithm uses the parameters θm given in Table 2.4.1.
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1 s = 0

2 Compute and store A2.

3 α1(A) = ‖A2‖1/21

4 if α1(A) ≤ θ1, m = 1, quit, end

5 Compute and store A4.

6 d4 = ‖A4‖1/41

7 Estimate d6 = ‖A6‖1/61 .

8 α2(A) = max(d4, d6)

9 if α2(A) ≤ θ2, m = 2, quit, end

10 Compute and store A6.

11 d6 = ‖A6‖1/61 % Compute exact value and update α2.

12 α2(A) = max(d4, d6)

13 if α2(A) ≤ θ3, m = 3, quit, end

14 if α2(A) ≤ θ4, m = 4, quit, end

15 Estimate d8 = ‖A8‖1/81 .

16 α3(A) = max(d6, d8)

17 if α3(A) ≤ θ6, m = 6, quit, end

18 Compute and store A8.

19 d8 = ‖A8‖1/81 % Compute exact value and update α3.

20 α3(A) = max(d6, d8)

21 if α3(A) ≤ θ8, m = 8, quit, end

22 if α3(A) ≤ θ10, m = 10, quit, end

23 if α3(A) ≤ 2θ8, s = 1, m = 8, quit, end

24 Estimate d10 = ‖A10‖1/101 .

25 α4(A) = max(d8, d10)

26 α3/4 = min(α3(A), α4(A))

27 if α3/4(A) ≤ θ12, m = 12, quit, end

28 if α3(A) ≤ 2θ10, s = 1, m = 10, quit, end

29 if α3(A) ≤ 4θ8, s = 2, m = 8, quit, end

30 % Note that s = 0 at this point

31 if α3/4(A) ≤ θ15, m = 15, quit, end

32 if α3/4(A) ≤ 2θ12, s = s+ 1, m = 12, quit, end
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33 if α3(A) ≤ 4θ10, s = s+ 2, m = 10, quit, end

34 if α3(A) ≤ 8θ8, s = s+ 3, m = 8, quit, end

35 if α3/4(A) ≤ θ18, m = 18, quit, end

36 if α3/4(A) ≤ 2θ15, s = s+ 1, m = 15, quit, end

37 if α3/4(A) ≤ 4θ12, s = s+ 2, m = 12, quit, end

38 if α3(A) ≤ 8θ10, s = s+ 3, m = 10, quit, end

39 Estimate d12 = ‖A12‖1/121 .

40 α5(A) = max(d10, d12)

41 α3/4/5(A) = min(α3, α4, α5)

42 if α3/4/5(A) ≤ θ21, m = 21, quit, end

43 % A needs to be scaled. After scaling, 6.5 ≈ θ21/2 < α3/4/5(A) ≤ θ21.

44 s =
⌈
log2(α3/4/5(A)/θ21)

⌉
45 α3(A) = α3(A)/2s

46 α3/4(A) = α3/4(A)/2s

47 α3/4/5(A) = α3/4/5(A)/2s

48 Execute lines 31–38.

49 m = 21

We can now present our full algorithm for computing the matrix cosine, which

is backward stable in exact arithmetic. The algorithm is written using an initial

Schur decomposition but a transformation-free algorithm can be obtained by removing

lines 5, 8, and 10 and replacing line 1 with T = A.

Algorithm 2.4.2. Given A ∈ Cn×n this algorithm computes C = cosA. The algo-

rithm is designed for use with IEEE double precision arithmetic.

1 Compute the (real if A ∈ Rn×n) Schur decomposition A = QTQ∗.

2 Obtain s and m from Algorithm 2.4.1 applied to T .

3 T ← 2−sT and T k ← 2−skT k for any powers T k stored during line 2.

4 Compute C = cm(T ): use the Paterson–Stockmeyer scheme to compute the

numerator pm(X) and denominator qm(X) and then solve qm(T )C = pm(T ).

5 Recompute the diagonal blocks of C using (2.3.1), (2.3.3), (2.3.6)

6 for j = 1 : s

7 C ← 2C2 − I
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8 Recompute the diagonal blocks of C = cos(2jT ) using (2.3.1), (2.3.3), (2.3.6).

9 end

10 C ← QCQ∗

Cost: (28 + (π + s + 1)/3)n3 flops where π denotes the number of matrix mul-

tiplications needed to form cm(x). The transformation-free version of the algorithm

costs (2(s + π) + 8/3)n3 flops. Comparing these two we see that it is cheaper to use

the Schur decomposition if π + s ≥ 16, The latter inequality is readily satisfied, for

example if A = 448I, and using the Schur decomposition allows us to carry out the

accurate recomputation of the diagonal blocks.

2.5 Algorithm for the matrix sine

In this section we design an algorithm to compute the matrix sine. Whereas for the

cosine we used the rational approximations cm(X), for the sine we must consider both

sm(X) and the Padé approximants. Another difference from the cosine case is that we

will use the triple angle formula sin(3X) = 3 sinX − 4 sin3X instead of the double-

angle formula sin(2X) = 2 sinX cosX, as the latter formula requires cosX.

Table 2.5.1 shows the number of matrix multiplications required to form the Padé

approximants rm(X), denoted π(rm(X)). The values of π(sm(X)) are π(s1(X)) = 1

and for m ≥ 2 we have π(sm(X)) = π(cm(X)) + 1, where π(cm(X)) is given in

Table 2.4.1. The table also contains the values of p that we need to consider and the

values βm such that αp(X) ≤ βm implies the backward error of the result is bounded

by u in exact arithmetic. The last row of the table shows an upper bound κm on

the condition number of the denominator polynomial of rm(X) for αp(X) ≤ βm. For

sm(X) the values for θm, p, and κm exactly match those already given for the cosine in

Table 2.4.1: the values of θm match due to the relationship to the matrix exponential

(see section 2.2.3), the p match due to the degree of the approximants, and the κm

match as cm and sm have identical denominator polynomials.

For the Padé approximants rm, the maximum order of approximation considered is

m = 9 in order to ensure the validity of the bounds, as explained in section 2.2.1. On

the other hand, as for the matrix cosine, we consider up to m = 21 for the alternative

rational approximants sm(X). The use of sm(X) allows larger p within the values

40



Table 2.5.1: The number of matrix multiplications π(·) required to evaluate rm(x),

values of βm in (2.2.6), values of p to be considered, and an upper bound κm for the

condition number of the denominator polynomial of rm for αp(X) ≤ βm. Values of

m for which π(rm(X)) = π(rm+1(X)) are not shown as they provide no benefit. The

values for β9 has been artificially reduced from 1.14 to 8.81e-1 as required by our

backward error analysis in section 2.2.1; this changes the value of κ9.

m 1 3 5 7 9

π(rm(X)) 0 2 3 4 5

βm 2.58e-8 8.93e-3 1.47e-1 5.36e-1 1.14 (8.81e-1)

p 1 2 2 3 3

κm 1 1 1 1.01 1.05 (1.03)

αp(X) used in our backward error bounds and can therefore reduce the amount of

scaling required. For example, suppose A is nilpotent of degree 10 with α3(A) � β9.

Using only Padé approximants we would require a large amount of scaling but since

A is nilpotent we know that α5(A) = 0, allowing the use of s21(A) with no scaling

required.

We scale X = 3−sA and each application of the triple angle formula requires

two matrix multiplications. Hence it is beneficial to increase s by q if we can save

more than 2q matrix multiplications in forming sm. For example, suppose that θ12 <

min(α3(X), α4(X)) ≤ θ15 but additionally α3(X) ≤ 9β9; then by performing two

extra scalings we can use r9(X) at a cost of 4 + π(r9(X)) = 9 multiplications, as

opposed to π(s15(X)) = 10 multiplications. For each X we choose among the rm and

sm approximants, whilst considering extra scaling as above, always striving for the

parameters with minimal cost subject to the backward error constraint.

This discussion leads to the following parameter selection algorithm.

Algorithm 2.5.1. Given A ∈ Cn×n this algorithm determines the scaling parameter s

and rational approximant ϕ, equal to rm or sm, such that the algorithm for approximat-

ing sinA based on ϕ(3−sA) and the triple angle formula produces (in exact arithmetic)

a backward error bounded by u. The algorithm uses the parameters θm and βm given

in Tables 2.4.1 and 2.5.1, respectively.
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1 s = 0

2 Estimate d2 = ‖A2‖1/21 .

3 α1(A) = d2

4 if α1(A) ≤ β1, ϕ(x) = r1(x), quit, end

5 Compute and store A2.

6 d2 = ‖A2‖1/21 % Compute exact value and update α1.

7 α1(A) = d2

8 if α1(A) ≤ θ1, ϕ(x) = s1(x), quit, end

9 Estimate d4 = ‖A4‖1/41 and d6 = ‖A6‖1/61 .

10 α2(A) = max(d4, d6)

11 if α2(A) ≤ β3, ϕ(x) = r3(x), quit, end

12 Compute and store A4.

13 d4 = ‖A4‖1/41 % Compute exact value and update α2.

14 α2(A) = max(d4, d6)

15 if α2(A) ≤ β5, ϕ(x) = r5(x), quit, end

16 Compute and store A6.

17 d6 = ‖A6‖1/61

18 Estimate d8 = ‖A8‖1/81 .

19 α3(A) = max(d6, d8)

20 if α3(A) ≤ β7, ϕ(x) = r7(x), quit, end

21 if α3(A) ≤ β9, ϕ(x) = r9(x), quit, end

22 if α3(A) ≤ 3β7, s = 1, ϕ(x) = r7(x), quit, end

23 if α3(A) ≤ 3β9, s = 1, ϕ(x) = r9(x), quit, end

24 if α3(A) ≤ θ10, ϕ(x) = s10(x), quit, end

25 if α3(A) ≤ 9β7, s = 2, ϕ(x) = r7(x), quit, end

26 Compute and store A8.

27 d8 = ‖A8‖1/81 % Compute exact value and update α3.

28 α3(A) = max(d6, d8)

29 Compute and store A10.

30 d10 = ‖A10‖1/101

31 α4(A) = max(d8, d10)

32 α3/4 = min(α3(A), α4(A))
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33 % Note that s = 0 at this point.

34 if α3/4(A) ≤ θ12, ϕ(x) = s12(x), quit, end

35 if α3(A) ≤ 9β9, s = s+ 2, ϕ(x) = r9(x), quit, end

36 if α3/4(A) ≤ θ15, ϕ(x) = s15(x), quit, end

37 if α3(A) ≤ 3θ10, s = s+ 1, ϕ(x) = s10(x), quit, end

38 if α3/4(A) ≤ θ18, ϕ(x) = s18(x), quit, end

39 if α3/4(A) ≤ 3θ12, s = s+ 1, ϕ(x) = s12(x), quit, end

40 Estimate d12 = ‖A12‖1/121 .

41 α5(A) = max(d10, d12)

42 α3/4/5 = min(α3, α4, α5)

43 if α3/4/5(A) ≤ θ21, ϕ(x) = s21(x), quit, end

44 % A needs to be scaled. After scaling, 4.3 ≈ θ21/3 < α3/4/5(A) ≤ θ21.

45 s =
⌈
log3(α3/4/5(A)/θ21)

⌉
46 α3(A) = α3(A)/3s

47 α3/4(A) = α3/4(A)/3s

48 α3/4/5(A) = α3/4/5(A)/3s

49 if α3(A) ≤ 9β7, s = s+ 2, ϕ(x) = r7(x), quit, end

50 Execute lines 34–39.

51 ϕ(x) = s21(x)

We now present our full algorithm for computing the matrix sine. As for the matrix

cosine, the algorithm uses a Schur decomposition. To obtain a transformation-free

algorithm lines 5, 8, and 10 should be removed and line 1 replaced with T = A.

Algorithm 2.5.2. Given A ∈ Cn×n this algorithm computes S = sinA. The algorithm

is designed for use with IEEE double precision arithmetic.

1 Compute the (real if A ∈ Rn×n) Schur decomposition A = QTQ∗.

2 Obtain s and ϕ(x) from Algorithm 2.5.1 applied to T .

3 T ← 3−sT and T k ← 3−skT k for any powers of T stored during line 2.

4 Compute S = ϕ(T ): use the Paterson–Stockmeyer scheme to compute the

numerator p(X) and denominator q(X) and then solve q(T )S = p(T ).

5 Recompute the diagonal blocks of S using (2.3.1), (2.3.4), (2.3.7)

6 for j = 1 : s
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Table 2.6.1: Number of matrix multiplications πm required to evaluate both cm and

sm.

m 1 2 3 4 5 6 8 10 12 14 16 18 21

πm 1 3 4 5 6 7 8 9 10 11 12 13 14

7 S ← S(3I − 4S2)

8 Recompute the diagonal blocks of S = sin(3jT ) using (2.3.1), (2.3.4), (2.3.7).

9 end

10 S ← QSQ∗

Cost: (28 + (π + 2s + 1)/3)n3 flops, where π denotes the number of matrix multipli-

cations needed to form ϕ(x). The corresponding transformation-free algorithm costs

(2(π + 2s) + 8/3)n3 flops. Comparing these two costs we see that it is cheaper to use

the Schur decomposition if π + 2s ≥ 16.

2.6 Algorithm for simultaneous computation of the

matrix cosine and sine

We now design an algorithm to compute the matrix cosine and sine simultaneously, a

requirement that arises in the evaluation of (2.1.4), for example. We use the rational

approximants cm(x) and sm(x) introduced in section 2.2.3, since they have the same

denominator polynomial: this saves a significant amount of computation since we need

only compute one denominator for both approximants and furthermore we can reuse

an LU factorization of the denominator when computing cm(X) and sm(X).

Since we are now computing both the cosine and sine we can use the double angle

formulas for both. However for the cosine there are two such formulas for us to choose

from:

cos(2X) = 2 cos2X − I, cos(2X) = I − 2 sin2X. (2.6.1)

We have found empirically that using cos(2X) = I − 2 sin2X generally gives more

accurate computed results, sometimes significantly so, though a theoretical explanation

for this observation is currently lacking.
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In Table 2.6.1 we show the number of matrix multiplications πm required to form

both cm(x) and sm(x) using the Paterson–Stockmeyer scheme (see section 2.8). Since

each invocation of the double angle formulas for the cosine and sine costs two matrix

multiplications in total, it is worth performing q extra scalings if more than 2q matrix

multiplications can be saved in the formation of the rational approximant. This results

in the following parameter selection algorithm.

Algorithm 2.6.1. Given A ∈ Cn×n this algorithm determines the parameters s and

m such that the algorithm for approximating cosA and sinA based on cm(2−sA) and

sm(2−sA) and the double angle formulas produces (in exact arithmetic) backward er-

rors bounded by u for both functions. The algorithm uses the parameters θm given in

Table 2.4.1.

1 s = 0

2 Compute and store A2.

3 d2 = ‖A2‖1/21

4 α1(A) = d2

5 if α1(A) ≤ θ1, m = 1, quit, end

6 Compute and store A4.

7 d4 = ‖A4‖1/41

8 Estimate d6 = ‖A6‖1/61 .

9 α2(A) = max(d4, d6)

10 if α2(A) ≤ θ2, m = 2, quit, end

11 Compute and store A6.

12 d6 = ‖A6‖1/61 % Compute exact value and update α2.

13 α2(A) = max(d4, d6)

14 if α2(A) ≤ θ3, m = 3, quit, end

15 if α2(A) ≤ θ4, m = 4, quit, end

16 if α2(A) ≤ θ5, m = 5, quit, end

17 Estimate d8 = ‖A8‖1/81 .

18 α3(A) = max(d6, d8)

19 if α3(A) ≤ θ6, m = 6, quit, end

20 Compute and store A8.
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21 d8 = ‖A8‖1/81 % Compute exact value and update α3.

22 α3(A) = max(d6, d8)

23 if α3(A) ≤ θ8, m = 8, quit, end

24 Compute and store A10.

25 if α3(A) ≤ θ10, m = 10, quit, end

26 Compute and store A12.

27 d10 = ‖A10‖1/101

28 α4(A) = max(d8, d10)

29 α3/4(A) = min(α3, α4)

30 if α3/4(A) ≤ θ12, m = 12, quit, end

31 if α3/4(A) ≤ θ14, m = 14, quit, end

32 % Note that s = 0 at this point.

33 if α3/4(A) ≤ θ16, m = 16, quit, end

34 if α3/4(A) ≤ 2θ12, s = s+ 1, m = 12, quit, end

35 if α3/4(A) ≤ θ18, m = 18, quit, end

36 if α3/4(A) ≤ 2θ14, s = s+ 1, m = 14, quit, end

37 d12 = ‖A12‖1/121

38 α5(A) = max(d10, d12)

39 α3/4/5(A) = min(α3, α4, α5)

40 if α3/4/5(A) ≤ θ21, m = 21, quit, end

41 % A needs to be scaled. After scaling, 6.5 ≈ θ21/2 ≤ α3/4/5(A) ≤ θ21.

42 s =
⌈
log2(α3/4/5(A)/θ21)

⌉
43 α3/4(A) = α3/4(A)/2s

44 α3/4/5(A) = α3/4/5(A)/2s

45 Execute lines 33–36.

46 m = 21

We now state our algorithm for computing the matrix cosine and sine. To obtain

the corresponding transformation-free algorithm lines 7, 11, 13, and 15–16 should be

removed and line 1 replaced by T = A.

46



Algorithm 2.6.2. Given A ∈ Cn×n the following algorithm computes both C = cosA

and S = sinA. The common denominator of cm(x) and sm(x) is denoted by ω(x) so

that cm(x) = ĉm(x)/ω(x) and sm(x) = ŝm(x)/ω(x). This algorithm is designed for use

with IEEE double precision arithmetic.

1 Compute the (real if A ∈ Rn×n) Schur decomposition A = QTQ∗.

2 Obtain s and m from Algorithm 2.6.1 applied to T .

3 T ← 2−sT and T k ← 2−skT k for any powers of T stored during line 2.

4 Compute the shared denominator ωm(X) and the numerators ĉm(X) and

ŝm(X) using the Paterson–Stockmeyer method (section 2.8).

5 Compute an LU factorization with partial pivoting LU = ωm(X).

6 Compute S = U−1L−1ŝm(X) and C = U−1L−1ĉm(X) by substitution

using the LU factorization.

7 Recompute the block diagonals of S and C using (2.3.1)–(2.3.7).

8 for j = 1 : s

9 Sold = S

10 S = 2SC

11 Recompute the block diagonals of S = sin(2jT ) using (2.3.1), (2.3.4), (2.3.7).

12 C = I − 2S2
old

13 Recompute the block diagonals of C = cos(2jT ) using (2.3.1), (2.3.3), (2.3.6).

14 end

15 S ← QSQ∗

16 C ← QCQ∗

Cost: (95/3+(π+2s)/3)n3 flops where π denotes the number of matrix multiplications

needed to form both approximants. The corresponding transformation-free algorithm

costs (14/3 + 2(π + 2s))n3 flops. Comparing these two costs we see that it is cheaper

to use the Schur decomposition if π + 2s ≥ 17.

For comparison, the cost of calling Algorithms 2.4.2 and 2.5.2 separately—but using

only one Schur decomposition—is (31+(πc+πs+sc+ss+2)/3)n3 flops, or (16/3+2(πc+

πs + sc + ss))n
3 flops if the transformation-free version is used, where the subscripts

c and s denote the values obtained from the cosine and sine algorithms, respectively.

To illustrate the benefit to the overall cost gained by computing the matrix cosine and
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sine simultaneously consider the matrix A = gallery(’frank’,1000): we obtain the

values πc = 9, πs = 5, sc = 14, ss = 11 when using Algorithms 2.4.2 and 2.5.2,

and π = 14, s = 14 when using Algorithm 2.6.2. Therefore the cost of computing the

matrix cosine and sine separately is (220/3)n3 and (316/3)n3 flops (with and without a

Schur decomposition, respectively) as opposed to (137/3)n3 and (266/3)n3 flops when

computing both functions simultaneously. For the Schur decomposition algorithm this

is a computational saving of around 38 percent.

2.7 Numerical experiments

All our experiments are performed in MATLAB 2013b. The test matrices are mainly

15 × 15 matrices adapted from the Matrix Computation Toolbox [50], the MATLAB

gallery function, and the matrix function literature. We select 76 of these matri-

ces for which none of the algorithms overflow and multiply them by some uniform

random scalar between 1 and 60 to ensure that some scaling will occur in the al-

gorithms. Similar test matrices were used in recent work on the matrix cosine [46],

[57, Chap. 12], [95].

Our numerical experiments compare the normwise forward and backward errors of

the competing methods. Recall from section 1.4 that if Y denotes the computed value

of f(A) then the forward error is

‖Y − f(A)‖1
‖f(A)‖1

(2.7.1)

and the backward error is

η(Y ) = min { ‖E‖1/‖A‖1 : Y = f(A+ E) } . (2.7.2)

The backward error is difficult to compute exactly so we make a linearized approx-

imation of it, which is justified as we are interested in cases where η � 1. Our

approximation is based on the first-order expansion

Y = f(A+ E) ≈ f(A) + Lf (A,E), (2.7.3)

where Lf (A,E) is the Fréchet derivative of f at A in the direction E, which is equiv-

alent to

Kf (A) vec(E) ≈ vec(Y − f(A)), (2.7.4)
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where Kf (A) ∈ Cn2×n2
is the Kronecker form and vec(E) stacks the columns of E

vertically from first to last. Both the Fréchet derivative and Kronecker form were

defined in section 1.2. We approximate the backward error η(Y ) by the minimum 2-

norm solution of (2.7.4), where the Kronecker matrix (obtained using [57, Alg. 3.17])

and f(A) are computed, and the system solved, in 250 digit arithmetic using the

Symbolic Math Toolbox. A similar idea is used effectively by Deadman and Higham

in [29, Sec. 5] to compute linearized backward errors of functional identities.

Since we showed in Lemma 2.2.1 that all our algorithms are backward stable in ex-

act arithmetic we expect the relative error (2.7.1) to be bounded by a modest multiple

of cond(f, A)u, where the condition number cond(f, A) is defined in section 1.3.

Accurate values of cosA and sinA for use in (2.7.1) and (2.7.4) are generated in 250

digit arithmetic using the Symbolic Math Toolbox by adding a random perturbation of

norm 10−125 toA then diagonalizing it and taking the cosine (or sine) of the eigenvalues;

the perturbation ensures the eigenvalues are distinct so that the diagonalization is

always possible. This idea is based upon [27] and has been used successfully in [61],

we will also use this idea in chapters 3 and 5. The condition number of f is estimated

using the code funm condest1 from the Matrix Function Toolbox [51], [57, Alg. 3.20].

We test our new algorithms against the existing alternatives:

• cosm for cosA from [51], which implements an algorithm of Hargreaves and

Higham [46, Alg. 3.1], [57, Alg. 12.6].

• cosmsinm for cosA and sinA from [51], which implements an algorithm of Har-

greaves and Higham [46, Alg. 5.1], [57, Alg. 12.8].

• costay2 for cosA from Sastre et al. [95].

The first two algorithms use variable degree Padé approximants, while costay uses a

variable degree truncated Taylor series. None of these algorithms performs a Schur

decomposition of the input matrix or recomputes the diagonal blocks (as described in

section 2.3), and all are based on forward error analysis. We will perform comparisons

both with and without the initial Schur decomposition within our algorithms.

Our first three experiments are designed to test our new algorithms against the

aforementioned alternatives on full matrices. We denote our new algorithms by

2M-file retrieved from http://personales.upv.es/~jorsasma/costay.m on May 2, 2013.
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• cosm new: Algorithm 2.4.2,

• sinm new: Algorithm 2.5.2,

• cosmsinm new: Algorithm 2.6.2.

In each case we plot our results in a 4× 2 grid. Each plot in the (1, 1) position shows

the forward errors (2.7.1), with the new algorithm in transformation-free form, along

with an estimate of cond(f, A)u. The (1, 2) plot presents the same relative errors as

a performance profile [36], [49, Sec. 22.4], to which we apply the strategy from [35]

to avoid tiny relative errors skewing the results. The (2, 1) plot shows the backward

errors (2.7.2) and the (2, 2) plot is a performance profile for the backward error results.

The remaining four plots show the same results when we allow our new algorithms

to compute an initial Schur decomposition, allowing recomputation of the diagonal

blocks (section 2.3).

Our next experiment tests each algorithm on matrices that are already triangu-

lar: we precompute the Schur decomposition of each test matrix before sending the

triangular factor to the algorithms. This shows how well the algorithms exploit trian-

gularity. In some applications the original matrices are triangular; see, for example,

[107] in the case of the matrix exponential.

The final experiment compares the accuracy of cosm new and costay on a matrix

resulting from the semidiscretization of a nonlinear wave problem [40, Prob. 4]. We

compare the two algorithms for a range of discretization points, where the matrix

becomes more nonnormal (and hence the problem more difficult) as the resolution

increases.

2.7.1 Matrix cosine

Figure 2.7.1 shows the results for the matrix cosine. For the transformation-free case

of cosm new we see from the (1, 2) plot that costay was often the most accurate

algorithm, as shown by the α = 1 ordinate, but was less reliable than cosm new, as

shown by the relative position of the curves for α ≥ 2. Indeed not visible in the (1, 1)

plot is the relative error returned by costay for test matrix 4, which was � 1, as

opposed to 9e-8 and 3e-2 for cosm new and cosm, respectively. The condition number

of this problem was 4.8e9, so we would expect a forward error of order 10−7 from a
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forward stable algorithm. From the (2, 1) and (2, 2) plots we see that none of the

algorithms is always backward stable and that cosm new shows a small advantage over

costay. The largest backward errors were � 1, 2.1e1, and 1.4e-2 for costay, cosm,

and cosm new, respectively.

For the tests in which a Schur decomposition is used (the lower four plots) we

see an improvement in backward stability of cosm new at the expense of some slight

deterioration in the forward error.

The (1, 1) and (1, 2) plots of Figure 2.7.4 show the cost of each algorithm in multi-

ples of n3 flops using the transformation-free and Schur versions, respectively. We see

that the transformation-free version of cosm new is marginally more expensive than

costay and cosm in most cases but is significantly cheaper than the latter on occa-

sion. The Schur version has a relatively stable cost of around 32n3 flops, due to the

fixed overhead of the Schur decomposition, which could be advantageous for highly

oscillatory differential equations [106], where the matrices have large eigenvalues and

hence a heavy scaling may be needed, requiring a large number of matrix multipli-

cations. The precise criteria under which the Schur algorithm is cheaper than the

transformation-free version was explained at the end of section 2.4.

2.7.2 Matrix sine

For our second experiment, since there are no other algorithms dedicated to computing

the matrix sine, we compare sinm new against the use of costay to compute sinA =

cos(A − πI/2). Our comparison of these two algorithms is shown in Figure 2.7.2.

For the transformation-free algorithm we see that sinm new has significantly better

forward error and backward error performance. The use of the Schur decomposition

improves the forward stability of sinm new: the forward errors in the (3, 1) plot are

always within a factor 15 of the condition number times u as opposed to 186 for the

(1, 1) plot.

The cost of each algorithm is given in the (2, 1) and (2, 2) plots of Figure 2.7.4

for the transformation-free and Schur versions, respectively. In each case sinm new

is generally more expensive than costay, and using the Schur decomposition gives a

fairly stable cost of around 32n3 flops.
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2.7.3 Matrix cosine and sine

Our third experiment compares cosmsinm new to cosmsinm. For each test matrix

we show the largest of the two errors in evaluating the matrix cosine and sine: if a

particular test matrix results in backward or forward errors ec and es for the cosine and

sine respectively we plot max(ec, es). In the plots the quantity cond(f, A)u denotes

the larger of cond(cos, A)u and cond(sin, A)u. It is clear from Figure 2.7.3 that the

new algorithm has significantly better forward and backward error performance than

cosmsinm. Plots of the individual errors for the sine and cosine have similar forms.

The largest relative errors returned by cosmsinm were 2.9e2 and 1e3 for the matrix

cosine and sine, respectively, but only 1.5e-7 and 5e-7 for cosmsinm new.

Plots showing the cost of each algorithm, both avoiding and utilizing an initial

Schur decomposition, are given in the (3, 1) and (3, 2) positions of Figure 2.7.4, re-

spectively. We see that the transformation-free version of cosmsinm new is slightly

more expensive than cosmsinm, but allowing an initial Schur decomposition makes

our new algorithm cheaper in some of the test cases.

2.7.4 Triangular matrices

Figures 2.7.5–2.7.7 show the results of applying the algorithms to matrices that are

already (quasi)-triangular, obtained by taking the (real) Schur form of each matrix

before passing it to the competing algorithms. The new algorithms are greatly superior

to the existing ones in terms of both forward and backward error, often achieving

values of order u. By comparison with Figures 2.7.1–2.7.3 it is clear that the Schur

decomposition is a significant source of error in our algorithms.

The cost of the competing algorithms for triangular matrices is shown in Fig-

ure 2.7.8. In the majority of cases our new algorithms are more efficient than the

alternatives.
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2.7.5 Wave discretization problem

Our final experiment compares the forward errors of cosm new and costay when com-

puting the cosine of a matrix arising from the semidiscretization of the wave equa-

tion [40, Prob. 4]
∂2u

∂t2
− a(x)

∂2u

∂x2
+ αu = f(t, x, u), (2.7.5)

where x ∈ (0, 1), t > 0, and

f(t, x, u) = u5 − a(x)2u3 +
a(x)5

4
sin2(20t) cos(10t), a(x) = 4x(1− x). (2.7.6)

With Dirichlet boundary conditions the solution is u(x, t) = a(x) cos(10t). If we

perform a semidiscretization in the spatial variable with mesh size 1/n we obtain a

system of the form (2.1.3) with parametrized matrix

A = n2



2a(x1) −a(x1)

−a(x2) 2a(x2) −a(x2)
. . . . . . . . .

−a(xn−2) 2a(xn−2) −a(xn−2)

−a(xn−1) 2a(xn−1)


+ αI. (2.7.7)

This matrix becomes increasingly nonnormal as n grows. In the Frobenius norm the

departure from normality is measured as ‖T − diag(T )‖F , where T is the Schur factor

of A, and for n = 10, 50, 100, 200 the departure from normality was approximately 52,

770, 2200, and 6400, respectively.

In Figure 2.7.9 we show the forward errors of the two algorithms when computing

cosA for a range of n as α varies between 0 and 10. The results shown are for the

transformation-free version of cosm new; similar results were obtained using the Schur

decomposition. For n = 10, both algorithms behave in a forward stable manner, with

costay generally more accurate. As n increases cosm new becomes significantly more

accurate than costay, the latter showing signs of forward instability and having errors

varying much less smoothly with α.
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2.8 Evaluating rational approximants with the

Paterson–Stockmeyer method

It was mentioned in sections 2.4–2.6 that we can efficiently compute the rational

approximants cm and sm using the Paterson–Stockmeyer scheme [88]. Given a matrix

polynomial pm(X) =
∑m

k=0 akX
k we can write it in the form

pm(X) =
∑̀
k=0

gk(X)(Xτ )k, (2.8.1)

where τ = 1: m is some integer, ` = bm/τc, and

gk(X) =

aτk+τ−1X
τ−1 + · · ·+ aτkI, k = 0: `− 1,

amX
m−τ` + · · ·+ aτ`I, k = `.

(2.8.2)

From this it can be shown that the cost (in matrix multiplications) of evaluating the

polynomial, using Horner’s method for (2.8.1), is

τ + `− 1− φ(τ,m), (2.8.3)

where φ(τ,m) = 1 if τ divides m and is equal to 0 otherwise [57, pp. 73–74]. We can

find the optimal τ by minimizing the cost function (2.8.3) over τ = 1: m.

To apply this to the matrix cosine, we see that the rational approximations obtained

in section 2.2.2 are of the form

cm(x) =

∑m
k=0 akx

2k∑m
k=0 bkx

2k
, (2.8.4)

so the numerator and denominator of cm(x) are degree m polynomials in B = X2. If

we evaluate the denominator using the procedure above, reusing the same value of τ

for the numerator then the overall cost is

2
⌊m
τ

⌋
+ τ − 2φ(τ,m). (2.8.5)

The values π(cm(X)) in Table 2.4.1 were generated by minimizing (2.8.5) over τ = 1 :

m for each m.

To show that this Paterson–Stockmeyer scheme is more efficient than computing

the necessary powers of X explicitly we show the number of matrix multiplications

needed to compute cm(X) for some values of m between 1 and 21 using our scheme

and explicit powers in Table 2.8.1. A bound on the accuracy of these two evaluation

schemes (the same bound applies to both) can be found in [57, Thm. 4.5].
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Table 2.8.1: The number of matrix multiplications required to form cm(X) by explicit

computation of the powers and by the Paterson–Stockmeyer scheme, along with a

parameter τ that attains this cost for the latter.

m 1 2 3 4 6 8 10 12 15 18 21

Explicit powers 1 2 3 4 6 8 10 12 15 18 21

Paterson–Stockmeyer 1 2 3 4 5 6 7 8 9 10 11

τ 1 1 1 1 3 4 5 6 5 6 7
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Figure 2.7.1: The forward and backward errors of competing algorithms for the matrix

cosine, for full matrices. The first four plots are for the transformation-free version of

Algorithm 2.4.2, whereas for the remaining four plots an initial Schur decomposition

is used. The results are ordered by decreasing condition number.
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Figure 2.7.2: The forward and backward errors of competing algorithms for the matrix

sine, for full matrices. The first four plots are for the transformation-free version of

Algorithm 2.5.2, whereas for the remaining four plots an initial Schur decomposition

is used. The results are ordered by decreasing condition number.
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Figure 2.7.3: The maximum forward and backward errors of competing algorithms

for the matrix cosine and sine, for full matrices. The first four plots are for the

transformation-free version of Algorithm 2.6.2, while an initial Schur decomposition is

used for the lower four plots. The results are ordered by decreasing condition number.
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Figure 2.7.4: Cost plots for the experiments in sections 2.7.1, 2.7.2, and 2.7.3. The

first row shows the cost of computing the matrix cosine whilst the second and third

rows show the cost of computing the matrix sine and both functions together. The

left column corresponds to the transformation-free versions of our new algorithms,

whilst the right corresponds to an initial Schur decomposition. All plots are ordered

by decreasing cost of our new algorithms.
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Figure 2.7.5: Forward and backward errors of competing algorithms for the matrix

cosine for triangular matrices. The results are ordered by decreasing condition number.
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Figure 2.7.6: The forward and backward errors of competing algorithms for the matrix

sine for triangular matrices. The results are ordered by decreasing condition number.
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Figure 2.7.7: The maximum forward and backward errors of competing algorithms

for the matrix cosine and sine, for triangular matrices. The results are ordered by

decreasing condition number.
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Figure 2.7.8: Cost plots for all the algorithms run on triangular matrices. All plots

are ordered by decreasing cost of our new algorithms.



10
−10

10
−5

10
0

10
−14

10
−13

10
−12

α

R
el

. E
rr

.

Wave equation − n = 10

 

 

cosm_new
costay
cond(cos, A)u

10
−10

10
−5

10
0

10
−13

10
−12

10
−11

10
−10

α

R
el

. E
rr

.

Wave equation − n = 50

 

 

cosm_new
costay
cond(cos, A)u

10
−10

10
−5

10
0

10
−12

10
−11

10
−10

α

R
el

. E
rr

.

Wave equation − n = 100

 

 

cosm_new
costay
cond(cos, A)u

10
−10

10
−5

10
0

10
−11

10
−10

10
−9

α

R
el

. E
rr

.

Wave equation − n = 200

 

 

cosm_new
costay
cond(cos, A)u

Figure 2.7.9: Forward errors of cosm new and costay for the matrix (2.7.7) that arises

from the semidiscretization of a nonlinear wave equation with parameter α. The matrix

becomes increasingly nonnormal as n increases.



Chapter 3

Algorithms for the Matrix

Logarithm, its Fréchet Derivative,

and Condition Number

3.1 Introduction

A logarithm of A ∈ Cn×n is a matrix X such that eX = A. When A has no eigenvalues

on R−, the closed negative real line, there is a unique logarithm X whose eigenvalues

lie in the strip { z : −π < Im(z) < π } [57, Thm. 1.31]. This is the principal logarithm

denoted by log(A). Under the same assumptions on A, there is a unique matrix X sat-

isfying X2 = A that has all its eigenvalues in the open right half-plane [57, Thm. 1.29].

This is the principal square root of A, denoted by A1/2.

An excellent method for evaluating the matrix logarithm is the inverse scaling

and squaring method proposed by Kenney and Laub [73], which uses the relation-

ship log(A) = 2s log(A1/2s) together with a Padé approximant of log(A1/2s). This

method has been developed by several authors, including Dieci, Morini, and Papini

[33], Cardoso and Silva Leite [21], Cheng, Higham, Kenney, and Laub [23], and Higham

[57, Sec. 11.5]. Most recently, Al-Mohy and Higham [6] developed backward error anal-

ysis for the method and obtained a Schur decomposition-based algorithm that is faster

and more accurate than previous inverse scaling and squaring algorithms.

This chapter has three main aims: to develop a version of the algorithm of Al-

Mohy and Higham [6] that works with the real Schur decomposition when A is real,
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to extend both versions of the algorithm to compute the Fréchet derivative, and to

develop an integrated algorithm that first computes log(A) and then computes one

or more Fréchet derivatives with appropriate reuse of information—in particular, to

allow efficient estimation of the condition number of the logarithm.

We recall that the Fréchet derivative, Kronecker form, and condition number were

defined in sections 1.2 and 1.3. Throughout this chapter, unless otherwise specified,

‖ · ‖ can refer to any subordinate matrix norm and cond(f, A) represents the relative

condition number (1.3.2).

The rest of this chapter is organized as follows. In section 3.2 we describe the

outline of our algorithm for computing the Fréchet derivative of the matrix logarithm.

We derive backward error bounds in section 3.3 and use them to choose the algorithmic

parameters. Estimation of the condition number is discussed in section 3.4 and detailed

algorithms are then given in section 3.5 for the complex case and section 3.6 for the

real case. We compare our algorithms to current alternatives theoretically in section

3.7 before performing numerical experiments in section 3.8.

3.2 Basic algorithm

We begin by deriving the basic structure of an algorithm for approximating the Fréchet

derivative of the logarithm. The idea is to Fréchet-differentiate the inverse scaling and

squaring approximation log(A) ≈ 2srm(A1/2s − I), where rm(x) is the [m/m] Padé

approximant to log(1 + x), following the computational framework suggested in [3],

[58, Sec. 7.4].

We will need two tools: the chain rule for Fréchet derivatives, Lf◦g(A,E) =

Lf (g(A), Lg(A,E)) [57, Thm. 3.4] and the inverse function relation for Fréchet deriva-

tives Lf (X,Lf−1(f(X), E)) = E [57, Thm. 3.5].

Applying the inverse function relation to f(x) = x2, for which Lx2(A,E) = AE +

EA, we see that L = Lx1/2(A,E) satisfies A1/2L + LA1/2 = E. Furthermore using

the chain rule on the identity log(A) = 2 log(A1/2) gives Llog(A,E) = 2Llog(A
1/2, E1)

where E1 = Lx1/2(A,E). Repeated use of these two results yields Llog(A,E) =

2sLlog(A
1/2s , Es) where E0 = E and

A1/2iEi + EiA
1/2i = Ei−1, i = 1: s. (3.2.1)
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For suitably chosen s and m we then approximate Llog(A,E) ≈ 2sLrm(A1/2s − I, Es).

The following outline algorithm will be refined in the subsequent sections.

Algorithm 3.2.1. Given A ∈ Cn×n with no eigenvalues on R−, E ∈ Cn×n, and

nonnegative integers s and m, this algorithm approximates log(A) and the Fréchet

derivative Llog(A,E).

1 E0 = E

2 for i = 1: s

3 Compute A1/2i .

4 Solve the Sylvester equation A1/2iEi + EiA
1/2i = Ei−1 for Ei.

5 end

6 log(A) ≈ 2srm(A1/2s − I)

7 Llog(A,E) ≈ 2sLrm(A1/2s − I, Es)

Higham [54] showed that among the various alternative representations of rm, the

partial fraction form given by

rm(X) =
m∑
j=1

α
(m)
j (I + β

(m)
j X)−1X, (3.2.2)

where α
(m)
j , β

(m)
j ∈ (0, 1) are the weights and nodes of the m-point Gauss–Legendre

quadrature rule on [0, 1] respectively, provides the best balance between efficiency and

numerical stability. To calculate the Fréchet derivative Lrm we differentiate (3.2.2)

using the product rule. Recalling that Lx−1(X,E) = −X−1EX−1 we obtain

Lrm(X,E) =
m∑
j=1

α
(m)
j (I + β

(m)
j X)−1E − α(m)

j β
(m)
j (I + β

(m)
j X)−1E(I + β

(m)
j X)−1X

=
m∑
j=1

(
α
(m)
j (I + β

(m)
j X)−1E

)(
I − β(m)

j (I + β
(m)
j X)−1X

)
=

m∑
j=1

α
(m)
j (I + β

(m)
j X)−1E(I + β

(m)
j X)−1. (3.2.3)

3.3 Backward error analysis

We now develop a backward error result for the approximation errors in lines 6 and

7 of Algorithm 3.2.1. Define the function h2m+1 : Cn×n 7→ Cn×n by h2m+1(X) =
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Table 3.3.1: Maximal values θm of αp(X) such that the bound in (3.3.2) for ‖∆X‖/‖X‖

does not exceed u.

m 1 2 3 4 5 6 7 8

θm 1.59e-5 2.31e-3 1.94e-2 6.21e-2 1.28e-1 2.06e-1 2.88e-1 3.67e-1

m 9 10 11 12 13 14 15 16

θm 4.39e-1 5.03e-1 5.60e-1 6.09e-1 6.52e-1 6.89e-1 7.21e-1 7.49e-1

erm(X) −X − I, which has the power series expansion [6]

h2m+1(X) =
∞∑

k=2m+1

ckX
k. (3.3.1)

We need the following backward error bound from [6, Thm. 2.2] for the approximation

of the logarithm. In the following ρ denotes the spectral radius.

Theorem 3.3.1. If X ∈ Cn×n satisfies ρ(rm(X)) < π then rm(X) = log(I+X+∆X),

where, for any p ≥ 1 satisfying 2m+ 1 ≥ p(p− 1),

‖∆X‖
‖X‖

≤
∞∑

k=2m+1

|ck|αp(X)k−1, (3.3.2)

for αp(X) = max(‖Xp‖1/p, ‖Xp+1‖1/(p+1)). Furthermore, ∆X = h2m+1(X).

The αp(X) values were first introduced and exploited in [4]. We recall that αp(X) ≤

‖X‖ and that αp(X)� ‖X‖ is possible for very nonnormal X, so that bounds based

upon αp(X) are potentially much sharper than bounds based solely on ‖X‖.

Values of θm := max{ t :
∑∞

k=2m+1 |ck|tk−1 ≤ u }, where u = 2−53 ≈ 1.1 × 10−16

is the unit roundoff for IEEE double precision arithmetic, were determined in [6] for

m = 1: 16 and are shown in Table 3.3.1. It is shown in [6] that ρ(X) < 0.91 implies

ρ(rm(X)) < π. Since we will need αp(X) ≤ θ16 = 0.749 and as ρ(X) ≤ αp(X) for all p,

the condition ρ(rm(X)) < π in Theorem 3.3.1 is not a practical restriction. Now we

give a backward error result for the Fréchet derivative computed via Algorithm 3.2.1.

Theorem 3.3.2. If X ∈ Cn×n satisfies ρ(rm(X)) < π then

Lrm(X,E) = Llog(I +X +∆X,E +∆E), (3.3.3)

where ∆X = h2m+1(X) and ∆E = Lh2m+1(X,E).
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Proof. From Theorem 3.3.1 we know that rm(X) = log(I + X + ∆X) with ∆X =

h2m+1(X). Using the chain rule we obtain

Lrm(X,E) = Llog

(
I +X + h2m+1(X), E + Lh2m+1(X,E)

)
=: Llog(I +X +∆X,E +∆E).

Note that Theorems 3.3.1 and 3.3.2 show that rm(X) = log(I + X + ∆X) and

Lrm(X,E) = Llog(I + X + ∆X,E + ∆E) with the same ∆X, so we have a single

backward error result encompassing both rm and Lrm . It remains for us to bound

‖∆E‖, which can be done using the following lemma [57, Prob. 3.6], [73].

Lemma 3.3.3. Suppose f has the power series expansion f(x) =
∑∞

k=1 akx
k with

radius of convergence r. Then for X,E ∈ Cn×n with ‖X‖ < r,

Lf (X,E) =
∞∑
k=1

ak

k∑
j=1

Xj−1EXk−j. (3.3.4)

We would like to use Lemma 3.3.3 with f = h2m+1 to obtain a bound similar to

(3.3.2) in terms of αp(X). Unfortunately this is impossible when X and E do not

commute (which must be assumed, since we do not wish to restrict E). To see why,

note that the sum in (3.3.4) contains terms akX
j−1EXk−j, for j = 1: k. The next

lemma implies that ‖X‖, for example, is always a factor in the norm of one of these

terms for some E, which means that a bound for ‖∆E‖ in terms of αp(X) cannot be

obtained.

Lemma 3.3.4. For A,B,E ∈ Cn×n, and some subordinate matrix norm ‖ ·‖, we have

‖AEB‖ ≤ ‖A‖‖E‖‖B‖ and furthermore the bound is attained for a rank-1 matrix E.

Proof. Only the attainability of the bound is in question. Using properties of the norm

‖ · ‖D dual to ‖ · ‖ [55, Sec. 6.1, Probs. 6.2, 6.3] it is straightforward to show that the

bound is attained for E = xy∗, where ‖Ax‖ = ‖A‖‖x‖ and ‖B∗y‖D = ‖B∗‖D‖y‖D.

Instead of trying to bound ‖∆E‖ in terms of αp(X), we take norms in (3.3.4) with

f = h2m+1 (see (3.3.1)) to obtain

‖∆E‖
‖E‖

≤
∞∑

k=2m+1

k |ck|‖X‖k−1. (3.3.5)
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Table 3.3.2: Maximal values βm of ‖X‖ such that the bound in (3.3.5) for ‖∆E‖/‖E‖

does not exceed u, and the values of µm.

m 1 2 3 4 5 6 7 8

βm 2.11e-8 2.51e-4 5.93e-3 2.89e-2 7.39e-2 1.36e-1 2.08e-1 2.81e-1

µm 4.00e0 6.00e0 8.06e0 1.03e1 1.27e1 1.54e1 1.85e1 2.20e1

12 13 14 15 16

βm 3.52e-1 4.17e-1 4.77e-1 5.30e-1 5.77e-1 6.18e-1 6.54e-1 6.86e-1

µm 2.59e1 3.02e1 3.49e1 4.00e1 4.56e1 5.15e1 5.79e1 6.48e1

Define βm = max
{
θ :
∑∞

k=2m+1 k|ck|θk−1 ≤ u
}

, so that ‖X‖ ≤ βm implies that

‖∆E‖/‖E‖ ≤ u. Table 3.3.2 shows the values of βm, calculated using the Symbolic

Math Toolbox for MATLAB. In each case we have βm < θm, as is immediate from

the definitions of βm and θm.

It is possible to obtain unified bounds for ‖∆X‖ and ‖∆E‖ in terms of αp(X) if

we change the norm. For αp(X) < 1 there exists ε > 0 and a matrix norm ‖ · ‖ε such

that

‖X‖ε ≤ ρ(X) + ε ≤ αp(X) + ε < 1.

Taking norms in (3.3.1) using ‖ · ‖ε and taking ‖ · ‖ = ‖ · ‖ε in (3.3.5) we obtain

‖∆X‖ε
‖X‖ε

≤
∞∑

k=2m+1

|ck|
(
αp(X) + ε

)k−1
,
‖∆E‖ε
‖E‖ε

≤
∞∑

k=2m+1

k |ck|
(
αp(X) + ε

)k−1
.

Unfortunately the norm ‖ · ‖ε is badly scaled if ε is small so these bounds are difficult

to interpret in practice.

We will build our algorithm for computing the logarithm and its derivative on

the condition αp(X) ≤ θm that ensures that ‖∆X‖/‖X‖ ≤ u. The bound (3.3.5) for

‖∆E‖/‖E‖ is generally larger than u due to (a) ‖X‖ exceeding αp(X) by a factor that

can be arbitrarily large and (b) the extra factor k in (3.3.5) compared with (3.3.2).

The effect of (b) can be bounded as follows. Suppose we take ‖X‖ ≤ θm, and define

µm by

µm =
1

u

∞∑
k=2m+1

k|ck|θk−1m . (3.3.6)

Then ‖X‖ ≤ θm implies that ‖∆E‖/‖E‖ ≤ µmu. Table 3.3.2 gives the values of µm,

which we see are of modest size and increase slowly with m. The algorithm of [6]
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normally chooses a Padé approximant of degree m = 6 or 7, for which we have the

reasonable bound ‖∆E‖/‖E‖ ≤ 18.5u.

Since our main use of the Fréchet derivative is for condition number estimation,

for which only order of magnitude estimates are required, it is reasonable to allow

this more liberal bounding on the backward error ∆E. We will see in the numerical

experiments of section 3.8 that in fact our algorithm gives very accurate estimates of

the Fréchet derivative in practice.

3.4 Condition number estimation

We will estimate the 1-norm condition number of the matrix logarithm via the proce-

dure outlined in section 1.3. This will involve computing the Fréchet derivative for a

fixed A in multiple directions E, where the E matrices are not known prior to running

the algorithm.

To maximize the computational efficiency of this process we will store certain

matrices appearing during the computation of log(A) for reuse in the Fréchet derivative

computations. This assumes the availability of sufficiently large storage on the machine

running the algorithm; in modern computing environments there is usually ample

storage.

From Algorithm 3.2.1 we see that it would be beneficial to store the square roots

A1/2i (or T 1/2i after the initial Schur decomposition) for i = 1: s with which we solve

a series of Sylvester equations.

In the next two sections we give algorithms that compute log(A) and one or more

Fréchet derivatives Llog(A,E) and L?log(A,E), making appropriate reuse of information

from the logarithm computation in the calculation of the Fréchet derivatives.

3.5 Complex algorithm

We now give an algorithm to compute the matrix logarithm and one or more Fréchet

derivatives and adjoints of Fréchet derivatives using complex arithmetic, building on

Algorithm 3.2.1. As in [6] and [57, Alg. 11.9] we begin with a reduction to Schur

form A = QTQ∗ (Q unitary, T upper triangular), because working with a triangular
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matrix leads to a generally smaller operation count and better accuracy. We will use

the relation Llog(A,E) = QLlog(T,Q
∗EQ)Q∗ [57, Prob. 3.2]. Our algorithm employs

the inverse scaling and squaring algorithm in [6, Alg. 4.1] and reduces to it if all the

lines associated with the Fréchet derivative are removed.

Algorithm 3.5.1. Given A ∈ Cn×n with no eigenvalues on R− and one or more

E ∈ Cn×n this algorithm computes the principal matrix logarithm X = log(A) and

either of the Fréchet derivatives Llog(A,E) and L?log(A,E).

1 Compute a complex Schur decomposition A = QTQ∗.

2 T0 = T

3 Determine the integers s and m ∈ [1, 7] as in [6, Alg. 4.1], at the same time

computing (and storing, if Fréchet derivatives are required) the matrices

Tk+1 = T
1/2
k , k = 0: s− 1 using the recurrence of [18], [57, Alg. 6.3].

4 R = Ts − I

5 Replace the diagonal and first superdiagonal of R by the diagonal and

first superdiagonal of T
1/2s

0 − I computed via [2, Alg. 2] and [60, (5.6)],

respectively.

6 X = 0

7 for i = 1:m

8 Solve (I + β
(m)
j R)U = α

(m)
j R for U by substitution.

9 X ← X + U

10 end

11 X ← 2sX

12 Replace diag(X) by log(diag(T0)) and the elements of the first

superdiagonal of X with those given by [57, (11.28)] taking T = T0.

13 X ← QXQ∗

14 . . . To compute Llog(A,E) for a given E:

15 E0 = Q∗EQ

16 for i = 1: s

17 Solve the Sylvester equation TiEi + EiTi = Ei−1

for Ei by substitution.

18 end
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19 L = 0

20 for j = 1:m

21 Compute Y = α
(m)
j (I + β

(m)
j R)−1Es(I + β

(m)
j R)−1 by substitution.

22 L← L+ Y

23 end

24 L← 2sQLQ∗

25 . . . To compute L?log(A,E) for a given E:

26 Execute lines 15–24 with E replaced by E∗ and take the

conjugate transpose of the result.

Cost: 25n3 flops for the Schur decomposition plus (3 + (s + m)/3)n3 flops for X

and (8 + 2(s+m))n3 flops for each Fréchet derivative evaluation.

3.6 Real algorithm

If A and E are real and A has no eigenvalues on R− then both log(A) and Llog(A,E)

will be real. To avoid complex arithmetic we can modify Algorithm 3.5.1 to use a

real Schur decomposition A = QTQT , where Q is orthogonal and T is upper quasi-

triangular, that is, block upper triangular with diagonal blocks of dimension 1 or 2.

The use of real arithmetic increases the efficiency of the algorithm, since a complex

elementary operation has the same cost as two or more real elementary operations. It

also avoids the result being contaminated by small imaginary parts due to rounding

error and halves the required intermediate storage.

The main difference from Algorithm 3.5.1 is that since T is now upper quasi-

triangular it is more complicated to replace the diagonal and superdiagonal elements

of the shifted square root and final log(T ) with more accurately computed ones.

Consider first the computation of T 1/2s − I. To avoid cancellation we recompute

the 1 × 1 diagonal blocks using [2, Alg. 2] and the 2 × 2 blocks using [6, Alg. 5.1],

modified to use the recurrence of [52] for the square roots. We also recompute every

superdiagonal (i, i + 1) element for which the (i, i) and (i + 1, i + 1) elements are in

1× 1 blocks using [60, (5.6)].

As in the complex version of the algorithm, it is desirable to replace the diagonal

blocks of the computed log(T ) with more accurately computed ones. When the real

73



Schur decomposition is computed using dgees from LAPACK [11], as in MATLAB,

the 2× 2 diagonal blocks are of the form

B =

[
a b

c a

]
,

where bc < 0 and B has eigenvalues λ± = a ± i(−bc)1/2. Let θ = arg(λ+) ∈ (−π, π).

Using the polynomial interpolation definition of a matrix function [57, Def. 1.4] we

can derive the formula

log(B) =

log(a2 − bc)/2 θb(−bc)−1/2

θc(−bc)−1/2 log(a2 − bc)/2

 , (3.6.1)

which can also be obtained by specializing a formula in [33, Lem. 3.3]. Since bc < 0,

(3.6.1) involves no subtractive cancellation; so long as we can compute the scalar

logarithm and the argument θ accurately we will obtain log(B) to high componentwise

accuracy.

Algorithm 3.6.1. Given A ∈ Rn×n with no eigenvalues on R− and one or more

E ∈ Rn×n this algorithm computes the principal matrix logarithm X = log(A) and

either of the Fréchet derivatives Llog(A,E) and L?log(A,E), using only real arithmetic.

1 Compute a real Schur decomposition A = QTQT .

2 T0 = T

3 Determine the integers s and m ∈ [1, 7] as in [6, Alg. 4.1], at the same time

computing (and storing, if Fréchet derivatives are required) the matrices

Tk+1 = T
1/2
k , k = 0: s− 1 using the recurrence of [52], [57, Alg. 6.7].

4 R = Ts − I

5 Replace the diagonal blocks of R by the diagonal blocks of T
1/2s

0 − I

computed by [2, Alg. 2] for the 1× 1 blocks and [6, Alg. 5.1]

(with square roots computed by [57, (6.9)]) for the 2× 2 blocks.

6 For every i for which tii and ti+1,i+1 are in 1× 1 diagonal blocks,

recompute ri,i+1 using [60, (5.6)].

7 Evaluate X = 2srm(R) as in lines 6–11 of Algorithm 3.5.1.

8 Recompute the block diagonal of X using (3.6.1) for the 2× 2 blocks of T0 and

as log((T0)ii) for the 1× 1 blocks.

9 For every i for which xii and xi+1,i+1 are in 1× 1 diagonal blocks,
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recompute xi,i+1 using [57, (11.28)].

10 X ← QXQT

11 . . . To compute Llog(A,E) or L?log(A,E) for a given E,

execute lines 15–24 or line 26 of Algorithm 3.5.1.

The cost of this algorithm is essentially the same as Algorithm 3.5.1, except that

the flops are now operations on real (as opposed to complex) operands.

3.7 Comparison with existing methods

In this section we give a comparison between our algorithms and those currently in

the literature for computing the matrix logarithm and its Fréchet derivatives, con-

centrating mainly on computational cost. Section 3.8 contains a variety of numerical

experiments comparing the accuracy of the algorithms empirically.

3.7.1 Methods to compute the logarithm

We have obtained a new algorithm for computing the logarithm of a real matrix

(Algorithm 3.6.1). The relevant comparison is between the following three methods.

• iss schur complex: the complex Schur decomposition-based Algorithm 3.5.1,

which is equivalent to [6, Alg. 4.1] when just the logarithm is required.

• iss schur real: our real Schur decomposition-based Algorithm 3.6.1, which is

the real analogue of iss schur complex.

• iss noschur: the transformation-free inverse scaling and squaring algorithm

[6, Alg. 5.2] that requires only matrix multiplications and the solution of multiple-

right-hand side linear systems. This algorithm uses only real arithmetic when A

is real.

In general, iss noschur is much more expensive than iss schur real. For exam-

ple, if s = 3 and m = 7 in both iss schur real and iss noschur and if iss noschur

requires five iterations (a typical average) to compute each square root (for which it

uses a Newton iteration) then the operation counts are approximately 31n3 flops for

iss schur real and 79n3 flops for iss noschur.
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It is worth noting that there is no real arithmetic version of the Schur–Parlett

algorithm that underlies the MATLAB function logm, since the real Schur form is

incompatible with the blocking requirements of the block Parlett recurrence [28],

[57, Sec. 9.4].

3.7.2 Methods to compute the Fréchet derivative

We now compare our algorithms iss schur complex and iss schur real to existing

methods for computing the Fréchet derivative.

Kenney and Laub give an algorithm based on a special Kronecker representation of

Llog that solves Sylvester equations and employs a Padé approximant to the function

tanh(x)/x [74], [57, Alg. 11.12]. We will refer to this as the Kronecker–Sylvester

algorithm. The minimum cost of this algorithm per Fréchet derivative, assuming a

Schur decomposition is used and that s is such that ‖I − T 1/2s‖1 ≤ 0.63, is the cost of

solving s+9 triangular Sylvester equations and computing 16 products of a triangular

matrix with a full matrix. This is to be compared with a smaller maximum cost for

iss schur complex and iss schur real of s triangular Sylvester equations and 2m

(≤ 14) multiple-right-hand side triangular substitutions. Moreover, the value of s for

iss schur complex and iss schur real is generally smaller and potentially much

smaller than for the Kronecker–Sylvester algorithm, and the latter always requires

complex arithmetic, even when A and E are real.

Another method, which we denote by dbl size, evaluates the left-hand side of the

formula

log

A E

0 A

 =

log(A) Llog(A,E)

0 log(A)

 , (3.7.1)

from [57, (3.16)], by iss schur real (or iss schur complex when A or E is com-

plex). This method has the disadvantages that it doubles the problem size and that

the entire logarithm of the block matrix must be re-evaluated if we require further

Fréchet derivatives, greatly increasing the cost of this method. On the other hand,

the backward error analysis of [6] fully applies, giving a sharper backward error bound

than (3.3.5) for the Fréchet derivative. However, backward error is now measured with

respect to the matrix [ A E
0 A ] rather than A and E separately. Moreover, it is unclear

how to scale E: its norm is arbitrary because Llog is linear in its second argument, but
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the size of ‖E‖ affects both the accuracy and the cost of the inverse scaling and squar-

ing method. One natural approach is to scale such that ‖E‖ = ‖A‖ before computing

Lf (A,E) and undoing this scaling afterwards. This tends to avoid numerical errors

caused by manipulating floating point numbers with large differences in magnitude.

For simplicity we have left E unscaled in our tests since the chosen A and E already

have norms of comparable size.

We mention two other methods. Dieci, Morini, and Papini [33] propose using the

inverse scaling and squaring approach with adaptive Simpson’s rule applied to the

integral Llog(A,E) =
∫ 1

0
((A− I)t+ I)−1E((A− I)t+ I)−1 dt. Since we are interested

in computing Llog to full precision the tolerance for the quadrature rule needs to be

set to order u, and this makes the method prohibitively expensive, as each function

evaluation requires two multiple-right-hand side solves. As noted in [33], this method

is more appropriate when only low accuracy is required, so we will test it only for

condition number estimation.

We also mention the complex step approximation Llog(A,E) ≈ Im log(A+ ihE)/h

suggested by Al-Mohy and Higham [5], which is valid for real A and E and has error

O(h2); unlike finite difference approximations it does not suffer from inherent cancel-

lation, so h can be taken very small. Since the argument A+ ihE of the logarithm is

complex we must use Algorithm 3.5.1 for the evaluation. As noted in [5], this approx-

imation is likely to suffer from numerical instability if used with an algorithm that

intrinsically employs complex arithmetic such as Algorithm 3.5.1. This is indeed what

we observed, with relative errors of order at best 10−7, so we will not consider this

approach further.

3.8 Numerical experiments

Our numerical experiments are performed in either MATLAB R2012a or Fortran in

IEEE double precision arithmetic. Throughout the experiments we use a set of 66

(mostly 10 × 10) test matrices, extending those used in [6] and [57, Sec. 11.7] which

include matrices from the literature, the MATLAB gallery function, and the Matrix

Computation Toolbox [50].

77



0 10 20 30 40 50 60
10

−18

10
−16

10
−14

10
−12

10
−10

 

 

iss_schur_real

iss_schur_complex

iss_noschur

cond(log,A)u

Figure 3.8.1: Normwise relative errors in computing the logarithm.
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Figure 3.8.2: Performance profile for the data in Figure 3.8.1.

3.8.1 Real versus complex arithmetic for evaluating the log-

arithm

Our first experiment compares, on the 60 real matrices in the test set, the three

algorithms defined in section 3.7.1. The matrices are used in real Schur form. We

compute all relative errors in the 1-norm and for our “exact” logarithm we diagonalize

A in 250-digit precision, using the Symbolic Math Toolbox, and use the relationship

log(A) = V log(D)V −1 where A = V DV −1, rounding the result to double precision.

If A is not diagonalizable then we add a small random perturbation of order 10−125 so

that with high probability we can diagonalize it without affecting the accuracy of the

final rounded solution [27].
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Figure 3.8.3: Performance profile for the accuracy of the logarithm algorithms on full

matrices.

Figure 3.8.1 shows the normwise relative errors, with the problems ordered by

decreasing condition number. The solid line denotes cond(log, A)u (with ‖Llog(A)‖1
approximated by ‖Klog(A)‖1). Figure 3.8.2 shows the same data in the form of a

performance profile [36], [49, Sec. 22.4], for which we use the transformation in [35] to

lessen the influence of tiny relative errors.

The results show that iss schur complex and iss schur real are both signifi-

cantly more accurate than iss noschur (as also shown in [6] for iss schur complex)

and that iss noschur is often a little unstable (by which we mean errors exceed

n cond(log, A)u, say). Moreover, iss schur real outperforms iss schur complex,

showing that treating real matrices in real arithmetic benefits accuracy.

We repeated the experiments on full matrices and found that iss schur real

is again the most accurate algorithm overall but that iss noschur is now much

more competitive with iss schur real and iss schur complex. The performance

profile is given in Figure 3.8.3. The reason for the improved relative performance

of iss noschur is that rounding errors during the reduction to Schur form within

iss schur complex and iss schur real tend to lead to larger errors for these algo-

rithms than in the quasi-triangular case above.

Next, we compare the run times of Fortran implementations of iss schur real

and iss schur complex to quantify the speed benefits of using real versus complex
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Table 3.8.1: Run times in seconds for Fortran implementations of iss schur real

and iss schur complex on random, full n× n matrices.

n 10 50 100 500 1000 2000

real 1e-3 6e-3 4e-2 1.55 9.22 65.53

complex 2e-3 1.1e-2 7.3e-2 3.6 21.59 147

ratio: complex/real 2.0 1.8 1.8 2.3 2.3 2.2

arithmetic. Square roots of (quasi-) triangular matrices are required in both algo-

rithms, and since this operation is not one of the BLAS [19] it must be coded spe-

cially. A straightforward implementation using nested loops does not provide good

performance, so a blocked algorithm described by Deadman, Higham, and Ralha [30]

is used that yields a much more efficient implementation rich in matrix multiplication.

Similarly, triangular Sylvester equations are solved using the recursive algorithm of

Jonsson and K̊agström [71].

Table 3.8.1 reports timings for the Fortran implementations compiled by gfortran

linking to ACML BLAS, using the blocked square root algorithm described above and

run on a quad-core Intel Xeon 64 bit machine. The tests were performed on full,

random matrices with elements selected from the uniform [0, 1) distribution. We see

that iss schur real is around twice as fast as iss schur complex for all n, which is

consistent with the counts of real arithmetic operations (see section 3.6).

3.8.2 Fréchet derivative evaluation

We now test our algorithms against the alternatives mentioned in section 3.7.2 for com-

puting Fréchet derivatives. The matrices are in real or complex Schur form according

as the original matrix is real or complex. We define iss schur to be the algorithm

that invokes Algorithm 3.6.1 when A is real and otherwise invokes Algorithm 3.5.1.

In each test we take for E, the direction in which to calculate the Fréchet derivative,

a random real matrix with normal (0, 1) distributed elements.

In other experiments not reported here we took E to be a matrix such that

‖A2m+1E‖1 = ‖A2m+1‖1‖E‖1 in an attempt to maximize the gap between the true
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Figure 3.8.4: Normwise relative errors in computing Llog(A,E).

backward error ‖∆E‖/‖E‖ and its upper bound in (3.3.5). We obtained similar re-

sults to those presented.

Figure 3.8.4 shows the relative errors of the Fréchet derivatives computed with the

methods described in section 3.7.2. Here, kron sylv denotes the implementation of the

algorithm of Kenney and Laub [74], [57, Alg. 11.12] in the Matrix Function Toolbox [51]

(named logm_frechet_pade there), and kron sylv mod denotes a modification of it in

which calls to logm are replaced by calls to the more accurate iss schur complex. The

values are ordered by descending condition number cond(Llog, A), where, analogously

to [3], we estimate cond(Llog, A) with finite differences, by taking (1.3.2) with f ←

Llog and a random direction E of norm 10−8, employing the Kronecker form of the

derivative.1 In Figure 3.8.5 we present the same data as a performance profile.

The relative errors in Figure 3.8.4 show that the algorithms all performed very

stably. We see from Figure 3.8.5 that the two most accurate methods for Fréchet

derivative computation are iss schur and dbl size. Figure 3.8.5 also shows that

using the more accurate logarithm evaluation in kron sylv mod produces a slight

improvement in accuracy over kron sylv.

Testing with full matrices we obtain similar results, although most relative errors

are now within an order of magnitude of cond(Llog, A). The associated performance

profile is shown in Figure 3.8.6. The much tighter grouping of the algorithms is again

due to the relative errors introduced by the Schur reduction.

1In chapter 5 we design a method of estimating cond(Llog, A) more reliably.
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Figure 3.8.5: Performance profile for the data in Figure 3.8.4.
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matrices.



3.8.3 Condition number estimation

We now consider the estimation of ‖Klog(A)‖1, which is the key quantity needed to

estimate cond(log, A) (see Lemma (1.3.1)). We obtain the exact value by explicitly

computing the n2 × n2 matrix Klog(A) via [57, Alg. 3.17] and taking its 1-norm. The

matrices are in real or complex Schur form.

We use Algorithm 1.3.2 with three different methods for computing the Fréchet

derivatives. The first is our new algorithm, iss schur (again denoting the use of

Algorithm 3.5.1 or Algorithm 3.6.1 as appropriate). The second is a general purpose

method based on finite differences, as implemented in the code funm condest1 from

the Matrix Function Toolbox [51]. The last method, denoted integral, is the quadra-

ture method of [33] described in section 3.7.2, used with quadrature tolerance 10−10.

We do not test dbl size or kron sylv within Algorithm 1.3.2, as these algorithms are

substantially more expensive than iss schur (see section 3.7) and no more accurate

(as shown in the previous subsection).

In Figure 3.8.7 we plot the ratios of the estimated condition numbers to the accu-

rately computed ones, sorted by decreasing condition number. These underestimation

ratios should be less than or equal to 1 as we use the 1-norm power method to estimate

‖Klog(A)‖1. From these ratios we see that while the funm condest1 and integral

methods provide good estimates for most of the well conditioned problems, they pro-

duce estimates many orders of magnitude too small for some of the more ill conditioned

problems. On the other hand, iss schur gives excellent estimates that are at worst a

factor 0.47 smaller than the true value, making it the clear winner.

The unreliability of funm_condest1 can be attributed to the presence of the poten-

tially very large term ‖ log(A)‖1 in the steplength formula used for the finite differences

[57, (3.23)]. It is not clear whether a different choice of finite difference steplength lead-

ing to better results can be derived.

Estimating the condition number using Algorithm 1.3.2 with t = 2, as in our

algorithms, requires around 8 Fréchet derivative evaluations. With the mean s and

m found to be 4 and 6 respectively in our tests, the cost of computing the logarithm

and estimating its condition number via our algorithms is around 8 times that of the

logarithm alone. By reducing t in the block 1-norm estimation algorithm to 1, this

can be lowered to 4 times the cost at the risk of lower reliability.
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Chapter 4

Higher Order Fréchet Derivatives

of Matrix Functions and the

Level-2 Condition Number

4.1 Introduction

When performing numerical computations it is often helpful to return the condition

number of the problem, allowing the user to assess the accuracy of the computed solu-

tion. In this chapter we will refer to the condition numbers condabs and condrel, defined

by equations (1.3.1) and (1.3.2) respectively, as level-1 condition numbers. Since the

estimation of the condition number is itself subject to rounding errors it is important

to know the condition number of the condition number, which we call the level-2 con-

dition number. It has been shown by Demmel [31, Sec. 7] for matrix inversion, the

eigenproblem, polynomial zero-finding, and pole assignment in linear control problems

that the level-1 and level-2 (relative) condition numbers are equivalent; for matrix

inversion D. J. Higham [48] obtains explicit constants in the equivalence. Cheung

and Cucker [24] also derive tight bounds on the level-2 (relative) condition number

for a class of functions that includes the matrix inverse. One purpose of our work in

this chapter is to investigate the connection between the level-1 and level-2 (absolute)

condition numbers of general matrix functions.

The level-2 condition number is intimately connected with the second Fréchet

derivative. There is little or no literature on higher Fréchet derivatives of matrix
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functions. Another goal of this chapter is to develop the existence theory for higher

order derivatives and to derive methods for computing the derivatives.

This chapter is organized as follows. In section 4.2 we define higher order Fréchet

derivatives and summarize previous research into derivatives of matrix functions. In

section 4.3 we obtain conditions for the existence and continuity of the kth order

Fréchet derivative and also give an algorithm for computing it given only the abil-

ity to compute the matrix function f . The Kronecker matrix form of the kth order

Fréchet derivative is discussed in section 4.4 and an algorithm is given for computing

it. In section 4.5 we define and analyze the level-2 condition number. We derive an

upper bound for general functions f in terms of the second Kronecker form. For the

exponential function we show that the level-1 and level-2 absolute condition numbers

are equal and that the level-2 relative condition number cannot be much larger than

the level-1 relative condition number. We also derive an exact relation between the

level-1 and level-2 absolute condition numbers of the matrix inverse, as well as a result

connecting the two absolute condition numbers for Hermitian matrices for a class of

functions that includes the logarithm and square root. Via numerical experiments we

compare the level-1 and level-2 condition numbers with different functions on unstruc-

tured matrices.

4.2 Higher order derivatives

The kth Fréchet derivative of f : Cn×n 7→ Cn×n at A ∈ Cn×n can be defined recursively

as the unique multilinear function1 L
(k)
f (A) of the matrices Ei ∈ Cn×n, i = 1: k, that

satisfies

L
(k−1)
f (A+ Ek, E1, . . . , Ek−1)− L(k−1)

f (A,E1, . . . , Ek−1)

− L(k)
f (A,E1, . . . , Ek) = o(‖Ek‖), (4.2.1)

where L
(1)
f (A) is the first Fréchet derivative. Assuming L

(k)
f (A) is continuous at A, we

can view the kth Fréchet derivative as a mixed partial derivative

L
(k)
f (A,E1, . . . , Ek) =

∂

∂s1
· · · ∂

∂sk

∣∣∣∣
(s1,...,sk)=0

f(A+ s1E1 + · · ·+ skEk), (4.2.2)

1We write L
(k)
f (A) as a shorthand for L

(k)
f (A, ·, . . . , ·) when we want to refer to the mapping at A

and not its value in a particular set of directions.

86



as explained by Nashed [86, Sec. 9] in the more general setting of Banach spaces.

From this equality it is clear that the order in which the derivatives are taken is

irrelevant [17, p. 313], [45, Thm. 8], [84, Thm. 4.3.4], so the Ei can be permuted

without changing the value of the Fréchet derivative. The kth Fréchet derivative of

a matrix function also satisfies the sum, product, and chain rules (the proofs given

in [57, Chap. 3] for the first Fréchet derivative are readily extended to higher order

derivatives). Further information on higher order Fréchet derivatives in Banach spaces

can be found in [34, Sec. 8.12], [72, Chap. 17], and [84, Sec. 4.3], for example.

We mention that some authors prefer to denote the kth Fréchet derivative by

Dkf(A)(E1, . . . , Ek). Our notation has the advantage of being consistent with the

notation in the matrix function literature for the first Fréchet derivative (1.2.1).

Previous research into higher derivatives of matrix functions has primarily focused

on different types of derivative. Mathias [80] defines the kth derivative of a matrix

function by
dk

dtk

∣∣∣∣
t=0

f(A(t)), (4.2.3)

where A(t) : R 7→ Cn×n is a k times differentiable path at t = 0 with A(0) = A.

When A′(0) = E, the first derivative of f along the path A(t) is equivalent to the first

Fréchet derivative (assuming the latter exists) but this agreement does not hold for

higher order derivatives.

Najfeld and Havel [85] investigate a special case of Mathias’ type of derivative that

corresponds to A(t) = A+ tV . They find that [85, Thm. 4.13]

f




A V

. . . . . .

A V

A



 =



f(A) D
[1]
V f(A) · · · D

[q]
V f(A)

q!

f(A)
. . .

...
. . . D

[1]
V f(A)

f(A)


, (4.2.4)

where the argument of f is a block q × q matrix and D
[k]
V f(A) = dk

dtk

∣∣∣
t=0

f(A(t)).

This is a generalization of the formula for evaluating a matrix function on a Jordan

block [57, Def. 1.2].

There is also a componentwise derivative for matrix functions (including the trace

and determinant etc.) which Magnus and Neudecker summarize in [79, pp. 171–173].

Athans and Schweppe apply this type of derivative to the matrix exponential in [14].
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4.3 Existence and computation of higher Fréchet

derivatives

One approach to investigating the existence of higher order Fréchet derivatives is to

generalize the series of results for the first Fréchet derivative found in [57, Chap. 3].

However, this yields a somewhat lengthy development. Instead we present an approach

that leads more quickly to the desired results and also provides a scheme for computing

the Fréchet derivatives.

We first state three existing results on which we will build. Let D be an open

subset of C and denote by Cn×n(D, p) the set of matrices in Cn×n whose spectrum lies

in D and whose largest Jordan block is of size p.

Theorem 4.3.1 (Mathias [80, Lem. 1.1]). Let f be p− 1 times continuously differen-

tiable on D. Then f exists and is continuous on Cn×n(D, p).

Theorem 4.3.2. Let f be 2p − 1 times continuously differentiable on D. Then for

A ∈ Cn×n(D, p) the Fréchet derivative Lf (A,E) exists and is continuous in both A

and E ∈ Cn×n.

Proof. This is a straightforward strengthening of [57, Thm. 3.8] (which has p = n)

with essentially the same proof.

Theorem 4.3.3 (Mathias [80, Thm. 2.1]). Let f be 2p− 1 times continuously differ-

entiable on D. For A ∈ Cn×n(D, p),

f

A E

0 A

 =

f(A) Lf (A,E)

0 f(A)

 . (4.3.1)

We need the Gâteaux derivative of f at A in the direction E which (as we recall

from (1.2.2)) is defined by

Gf (A,E) =
d

dt

∣∣∣∣
t=0

f(A+ tE) = lim
ε→0

f(A+ εE)− f(A)

ε
. (4.3.2)

Furthermore recall that Gâteaux differentiability is a weaker notion than Fréchet dif-

ferentiability: if the Fréchet derivative exists then the Gâteaux derivative exists and is

equal to the Fréchet derivative. Conversely, if the Gâteaux derivative exists, is linear
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in E, and is continuous in A, then f is Fréchet differentiable and the Gâteaux and

Fréchet derivatives are the same [17, Sec. X.4], [86, Sec. 8, Rem. 3].

Now define the sequence Xi ∈ C2in×2in by

Xi = I2 ⊗Xi−1 +

0 1

0 0

⊗ I2i−1 ⊗ Ei, X0 = A, (4.3.3)

where ⊗ is the Kronecker product [47], [75, Chap. 12]. Thus, for example, X1 =
[
A E1
0 A

]
and

X2 =


A E1 E2 0

0 A 0 E2

0 0 A E1

0 0 0 A

 . (4.3.4)

We will need the following lemma, which is a corollary of [67, Thm. 3.2.10.1] and

[80, Lem. 3.1].

Lemma 4.3.4. If the largest Jordan block of A ∈ Cn×n is of size p then the largest

Jordan block of Xk is of size at most 2kp.

Now we can give our main result, which generalizes Theorems 4.3.2 and 4.3.3.

Theorem 4.3.5. Let A ∈ Cn×n(D, p), where p is the size of the largest Jordan block

of A, and let f be 2kp−1 times continuously differentiable on D. Then the kth Fréchet

derivative L
(k)
f (A) exists and L

(k)
f (A,E1, . . . , Ek) is continuous in A and E1, . . . , Ek ∈

Cn×n. Moreover, the upper right n× n block of f(Xk) is L
(k)
f (A,E1, . . . , Ek).

Proof. Our proof is by induction on k, with the base case k = 1 given by Theo-

rems 4.3.2 and 4.3.3. Suppose the result holds for some m between 1 and k − 1. To

prove that it holds for m+ 1 consider

f(Xm+1) = f

Xm I2m ⊗ Em+1

0 Xm

 , (4.3.5)

which exists by Lemma 4.3.4 and Theorem 4.3.1. If we apply (4.3.1) to f(Xm+1) we

see that its upper-right quarter is

Lf (Xm, I2m ⊗ Em+1) = lim
ε→0

f(Xm + ε(I2m ⊗ Em+1))− f(Xm)

ε
, (4.3.6)

since the Fréchet derivative equals the Gâteaux derivative.
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Now consider Xm+ε(I2m⊗Em+1), which is the matrix obtained from (4.3.3) with A

replaced by A+εEm+1. For ε sufficiently small the spectrum of Xm+ε(I2m⊗Em+1) lies

within D by continuity of the eigenvalues. Hence we can apply the inductive hypothesis

to both f(Xm) and f(Xm + ε(I2m ⊗ Em+1)), to deduce that their upper-right n× n

blocks are, respectively,

L
(m)
f (A,E1, . . . , Em), L

(m)
f (A+ εEm+1, E1, . . . , Em). (4.3.7)

Hence the upper-right n× n block of (4.3.6), which is also the upper-right n× n block

of f(Xm+1) is

[f(Xm+1)]1n = lim
ε→0

L
(m)
f (A+ εEm+1, E1, . . . , Em)− L(m)

f (A,E1, . . . , Em)

ε

=
d

dt

∣∣∣∣
t=0

L
(m)
f (A+ tEm+1, E1, . . . , Em), (4.3.8)

which is the Gâteaux derivative of the mth Fréchet derivative in the direction Em+1.

From our earlier discussion of the Gâteaux derivative we need to show that (4.3.8)

is continuous in A and linear in Em+1 so that it is equal to the (m + 1)st Fréchet

derivative.

The continuity in A is trivial since f is sufficiently differentiable to be a continuous

function of Xm by Theorem 4.3.1 and the map from f(Xm) to its upper-right n× n

block is also continuous. Now we show the linearity in Em+1. Let us denote by σ the

map from a matrix to its upper-right n× n block. Recalling that (4.3.8) is the upper

right n× n block of (4.3.6), since the first Fréchet derivative is linear in its second

argument we have

d

dt

∣∣∣∣
t=0

L
(m)
f (A+ t(E + F ), E1, . . . , Em) = σLf (Xm, I2m ⊗ (E + F ))

= σLf (Xm, I2m ⊗ E) + σLf (Xm, I2m ⊗ F )

=
d

dt

∣∣∣∣
t=0

L
(m)
f (A+ tE,E1, . . . , Em)

+
d

dt

∣∣∣∣
t=0

L
(m)
f (A+ tF, E1, . . . , Em),

which shows the required linearity. We have now shown that the Gâteaux derivative

of the mth Fréchet derivative is equal to the (m + 1)st Fréchet derivative. The proof

follows by induction.
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Example 4.3.6. We can also show that the assumption that f be 2kp−1 times contin-

uously differentiable is sometimes necessary. Consider the function f(x) =
∫∫

H(x)dx

where H(x) is the Heaviside function with H(0) = 1. This means that f(x) = x2/2

and f ′(x) = x for x ≥ 0 and f(x) = f ′(x) = 0 for x < 0. In particular f only has one

continuous derivative.

Let J = [ 0 1
0 0 ] so that f(J) = 0. For a contradiction assume that f is Fréchet

differentiable at J . Then the Fréchet derivative is equal to the Gâteaux derivative

Lf (J,E) = lim
ε→0

f(J + εE)− f(J)

ε
. (4.3.9)

Let E = [ 1 0
0 −1 ] so that f(J+εE) = f([ ε 1

0 −ε ]). If f [λ1, λ2] denotes the divided difference

of f at λ1, λ2 then from [57, Thm. 4.11]

f

λ1 t

0 λ2

 =

f(λ1) tf [λ1, λ2]

0 f(λ2)

 ,
and therefore we can easily show

f(J + εE) =



0 −ε/4

0 ε2/2

 if ε < 0,

ε2/2 ε/4

0 0

 if ε > 0.

(4.3.10)

Taking the left-hand limit and right-hand limit of (4.3.9) we obtain

lim
ε→0−

f(J + εE)− f(J)

ε
=

0 −1/4

0 0

 , (4.3.11)

lim
ε→0+

f(J + εE)− f(J)

ε
=

0 1/4

0 0

 . (4.3.12)

Since these matrices differ the limit does not exist and therefore f is not Fréchet dif-

ferentiable at J .

As an example of how to use this to compute higher order Fréchet derivatives,

Theorem 4.3.5 shows that the second derivative L
(2)
f (A,E1, E2) is equal to the (1, 4)

block of f(X2), where X2 is given by (4.3.4). More generally, the theorem gives the

following algorithm for computing arbitrarily high order Fréchet derivatives.
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Algorithm 4.3.7. Given A ∈ Cn×n, the direction matrices E1, . . . , Ek ∈ Cn×n and a

method to evaluate the matrix function f (assumed sufficiently smooth), this algorithm

computes L = L
(k)
f (A,E1, . . . , Ek).

1 X0 = A

2 for i = 1: k

3 Xi = I2 ⊗Xi−1 + [ 0 1
0 0 ]⊗ I2i−1 ⊗ Ei

4 end

5 F = f(Xk)

6 Take L to be the upper-right n× n block of F .

Cost: Assuming that evaluating f at an n× n matrix costs O(n3) flops, applying

f naively to Xk gives an overall cost of O(8kn3) flops. Clearly this algorithm rapidly

becomes prohibitively expensive as k grows, though exploiting the block structure of

Xk could lead to significant savings in the computation.

To conclude this section we emphasize that the condition in Theorem 4.3.5 that

f has 2kp − 1 derivatives, which stems from a bound on the worst possible Jordan

structure of Xk, is not always necessary. It is easy to show there is always an E such

that X1 has a Jordan block of size 2p − 1, so the condition is necessary for k = 1.

However, in section 4.6, we provide an example of a matrix A for which fewer than

4p − 1 derivatives are required for the existence of f(X2). Determining the exact

number of derivatives needed for the existence of f(Xk) given the Jordan structure of

A is an open problem.

4.4 Kronecker forms of higher Fréchet derivatives

The Kronecker form of the first Fréchet derivative is given by (1.2.3). The principal

attraction of the Kronecker form is that it explicitly captures the linearity of the

Fréchet derivative, so that standard linear algebra techniques can be applied and

certain explicit formulas and bounds can be obtained—as explained in section 1.3.

In this section we derive a Kronecker form for the kth Fréchet derivative and show

how it can be computed. We assume that the kth Fréchet derivative L
(k)
f (A,E1, . . . , Ek)

is continuous in A, which allows reordering of the Ei, as noted in section 4.2.
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To begin, since L
(k)
f (A,E1, . . . , Ek) is linear in Ek we have

vec(L
(k)
f (A,E1, . . . , Ek)) = K

(1)
f (A,E1, . . . , Ek−1) vec(Ek), (4.4.1)

for some unique matrix K
(1)
f (A,E1, . . . , Ek−1) ∈ Cn2×n2

. Since the Ei can be permuted

within the kth Fréchet derivative it follows that the Ei can be permuted in (4.4.1).

For example, using the third Fréchet derivative,

K
(1)
f (A,E1, E2) vec(E3) = K

(1)
f (A,E3, E1) vec(E2).

We can use this fact to show that K
(1)
f (A,E1, . . . , Ek−1) is linear in each Ei.

Lemma 4.4.1. Assuming that L
(k)
f (A) is continuous in A, K

(1)
f (A,E1, . . . , Ek−1) is

linear in each Ei.

Proof. Using the definition (4.4.1) and the freedom to reorder the Ei within K
(1)
f we

write

K
(1)
f (A,E1, . . . , Ei + Fi, . . . , Ek−1) vec(Ek)

= vec
(
L
(k)
f (A,E1, . . . , Ei + Fi, . . . , Ek−1, Ek)

)
= K

(1)
f (A,E1, . . . , Ei−1, Ei+1, . . . , Ek−1, Ek) vec(Ei + Fi)

= K
(1)
f (A,E1, . . . , Ei−1, Ei+1, . . . , Ek−1, Ek) (vec(Ei) + vec(Fi))

=
(
K

(1)
f (A,E1, . . . , Ei, . . . , Ek−1) +K

(1)
f (A,E1, . . . , Fi, . . . , Ek−1)

)
vec(Ek).

Since this is true for any matrix Ek, the matrices on the left and right-hand sides must

be equal, and hence K
(1)
f (A,E1, . . . , Ek−1) is linear in Ei.

Now since K
(1)
f (A,E1, . . . , Ek−1) is linear in each Ei it is linear in Ek−1 and so,

vec(K
(1)
f (A,E1, . . . , Ek−1)) = K

(2)
f (A,E1, . . . , Ek−2) vec(Ek−1), (4.4.2)

where K
(2)
f (A,E1, . . . , Ek−2) ∈ Cn4×n2

. By the same argument as in the proof of

Lemma 4.4.1 this matrix is also linear in each Ei and continuing this process we

eventually arrive at K
(k)
f (A) ∈ Cn2k×n2

, which we call the Kronecker form of the kth

Fréchet derivative.

We can relate K
(k)
f (A) to the kth Fréchet derivative by repeatedly taking vec of

93



the kth Fréchet derivative and using vec(AXB) = (BT ⊗ A) vec(X):

vec(L
(k)
f (A,E1, . . . , Ek)) = K

(1)
f (A,E1, . . . , Ek−1) vec(Ek)

= vec
(
K

(1)
f (A,E1, . . . , Ek−1) vec(Ek)

)
= (vec(Ek)

T ⊗ In2)K
(2)
f (A,E1, . . . , Ek−2) vec(Ek−1)

= (vec(Ek−1)
T ⊗ vec(Ek)

T ⊗ In2) vec(K
(2)
f (A,E1, . . . , Ek−2))

= · · ·

= (vec(E1)
T ⊗ · · · ⊗ vec(Ek)

T ⊗ In2) vec(K
(k)
f (A)). (4.4.3)

In the remainder of this section we give an algorithm to compute the Kronecker

form. Consider K
(k)
f (A)em where em is the mth unit vector, so that this product gives

us the mth column of K
(k)
f (A). We know from the above that this can be written

as vec(K
(k−1)
f (A,E1)), where vec(E1) = em. Therefore to obtain the mth column of

K
(k)
f (A) we require K

(k−1)
f (A,E1) and as above we can find each column of this matrix

as K
(k−1)
f (A,E1)ep = vec(K

(k−1)
f (A,E1, E2) where E2 is chosen so that vec(E2) = ep.

Continuing in this way we obtain the following algorithm, of which [57, Alg. 3.17] is

the special case with k = 1.

Algorithm 4.4.2. The following algorithm computes the Kronecker form K
(k)
f (A) of

the kth Fréchet derivative L
(k)
f (A).

1 for m1 = 1:n2

2 Choose E1 ∈ Rn×n such that vec(E1) = em1 .

3 for m2 = 1:n2

4 Choose E2 ∈ Rn×n such that vec(E2) = em2 .

5 . . .

6 for mk = 1:n2

7 Choose Ek ∈ Rn×n such that vec(Ek) = emk
.

8 Compute L
(k)
f (A,E1, . . . , Ek) using Algorithm 4.3.7.

9 Set the mkth column of K
(1)
f (A,E1, . . . , Ek−1)

to vec(L
(k)
f (A,E1, . . . , Ek)).

10 end

11 . . .

94



12 Set the m2th column of K
(k−1)
f (A,E1) to vec(K

(k−2)
f (A,E1, E2)).

13 end

14 Set the m1th column of K
(k)
f (A) to vec(K

(k−1)
f (A,E1)).

15 end

Cost: O(8kn3+2k) flops, since line 8 is executed n2 times for each of the k matrices Ei.

The cost of this method depends heavily upon k, which governs both the depth of

the algorithm and the cost of evaluating the kth Fréchet derivative in line 8. However,

even calculating the Kronecker form of the first Fréchet derivative costs O(n5) flops, so

this algorithm is only viable for small matrices and small k. Nevertheless, the algorithm

is useful for testing algorithms for estimating ‖K(k)
f (A)‖ and hence ‖L(k)

f (A)‖.

4.5 The level-2 condition number of a matrix func-

tion

It is important to understand how sensitive the condition number is to perturbations

in A, since this will affect the accuracy of any algorithm attempting to estimate it,

such as those in [4], [61], and the algorithms in chapter 3. The quantity that measures

this sensitivity is called the level-2 condition number.

The level-2 condition number is obtained by taking the absolute (or relative) condi-

tion number of the absolute (or relative) condition number, offering four possibilities.

In this investigation we mainly limit ourselves to analyzing the absolute condition

number of the absolute condition number,

cond
[2]
abs(f, A) = lim

ε→0
sup
‖Z‖≤ε

| condabs(f, A+ Z)− condabs(f, A)|
ε

, (4.5.1)

where condabs(f,X) is defined in (1.3.1). However in section 4.5.1 for the exponential

we also consider the relative condition number of the relative condition number,

cond
[2]
rel(f, A) = lim

ε→0
sup

‖Z‖≤ε‖A‖

| condrel(f, A+ Z)− condrel(f, A)|
ε condrel(f, A)

. (4.5.2)

We begin this section by deriving a bound for the level-2 absolute condition number

for general functions f in the Frobenius norm. Using the second Fréchet derivative we
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have, from (1.3.1) and (4.2.1),

condabs(f, A+ Z) = max
‖E‖=1

‖Lf (A,E) + L
(2)
f (A,E, Z) + o(‖Z‖)‖. (4.5.3)

Therefore using the triangle inequality in the numerator of (4.5.1) we obtain

| condabs(f, A+ Z)− condabs(f, A)| =
∣∣∣∣max
‖E‖=1

‖Lf (A,E) + L
(2)
f (A,E, Z) + o(‖Z‖)‖

− max
‖E‖=1

‖Lf (A,E)‖
∣∣∣∣

≤ max
‖E‖=1

‖L(2)
f (A,E, Z) + o(‖Z‖)‖.

Using this inequality in the definition of the level-2 condition number (4.5.1) we see

cond
[2]
abs(f, A) ≤ lim

ε→0
sup
‖Z‖≤ε

max
‖E‖=1

‖L(2)
f (A,E, Z/ε) + o(‖Z‖)/ε‖

= sup
‖Z‖≤1

max
‖E‖=1

‖L(2)
f (A,E, Z)‖

= max
‖Z‖=1

max
‖E‖=1

‖L(2)
f (A,E, Z)‖, (4.5.4)

where the supremum can be replaced with a maximum because we maximizing a

continuous function over the compact set ‖Z‖ ≤ 1 and furthermore the maximum is

attained for ‖Z‖ = 1 because the second Fréchet derivative is linear in Z. We will see

in subsection 4.5.2 that this upper bound is attained for the matrix inverse and the

Frobenius norm. Note that the upper bound (4.5.4) can be thought of as ‖L(2)
f (A)‖.

Now restricting ourselves to the Frobenius norm and recalling that ‖X‖F = ‖ vec(X)‖2
we obtain

cond
[2]
abs(f, A) ≤ max

‖Z‖F=1
max
‖E‖F=1

‖L(2)
f (A,E, Z)‖F

= max
‖Z‖F=1

max
‖ vec(E)‖2=1

‖K(1)
f (A,Z) vec(E)‖2 by (4.4.1)

= max
‖Z‖F=1

‖K(1)
f (A,Z)‖2

≤ max
‖Z‖F=1

‖K(1)
f (A,Z)‖F

= max
‖ vec(Z)‖2=1

‖K(2)
f (A) vec(Z)‖2 by (4.4.2)

= ‖K(2)
f (A)‖2. (4.5.5)
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For general functions f it is difficult to say more about the level-2 condition number.

In the next few subsections we focus on the matrix exponential, inverse, and a class

of functions containing both the logarithm and square root.

4.5.1 Matrix exponential

For the matrix exponential let us consider the level-2 absolute condition number in

the 2-norm, for normal matrices

A = QDQ∗, Q unitary, D = diag(di). (4.5.6)

Note first that for a normal matrix A, using the unitary invariance of the 2-norm we

have ‖eA‖2 = ‖eD‖2 = eα(D) = eα(A), where the spectral abscissa α(A) is the greatest

real part of any eigenvalue of A.

Van Loan [105] shows that normality implies condrel(exp, A) = ‖A‖2 and from

(1.3.1) and (1.3.2) we therefore have condabs(exp, A) = eα(A).

To analyze the level-2 absolute condition number of the matrix exponential we

require the following lemma.

Lemma 4.5.1. For a normal matrix A and an arbitrary matrix Z,

eα(A)−‖Z‖2 ≤ ‖eA+Z‖2 ≤ eα(A)+‖Z‖2 ,

and for a given A both bounds are attainable for some Z.

Proof. To get the lower bound we recall from [57, Thm. 10.12] that eα(X) ≤ ‖eX‖2 for

any matrix X ∈ Cn×n. We also know from [44, Thm. 7.2.2] that the eigenvalues of

A+ Z are at most a distance ‖Z‖2 from those of A and so

eα(A)−‖Z‖2 ≤ ‖eA+Z‖2,

and it is easy to see that this inequality is attained for Z = − diag(ε, . . . , ε).

For the upper bound, using the Lie–Trotter product formula [57, Cor. 10.7] gives

eA+Z = lim
m→∞

(eA/meZ/m)m.

Hence we have

‖eA+Z‖2 = lim
m→∞

‖(eA/meZ/m)m‖2 ≤ lim
m→∞

‖eA/m‖m2 ‖eZ/m‖m2

= lim
m→∞

eα(A/m)me‖Z/m‖2m = eα(A)+‖Z‖2 .
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It is straightforward to show that Z = diag(ε, . . . , ε) attains this upper bound, com-

pleting the proof.

We can now show that the level-2 absolute condition number of the matrix expo-

nential is equal to the level-1 absolute condition number for normal matrices.

Theorem 4.5.2. Let A ∈ Cn×n be normal. Then in the 2-norm cond
[2]
abs(exp, A) =

condabs(exp, A).

Proof. By taking norms in the identity

Lexp(A+ Z,E) =

∫ 1

0

e(A+Z)(1−s)Ee(A+Z)s ds, (4.5.7)

from [57, eq. (10.15)] we obtain

condabs(exp, A+ Z) = max
‖E‖2=1

‖Lexp(A+ Z,E)‖2

≤
∫ 1

0

‖e(A+Z)(1−s)‖2‖e(A+Z)s‖2 ds,

and furthermore since scalar multiples of A are normal and α(sA) = sα(A) for s ≥ 0,

we can apply Lemma 4.5.1 twice within the integral to get

condabs(exp, A+ Z) ≤ eα(A)+‖Z‖2 .

Also we can obtain the lower bound

condabs(exp, A+ Z) = max
‖E‖2=1

‖L(A+ Z,E)‖2

≥ ‖Lexp(A+ Z, I)‖2

=

∥∥∥∥∫ 1

0

e(A+Z)(1−s)e(A+Z)s ds

∥∥∥∥
2

= ‖eA+Z‖2 ≥ eα(A)−‖Z‖2 ,

so that overall, combining these two inequalities,

eα(A)−‖Z‖2 ≤ condabs(exp, A+ Z) ≤ eα(A)+‖Z‖2 . (4.5.8)

With some further manipulation we can use these bounds to show that

sup
‖Z‖2≤ε

| condabs(exp, A+ Z)− eα(A)| ≤ eα(A)+ε − eα(A). (4.5.9)
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From the definition of the level-2 condition number (4.5.1) we have

cond
[2]
abs(exp, A) = lim

ε→0
sup
‖Z‖2≤ε

| condabs(exp, A+ Z)− eα(A)|
ε

.

Using the upper bound (4.5.9) on the numerator we see that

cond
[2]
abs(exp, A) ≤ lim

ε→0

eα(A)+ε − eα(A)

ε
= eα(A).

For the lower bound we use the fact that condabs(exp, A+ εI) = eα(A)+ε (since A+ εI

is normal) to obtain

cond
[2]
abs(exp, A) ≥ lim

ε→0

| condabs(exp, A+ εI)− eα(A)|
ε

= lim
ε→0

eα(A)+ε − eα(A)

ε
= eα(A).

This completes the proof, since condabs(exp, A) = eα(A).

We can also show that the level-2 relative condition number cannot be much larger

than the level-1 relative condition number for normal matrices. In the next result we

exclude A = 0 because condrel(exp, 0) = 0 and so the computation of cond
[2]
rel(exp, 0)

involves division by 0 and is therefore undefined.

Theorem 4.5.3. Let A ∈ Cn×n \ {0} be normal. Then in the 2-norm

1 ≤ cond
[2]
rel(exp, A) ≤ 2 condrel(exp, A) + 1.

Proof. Combining the definition of the level-2 relative condition number (4.5.2) with

the facts that condrel(exp, X) = condabs(exp, X)‖X‖2/‖eX‖2 for any X ∈ Cn×n, by

(1.3.1) and (1.3.2), and condrel(exp, A) = ‖A‖2 for normal A (mentioned at the begin-

ning of this section), we have

cond
[2]
rel(exp, A) = lim

ε→0
sup

‖Z‖2≤ε‖A‖2

| condabs(exp, A+ Z) ‖A+Z‖2‖eA+Z‖2 − ‖A‖2|
ε‖A‖2

. (4.5.10)

For the lower bound note that for any X ∈ Cn×n we have ‖eX‖2 ≤ condabs(exp, X)

[57, Lem. 10.15] and therefore taking X = A+ Z we obtain

condabs(exp, A+ Z) ‖A+Z‖2‖eA+Z‖2 − ‖A‖2
ε‖A‖2

≥ ‖A+ Z‖2 − ‖A‖2
ε‖A‖2

.
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Using this bound in (4.5.10) we see that

cond
[2]
rel(exp, A) ≥ lim

ε→0
sup

‖Z‖2≤ε‖A‖2

‖A+ Z‖2 − ‖A‖2
ε‖A‖2

= lim
ε→0

(1 + ε)‖A‖2 − ‖A‖2
ε‖A‖2

= 1,

where the supremum is attained for Z = εA.

For the upper bound we first combine Lemma 4.5.1 and (4.5.8) to obtain

e−2‖Z‖2 ≤ condabs(exp, A+ Z)

‖eA+Z‖2
≤ e2‖Z‖2 .

After some further manipulation we obtain the bound

| condabs(exp, A+ Z) ‖A+Z‖2‖eA+Z‖2 − ‖A‖2|
ε‖A‖2

≤ e2‖Z‖2 − 1

ε
+ e2‖Z‖2

‖Z‖2
ε‖A‖2

.

Using this inequality in (4.5.10) we see that

cond
[2]
rel(exp, A) ≤ lim

ε→0
sup

‖Z‖2≤ε‖A‖2

(
e2‖Z‖2 − 1

ε
+ e2‖Z‖2

‖Z‖2
ε‖A‖2

)
= lim

ε→0

(
e2ε‖A‖2 − 1

ε
+ e2ε‖A‖2

)
= 2‖A‖2 + 1

= 2 condrel(exp, A) + 1,

which completes the proof.

4.5.2 Matrix inverse

Assume now that A is a general nonsingular matrix. For the matrix inverse f(A) =

A−1, we have Lf (A,E) = −A−1EA−1. From the definition of the absolute condition

number (1.3.1) we have

condabs(x
−1, A) = max

‖E‖=1
‖A−1EA−1‖,

so for any subordinate matrix norm we conclude from Lemma 3.3.4 that

condabs(x
−1, A) = ‖A−1‖2, (4.5.11)

and that this maximum is attained for a rank-1 matrix E. However the level-2 absolute

condition number is best analyzed in the Frobenius norm, which is not subordinate.
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The absolute condition number in the Frobenius norm is given by

condabs(x
−1, A) = max

‖E‖F=1
‖A−1EA−1‖F

= max
‖ vec(E)‖2=1

‖(A−T ⊗ A−1) vec(E)‖2

= ‖(A−T ⊗ A−1)‖2 = ‖A−1‖22, (4.5.12)

which is also shown in [48, (2.4)]. Using (4.5.12) in the definition of the level-2 absolute

condition number (4.5.1) we have that in the Frobenius norm

cond
[2]
abs(x

−1, A) = lim
ε→0

sup
‖E‖F≤ε

|‖(A+ E)−1‖22 − ‖A−1‖22|
ε

,

= lim
ε→0

sup
‖E‖F≤ε

|σ̃−2n − σ−2n |
ε

,

where σn and σ̃n are the smallest singular values of A and A+E, respectively. Now con-

sider the singular value decomposition (SVD) A = UΣV ∗, where Σ = diag(σ1, . . . , σn)

and σ1 ≥ · · · ≥ σn > 0. We know from [44, Cor. 8.6.2] that σ̃n = σn + e where

|e| ≤ ‖E‖2 ≤ ‖E‖F ≤ ε, and clearly the perturbation E that maximizes the nu-

merator of the above equation moves σn closer to 0. Therefore when ε < σn the

value of σ̃n that maximizes the numerator is σ̃n = σn − ε, which is attained by

E = U diag(0, . . . , 0,−ε)V ∗, with ‖E‖2 = ‖E‖F = ε. Continuing with this choice

of E we see that

cond
[2]
abs(x

−1, A) = lim
ε→0

|(σn − ε)−2 − σ−2n |
ε

=
2

σ3
n

= 2‖A−1‖32. (4.5.13)

In fact the bound (4.5.4) on the level-2 absolute condition number is exact in this case.

We can see this by maximizing the Frobenius norm of L
(2)

x−1(A,E, Z) = A−1EA−1ZA−1+

A−1ZA−1EA−1 using standard results.

From (4.5.12) and (4.5.13) we obtain the following result.

Theorem 4.5.4. For nonsingular A ∈ Cn×n in the Frobenius norm,

cond
[2]
abs(x

−1, A) = 2 condabs(x
−1, A)3/2. (4.5.14)

This difference between the level-1 and level-2 absolute condition numbers for the

inverse is intriguing since D. J. Higham [48, Thm. 6.1] shows that the relative level-1

and level-2 relative condition numbers for the matrix inverse are essentially equal for

subordinate norms.
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4.5.3 Hermitian matrices

The previous two sections gave relationships between the level-1 and level-2 absolute

condition numbers for the exponential and the inverse. Interestingly these correspond

closely to relationships between the first and second derivatives of the respective scalar

functions: for f(x) = ex, |f ′′| = |f ′| and for f(x) = x−1, |f ′′| = |2(f ′)3/2|. It is

therefore natural to wonder whether analogous relations, such as cond
[2]
abs(log, A) =

condabs(log, A)2 and cond
[2]
abs(x

1/2, A) = 2 condabs(x
1/2, A)3, hold for suitable classes of

A. The next result, which applies to Hermitian matrices and a class of functions that

includes the logarithm and the square root, provides a partial answer.

Theorem 4.5.5. Let A ∈ Cn×n be Hermitian with eigenvalues λi arranged so that

λ1 ≥ · · · ≥ λn and let f : R → R be such that f(A) is defined and f has a strictly

monotonic derivative. Then in the Frobenius norm,

condabs(f, A) = max
i
|f ′(λi)|. (4.5.15)

Moreover, if the maximum in (4.5.15) is attained for a unique i, say i = k (with k = 1

or k = n since f ′ is monotonic), then

cond
[2]
abs(f, A) ≥ |f ′′(λk)|. (4.5.16)

Proof. Using [57, Cor. 3.16] we see that condabs(f, A) = maxi,j |f [λi, λj]|, where f [λi, λj]

is a divided difference. But f [λi, λj] = f ′(θ) for some θ on the closed interval be-

tween λi and λj [57, eq. (B.26)], and since f ′ is monotonic it follows that |f [λi, λj]| ≤

max(|f ′(λi)|, |f ′(λj)|), with equality for i = j, and (4.5.15) follows.

We can write A = QΛQ∗, where Q is unitary and Λ = diag(λ1, . . . , λn). Now define

Z = QDQ∗, where D differs from the zero matrix only in that dkk = ε, so that the

eigenvalues of A+ Z are λi, for i 6= k, and λk + ε. Then, by the assumption on k, for

sufficiently small ε the maximum of |f ′| over the eigenvalues of A + Z is |f ′(λk + ε)|.

Therefore using this Z in (4.5.1) we obtain

cond
[2]
abs(f, A) ≥ lim

ε→0

∣∣∣∣condabs(f, A+ Z)− condabs(f, A)

ε

∣∣∣∣
= lim

ε→0

∣∣∣∣ |f ′(λk + ε)| − |f ′(λk)|
ε

∣∣∣∣
=

∣∣∣∣limε→0

f ′(λk + ε)− f ′(λk)
ε

∣∣∣∣
= |f ′′(λk)|.
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Note that when applying this result to the matrix logarithm and square root we

require A to be Hermitian positive definite, since these functions are not defined for

matrices with negative eigenvalues.

4.5.4 Numerical experiments

We have a full understanding of the relationship between the level-1 and level-2 abso-

lute condition numbers for the matrix inverse but our results for the matrix exponen-

tial, logarithm and square root are applicable only to normal or Hermitian matrices.

We now give a numerical comparison of condabs(f, A) and cond
[2]
abs(f, A) for the matrix

exponential, logarithm, and square root using unstructured matrices in the Frobenius

norm.

Our test matrices are taken from the Matrix Computation Toolbox [50] and the

MATLAB gallery function and we use 5× 5 matrices because the cost of computing

the first and second Kronecker forms using Algorithm 4.4.2 is O(n5) and O(n7) flops,

respectively. Most of the matrices are neither normal nor Hermitian, so our previous

analyses (except for the inverse) do not apply. The matrix exponential and logarithm

are computed using the algorithms from [4] and chapter 3, and the square root is

computed using the MATLAB function sqrtm. All experiments are performed in

MATLAB 2013a.

For arbitrary matrices we are unable to compute the level-2 condition number

exactly so instead we use the upper bound (4.5.5) which we refer to as lvl2 bnd in

this section. Experiments comparing lvl2 bnd to the exact level-2 condition number

for the inverse showed that they agreed reasonably well over our test matrices: the

mean and maximum of the factor by which lvl2 bnd exceeded the level-2 condition

number were 1.19 and 2.24 times, respectively. In 66% of cases the overestimation

factor was less than 1.2. The level-1 condition number can be computed exactly in

the Frobenius norm using [57, Alg. 3.17].

Figure 4.5.1 compares the level-1 condition number and lvl2 bnd for the matrix

exponential on the 49 test matrices for which the matrix exponential did not overflow.

The values are sorted in decreasing order of condabs(exp, A). Note that in each case
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Figure 4.5.1: Level-1 absolute condition number and lvl2 bnd for the matrix expo-

nential in the Frobenius norm sorted by decreasing value of condabs(exp, A).

lvl2 bnd is greater than or equal to the level-1 condition number. We see that the

two lines are almost equal for arbitrary matrices in the Frobenius norm, with the most

serious disagreement on the first few ill conditioned problems. This suggests that for

the matrix exponential it may be possible to show that the level-1 and level-2 condition

numbers are equal or approximately equal for a wider class of matrices than just the

normal matrices, to which Theorem 4.5.2 applies.

Figure 4.5.2 compares the level-1 condition number and lvl2 bnd for the matrix

logarithm over the 49 test matrices for which the matrix logarithm and its condi-

tion number are defined, sorted by decreasing values of condabs(log, A). In black we

have plotted the square of the level-1 condition number; we see that it bears a strik-

ing similarity to the level-2 condition number, consistent with Theorem 4.5.5, since

|f ′′(λ)| = |f ′(λ)2|.

Our final experiment compares the level-1 condition number and lvl2 bnd for the

matrix square root on the 51 test matrices where the square root and its condition

number are defined, again sorted by decreasing values of condabs(x
1/2, A). Figure 4.5.3

shows two plots with the same data but with different y-axes so the fine details can

be seen. In black we have plotted 2 condabs(x
1/2, A)3 which, consistent with Theo-

rem 4.5.5, provides a reasonable estimate of lvl2 bnd except for the first few problems,

which are very ill conditioned.
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Figure 4.5.2: Level-1 absolute condition number and lvl2 bnd for the matrix logarithm

in the Frobenius norm sorted by decreasing value of condabs(log, A). The black line is

condabs(log, A)2.

4.6 The necessity of the conditions in Theorem 4.3.5

As mentioned at the end of section 4.3, our assumption in Theorem 4.3.5 that f has

2kp−1 derivatives is not necessary for the existence of the kth Fréchet derivative. Our

method of proof employs Xk and to evaluate f(Xk) we need f to have pk−1 continuous

derivatives, where pk is the size of the largest Jordan block of Xk (see Theorem 4.3.1).

From Theorem 4.3.4 we know that pk ≤ 2kp where p is the size of the largest Jordan

block of A; this is the bound used in Theorem 4.3.5, but it is possible for Xk to have

smaller Jordan blocks. The following example shows that for a specially chosen A only

4p− 2 derivatives are needed for the existence of f(X2).

Take A = J where J ∈ Cn×n is a Jordan block of size n with eigenvalue 0. We first

show that rank(X2) ≤ n−2. Note from (4.3.4) that the first column of X2 is 0 and the

(n+1)st and (2n+1)st columns have at most n nonzero elements corresponding to the

first columns of E1 and E2, respectively. Since A has 1s on its first superdiagonal we

see that columns 2: n are the unit vectors e1, . . . , en−1 and they span all but the last

element of the (n+ 1)st and (2n+ 1)st columns. Therefore if [E1]n,1 = 0 or [E2]n,1 = 0

the respective column can be written as a linear combination of columns 2 : n. On the

other hand if both are nonzero then we can write the (2n + 1)st column as a linear

combination of columns 2 : n + 1. Thus there are at most n− 2 linearly independent

columns in X2 and so rank(X2) ≤ n− 2.
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Figure 4.5.3: Top: Level-1 absolute condition number and lvl2 bnd for the matrix

square root in the Frobenius norm sorted by decreasing value of condabs(log, A). The

black line is 2 condabs(x
1/2, A)3.

Bottom: Zoomed view of same data with narrowed y-axis.

This means that X2 has at least two Jordan blocks and therefore the largest Jordan

block is of size at most 4n − 1, meaning 4n − 2 derivatives of f are sufficient for the

existence of f(X2) by Theorem 4.3.1, which is slightly weaker than the requirement in

Theorem 4.3.5 (with k = 2 and p = n) of 4n− 1 derivatives.

The general problem of determining the Jordan structure of Xk given the Jordan

structure of A remains open. Indeed the minimum number of derivatives required for

the existence of the kth Fréchet derivative is also unknown; this number is potentially

less than the number of derivatives required for the existence of f(Xk).
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Chapter 5

Estimating the Condition Number

of the Fréchet Derivative of a

Matrix Function

5.1 Introduction

As mentioned in chapter 1 there are an increasing number of practical applications

where the Fréchet derivatives of a matrix function are required. However, whilst a

number of methods exist to compute Fréchet derivatives there is, to our knowledge,

no literature on how accurately one might expect to compute them. In practice the

input data can be subject to small perturbations such as rounding or measurement

errors [55].

The aims of this chapter are to define the condition number of the Fréchet deriva-

tive, obtain bounds for it, and construct an efficient algorithm to estimate it.

Associated with the Fréchet derivative is its Kronecker matrix form (1.2.3), which

we will reformulate slightly as

vec(Lf (A,E)) = Kf (A) vec(E) = (vec(E)T ⊗ In2) vec(Kf (A)), (5.1.1)

where vec is the operator which stacks the columns of a matrix vertically from first to

last and ⊗ is the Kronecker product. The second equality is obtained by using the

formula

vec(Y AX) = (XT ⊗ Y ) vec(A)
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in the special case, with x ∈ Cn,

Ax = vec(Ax) = (xT ⊗ In) vec(A). (5.1.2)

To investigate the condition number of the Fréchet derivative we will need higher

order Fréchet derivatives of matrix functions, which were investigated in chapter 4.

Although in chapter 4 the derivatives considered were of arbitrarily high order, we will

only require the second Fréchet derivative; therefore it would be prudent to summarize

the key results when specialized to the second Fréchet derivative.

The second Fréchet derivative L
(2)
f (A,E1, E2) ∈ Cn×n is linear in both E1 and E2

and satisfies

Lf (A+ E2, E1)− Lf (A,E1)− L(2)
f (A,E1, E2) = o(‖E2‖). (5.1.3)

Theorem 4.3.5 shows that a sufficient condition for the second Fréchet derivative

L
(2)
f (A, ·, ·) to exist is that f is 4p− 1 times continuously differentiable on an open set

containing the eigenvalues of A, where p is the size of the largest Jordan block of A.

This condition is certainly satisfied if f is 4n− 1 times continuously differentiable on

a suitable open set. In this work we assume without further comment that this latter

condition holds: it clearly does for common matrix functions such as the exponential,

logarithm, and matrix powers At with t ∈ R or indeed for any analytic function. Under

this condition it follows that L
(2)
f (A,E1, E2) is independent of the order of E1 and E2

(which is analogous to the equality of mixed second order partial derivatives for scalar

functions) as explained in section 4.2.

One method for computing Fréchet derivatives is to apply f to a 2n × 2n matrix

and read off the top right-hand block [57, (3.16)], [80]:

f

A E

0 A

 =

f(A) Lf (A,E)

0 f(A)

 . (5.1.4)

In Theorem 4.3.5 we showed that the second Fréchet derivative can be calculated in a

similar way, as the top right-hand block of a 4n× 4n matrix:

L
(2)
f (A,E1, E2) = f




A E1 E2 0

0 A 0 E2

0 0 A E1

0 0 0 A



 (1 : n, 3n+ 1: 4n). (5.1.5)
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There is also a second order Kronecker matrix form (see section 4.4) analogous

to (5.1.1) and denoted by K
(2)
f (A) ∈ Cn4×n2

, such that for any E1 and E2,

vec(L
(2)
f (A,E1, E2)) = (vec(E1)

T ⊗ In2)K
(2)
f (A) vec(E2) (5.1.6)

= (vec(E2)
T ⊗ vec(E1)

T ⊗ In2) vec(K
(2)
f (A)). (5.1.7)

Note that K
(2)
f (A) encodes information about L

(2)
f (A)—the Fréchet derivative of

Lf (A)—in n6 numbers. Our challenge is to estimate the condition number of Lf in

just O(n3) flops.

This chapter is organized as follows. In section 5.2 we define the absolute and rela-

tive condition numbers of a Fréchet derivative, relate the two, and bound them above

and below in terms of the second Fréchet derivative and the condition number of f .

The upper and lower bounds that we obtain differ by at most a factor 2. Section 5.3

relates the bounds to the Kronecker matrix K
(2)
f (A) at the cost, for the 1-norm, of

introducing a further factor n of uncertainty and this leads to an O(n3) flops algorithm

given in section 5.4 for estimating the 1-norm condition number of the Fréchet deriva-

tive. We test the accuracy and robustness of our algorithm via numerical experiments

in section 5.5.

5.2 The condition number of the Fréchet derivative

We begin by proposing a natural definition for the absolute and relative condition

numbers of a Fréchet derivative and showing that the two are closely related. We

define the absolute condition number of a Fréchet derivative Lf (A,E) by

condabs(Lf , A,E) = lim
ε→0

sup
‖∆A‖≤ε
‖∆E‖≤ε

‖Lf (A+∆A,E +∆E)− Lf (A,E)‖
ε

, (5.2.1)

which measures the maximal effect that small perturbations in the data A and E can

have on the Fréchet derivative. Similarly we define the relative condition number by

condrel(Lf , A,E) = lim
ε→0

sup
‖∆A‖≤ε‖A‖
‖∆E‖≤ε‖E‖

‖Lf (A+∆A,E +∆E)− Lf (A,E)‖
ε‖Lf (A,E)‖

, (5.2.2)
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where the changes are now measured in a relative sense. By taking ∆A and ∆E

sufficiently small we can rearrange (5.2.2) to obtain the approximate upper bound

‖Lf (A+∆A,E +∆E)− Lf (A,E)‖
‖Lf (A,E)‖

. max

(
‖∆A‖
‖A‖

,
‖∆E‖
‖E‖

)
condrel(Lf , A,E).

(5.2.3)

A useful property of the relative condition number is its lack of dependence on the

norm of E: for any positive scalar s ∈ R,

condrel(Lf , A, sE) = lim
ε→0

sup
‖∆A‖≤ε‖A‖
‖∆E‖≤sε‖E‖

‖Lf (A+∆A, sE +∆E)− Lf (A, sE)‖
ε‖Lf (A, sE)‖

= lim
ε→0

sup
‖∆A‖≤ε‖A‖
‖∆E/s‖≤ε‖E‖

‖Lf (A+∆A,E +∆E/s)− Lf (A,E)‖
ε‖Lf (A,E)‖

= condrel(Lf , A,E). (5.2.4)

Furthermore we can obtain a similar relationship to (1.3.4) relating the absolute

and relative condition numbers. This is useful since it allows us to state results and

algorithms using the absolute condition number before reinterpreting them in terms

of the relative condition number.

Lemma 5.2.1. The absolute and relative condition numbers of the Fréchet derivative

Lf are related by

condrel(Lf , A,E) =
condabs(Lf , A, sE)‖E‖

‖Lf (A,E)‖
, s =

‖A‖
‖E‖

.

Proof. Using (5.2.4) and setting s‖E‖ = ‖A‖ and δ = ε‖A‖ we have

condrel(Lf , A,E) = condrel(Lf , A, sE)

= lim
ε→0

sup
‖∆A‖≤ε‖A‖
‖∆E‖≤εs‖E‖

‖Lf (A+∆A, sE +∆E)− Lf (A, sE)‖
ε‖Lf (A, sE)‖

=
‖A‖

‖Lf (A, sE)‖
lim
δ→0

sup
‖∆A‖≤δ
‖∆E‖≤δ

‖Lf (A+∆A, sE +∆E)− Lf (A, sE)‖
δ

=
condabs(Lf , A, sE)‖A‖

‖Lf (A, sE)‖
=

condabs(Lf , A, sE)‖E‖
‖Lf (A,E)‖

.

In order to bound the relative condition number we will derive computable bounds

on the absolute condition number and use the relationship in Lemma 5.2.1 to translate

them into bounds on the relative condition number. We first obtain lower bounds.
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Lemma 5.2.2. The absolute condition number of the Fréchet derivative satisfies both

the lower bounds

condabs(Lf , A,E) ≥ condabs(f, A),

condabs(Lf , A,E) ≥ max
‖∆A‖=1

‖L(2)
f (A,E,∆A)‖.

Proof. For the first bound we set ∆A = 0 in (5.2.1) and use the linearity of the

derivative:

condabs(Lf , A,E) ≥ lim
ε→0

sup
‖∆E‖≤ε

‖Lf (A,E +∆E)− Lf (A,E)‖
ε

= lim
ε→0

sup
‖∆E‖≤ε

‖Lf (A,∆E)‖
ε

= condabs(f, A).

Similarly, for the second bound we set ∆E = 0 and obtain, using (5.1.3),

condabs(Lf , A,E) ≥ lim
ε→0

sup
‖∆A‖≤ε

‖Lf (A+∆A,E)− Lf (A,E)‖
ε

= lim
ε→0

sup
‖∆A‖≤ε

‖L(2)
f (A,E,∆A) + o(‖∆A‖)‖

ε

= lim
ε→0

sup
‖∆A‖≤ε

‖L(2)
f (A,E,∆A/ε)‖

= max
‖∆A‖=1

‖L(2)
f (A,E,∆A)‖. (5.2.5)

Next, we derive an upper bound.

Lemma 5.2.3. The absolute condition number of the Fréchet derivative satisfies

condabs(Lf , A,E) ≤ max
‖∆A‖=1

‖L(2)
f (A,E,∆A)‖+ condabs(f, A).
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Proof. Notice that by linearity of the second argument of Lf ,

condabs(Lf , A,E) = lim
ε→0

sup
‖∆A‖≤ε
‖∆E‖≤ε

‖Lf (A+∆A,E +∆E)− Lf (A,E)‖
ε

≤ lim
ε→0

sup
‖∆A‖≤ε
‖∆E‖≤ε

(
‖Lf (A+∆A,E)− Lf (A,E)‖

ε

+
‖Lf (A+∆A,∆E)‖

ε

)

≤ lim
ε→0

sup
‖∆A‖≤ε

‖Lf (A+∆A,E)− Lf (A,E)‖
ε

+ lim
ε→0

sup
‖∆A‖≤ε
‖∆E‖≤ε

‖Lf (A+∆A,∆E/ε)‖. (5.2.6)

The first term on the right-hand side of (5.2.6) is equal to max‖∆A‖=1 ‖L(2)
f (A,E,∆A)‖

by (5.2.5). For the second half of the bound (5.2.6) we have, using (5.1.3) and the fact

that L
(2)
f (A,E1, E2) is linear in E2,

lim
ε→0

sup
‖∆A‖≤ε
‖∆E‖≤ε

‖Lf (A+∆A,∆E/ε)‖ = lim
ε→0

sup
‖∆A‖≤ε
‖∆E‖≤ε

∥∥Lf (A,∆E/ε) + L
(2)
f (A,∆E/ε,∆A)

+ o(‖∆A‖)
∥∥

= lim
ε→0

sup
‖∆A‖≤ε
‖∆E‖≤ε

‖Lf (A,∆E/ε) +O(ε)‖

= lim
ε→0

sup
‖∆E‖≤ε

‖Lf (A,∆E/ε)‖ = condabs(f, A).

Combining the two halves of the bound gives the result.

We now give the corresponding bounds for the relative condition number.

Theorem 5.2.4. The relative condition number of the Fréchet derivative Lf satisfies

condrel(Lf , A,E) ≥ 1 and

max(condabs(f, A), sM)r ≤ condrel(Lf , A,E) ≤ (condabs(f, A) + sM)r,

where s = ‖A‖/‖E‖, r = ‖E‖/‖Lf (A,E)‖, and M = max‖∆A‖=1 ‖L(2)
f (A,E,∆A)‖.

Proof. To show condrel(Lf , A,E) ≥ 1 we can use Lemmas 5.2.1 and 5.2.2, along with
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the linearity of Lf (A,E) in E, as follows:

condrel(Lf , A,E) =
condabs(Lf , A, sE)‖E‖

‖Lf (A,E)‖

≥ condabs(f, A)‖E‖
‖Lf (A,E)‖

=
max‖Z‖=1 ‖Lf (A,Z)‖‖E‖

‖Lf (A,E)‖

=
max‖Z‖=1 ‖Lf (A,Z)‖
‖Lf (A,E/‖E‖)‖

≥ 1.

For the other inequalities apply Lemma 5.2.1 to Lemmas 5.2.2 and 5.2.3 similarly.

Theorem 5.2.4 gives upper and lower bounds for condrel(Lf , A,E) that differ by

at most a factor 2. During our numerical experiments in section 5.5 we found that

typically condabs(f, A) and sM were of comparable size, though on occasion they

differed by many orders of magnitude. Finding sufficient conditions for these two

quantities to differ significantly remains an open question which will depend on the

complex interaction between f , A, and E.

There are already efficient algorithms for estimating condabs(f, A) using Fréchet

derivatives and norm estimation techniques using the procedure outlined in section 1.3

(for example [4], [5], [61], and Algorithms 3.5.1 and 3.6.1). The key question is therefore

how to estimate the maximum of ‖L(2)
f (A,E,∆A)‖ over all ∆A with ‖∆A‖ = 1. This

is the subject of the next section.

5.3 Maximizing the second Fréchet derivative

Our techniques for estimating the required maximum norm of the second Fréchet

derivative are analogous to those for estimating condabs(f, A), described in section 1.3.

To briefly recall, we usually estimate condabs(f, A) in the 1-norm by ‖Kf (A)‖1,

which we know is accurate to within a factor of n by Lemma 1.3.1. To estimate

‖Kf (A)‖1 the block 1-norm power method is used (see Algorithm 1.3.2). This approach

requires around 4t matrix–vector products in total (using both Kf (A) and Kf (A)∗)

and produces estimates rarely more than a factor 3 from the true norm. The parameter

t is usually set to 2, but can be increased for greater accuracy at the cost of extra flops.
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Using (5.1.6) we obtain a result similar to (1.3.5) for maximizing the norm of the

second Fréchet derivative in the Frobenius norm:

max
‖∆A‖F=1

‖L(2)
f (A,E,∆A)‖F = sup

‖ vec(∆A)‖2≤1
‖ vec(L

(2)
f (A,E,∆A))‖2

= sup
‖ vec(∆A)‖2≤1

‖
(
vec(E)T ⊗ In2

)
K

(2)
f (A) vec(∆A)‖2

= ‖
(
vec(E)T ⊗ In2

)
K

(2)
f (A)‖2. (5.3.1)

The next result shows that using the 1-norm instead gives the same accuracy

guarantees as Lemma 1.3.1.

Theorem 5.3.1. The 1-norm of the second Fréchet derivative and the 1-norm of the

second Kronecker form are related by

1

n
M ≤ ‖(vec(E)T ⊗ In2)K

(2)
f (A)‖1 ≤ nM,

where M = max‖∆A‖1≤1 ‖L
(2)
f (A,E,∆A)‖1.

Proof. Making use of (5.1.6), for the lower bound we have

max
‖∆A‖1≤1

‖L(2)
f (A,E,∆A)‖1 ≤ sup

‖∆A‖1≤1
‖ vec(L

(2)
f (A,E,∆A))‖1

= sup
‖∆A‖1≤1

‖(vec(E)T ⊗ In2)K
(2)
f (A) vec(∆A)‖1

≤ sup
‖ vec(∆A)‖1≤n

‖(vec(E)T ⊗ In2)K
(2)
f (A) vec(∆A)‖1

= n sup
‖ vec(∆A)‖1≤1

‖(vec(E)T ⊗ In2)K
(2)
f (A) vec(∆A)‖1

= n‖(vec(E)T ⊗ In2)K
(2)
f (A)‖1.

For the upper bound, using (5.1.6) again,

max
‖∆A‖1≤1

‖L(2)
f (A,E,∆A)‖1 ≥

1

n
sup

‖∆A‖1≤1
‖ vec(L

(2)
f (A,E,∆A))‖1

=
1

n
sup

‖∆A‖1≤1
‖(vec(E)T ⊗ In2)K

(2)
f (A) vec(∆A)‖1

≥ 1

n
sup

‖ vec(∆A)‖1≤1
‖(vec(E)T ⊗ In2)K

(2)
f (A) vec(∆A)‖1

=
1

n
‖(vec(E)T ⊗ In2)K

(2)
f (A)‖1.
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Explicitly computing matrix–vector products with (vec(E)T ⊗ In2)K
(2)
f (A) and its

conjugate transpose is not feasible, as computing K
(2)
f (A) using Algorithm 4.4.2 costs

O(n7) flops. Fortunately we can compute the matrix–vector products implicitly since,

by (5.1.6),

(vec(E)T ⊗ In2)K
(2)
f (A) vec(V ) = vec(L

(2)
f (A,E, V )),

where the evaluation of the right-hand side costs only O(n3) flops using (5.1.5). This

is analogous to the relation Kf (A) vec(V ) = vec(Lf (A, V )) used in the estimation of

Kf (A) in the 1-norm via Algorithm 1.3.2.

Similarly we would like to implicitly compute products with the conjugate trans-

pose
[
(vec(E)T ⊗ In2)K

(2)
f (A)

]∗
so that the entire 1-norm estimation can be done in

O(n3) flops. To do so we need the following result.

Theorem 5.3.2. Let f be analytic on an open subset D of C for which each connected

component is closed under conjugation and let f satisfy f(z) = f(z) for all z ∈ D.

Then for all k ≤ m and A with spectrum in D,

L
(k)
f (A,E1, . . . , Ek)

∗ = L
(k)
f (A∗, E∗1 , . . . , E

∗
k).

Proof. Our proof is by induction on k, where the base case k = 1 is established by

Higham and Lin [61, Lem. 6.2]. Assume that the result holds for the kth Fréchet

derivative, which exists under the given assumptions. Then, since the Fréchet deriva-

tive is equal to the Gâteaux derivative (see section 1.2),

L
(k+1)
f (A,E1, . . . , Ek+1)

∗ =
d

dt

∣∣∣∣
t=0

L
(k)
f (A+ tEk+1, E1, . . . , Ek)

∗.

Using the inductive hypothesis the right-hand side becomes

d

dt

∣∣∣∣
t=0

L
(k)
f (A∗ + tE∗k+1, E

∗
1 , . . . , E

∗
k) = L

(k+1)
f (A∗, E∗1 , . . . , E

∗
k+1).

The conditions of Theorem 5.3.2 are not very restrictive; they are satisfied by the

exponential, the logarithm, real powers At (t ∈ R), the matrix sign function, and

trigonometric functions, for example. The condition f(z) = f(z) is, in fact, equivalent

to f(A)∗ = f(A∗) for all A with spectrum in D [62, Thm. 3.2 and its proof]. Under

the conditions of the theorem it can be shown that

Kf (A)∗ = Kf (A
∗), (5.3.2)
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which is implicit in [57, pp. 66–67] and [61], albeit not explicitly stated there (and this

equality will be needed in section 5.6). As mentioned in section 1.3, matrix–vector

products with Kf (A)∗ can therefore be computed efficiently since

Kf (A)∗ vec(V ) = Kf (A
∗) vec(V ) = vec(Lf (A

∗, V )) = vec(Lf (A, V
∗)∗), (5.3.3)

using Theorem 5.3.2 for the last equality. The next result gives an analog of (5.3.2)

for
[
(vec(E)T ⊗ In2)K

(2)
f (A)

]∗
.

Theorem 5.3.3. Under the conditions of Theorem 5.3.2, for A ∈ Cn×n with spectrum

in D, [
(vec(E)T ⊗ In2)K

(2)
f (A)

]∗
= (vec(E∗)T ⊗ In2)K

(2)
f (A∗).

Proof. We will need to use the Kronecker product property

(A⊗B)(C ⊗D) = AC ⊗BD. (5.3.4)

We also need the commutation (or vec-permutation) matrix Cn ∈ Cn2×n2
, which is a

permutation matrix defined by the property that for A ∈ Cn×n, vec(AT ) = Cn vec(A).

It is symmetric and satisfies, for A,B ∈ Cn×n and x, y ∈ Cn, [47], [78, Thm. 3.1]

(A⊗B)Cn = Cn(B ⊗ A), (5.3.5)

(xT ⊗ yT )Cn = yT ⊗ xT . (5.3.6)

We will prove that the two matrices in the theorem statement are equal by showing

that they take the same value when multiplied by the arbitrary vector v = vec(V ),

where V ∈ Cn×n. Multiplying both sides by v and taking vec of the right-hand side

we find that we need to show[
(vec(E)T ⊗ In2)K

(2)
f (A)

]∗
v = (vT ⊗ vec(E∗)T ⊗ In2) vec(K

(2)
f (A∗)).

116



Manipulating the left-hand side we have[
(vec(E)T ⊗ In2)K

(2)
f (A)

]∗
v = K

(2)
f (A)∗

(
vec(E)⊗ In2

)
v

= K
(2)
f (A)∗

(
vec(E)⊗ v

)
using v = 1⊗ v and (5.3.4)

=
[(

vec(E)⊗ v
)T ⊗ In2

]
vec(K

(2)
f (A)∗) by (5.1.2)

=
[
((Cn ⊗ In2)(vec(E∗)⊗ v))T ⊗ In2

]
vec(K

(2)
f (A)∗)

=
[(

(vec(E∗)T ⊗ vT )(Cn ⊗ In2)
)
⊗ In2

]
vec(K

(2)
f (A)∗) using Cn = CT

n

= (vec(E∗)T ⊗ vT ⊗ In2)(Cn ⊗ In4) vec(K
(2)
f (A)∗) by (5.3.4) and In2 ⊗ In2 = In4

= (vT ⊗ vec(E∗)T ⊗ In2)(Cn2 ⊗ In2)(Cn ⊗ In4) vec(K
(2)
f (A)∗),

using (5.3.6) for the last equality. Therefore it remains to show that

(Cn2 ⊗ In2)(Cn ⊗ In4) vec(K
(2)
f (A)∗) = vec(K

(2)
f (A∗)),

a proof of which can be found in section 5.6.

Theorem 5.3.3 shows that we can compute matrix–vector products with the con-

jugate transpose as[
(vec(E)T ⊗ In2)K

(2)
f (A)

]∗
vec(V ) = (vec(E∗)T ⊗ In2)K

(2)
f (A∗) vec(V )

= vec(L
(2)
f (A∗, E∗, V )) by (5.1.6)

= vec(L
(2)
f (A,E, V ∗)∗), (5.3.7)

where the final equality is from Theorem 5.3.2. Therefore the block 1-norm estimator

can used to estimate efficiently ‖(vec(E)T ⊗ In2)K
(2)
f (A)‖1 in Theorem 5.3.1.

5.4 An algorithm for estimating the relative con-

dition number

We are now ready to state our complete algorithm for estimating the relative condition

number of a Fréchet derivative in the 1-norm.

In the following algorithm we use the unvec operator, which for a vector v ∈ Cn2

returns the unique matrix in Cn×n such that vec(unvec(v)) = v.
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Algorithm 5.4.1. Given A ∈ Cn×n, E ∈ Cn×n, and f satisfying the conditions of

Theorem 5.3.2 this algorithm produces an estimate γ of the relative condition number

condrel(Lf , A,E). It uses the block 1-norm estimation algorithm of [66] with t = 2,

which we denote by normest (an implementation is [51, funm condest1]).

1 Compute f(A) and Lf (A,E) via specialized algorithms such

as those in [4], [61], or chapter 3 if possible. Alternatively, compute Lf (A,E)

by finite differences, the complex step method [5], or (5.1.4).

2 Compute an estimate c of condrel(f, A) using Algorithm 1.3.2 and normest.

3 c← c‖f(A)‖1/‖A‖1 % Now c = condabs(f, A).

4 s = ‖A‖1/‖E‖1
5 Estimate µ = ‖

(
vec(E)T ⊗ In2

)
K

(2)
f (A)‖1 using normest with lines 7–14.

6 γ = (c+ sµ)‖E‖1/‖Lf (A,E)‖1
7 . . . To compute (vec(E)T ⊗ In2)K

(2)
f (A)v for a given v:

8 V = unvec(v)

9 Calculate W = L
(2)
f (A,E, V ) using (5.1.5) for example.

10 Return vec(W ) to the norm estimator.

11 . . . To compute
[
(vec(E)T ⊗ In2)K

(2)
f (A)

]∗
v for a given v:

12 V = unvec(v)

13 Calculate W = L
(2)
f (A,E, V ∗) using (5.1.5) for example.

14 Return vec(W ∗) to the norm estimator.

Cost: Around 9 Fréchet derivative evaluations for Lf (A,E) and condrel(f, A), plus

about 8 second Fréchet derivative evaluations. The cost depends on which particular

methods are chosen to compute the Fréchet derivatives required in lines 1 and 2 and

L
(2)
f (A,E, V ), but the total cost is O(n3) flops.

The quality of the estimate returned by Algorithm 5.4.1 depends on the quality of

the underlying bounds and the quality of the computed norm estimate. The estimate

has a factor 2 uncertainty from Theorem 5.2.4 and another factor n uncertainty from

Lemma 1.3.1 and Theorem 5.3.1. The norm estimates are usually correct to within

a factor 3, so overall we can expect the estimate from Algorithm 5.4.1 to differ from

condrel(f, A) by at most a factor 6n.
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Even though the Fréchet derivative L
(2)
f (A,E1, E2) is linear in E1 and E2, the

scaling of E1 and E2 may affect the accuracy of the computation. Heuristically we

might expect that scaling E1 and E2 so that ‖A‖1 ≈ ‖E1‖1 ≈ ‖E2‖1 would give good

accuracy. When implementing Algorithm 5.4.1 we scale E1 and E2 in this way before

taking the derivatives and rescaling the result.

5.5 Numerical experiments

Our experiments are all performed in MATLAB R2013a. We examine the performance

of Algorithm 5.4.1 for the matrix logarithm and matrix powers At with t ∈ R using

the Fréchet derivative evaluation algorithms from chapter 3 and [61], respectively.

Throughout this section u = 2−53 denotes the unit roundoff. Since the Fréchet deriva-

tive algorithms in question have been shown to perform in a forward stable manner in

section 3.8.2 and [61] (assessed therein using the Kronecker condition number estima-

tor that we will show tends to underestimate the true condition number) we expect

their relative errors to be bounded by the condition number times the unit roundoff.

We will compare Algorithm 5.4.1, denoted in this section by condest FD, with

three other methods in terms of the accuracy and reliability of using the estimated

value of condrel(Lf , A,E)u as a bound on the relative error

‖L̂f (A,E)− Lf (A,E)‖1
‖Lf (A,E)‖1

,

where L̂f (A,E) is the computed Fréchet derivative. Unfortunately, we cannot directly

assess the quality of our condition number estimates as we have no way to compute

the exact condition number condrel(Lf , A,E).

For our tests we need to choose the matrices A and E at which to evaluate the

Fréchet derivative and its condition number. For A we use the same test matrices as in

section 3.8 and [61]. These (mostly 10×10) matrices are from the Matrix Computation

Toolbox [50], the MATLAB gallery function, and the literature. Ideally we would

choose the direction E as a direction that maximizes the relative error above; however it

is unclear how to do so without resorting to expensive optimization procedures. Instead

we choose the direction E to be a matrix with normal (0, 1) distributed elements,

but we give a specific example of a worst case direction for the matrix logarithm in
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section 5.5.3.

To compute an accurate value of Lf (A,E), used solely to calculate the relative

errors mentioned above, we evaluate (5.1.4) in 250 digit precision by performing the

diagonalization V DV −1 = [X E
0 X ], applying f to the diagonal matrix D, and returning

the (1, 2) block. If the matrix [X E
0 X ] is not diagonalizable we add a random pertur-

bation of norm 10−125 to make the eigenvalues distinct. This idea was introduced by

Davis [27] and has been used in chapters 2 and 3, and [61]. These high precision

calculations are performed in the Symbolic Math Toolbox.

We compare our algorithm against three approximations. The first is

condrel(Lf , A,E) ≈ ‖Lf (A+∆A,E +∆E)− Lf (A,E)‖1
ε‖Lf (A,E)‖1

,

where ∆A and ∆E are chosen to have normal (0, 1) distributed elements and then

are scaled so that ‖∆A‖1/‖A‖1 = ‖∆E‖1/‖E‖1 = ε = 10−8 (c.f. (5.2.2)). We would

expect this method to generally underestimate the condition number since ∆A and

∆E are unlikely to point in the directions of greatest sensitivity. This estimate will be

referred to as the random method throughout this section. Since this method requires

only two Fréchet derivative evaluations (as opposed to around 17 for Algorithm 5.4.1)

one possible extension of this method would be to run it k times and take the mean

as an estimate of the condition number. Further experiments, not reported here, took

k = 5, 10, and 20 without seeing any significant change in the results.

Our next alternative approximation is

condrel(Lf , A,E) ≈ ‖Kf (A+∆A)−Kf (A)‖1
ε‖Kf (A)‖1

,

where Kf (A) is the Kronecker form of the Fréchet derivative in (5.1.1) and ∆A is gen-

erated with normal (0, 1) distributed elements and then scaled so that ‖∆A‖1/‖A‖1 =

ε = 10−8. This heuristic approximation has been used in [4] and chapter 3, but has

two drawbacks. First, the dependence on E is ignored which (see Lemmas 5.2.2 and

5.2.3) essentially corresponds to neglecting an additive condabs(f, A) term and so could

lead to underestimating the condition number. Second, the random direction ∆A will

generally not point in the direction in which Kf (A) is most sensitive, again leading

to underestimation. We refer to this as the Kronecker method in our experiments.

This method costs O(n5) flops and is therefore the most expensive. We might also

120



10 20 30 40 50 60

10
−15

10
−10

10
−5

10
0

 

 

Rel. Err.
condest_FD
fin_diff
Kronecker
random

Figure 5.5.1: Relative errors of computed Llog(A,E) and estimates of

condrel(Llog, A,E)u for 66 test matrices sorted by decreasing value of condest FD.

try running this method k times and taking the mean of the results, in an attempt to

better estimate the condition number. Further experiments averaging k = 5, 10, and

20 runs of this algorithm made no significant difference to the results.

The final approximation method for comparison is a modification of Algorithm 5.4.1

that estimates the second Fréchet derivative by the finite difference approximation

L
(2)
f (A,E, V ) ≈ t−1

(
Lf (A + tV, E) − Lf (A,E)

)
for a small t instead of using (5.1.5).

This is done by invoking funm condest1 from the Matrix Function Toolbox [50] on the

function g(A) = Lf (A,E) with the option to use finite differences selected, with the

default value t = 10−8. We will refer to this method as fin diff in our experiments.

This method has essentially identical cost to Algorithm 5.4.1, the only difference being

the computation of the second Fréchet derivatives.

5.5.1 Condition number of Fréchet derivative of matrix loga-

rithm

In our first experiment we compute the Fréchet derivative of the logarithm of 66 test

matrices using the Algorithms 3.5.1 and 3.6.1, depending on whether the input matrix

is complex or real, respectively. Figure 5.5.1 shows the normwise relative errors and

the estimates of condrel(Llog, A,E)u.

We see that fin diff and condest FD give similar output in most cases, as do

Kronecker and random, though neither of these latter two seems able to yield values
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higher than 10−8 (the length of the finite difference step used in the algorithm). All

four methods agree on which problems are well conditioned. On the right-hand side of

the figure we see that some relative errors are slightly above the estimates. However

all are within a factor 2.7 of the estimate from condest FD, which is much less than

the factor 6n we can expect in the worst case, as explained at the end of section 5.4.

For the ill conditioned problems both Kronecker and fin diff fail to return con-

dition number estimates for some of the test matrices, as indicated by the broken lines

at the left end of Figure 5.5.1. This is due to a perturbed matrix A+V having negative

eigenvalues during the computation of the Fréchet derivatives using finite differences,

which raises an error since the principal matrix logarithm and its Fréchet derivative

are not defined for such matrices. In principal this same problem could happen when

using the random method. Since condest FD computes bounds on the second Fréchet

derivative without perturbing A it does not encounter this problem. In section 5.5.3

we analyze the second test matrix in more detail and find that, despite the error bound

being pessimistic, the condition number truly is as large as estimated by fin diff and

condest FD.

5.5.2 Condition number of Fréchet derivative of matrix power

Our second experiment compares the algorithms on the function At with t = 1/15

over 60 test matrices from the previous set, where the Fréchet derivative is computed

using the algorithm of Higham and Lin [61]. Figure 5.5.2 shows the normwise relative

errors and the estimated quantities cond(Lxt , A,E)u, sorted by decreasing condest FD.

Again we see that the condition number estimates from Kronecker and random are

bounded above by about 10−8, though the actual relative errors are sometimes much

higher.

The methods return similar condition number estimates for the well conditioned

problems but give very different results on the ill conditioned problems in the first 10

test cases. In particular fin diff, Kronecker, and random do not provide reliable

error bounds for the badly conditioned cases, their bounds being several orders of

magnitude lower than the observed relative errors for test matrices 6 and 9. There

is also some significant overestimation by fin diff on test matrix 8. In contrast,

condest FD provides reliable error bounds for all the ill conditioned problems.
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Figure 5.5.2: Relative errors of computed Lxt(A,E) and estimates of

condrel(Lxt , A,E)u, with t = 1/15, for 60 test matrices sorted by decreasing value

of condest FD.

Similar experiments with the matrix exponential, not reported here, show analo-

gous results: both condest FD and fin diff give good bounds on the relative errors

whilst Kronecker and random generally underestimate them. The only difference is

that fin diff also gives good bounds for the ill-conditioned problems, instead of fail-

ing or giving spurious results as above.

5.5.3 An ill conditioned Fréchet derivative

In this section we give a more detailed analysis of the Fréchet derivative of the loga-

rithm on test problem 2 of Figure 5.5.1. The matrices A and E are

A =

e(π−10−7i) 1000

0 e(π+10−7i)

 , E =

 0.3 0.012

−0.76 −0.49

 .
This example is particularly interesting because the condition number estimated by

Algorithm 5.4.1 is large, condrel(Llog, A,E) ≈ 1.5 × 1020, but we observed a relative

error of around 10−10 when computing the Fréchet derivative in our experiments. We

will show that a tiny perturbation to A that greatly changes Llog(A,E) exists.

What we need to do is to find a matrix V with ‖V ‖1 = 1 such that ‖L(2)
log(A,E, V )‖1

is large, since by Theorem 5.2.4 this will imply that condrel(Llog, A,E) is large. Such

a V can be obtained as output from the 1-norm estimator. However, we will obtain it

from first principles by applying direct search optimization [53], with the code mdsmax
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from [50] that implements the algorithm from [102], [103]. Direct search yields the

putative optimal point

V =

0.1535 + 0.1535i 0.1535 + 0.1535i

0.1535 + 0.7677i 0.1535 + 0.1535i

 ,
shown to four significant figures, for which ‖L(2)

log(A,E, V )‖1 = 1.4× 1044. Calculating

the Fréchet derivatives Llog(A,E) and Llog(A+ uV,E) in 250 digit arithmetic—using

the procedure outlined at the beginning of this section—leads to a relative difference of

‖Llog(A+ uV,E)− Llog(A,E)‖1
‖Llog(A,E)‖1

= 1.0318,

showing that the Fréchet derivative evaluation is extremely sensitive to perturbations

in the direction V . We were fortunate not to experience this sensitivity during the

evaluation of Llog(A,E). This computation confirms that, as condest FD suggests, a

relative perturbation of order u to A can produce a change of order 1 in the Fréchet

derivative. But as we saw in the experiments, ill conditioning is not identified consis-

tently by the approximations from fin diff, Kronecker, or random.

5.6 Continued proof of Theorem 5.3.3

This section completes the proof of Theorem 5.3.3. We need to show that

(Cn2 ⊗ In2)(Cn ⊗ In4) vec(K
(2)
f (A)∗) = vec(K

(2)
f (A∗)).

We will begin by showing that vec(K
(2)
f (A)∗) = vec(K

(2)
f (A∗)Cn) which (after some

manipulation) reduces the problem to showing that

(Cn2 ⊗ In2) vec(K
(2)
f (A∗)) = vec(K

(2)
f (A∗)). (5.6.1)

Before proceeding we recall that Cn is a permutation matrix corresponding to some

permutation σ on the integers from 1 to n2. This permutation can be defined by the

property that when vec(Ei) = ei is the ith standard basis vector then

Eσ(i) = ET
i , (5.6.2)

which follows from the observation that Cn vec(Ei) = Cnei = eσ(i) = vec(Eσ(i)) along

with Cn vec(Ei) = vec(ET
i ).
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Expanding Algorithm 4.4.2 for the case k = 2, (or from (4.4.3)), we see that

K
(2)
f (X) ∈ Cn4×n2

is made from n2 × 1 blocks[
K

(2)
f (X)

]
ij

= vec(L
(2)
f (X,Ej, Ei)), i, j = 1 : n2,

so that applying Cn to the right of K
(2)
f (A∗) permutes its columns and[

K
(2)
f (A∗)Cn

]
ij

= vec(L
(2)
f (A∗, Eσ(j), Ei))

= vec(L
(2)
f (A∗, ET

j , Ei))

= vec(L
(2)
f (A,Ej, E

T
i )∗),

because L
(2)
f (A∗, F,G) = L

(2)
f (A,F ∗, G∗)∗ by Theorem 5.3.2. Similarly K

(2)
f (A)∗ is

made from 1× n2 blocks[
K

(2)
f (A)∗

]
ij

= vec(L
(2)
f (A,Ei, Ej))

∗, i, j = 1 : n2.

To continue, note that K
(2)
f (A∗)Cn and K

(2)
f (A)∗ are of sizes n4 × n2 and n2 ×

n4 respectively and so cannot be equal, though we only need to prove that their

vectorizations are equal. We need to show that each n2×n2 block column of K
(2)
f (A)∗

is equal to the “unvec” of the corresponding n4× 1 column of K
(2)
f (A∗)Cn. That is for

j = 1 : n2 we want to show that
vec(L

(2)
f (A,E1, Ej))

∗

...

vec(L
(2)
f (A,En2 , Ej))

∗

 =
[
vec(L

(2)
f (A,Ej, E

T
1 )∗) · · · vec(L

(2)
f (A,Ej, E

T
n2)∗)

]
.

(5.6.3)

To do so, we will expand the rows and columns then show they are equal elementwise.

Since, as explained in chapter 4,

L
(2)
f (A,Ek, Ej) =

d

dt

∣∣∣∣
t=0

Lf (A(t), Ek), A(t) = A+ tEj,

the left-hand side of (5.6.3) can be written as
vec(L

(2)
f (A,E1, Ej))

∗

...

vec(L
(2)
f (A,En2 , Ej))

∗

 =
d

dt

∣∣∣∣
t=0


eT1 vec(Lf (A(t), E1)) · · · eTn2vec(Lf (A(t), E1))

...
. . .

...

eT1 vec(Lf (A(t), En2)) · · · eTn2vec(Lf (A(t), En2))

 .
Similarly using (5.6.2) on the right-hand side of (5.6.3) we have

vec(L
(2)
f (A,Ej, E

T
i )∗) =

d

dt

∣∣∣∣
t=0

Cnvec(Lf (A(t), Eσ(i))),
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and therefore the right-hand side of (5.6.3) can be written as[
vec(L

(2)
f (A,Ej, E

T
1 )∗) · · · vec(L

(2)
f (A,Ej, E

T
n2)∗)

]

=
d

dt

∣∣∣∣
t=0


eTσ(1)vec(Lf (A(t), Eσ(1))) · · · eTσ(1)vec(Lf (A(t), Eσ(n2)))

...
. . .

...

eTσ(n2)vec(Lf (A(t), Eσ(1))) · · · eTσ(n2)vec(Lf (A(t), Eσ(n2)))

 .
Suppressing the dependence on t, we need to prove that

eTj vec(Lf (A,Ei)) = eTσ(i) vec(Lf (A,Eσ(j))),

since these are the (i, j) elements of the left and right-hand side of equation (5.6.3)

respectively (with the complex conjugation removed from both sides). Beginning from

the right-hand side we have

eTσ(i) vec(Lf (A,Eσ(j))) = eTi Cn vec(Lf (A,Eσ(j)))

= eTi vec(Lf (A∗, Ej)) by (5.6.2)

= eTi (eTj ⊗ In2)vec(Kf (A∗)) by (5.1.1)

= eTi (eTj ⊗ In2)vec(Kf (A)∗) by (5.3.2)

= eTi (eTj ⊗ In2)Cn vec(Kf (A))

= eTi (In2 ⊗ eTj ) vec(Kf (A)) by (5.3.6)

= eTj (eTi ⊗ In2) vec(Kf (A))

= eTj vec(Lf (A,Ei)) by (5.1.1),

as required, which completes the proof of

vec(K
(2)
f (A)∗) = vec(K

(2)
f (A∗)Cn).

To complete the result we need to prove (5.6.1). To make the notation slightly

easier we will use X = A∗ from now on. By [78, Thm. 3.1(i)] we can write

Cn2 =
n2∑
j=1

eTj ⊗ In2 ⊗ ej,
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where ek ∈ Cn2
, and so the left-hand side of (5.6.1) becomes

(Cn2 ⊗ In2) vec(K
(2)
f (X)) =

(
n2∑
j=1

eTj ⊗ In2 ⊗ ej ⊗ In2

)
vec(K

(2)
f (X))

=
n2∑
j=1

vec
(

(In2 ⊗ ej ⊗ In2)K
(2)
f (X)ej

)

=
n2∑
j=1

vec
(

(In2 ⊗ ej ⊗ In2) vec(K
(1)
f (X,Ej))

)

=
n2∑
j=1

vec
(

(ej ⊗ In2)K
(1)
f (X,Ej)

)

=
n2∑
j=1

vec
(
ej ⊗K(1)

f (X,Ej)
)

= vec



K

(1)
f (X,E1)

...

K
(1)
f (X,En2)


 ,

where K
(1)
f (X,Ei) is defined in section 4.4. To show that this is equal to vec(K

(2)
f (X))

we can write the two vectors out elementwise. For vec(K
(2)
f (X)) we know from Algo-

rithm 4.4.2 that

vec(K
(2)
f (X)) =



vec(L
(2)
f (X,E1, E1))

...

vec(L
(2)
f (X,E1, En2))

vec(L
(2)
f (X,E2, E1))

...

vec(L
(2)
f (X,En2 , En2))


, (5.6.4)
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whereas

vec



K

(1)
f (X,E1)

...

K
(1)
f (X,En2)


 = vec





K
(1)
f (X,E1)e1

K
(1)
f (X,E2)e1

...

K
(1)
f (X,E1)e2

...

K
(1)
f (X,En2)en2





= vec





vec(L
(2)
f (X,E1, E1))

...

vec(L
(2)
f (X,En2 , E1))

vec(L
(2)
f (X,E1, E2))

...

vec(L
(2)
f (X,En2 , En2))




.

This is equal to (5.6.4) since L
(2)
f (X,F,G) = L

(2)
f (X,G, F ), by the ordering indepen-

dence noted in section 5.1.
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Chapter 6

Conclusions

In this final chapter we provide a summary of the material contained in the previous

chapters and identify a number of open problems for future research.

Our new algorithms in chapter 2 for computing the matrix sine and cosine—both

separately and together—are backward stable in exact arithmetic, thereby providing

a more rigorous foundation than for previous algorithms, all of which are based on

bounding absolute or forward errors of the function of a scaled matrix. Algorithms with

this form of backward stability are already available for the matrix exponential and

matrix logarithm. A key finding is that Padé approximants of the matrix cosine do not

lend themselves to deriving backward stable algorithms, while those for the matrix sine

put strong constraints on the spectral radius of the matrix. We therefore introduced

new rational approximants obtained from Padé approximants of the exponential, which

yield backward stable approximants of the sine and cosine with no a priori limit on

the spectral radius. We also gave the first multiple angle formula-based algorithm

for the matrix sine, which uses the triple angle formula in order to avoid the cosines

that would be needed by the double angle formula. Experiments show that the new

algorithms behave in a forward stable manner in floating point arithmetic, have better

backward stability properties than their competitors, and are especially effective for

triangular matrices.

A remaining open question is why the second double angle formula in (2.6.1) per-

forms better in floating point arithmetic than the first in Algorithm 2.6.2 for simulta-

neous computation of the sine and cosine.
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In chapter 3 we extended the complex Schur form-based inverse scaling and squar-

ing algorithm of Al-Mohy and Higham [6] for computing the matrix logarithm in two

ways. First, Algorithm 3.6.1 extends the algorithm to work entirely in real arithmetic

for real matrices. It has the advantages over the original version of being twice as fast,

requiring less intermediate storage, and yielding generally more accurate results.

Second, Algorithm 3.5.1 extends the algorithm of [6] to compute one or more

Fréchet derivatives after computing log(A), with reuse of information, while Algo-

rithm 3.6.1 does the same but working in real arithmetic for real data. We have shown

that the new algorithms for Llog(A,E) are significantly less expensive than existing

algorithms (see section 3.7) and are also more accurate in practice (see section 3.8.2).

The fact that our choice of the algorithmic parameters m and s is based on αp(A),

while our backward error bounds for the Fréchet derivative involve the potentially much

larger quantity ‖A‖, does not appear to affect the accuracy of the Fréchet derivative

computations: in our experiments the Fréchet derivatives were computed in a forward

stable way throughout.

By combining the new algorithms with the block 1-norm estimation algorithm of

Higham and Tisseur [66] reliable condition estimates are obtained, whereas we have

shown that a general purpose condrel(f, A) estimate based on finite differences can

greatly underestimate the condition number (see section 3.8.3).

In chapter 4 we derived sufficient conditions for the existence and continuity of

higher order Fréchet derivatives of matrix functions as well as methods for computing

the kth Fréchet derivative and its associated Kronecker form. These lay the foun-

dations for further investigation of higher order Fréchet derivatives and their use in

applications.

We have also investigated the level-2 condition number for matrix functions, show-

ing that in a number of cases the level-2 condition number can be related to the level-1

condition number, through equality, a functional relationship, or a bound. It is an in-

teresting open question whether stronger results can be proved, but our numerical

experiments give some indication that this may be possible.

In chapter 5 we defined, for the first time, the condition number of the Fréchet

derivative of a matrix function and derived an algorithm for estimating it (Algo-

rithm 5.4.1) that applies to a wide class of functions containing the exponential, the
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logarithm, and real matrix powers. In practice, the algorithm produces estimates

within a factor 6n of the true 1-norm condition number at a cost of O(n3) flops, given

O(n3) flops algorithms for computing the function and its Fréchet derivative. The

norms being estimated by the algorithm involve n4×n2 matrices, so structure is being

exploited. An interesting open question is whether the highly structured nature of the

second Fréchet derivative and its associated Kronecker form can be exploited to gain

further theoretical insight into the conditioning of the Fréchet derivative.

This latter algorithm is particularly useful for testing the forward stability of algo-

rithms for computing Fréchet derivatives, and for this purpose our experiments show

it to be much more reliable than a heuristic estimate used previously.

More generally, there are numerous directions to be explored in future research.

Our new results regarding the existence and computation of higher order Fréchet

derivatives and their Kronecker forms enable the design of new algorithms for nonlin-

ear matrix problems. For example, second order Fréchet derivatives of matrix functions

have recently been used to analyze spatial transformations in computer vision and im-

age analysis [109]. There is also a generalized Halley method utilizing higher order

Fréchet derivatives to solve nonlinear equations in Banach space [9, Sec. 3], which can

compute the required derivatives using Algorithm 4.3.7. To further facilitate the de-

velopment of applications using higher order Fréchet derivatives it will be important to

design more efficient algorithms than Algorithms 4.3.7 and 4.4.2 for their computation.

It will also be beneficial to compute multiple Fréchet derivatives in parallel, making

efficient use of modern computer architectures. Such a parallel algorithm would, for

example, dramatically increase the speed of condition number estimation (as described

in section 1.3) since t ≥ 2 Fréchet derivatives are required at each step of the algorithm.

Finally, we might also investigate elementwise and mixed condition numbers of

a matrix function, as opposed to the normwise condition numbers considered here.

This would, for example, allow us to find the elements of A which, under a small

perturbation, cause the largest normwise change to f(A). Such condition numbers

are particularly interesting when the elements of A have some physical meaning. For

example, in nuclear burnup calculations the elements of A are coefficients of different

chemical reactions [91].
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fractional powers of a matrix and their Fréchet derivatives. SIAM J. Matrix
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