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BACKWARD ERROR ANALYSIS OF THE SHIFT-AND-INVERT

ARNOLDI ALGORITHM

CHRISTIAN SCHRÖDER† AND LEO TASLAMAN‡

Abstract. We perform a backward error analysis of the inexact shift-and-

invert Arnoldi algorithm. We consider inexactness in the solution of the arising
linear systems, as well as in the orthonormalization steps, and take the non-

orthonormality of the computed Krylov basis into account. We show that the

computed basis and Hessenberg matrix satisfy an exact shift-and-invert Krylov
relation for a perturbed matrix, and we give bounds for the perturbation.

We show that the shift-and-invert Arnoldi algorithm is backward stable if

the condition number of the small Hessenberg matrix is not too large. This
condition is then relaxed using implicit restarts. Moreover we give notes on

the Hermitian case, considering Hermitian backward errors, and finally, we use

our analysis to derive a sensible breakdown condition.

1. Introduction

Consider an implementation of the Arnoldi algorithm [4, 25]. Not much mean-
ing can be given to the computed quantities if they deviate too much from the
recurrence that underpins the algorithm in exact arithmetic:

AVk = Vk+1Hk, Hk = H(1 : k + 1, 1: k).

Luckily, good implementations, where in particular the orthogonalization is done
with care, can be shown to be backward stable [3, 8, 10, 20] in the sense that
the computed quantities Vk+1 and Hk satisfy an exact recurrence with a slightly
perturbed matrix:

(1) (A+ ∆A)Vk = Vk+1Hk.

This means that we can compute a basis of an exact Krylov subspace corresponding
to a nearby matrix. Since the basis will in general not be perfectly orthonormal, so
V H
k+1Vk+1 6= I, we use the term “Krylov recurrence” instead of “Arnoldi recurrence”

when referring to recurrences like (1). If A is Hermitian, then it can be shown that
the computed basis spans a Krylov subspace associated with a perturbed Hermitian
matrix A+∆A [14]. There is a catch in this case, though: the small (k+1)×k matrix
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Algorithm 1 The Shift-and-invert Arnoldi algorithm

Input: A, σ, b, k
Output: Vk+1 := [v1, . . . , vk+1], Hk = [hij ]i=1: k+1,j=1: k

v1 = b/‖b‖
for j = 1, 2, . . . , k

wj = (A− σI)−1vj
[w′j , h1:j ] = orthogonalization(wj , Vj)
hj+1 j = ‖w′j‖
if hj+1 j = 0 break
vj+1 = w′j/hj+1 j

end for

associated with this Krylov subspace is in general not the computed Hessenberg
matrix.

In this paper we perform a similar backward error analysis of the shift-and-invert
Arnoldi algorithm. For example, we show that an implementation of the Arnoldi
algorithm applied to A−1, yields computed matrices Vk+1 and Hk such that

(A+ ∆A)−1Vk = Vk+1Hk,

and we give an upper bound for ‖∆A‖2. Perturbed versions of the shift-and-invert
Arnoldi algorithm have been considered in the literature as a part of the theory of
inexact methods, see [15, 18]. However, these results neglect that the orthonormal-
ization is not performed exactly, and furthermore, assume bounds on linear system
residuals that may be unattainable (more on this in Section 2). We consider more
general linear system residuals and take the error from the orthonormalization into
account. Our analysis of how the orthonormalization errors propagates into the
shift-and-invert Krylov recurrence highlight the importance of columnwise back-
ward error bounds for QR factorizations, and is thus of a different flavor than the
corresponding analysis for standard Arnoldi, done in, for example [8].

We also use our error analysis to motivate when “breakdown” should be declared,
that is, when hj+1,j may be considered to be “numerically zero.”

The algorithm we study can be divided into two main subproblems: solving
linear systems and orthonormalizing vectors. We state our backward error results
in such a way that they are independent of how these subproblems are being solved,
but we also discuss relevant and commonly used approaches for solving these two
tasks.

1.1. Technical outline. We study floating point implementations of Algorithm 1,
where A is assumed to be of size n× n, σ is the shift, b the starting vector, and k
is the maximum number of steps we perform. Throughout the paper ‖ · ‖ refers to
the 2-norm. In exact arithmetic, we have

orthogonalization(wj , Vj) := [wj − Vj(V H
j wj), V

H
j wj ],

which corresponds to classical Gram-Schmidt if implemented as it stands. In float-
ing point arithmetic, orthogonalization routines with better numerical properties,
such as modified Gram-Schmidt, are usually employed.

In the jth iteration in Algorithm 1, a new vector wj is computed and decom-
posed into a linear combination of v1, . . . , vj and a new component that will be
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the definition of vj+1. In exact arithmetic, this can be described by the Arnoldi
recurrence

(A− σI)−1vj = Vkh1: j,j + hj+1,jvj+1.

When the corresponding thing is done in practice, however, errors are present in
all steps of the computation. First, we need to solve a linear system. If we use a
direct solver the matrix A−σI needs to be formed. We consider the rounding error
in this step as part of the residual from the linear system. This does not affect the
norm of the residual significantly, because the rounding error is very small,

‖float(A− σI)− (A− σI)‖ < max
1≤i≤n

|aii − σ|u ≤ u‖A− σI‖.

Here float(A−σI) refers to the computed shifted matrix and u is the unit roundoff.
Let rj be the said residual from the linear system, so

(2) (A− σI)wj = vj + rj

is the actual linear system that has been solved. Then we have the following equality
for the computed quantities:

(A− σI)−1(vj + rj) = wj = Vj+1h1: j+1,j + gj ,

where gj is an error coming from the orthonormalization process. Defining

fj = rj − (A− σI)gj

and Fk = [f1, f2, . . . , fk] yields a perturbed recurrence

(A− σI)−1(Vk + Fk) = Vj+1Hk.

We discuss the residual rj and the error gj in Section 2 and Section 3, respectively,
and provide bounds for both quantities. In Section 4, we use these bounds in order
to bound Fk, and subsequently the backward error for the shift-and-invert Arnoldi
recurrence. In Section 5, we explain how the idea of implicit restarting can be used
to gain further insight into the backward error. We also discuss in what sense we
have Hermitian backward errors if the method is applied to a Hermitian matrix A.
Finally, we talk about breakdown conditions: in floating point arithmetic, the test if
hj+1,j = 0 in Algorithm 1 is rarely done. Instead one usually checks whether hj+1,j

is “small enough.” This case is referred to as breakdown. A sensible definition of
“small enough” is when the quantity is dominated by errors. We discuss this in
more detail and derive backward error bounds for this case.

1.2. Notation. The scalar σ refers to a shift while σmin(X) refers to the smallest
singular value of X. The dagger notation X† refers to the Moore-Penrose pseudo-
inverse of X. The lower letter u is reserved to denote the unit roundoff if real
arithmetic is used, and

√
5 times the unit roundoff if complex arithmetic is used [7],

respectively. When the matrix size is understood from the context, we denote zero
matrices and identity matrices as 0 and I, respectively. Similarly, the vector ei
denotes the ith column of the identity matrix whose size is understood from the
context. For a matrix X, the lower case xi refers to the ith column of X and Xk

to [x1, x2, . . . , xk], that is, the first k columns of X.

2. Errors from linear systems

In this section we discuss bounds on the residual rj from (2).
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2.1. Backward error bounds. The normwise backward error associated with a
computed solution y of a linear Ax = b is defined as

ηA,b(y) := min{ε : (A+ ∆A)y = b+ ∆b, ‖∆A‖ ≤ ε‖A‖, ‖∆b‖ ≤ ε‖b‖},

and given by the formula

(3) ηA,b(y) = ‖r‖/(‖A‖‖y‖+ ‖b‖)

where r = Ay − b [19]. See also [11, p. 120]. This result is true for any vector
norm ‖ · ‖ and its subordinate matrix norm. Thus, if we solve the linear systems in
Algorithm 1, up to a backward error εbw, then it holds that

(4) ‖rj‖ ≤ (‖A− σI‖‖wj‖+ ‖vj‖)εbw,

where rj is defined in (2). If the linear systems are solved by a backward stable direct
method, we have εbw ≤ φ(n)u, where φ(n) is an algorithm dependent constant. If
we are interested in the smallest possible εbw such that (4) holds, then we need to
compute ‖rj‖/(‖A − σI‖‖wj‖ + ‖vj‖). However, this may not be feasible for the
2-norm, due to the term ‖A−σI‖. In these cases we can replace ‖A−σI‖ by a lower
bound (the tighter the better), and thus obtain an upper bound for εbw. We can
for instance do a few iterations of the power method applied to (A−σI)H(A−σI).
MATLAB’s normest function does exactly this. This would lead to a lower bound
of ‖A− σI‖, since convergence is always from below. Another possibility is to use
the (lower) bound in [12]. We can also bound the matrix 2-norm in terms of the
corresponding infinity-norm or 1-norm. The following proposition shows that such
bounds can be satisfactory for many sparse matrices, in particular those which can
be permuted to banded form.

Proposition 2.1. Let krow and kcol denote the maximum number of nonzero entries
in a row and column of A, respectively. Then the following two upper and lower
bounds hold.

1√
kcol
‖A‖2 ≤ ‖A‖∞ ≤

√
krow‖A‖2,

1√
krow
‖A‖2 ≤ ‖A‖1 ≤

√
kcol‖A‖2.

Proof. We have ‖A‖∞ = ‖Ax‖∞ for some x with ‖x‖∞ = 1 and at most krow
nonzeros. We get

‖A‖∞ ≤ ‖Ax‖∞ ≤ ‖Ax‖2 ≤ ‖A‖2‖x‖2 ≤
√
krow‖A‖2,

which is the desired upper bound for ‖A‖∞. Further, we have

‖A‖1 = ‖AT ‖∞ ≤
√
kcol‖AT ‖2 =

√
kcol‖A‖2,

which is the desired upper bound for ‖A‖1.
The lower bounds follow from [24, Theorem 4.2]. �

The inequality (4) can also be used as a stopping criterion for iterative linear
system solvers [2]. In this case, εbw denotes the desired backward error, which is
given prior to execution. If we replace ‖A − σI‖ with a lower bound, then we get
a more stringent stopping criterion.
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2.2. Residual reduction bounds. An alternative to (4) is to use the bound

(5) ‖rj‖ ≤ ‖vj‖εtol.

This bound is commonly used as a stopping condition when the linear systems are
solved by iterative methods. Unfortunately, as a stopping condition, (5) “may be
very stringent, and possibly unsatisfiable” [11, p. 336]. See also [9, pp. 72–73] for a
2×2 example that illustrates the pitfall of comparing the norm of the residual with
the norm of the right hand side. However, since (5) is de facto commonly used in
computer codes it is still worth to study it under the assumption that the stopping
criterion is met.

2.3. Auxiliary residual bounds. In order to treat both (4) and (5) in a unified
way, we consider the following auxiliary bound

(6) ‖rj‖ ≤ ‖vj‖ε1 + ‖A− σI‖‖wj‖ε2.

Clearly, the substitutions (ε1, ε2)← (εbw, εbw) and (ε1, ε2)← (εtol, 0) give back (4)
and (5), respectively. We can simplify the bound in (6) in cases when A−σI is not
too ill-conditioned with respect to ε2. To see this we need the following lemma.

Lemma 2.2. If κ(A− σI)ε2 < 1 and (6) hold, then

‖rj‖ ≤
ε1 + κ(A− σI)ε2
1− κ(A− σI)ε2

‖vj‖.

Proof. We have

‖rj‖ ≤ ‖A− σI‖‖(A− σI)−1(vj + rj)‖ε2 + ‖vj‖ε1
≤ κ(A− σI)‖vj + rj‖ε2 + ‖vj‖ε1
≤ κ(A− σI)(‖vj‖+ ‖rj‖)ε2 + ‖vj‖ε1.

Reordering gives the result. �

The following result yields a family of new residual bounds independent of ‖vj‖.

Proposition 2.3. Let (A− σI)−1(vj + rj) = wj and assume (6) hold. If

(7) 0 <
ε1 + κ(A− σI)ε2
1− κ(A− σI)ε2

≤ γ < 1,

then

‖rj‖ ≤
(
ε2 +

ε1
1− γ

)
‖A− σI‖‖wj‖.

Proof. From (6) we have

‖rj‖ ≤
(
ε2 + ε1

‖vj‖
‖A− σI‖‖wj‖

)
‖A− σI‖‖wj‖.

Thus we need to show ‖vj‖/(‖A− σI‖‖wj‖) ≤ 1/(1− γ). We have

‖vj‖
‖A− σI‖‖wj‖

=
‖vj‖

‖A− σI‖‖(A− σI)−1(vj + rj)‖
≤ ‖vj‖
‖vj + rj‖

,

and from the reverse triangle inequality,

‖vj‖
‖vj + rj‖

≤ ‖vj‖
|‖vj‖ − ‖rj‖|

.
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Now, by Lemma 2.2 and assumption (7), we have

‖rj‖ ≤
ε1 + κ(A− σI)ε2
1− κ(A− σI)ε2

‖vj‖ ≤ γ‖vj‖.

Putting everything together yields

‖vj‖
‖A− σI‖‖wj‖

≤ ‖vj‖
|‖vj‖ − ‖rj‖|

≤ 1

1− γ
. �

In particular if κ(A− σI) ≤ (1− 2ε1)/(3ε2), then we have κ(A− σI)ε2 < 1 and
can take γ = 1/2 in Proposition 2.3, to obtain

(8) ‖rj‖ ≤ (2ε1 + ε2)‖A− σI‖‖wj‖.

This is the same bound as we get from (6) if we replace (ε1, ε2) with (0, 2ε1 + ε2).
In particular, if the linear systems are solved in a backward stable manner so that
(4) holds, and κ(A− σI) ≤ (1− 2εbw)/(3εbw), then (8) holds with 2ε1 + ε2 = 3εbw.

3. Errors from orthonormalization

In this section we are concerned with the orthonormalization error

gj = wj − Vj+1h1: j+1,j .

Up to signs, this error can be viewed as the backward error in the (j+ 1)st column
of a perturbed QR factorization

(9) [v1 w1 w2 · · · wk] = Vk+1[e1 Hk] + [0 g1 g2 · · · gk].

Thus, we are interested in columnwise backward error bounds for QR factorizations.
The next theorem shows how such bounds can be obtained from normwise backward
error bounds given in the 2-norm or the Frobenius norm. It applies to floating point
algorithms qr(·) that are unaffected by power-of-two column scalings, in the sense
that if [Q,R] = qr(A), then [Q,RD] = qr(AD) for any D = diag(d1, d2, . . . , dk)
where the di are powers of 2. Barring underflow and overflow, this covers commonly
used QR algorithms such as classical and modified Gram-Schmidt with and without
(possibly partial) reorthogonalization, Householder QR and Givens QR.

Theorem 3.1. Let qr(A) denote an algorithm that computes an approximate QR
factorization of an n×k matrix A in floating point arithmetic. Suppose further that
[Q,RD] = qr(AD) for any D = diag(d1, d2, . . . , dk) where the di are powers of 2.
If Q and R denotes the computed factors, ∆A = A − QR and ‖∆A‖∗ ≤ γ‖A‖∗u,
where ‖ · ‖∗ denotes the 2-norm or the Frobenius norm, then ‖∆ai‖ ≤ 2γ

√
k‖ai‖u

for i = 1: k.

Proof. For i = 1: k, we define

di = 2−blog2 ‖ai‖c,

so 1 ≤ ‖ai‖di < 2. Since ∆AD is the backward error from qr(AD) we have

di‖∆ai‖ = ‖∆ADei‖ ≤ ‖∆AD‖∗ ≤ γ‖AD‖∗u < 2γ
√
k‖ADei‖u = di2γ

√
k‖ai‖u,

for i = 1 : k, from which the theorem follows. �
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The constant γ in Theorem 3.1 is obviously algorithm dependent and many
bounds exist in the literature. Some of them contain both n and k [21], and others
only k [5, 1], [11, Theorem 19.13]. In [11, p. 361] a columnwise bound depending
on n and k is given. For Krylov methods we usually have n � k, so bounds
independent from n should certainly be favored. We shall assume that

(10) ‖gj‖ ≤ η(n, k)‖wj‖u,

holds for some function η(n, k).

3.1. Columnwise backward errors for modified Gram-Schmidt. Our next
theorem shows that for modified Gram-Schmidt (MGS), with and without one
round of reorthogonalization, η in (10) does not depend on n and is given by

η(n, k) = ζk,

where ζ is a modest constant. We need the following forward error result for axpy
operations.

Lemma 3.2. Let α be a scalar and x and y vectors. If

s = float(αx+ y)− (αx+ y) then ‖s‖ ≤ 2(‖αx‖+ ‖y‖)u.

Proof. The ith component of αx+y can be viewed as the inner product [xi yi][α 1]T .
Thus the componentwise forward error is bounded by |s| ≤ 2u(|αx|+ |y|) [13]. We
get

‖s‖ ≤ ‖2u(|αx|+ |y|)‖ ≤ 2(‖αx‖+ ‖y‖)u.
�

The next theorem gives columnwise backward error bounds for MGS with and
without one round of reorthogonalization.

Theorem 3.3. Let Q and R denote the computed factors in the QR decomposition
of an n × k matrix A, which was obtained by a floating point implementation of
modified Gram-Schmidt with or without one round of reorthogonalization. Assume

(i) ‖qj‖ = 1 for j = 1: k, and
(ii) (1 + (n+ 3)u)k < 1 + δ for some δ > 0.

Then there exists a ∆A such that A + ∆A = QR with ‖∆aj‖ ≤ cj‖aj‖u, where
c = 4(1 + δ) if no reorthogonalization was done and c = 10(1 + δ)2 if one round of
reorthogonalization was done.

Let us pause for a while and discuss the assumptions before proceed with the
proof. Assumption (i) is imposed to keep our analysis cleaner; it does not affect
our final bounds in any significant way. Assumption (ii) is needed for the following
reason: if we compute y = float(x − qj(qHj x)) for some 1 ≤ j ≤ k, then, assuming

(i), the quantity 1+(n+3)u = 1+‖qj‖2(n+3)u is an upper bound for ‖y‖/‖x‖ [11,
Lemma 3.9]. Thus, (ii) guarantees that we can apply a sequence of k elementary
“floating point” projections of the form I − qiqHi to any vector x, and the resulting
vector will be bounded in norm by (1 + δ)‖x‖.

Proof of Theorem 3.3. Let R(1) and R(2) denote the strictly upper triangular ma-
trices containing the orthogonalization coefficients corresponding to the first and
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second round of orthogonalization, respectively. We define R(2) ≡ 0, if no reorthog-
onalization is done. Assume for a while that R(1) and R(2) are given, and suppose
we want to compute

aj −
j−1∑
i=1

r
(1)
ij qi −

j−1∑
i=1

r
(2)
ij qi.

This can be viewed as 2(j − 1) saxpy operations. We define a
(0)
j = aj and

a
(i)
j =

{
float(a

(i−1)
j − r(1)ij qi) for i = 1: j − 1,

float(a
(i−1)
j − r(2)(i−j+1)jqi−j+1) for i = j : 2(j − 1).

Using Lemma 3.2 yields

a
(i)
j =

{
a
(i−1)
j − r(1)ij qi + si for i = 1: j − 1,

a
(i−1)
j − r(2)(i−j+1)jqi−j+1 + si for i = j : 2(j − 1),

where

‖si‖ ≤

{
2(‖r(1)ij qi‖+ ‖a(i−1)j ‖)u for i = 1: j − 1,

2(‖r(2)(i−j+1)jqi−j+1‖+ ‖a(i−1)j ‖)u for i = j : 2(j − 1).

Now, a
(i−1)
j is also the result of applying i−1 elementary floating point projections

to aj , so the discussion prior to the proof gives ‖a(i−1)j ‖ < (1 + (n + 3)u)i−1‖aj‖.
Further, from (ii) we have (1 + nu)‖a(i−1)j ‖ < (1 + δ)‖aj‖ for i = 1: j − 1 and (1 +

nu)‖a(i−1)j ‖ < (1+δ)2‖aj‖ for i = j : 2(j−1). The forward error of a computed inner

product float(xHy), where x and y are of length n, is bounded by nu‖x‖‖y‖ [13].
Thus

|r(1)ij | ≤ |float(qHi a
(i−1)
j )| ≤ |qHi a

(i−1)
j |+ nu‖a(i−1)j ‖ < (1 + δ)‖aj‖

and, similarly, that |r(2)ij | < (1 + δ)2‖aj‖. Thus si is bounded by

‖si‖ ≤

{
4(1 + δ)‖aj‖u for i = 1: j − 1,

4(1 + δ)2‖aj‖u for i = j : 2(j − 1).

We have

aj −
j−1∑
i=1

r
(1)
ij qi −

j−1∑
i=1

r
(2)
ij qi = a

(2(j−1))
j −

2(j−1)∑
i=1

si.

If we define di = float(‖a(2(j−1))j ‖) and qj = float(a
(2(j−1))
j /dj) and note that

a
(2(j−1))
j = qjdj + fj with ‖fj‖ ≤ ‖a(2(j−1))j ‖u < (1 + δ)2‖aj‖u,

then we get

aj −
j−1∑
i=1

(r
(1)
ij + r

(2)
ij )qi − djqj = fj −

2(j−1)∑
i=1

si.

Finally, defining R = float(R(1) +R(2)) + diag(d1, d2, . . . , dk) yields

∆aj := aj −
j∑

i=1

rijqi = fj −
2(j−1)∑
i=1

si −
j−1∑
i=1

∆rijqi,
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where

∆rij = r
(1)
ij + r

(2)
ij − rij , so |∆rij | ≤ |r(1)ij + r

(2)
ij |u < 2(1 + δ)2‖aj‖u.

Using the above bounds for fj , the si and ∆rij gives ‖∆aj‖ < 10(1 + δ)2j‖aj‖u.
If no reorthogonalization was done, then we have si = 0 for i = j : 2(j − 1), and
∆rij = 0, ‖fj‖ ≤ (1 + δ)‖aj‖u for all j. Taking this into account yields ‖∆aj‖ <
4(1 + δ)j‖aj‖u. �

Remark 3.4. Suppose the perturbed QR factorization (9) was computed using MGS.
Then, taking δ = 1/10 and assuming the conditions of Theorem 3.3 hold, imply
that η(n, k) in (10) is bounded by η(n, k) ≤ 5k if standard MGS is used, and
η(n, k) ≤ 13k if MGS with one round of reorthogonalization is used.

4. Backward error bounds for the shift-and-invert Arnoldi
recurrence

Recall the perturbed Krylov recurrence

(11) (A− σI)−1(Vk + Fk) = Vj+1Hk,

where Fk = [f1, f2, . . . , fk] and fj , for j = 1: k, is defined by fj = rj − (A− σI)gj .
We discussed in sections 2 and 3 how to bound rj and gj , respectively. By using
these bounds, we can now easily bound Fk. Assuming (6) and (10) yields

(12) ‖fj‖ ≤ ‖vj‖ε1 + ‖A− σI‖‖wj‖(ε2 + η(n, j)u).

Further, from (9) we see that

‖wj‖ = ‖Vj+1h1: j+1,j + gj‖ ≤ ‖Vj+1‖‖h1: j+1,j‖+ η(n, j)‖wj‖u,
which in turn implies

‖wj‖ ≤
‖Vj+1‖‖h1: j+1,j‖

1− η(n, j)u
,

assuming that η(n, j)u < 1. We get

‖fj‖ ≤ ‖vj‖ε1 + ‖A− σI‖‖Vj+1‖‖h1: j+1,j‖cjn(ε2)

and further (assuming that η(n, k) is monotonically increasing in k)

(13) ‖Fk‖ ≤
√
k‖Vk‖ε1 +

√
k‖A− σI‖‖Vk+1‖‖Hk‖ckn(ε2),

where

(14) ckn(ε2) :=
ε2 + η(n, k)u

1− η(n, k)u

should be thought of as a tiny factor.
Similarly, if we assume the bound (8) instead of (6), we get

(15) ‖Fk‖ ≤
√
k‖A− σI‖‖Vk+1‖‖Hk‖ckn(2ε1 + ε2).

This is the same bound we get from (13) if we replace (ε1, ε2) by (0, 2ε1 + ε2).
Having established (13) and (15), we are now ready to reshuffle equation (11) in

order to derive backward error bounds for the shift-and-invert Krylov recurrence.
We will derive perturbed recurrences of the form

(16) Vk = (A+ ∆A− σI)Vk+1Hk.

If we look at this from a backward error perspective, (16) means that we have
taken k steps, without errors, of a shift-and-invert Krylov algorithm applied to a



10 CHRISTIAN SCHRÖDER† AND LEO TASLAMAN‡

perturbed pencil, and all linear systems that occurred in the process must have
been consistent. However, in order to rewrite (16) as

(A+ ∆A− σI)−1Vk = Vk+1Hk,

we need to ensure that A+ ∆A− σI is invertible. We need the following lemma to
solve this technicality.

Lemma 4.1. Let A and V be matrices of size n × n and n × k respectively, such
that rankAV = k. Then for any ε > 0, there exists a matrix X with ‖X‖ < ε such
that A+X is nonsingular and XV = 0. Furthermore, if A is Hermitian, then we
may take X to be Hermitian.

Proof. Find a unitary matrix Q such that

(17) QHV =

[
0
V2

]
for some k × k matrix V2, and define AQ = [A1 A2] where A2 is of size n × k.
From rankAV = k, it follows A2 has rank k. Define Y so its columns span the
orthogonal complement to range of A2, and set Z = [Y − A1 0]. We have that
A + ZQH = [Y A2]QH is nonsingular and ZQHV = 0. In particular, this means
that the pencil A + λZQH is regular. If λ is any value outside the spectrum of
the pencil such that |λ| < ε/‖Z‖, then X = λZQH satisfies the conditions of the
theorem.

For the second part, suppose A is Hermitian and Q is such that (17) holds. Write

QHAQ =

[
A11 A12

AH
12 A22

]
and W =

[
ωI −A11 0

0 0

]
, ω > 0,

where A11 is of size (n−k)×(n−k). We have thatQWQH is Hermitian, QWQHV =
0, and

Q(QHAQ+W )QH = A+QWQH .

Thus, for the same reason as above, it is enough to find one ω > 0 such that
QHAQ+W is nonsingular. Let

A22 = U

[
D 0
0 0

]
UH

be a spectral decomposition so D is of full rank and define [B1 B2] = A12U such
that B1 has as many columns as D. We have that QHAQ + W is nonsingular if
and only if  ωI B1 ωB2

BH
1 D 0

ωBH
2 0 0


is nonsingular. Further, since [AT

12 A
T
22]T is of full rank, andB1 B2

D 0
0 0

 =

[
I 0
0 UH

] [
A12

A22

]
U,
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it follows that B2 is also of full rank. We have ωI B1 ωB2

BH
1 D 0

ωBH
2 0 0

I −ω−1B1 −ω−1B2

0 I 0
0 0 ω−1I


=

 ωI 0 0
BH

1 D − ω−1BH
1 B1 −ω−1BH

1 B2

ωBH
2 −BH

2 B1 −BH
2 B2

 ,
which is easily seen to be nonsingular for large enough values of ω. �

If we use the bound on Fk shown in (13), then we can deduce the following
theorem.

Theorem 4.2. Let (A− σI)−1(Vk + Fk) = Vk+1Hk be of full rank and assume Fk

is bounded as in (13) and
√
kκ(Vk)ε1 < 1. Then there is a ∆A of rank at most k

such that
Vk = (A+ ∆A− σI)Vk+1Hk,

and

‖∆A‖ ≤
√
k‖A− σI‖κ(Vk)ε1 + κ(Vk+1)κ(Hk)ckn(ε2)

1−
√
kκ(Vk)ε1

,

where ckn(ε2) is given by (14).

Proof. From Vk+Fk = (A−σI)Vk+1Hk and Vk = (A+∆A−σI)Vk+1Hk we see that
any eligible ∆A has to satisfy ∆AVk+1Hk = −Fk. We choose ∆A = −Fk(Vk+1Hk)†

(which is of rank at most k) implying ‖∆A‖ ≤ ‖Fk‖/σmin(Vk+1Hk). Substituting
‖Fk‖ by the upper bound given in (13) yields

‖∆A‖ ≤
√
k‖Vk‖ε1 +

√
k‖A− σI‖‖Vk+1‖‖Hk‖ckn(ε2)

σmin(Vk+1Hk)

≤
√
k‖Vk‖ε1

σmin(Vk+1Hk)
+
√
k‖A− σI‖κ(Vk+1)κ(Hk)ckn(ε2).

For the denominator we get

σmin(Vk+1Hk) ≥ σmin

(
(A+ ∆A− σI)Vk+1Hk

)
/‖A+ ∆A− σI‖

≥ σmin(Vk)/(‖A− σI‖+ ‖∆A‖),

where we used σmin(XY ) ≤ ‖X‖σmin(Y ) which holds for any matrices X,Y . Thus

‖∆A‖ ≤
√
k‖Vk‖(‖A− σI‖+ ‖∆A‖)ε1

σmin(Vk)
+
√
k‖A− σI‖κ(Vk+1)κ(Hk)ckn(ε2)

which can be reordered to the claimed bound. �

If the linear systems are solved up to a normwise backward error εbw, and (8)
and (15) hold for 2ε1 + ε2 = 3εbw, then we get the following corollary.

Corollary 4.3. Let (A−σI)−1(Vk +Fk) = Vk+1Hk be of full rank and assume Fk

is bounded as in (15) with 2ε1 + ε2 = 3εbw. Then there is a ∆A of rank at most k
such that

Vk = (A+ ∆A− σI)Vk+1Hk,

and
‖∆A‖ ≤

√
k‖A− σI‖κ(Vk+1)κ(Hk)ckn(3εbw),
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where ckn(·) is given by (14).

A few remarks are in order.

Remark 4.4. If A+ ∆A−σI in Theorem 4.2 and Corollary 4.3 is singular, then we

can invoke Lemma 4.1 with V = Vk+1Hk to obtain a backward error ∆Ã, arbitrarily

close to ∆A, such that (A+∆Â−σI)−1Vk = Vk+1Hk. The new backward error ∆Â
will in general have rank greater than k, but its numerical rank is still bounded by
k. Here the definition of numerical rank can be arbitrarily strict, in the sense that
we may define the numerical rank as the number of singular values that greater
than ε > 0, for an arbitrarily small ε.

Remark 4.5. If the orthonormalization is done properly, using, for instance, MGS
with reorthogonalization, then κ(Vk+1) ≈ 1. In this case we can ignore the factors
κ(Vk+1) and κ(Vk) when evaluating the bounds in Theorem 4.2 and Corollary 4.3.
In particular this means that the bounds can be estimated cheaply as long as
‖A− σI‖ (or a good estimate of it) is known.

Remark 4.6. For the standard eigenvalue problem, shifts are used to find interior
eigenvalues, so any sensible shift satisfies |σ| ≤ ‖A‖. Thus, we have ‖A−σI‖ ≤ 2‖A‖
in practice.

Remark 4.7. In view of [6], we note that our bounds do not contain the loss-of-
orthonormality term ‖V H

k+1Vk+1− I‖. Instead we saw that the condition number of
the computed basis Vk+1 plays a role in the bounds of the backward error. We note,
however, that a small value of ‖V H

k+1Vk+1−I‖ implies that Vk+1 is well-conditioned:

‖V H
k+1Vk+1 − I‖ < ε < 1 ⇒ κ(Vk+1) <

√
1 + ε

1− ε
.

The next example shows how Theorem 4.2 can be used to derive a simple a
posteriori backward error bound.

Example 4.8. Suppose a matrix A and a shift σ with |σ| < ‖A‖ are given, and
suppose we perform k steps of the shift-and-invert Arnoldi algorithm. To solve the
linear systems we use an iterative method that employs (5) as stopping condition,
that is, the linear systems are considered “solved” when the residuals are less than
some tolerance εtol (we ignore the norm of the right hand side since it is is approxi-
mately one). We use a rather crude tolerance so εtol � u. For the orthogonalization
we use MGS with one round of reorthogonalization so ckn(0) . 13ku (cf. Remark
3.4). If

(18) εtol ≥ κ(Hk)ckn(0),

then Theorem 4.2, with ε1 = εtol and ε2 = 0, and the following remarks, yield that
the computed quantities satisfy

(A+ ∆A− σI)−1Vk = Vk+1H,

where

(19) ‖∆A‖ ≤ 4
√
kκ(Vk+1)εtol

1−
√
kκ(Vk)εtol

‖A‖.

Here we have used the fact that κ(Vk+1) ≥ κ(Vk). Since MGS with reorthogonal-
ization was employed, we expect κ(Vk+1) to be close to one. Thus, (19) tells us
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that the relative backward error ‖∆A‖/‖A‖ is of roughly the same size as the tol-
erance we used to solve the linear systems. So, in this setting shift-invert-Arnoldi
is backward stable.

We end this section with a numerical experiment. We consider the matrix

A =



−2 1
1 −2 1

1
. . .

. . .

. . .
. . . 1
1 −2

 ,
of order n = 1000, and the shift σ = −2. It is well-known that the spectrum of A is a
subset of the interval (−4, 0), and the eigenvalues are given by−2+2 cos(πk/(n+1)),
for k = 1:n. It follows that the shifted matrix A − σI is invertible and has norm
2 cos(π/(n+ 1)) ≈ 2.

We implemented the shift-and-invert Arnoldi algorithm in MATLAB R2013a.
For orthonormalization we used MGS with one round of reorthogonalization. The
matrix A − σI was stored in sparse format, and the linear systems was solved
using MATLAB’s “backslash” and lu routines. We took k = 30 steps with the
starting vector [1, 1, . . . , 1]T , and in each iteration we computed the backward error
shown in (3), where the residual was evaluated in extended precision (32 digits)
and then rounded to double precision. We did this using the vpa function from the
Symbolic Math Toolbox. We also computed the error Fk = Vk − (A− σI)Vk+1Hk

in extended precision and rounded the result to double precision. For each j = 1: k,
we computed

B(‖∆A(j)‖) :=
√
j‖A− σI‖κ(Hj)cjn(3εbw),

where εbw was set to be the largest backward error of the linear systems that
was encountered in the algorithm, and cjn(3εbw) := (3εbw + 13ju)/(1 − 13ju) (cf.
Remark 3.4). As is mentioned in Remark 4.5, the above quantity is a good estimate
of the bound in Corollary 4.3. We also evaluated the expression for the backward
error, ∆A(j) = −Fk(Vk+1Hk)†, given in the proof of Theorem 4.2, and estimated
its norm. We did this using the MATLAB routines pinv (for the Moore-Penrose
pseudo-inverse) and normest. The quantities B(‖∆A(j)‖) and ‖∆A(j)‖ are shown
in Figure 1 for j = 1: 30. Even though the (estimated) upper bound B(‖∆A(j)‖) can
be seen to be rather pessimistic, it does show that the backward error is less than√
u. In other words, by evaluating B(‖∆A(k)‖) (which is cheap), we can deduce

that the computation is backward stable up to single precision.

5. Further topics

5.1. Implicit restarting. The bounds in Theorem 4.2 and Corollary 4.3 contain
the factor κ(Hk), so if κ(Hk)� 1 we cannot guarantee a small backward error. If
we recall how Arnoldi locates eigenvalues [23, pp. 257–265], we have, unfortunately,
reason to suspect that this is the case. Since Arnoldi does not target the largest
eigenvalues, but any isolated eigenvalue cluster, Hk := [Ik 0]Hk is likely to have
both large and small eigenvalues, which suggests that Hk may be ill-conditioned.
We will now show that the situation can be much better than expected if we restrict
our attention to the largest eigenvalues of Hk, that is, the ones corresponding
to eigenvalues of A closest to the shift σ. The idea is to do an implicit (thick)
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5 10 15 20 25 30

j

10−16

10−12

10−8

10−4

B(‖∆A(j)‖)
‖∆A(j)‖

Figure 1. Computed backward errors and associated bound.

restart [22], and purge the small eigenvalues of Hk. Since small eigenvalues of Hk

correspond to eigenvalues of A far from the shift σ, it is reasonable to assume they
are of less interest. Suppose

(A− σI)−1(Vk + Fk) = Vk+1Hk

and consider a Schur form Hk = QTQH such that tii, i = ` + 1: k, are the small
eigenvalues to be purged. We have

(A− σI)−1(Uk + FkQ) = [Uk vk+1]

[
T

hk+1,ke
T
kQ

]
,

where Uk = VkQ. Throwing away the last k − ` columns yields

(A− σI)−1(U` + FkQ`) = [U` vk+1]

[
T`

hk+1,ke
T
kQ`

]
,

where Q` = Q( : , 1: `), U` = U( : , 1: `) and T` = T (1 : `, 1: `). Defining u`+1 = vk+1,

T ` =

[
T`

hk+1,ke
T
kQ`

]
,

and E` = FkQ`, results in a compact recurrence

(20) (A− σI)−1(U` + E`) = U`+1T `,

where ‖E`‖ ≤ ‖Fk‖. Note that our bound on E` depends on k and not `. We
can now repeat the proof of Theorem 4.2, and use the bounds ‖E`‖ ≤ ‖Fk‖ and
σmin(U`+1) ≥ σmin(Vk+1), and the recurrence (20) instead of the one assumed in
the theorem. We get

U` = (A+ ∆A− σI)U`+1T `,

where

(21) ‖∆A‖ ≤ ‖A− σI‖
√
kκ(Vk)ε1 +

√
kκ(Vk+1)ckn(ε2)‖Hk‖/σmin(T `)

1−
√
kκ(Vk)ε1

.
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Comparing this to the bound in Theorem 4.2 we see that κ(Hk) has been replaced
by ‖Hk‖/σmin(T `). Further, it holds that

‖Hk‖/σmin(T `) ≤ ‖Hk‖/σmin

([
T

hk+1,ke
T
kQ

])
= κ(Hk).

It follows that if Hk is ill-conditioned due to the small eigenvalues we purged, then
‖Hk‖/σmin(T `) � κ(Hk) and (21) shows that the upper bound for the backward
error corresponding to the part of the spectrum we care about is much smaller than
the upper bound for the general backward error.

5.2. Hermitian backward errors. We now restrict the scope to the Hermitian
matrix eigenvalue problem, that is, when A = AH and σ is real. Let us men-
tion that we still consider the shift-and-invert Arnoldi algorithm, as it is shown in
Algorithm 1, and not the shift-and-invert Lanczos algorithm with a three-term re-
currence. In the Hermitian case, Algorithm 1 is also known as the shift-and-invert
Lanczos algorithm with full orthogonalization, and it is used in, e.g., ARPACK[16,
routine ssaitr.f] and MATLAB’s eigs command.

Is it, for a Hermitian A, possible to find a Hermitian backward error ∆A? We
have seen in the proof of Theorem 4.2 that ∆A has to satisfy ∆AVk+1Hk = −Fk.
Unfortunately the following lemma rules out existence of such a Hermitian ∆A in
general.

Lemma 5.1. Let X ∈ Cn×k and F ∈ Cn×k. Then there exists a Hermitian E with
EX = F if and only if XHF is Hermitian and FX†X = F . In that case, there is
such an E with rank(E) ≤ 2k and ‖E‖∗ ≤ 2‖F‖∗/σmin(X) where ‖ · ‖∗ denotes the
2-norm or the Frobenius norm.

Proof. The proof is simple and, for k = 1, is contained in [17]. We give it for
completeness. Let E be any matrix such that EX = F . This implies EXX†X =
FX†X and (using XX†X = X) EX = FX†X, contradicting EX = F if F 6=
FX†X. Thus F = FX†X is necessary for the existence of an E with EX =
F . Now, if E is Hermitian, then so is XHEX = XHF . Hence, if XHF is not
Hermitian, then there is no Hermitian E with EX = F .

On the other hand, if XHF be Hermitian and F = FX†X, then

E := FX† + (FX†)H −X†HFHXX† = FX† + (FX†)H(I −XX†)

is also Hermitian. Furthermore, rank(E) ≤ 2k, EX = F , and (using that I −XX†
is an orthogonal projector)

‖E‖∗ ≤ 2‖FX†‖∗ ≤ 2‖F‖∗‖X†‖2 = 2‖F‖∗/σmin(X).

�

The next result shows that one still gets a Hermitian backward error if one
replaces the Hessenberg matrix Hk by some other (k+1)×k matrix Gk. Before we
state the theorem, we should clarify what we mean by “backward error” in this case.
If we replace Hk by something else, we cannot say that the computed quantities
(Vk+1 and Hk) satisfy a an exact Krylov recurrence of a perturbed input matrix.
We can, however, still say that the computed subspace is a Krylov subspace of a
perturbed Hermitian input matrix. We refer to this Hermitian perturbation as the
backward error.
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Theorem 5.2. Let A be Hermitian and (A− σI)−1(Vk + Fk) = Vk+1Hk. Suppose
it holds for Gk ∈ C(k+1)×k that V H

k Vk+1Gk is Hermitian and Vk+1Gk is of full
rank. Then there is a Hermitian ∆A of rank at most 2k such that

Vk = (A+ ∆A− σI)Vk+1Gk,

and

‖∆A‖ ≤ 2
‖(A− σI)‖‖Vk+1‖‖Hk −Gk‖+ ‖Fk‖

σmin(Vk+1Gk)
.

Proof. From Vk = (A+ ∆A− σI)Vk+1Gk and

Vk + Fk = (A− σI)Vk+1Hk = (A− σI)Vk+1Gk + (A− σI)Vk+1(Hk −Gk)

we see that any eligible ∆A has to satisfy

∆AVk+1Gk = (A− σI)Vk+1(Hk −Gk)− Fk = Vk − (A− σI)Vk+1Gk.

Since it is assumed that Vk+1Gk is of full rank, Lemma 5.1 implies that such a
Hermitian ∆A exists if

(Vk+1Gk)H(Vk − (A− σI)Vk+1Gk) = (Vk+1Gk)HVk − (Vk+1Gk)H(A− σI)Vk+1Gk

is Hermitian. Since the first term on the right hand side is Hermitian by assumption,
this is easily seen to be the case. Also by Lemma 5.1, ∆A is bounded by

‖∆A‖ ≤ 2‖(A− σI)Vk+1(Hk −Gk)− Fk‖/σmin(Vk+1Gk)

≤ 2(‖(A− σI)‖2‖Vk+1‖‖Hk −Gk‖+ ‖Fk‖)/σmin(Vk+1Gk),

and is of rank at most 2k. �

Remark 5.3. If A + ∆A − σI is singular, then we can use the second part of

Lemma 4.1 to find a Hermitian backward error ∆Ã arbitrarily close to ∆A such

that A+ ∆Ã− σI is invertible.

In order to obtain a small Hermitian backward error, we need to find a matrix
Gk close to Hk such that V H

k Vk+1Gk is Hermitian. One possibility is

(22) Gk := R−1k+1

[
Tk

hk+1,ke
T
k

]
Rk,

where Rk, Rk+1 are the upper triangular QR factors of Vk, Vk+1, respectively, and
Tk is the real symmetric tridiagonal matrix with tj+1,j = tj,j+1 = hj+1,j and
tj,j = <(hjj). Then Gk is Hessenberg and computing Ritz pairs is particularly
easy: we need to find vectors z and scalars µ such that

V H
k (A+ ∆A− σI)−1Vkz = µV H

k Vkz.

Here we have used Remark 5.3 in order to ensure that A + ∆A − σI is invertible.
By using the Krylov relation (A+ ∆A− σI)−1Vk = Vk+1Gk we obtain

V H
k Vk+1Gkz = µV H

k Vkz.

Inserting the QR factorizations Vj = QjRj , j = k, k + 1 and the formula for Gk

shown in (22) yields

RH
k [I 0]Rk+1R

−1
k+1

[
Tk

hk+1,ke
T
k

]
Rkz = µRH

k Rkz,

which simplifies to Tkz̃ = µz̃ where z̃ = Rkz. So, the Ritz values are just the
eigenvalues of Tk (which are real, since Tk is Hermitian). To obtain the Ritz vectors,



BACKWARD ERROR ANALYSIS OF THE SHIFT-AND-INVERT ARNOLDI ALGORITHM 17

we would have to multiply z̃ with R−1k . However, since Rk is close to the identity
matrix if the orthogonalization has been done properly (for instance, by using MGS
with reorthogonalization) we can approximate z̃ by z. Thus, (approximations of)
Ritz pairs for the choice (22) of Gk can be obtained without computing Rk, Rk+1.
We also note that choosing the eigenpairs of Tk to construct Ritz pairs is what is
done in practice.

5.3. Conditions for breakdown. We now discuss how to derive a sensible break-
down criterion based on our error analysis. We saw in Section 1.1 that the computed
quantities Vj+1 and Hk satisfy

(A− σI)−1(Vj + Fj) = Vj+1Hj .

This recurrence can be rewritten as

(A− σI)−1(Vj + F̃j) = VjHj ,

where F̃j = Fj − (A−σI)hj+1,jvj+1e
T
j . Note that the first j− 1 columns of F̃j and

Fj are identical. For the last column, we have

f̃j = rj − (A− σI)(gj + hj+1,jvj+1).

It is natural to declare breakdown when the error introduced by neglecting hj+1,j

is of the same order as the errors that are present in the computation. This leads
us to the following breakdown condition:

hj+1,j < ‖gj‖+ ‖rj‖/‖(A− σI)vj+1‖.

We can simplify this condition by replacing ‖gj‖ with its bound in (10). This yields

(23) hj+1,j < η(n, j)‖wj‖u+ ‖rj‖/‖(A− σI)vj+1‖.

We now discuss how to evaluate (23) in practice. Surely, if hj+1,j < η(n, j)‖wj‖u
we can declare breakdown without further work. Otherwise we have to take the
second term in (23) into consideration. If an iterative linear system solver that
guarantees a residual less than some tolerance is used, then we can substitute ‖rj‖
in (23) by the given tolerance. If, for example, (6) is used as a stopping condition for
the linear system solver, then ‖rj‖ is replaced by the right hand side of (6). If the
residual, or any good bound for it, is not given, then we need to compute it. This
is generally the case when the linear systems are solved by a direct method. Let m
be a constant such that the following forward error bound holds for an arbitrary
vector x

‖float((A− σI)x)− (A− σI)x‖ ≤ mu‖A− σI‖‖x‖.
If A − σI is given as a dense matrix, we have m = n3/2 [11, p. 70]. For sparse
matrices, m can be much smaller. The computed residual r̂j satisfies

‖r̂j‖ ≤ (1 + u)‖float((A− σI)wj)− vj‖
≤ (1 + u)(‖rj‖+mu‖A− σI‖‖wj‖).

By comparing to (4), we recognize ‖A − σI‖‖wj‖mu as a part of the norm of a
residual associated with a computed solution with corresponding backward error
mu. Thus, we can compute a satisfactory r̂j if we use an extended precision u such
that mu < u.
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For the computation of the vector (A− σI)vj+1, we have

‖float((A− σI)vj)− (A− σI)vj‖ ≤ mu‖A− σI‖‖vj‖
≤ muκ(A− σI)‖(A− σI)vj‖,

and, using the reverse triangle inequality, that

‖(A− σI)vj‖
(
1−muκ(A− σI)

)
≤ ‖float((A− σI)vj)‖.

Thus the norm of the computed vector is accurate enough as long as muκ(A−σI)�
1. If (A−σI) is so ill-conditioned so this is not satisfied, then we can use an extended
precision u such that muκ(A− σI)� 1.

If (23) and (6) hold, then

‖f̃j‖ ≤ 2
(
‖vj‖ε1 + ‖A− σI‖‖wj‖(ε2 + η(n, j)u)

)
.

By derivations similar to those leading to (13), we get

(24) ‖F̃j‖ ≤ 2
(√
k‖Vk‖ε1 +

√
k‖A− σI‖‖Vk+1‖‖Hk‖ckn(ε2)

)
.

From this we obtain the following “breakdown analogue” of Theorem 4.2.

Theorem 5.4. Let (A− σI)−1(Vj + F̃j) = VjHj be of full rank and assume F̃k is

bounded as in (24) and
√
kκ(Vk)ε1 < 1. Then there is a ∆A of rank at most k such

that

Vk = (A+ ∆A− σI)VkHk

and

‖∆A‖ ≤ 2
√
k‖A− σI‖κ(Vk)ε1 + κ(Vk+1)‖Hk‖/σmin(Hk)ckn(ε2)

1−
√
kκ(Vk)ε1

,

where ckn(·) is given by (14).

The proof is omitted since it is essentially the same as the proof of Theorem 4.2.
In a similar manner, we can get corresponding breakdown analogues to Corollary 4.3
and Theorem 5.2.

6. Conclusion

We have shown that a floating point implementation of shift-and-invert Arnoldi,
where errors from all steps of the computation are taken into account, yields com-
puted quantities that satisfy an exact shift-and-invert Krylov recurrence of a per-
turbed matrix. Here, the word “Krylov” is used instead of “Arnoldi” since the
computed basis cannot be guaranteed to be perfectly orthogonal. We saw that the
condition number of the computed basis Vk+1 plays a role in the bounds of the
backward error. Further, we have seen that the norm of the backward error ∆A
depends on κ(Hk). We have seen that large κ(Hk) are acceptable if the linear
systems are only solved to a loose tolerance (18). Otherwise we argued that even
if this condition number is large, the restriction to the most important part of the
recurrence (that is, what is left after purging the small eigenvalues of Hk) can have
a small backward error.

For Hermitian matrices A, we have shown that there is a Hermitian backward
error ∆A such that the computed basis, that is, the columns of Vk+1, spans a Krylov
subspace associated with A+∆A. However, as in the case of standard Arnoldi [14],
the small (k+ 1)×k matrix associated this subspace is generally not the computed
Hessenberg matrix.
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Finally, we noted that our error analysis yields a sensible condition for when to
declare breakdown. If this condition is met, we could derive a new set of backward
error bounds, which show that an invariant subspace of a perturbed matrix has
been found.
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