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1 Section 1.

Let's try to begin with the following. Let h( C) denote the Fitting height of a
finite soluble group C.

Theorem 1.1 Let 0 be a finite soluble group admitting an automorphism a of
order n. Let G =Gc( a). Suppose that every abe/ian subgroup of G has rank at
most r, and that there is at most one prime p that divides both ICI and n. Then
h(C) is n, r-bounded.

Proof.
Case 1. a = 1. The hypothesis is that every abelian subgroup of 0 has rank at
most r. Then the Fitting subgroup F of F has r-bounded rank s, say. Let c;pbe
the Frattini subgroup of G. Then V = F/c;p is a direct product of elementary
abelian groups of bounded rank, and so as Gc(V) = F, we have that C/F is
a subdirect product of soluble linear groups of s-bounded degree. By Mal'cev's
Theorem,it follows that G/ F is soluble of bounded derived length.
Case 2. (n,IOI) = 1. By Case 1, G has r-bounded Fitting height t, say. By
Turull's Theorem (or the earlier versions due to Thompson or Kurzweil), the
result follows.
Gase 3. Ceneralcase. Let n = p'm, where (p,m) = (m,ICI) = 1. Let a =
apam, where ap is a p-element and am is a pt-element. Let D = GC(am).
By Turull's Theorem as above, it suffices to show that h(D) is n, r-bounded.
Considering the action of a on D, we see that we may assume that a is a p-
eJement and D = C. Let. Q = Op,(C). By Case 2, h(Q) is r,n-bounded. We
have GC/Q(O:) = GQ/Q, and with a little argument we see that the abelian
subgroups of GQ/Q have r-bounded rank. So we may assume that Q = 1.

Let P = Op(C). Every abelian subgroup of Cp(a) has rank at most r. It
follows that the rank of P itself is r; n-bounded, and arguing as in Case 1 with
P/c;p gives the result.

Remark. It follows from the argument of Case 1 that the abelian section rank



is bounded in terms of the abelian subgroup rank, as is well known.
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Invariance of centralizers.
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Lemma 1.2 Let G be a finite soluble group acted on by an element a of orddr
n. Let C =GG(a). Assume that every abelian section ofG has rank at most f.
Let N be a normal a-invariant subgroup of G of Fitting height at most h, an'd
let D/N =GGIN(a). Then there exists a number s depending only on n, rand
h, such that every abelian section of D/N has rank at most s.

Proof By induction on h, we may assume that h =1. Let 1rbe the set of prime
divisors of nand Q = O",(N). Let B/Q = CGIQ(a). Then B = CQ, so it
follows that we may assume that Q =1. By a further induction we may assume
that N is a ~group, where pin.

Next we may assume that D =G, so that a operates trivially on G/N. Now
let a =/3r, where /3 is a ~element and r a pi-element. Put E = CG(r). Then
D = EN. It is enough to prove that E has abelian section rank bounded in
terms of the given parameters. Hence we may assume that E = G, inCot'her
words, that Q' is of p-power order. c,o ,> '''.,'",,,

, .. Let R ~, Opl(G) andj?'~~ Op(G) ?"N. Then {R, a] SRn IV =:=1, and so
:, R S <; Hence R h~_~be!ia.l!sec.tio~.r~nk a~;!r.1-°~t..~:A~o.C}If ==PGIR(~):, SO

we may assume tha~.~,::= ,I., Let,~,=,- P/~",wher~ ~ iS'the Frattini subgroup
of G. Then GG(V) ==P. Now P admits the automorph~~_a and everyabelian
subgroup of Cp(a)has rank at most r. It follows that the rank of P is bounded
in terms of nand r, and hence V is a vector'space whose dimension rTiisn, r-'
bounded, over a field of order p,a prime in 1r.Therefore G/P is a group of order

""-cbounded in terms of n.and r, and hence' involve$'only'a set'of prim~ bounded
in terms of the given- parameIers: Since we haV'eseen thatR has bounded rank:,

c this completes the proof. ~. :1\}2rjf~,Jitm~

=-<,-,SF;,., ,.
0 Lemma 2.1 Let p~ and q,kprimes, let Q be a finite q-group,' an'Cl'iet x,be an. ,.. . " i--'" ~ ",'0"1' ~<--=, ..-1.' -- ~, ".'~,', . , - ,-

::;'" ,~!e~.e!!tof.g:,~h~r:!~!;!!;;':;L;! ,?!~~~~g.}~1X~~4A ~D:i!Y~!F1!9.7rn~~~Leand
t.-~et dim pvC r) =:=c ~f, LefA~.be.-:any' ~~eJza~~suhg[()up, oLQ., nor;n.alzze(,by, x, Then

-(i) I[A, y]J,isp, q~p",m=~~uJ1il;4:d;~i':~~_~;'~"~-~b-~:~J~=~:~.;~c;~~~~:s.:~,c;;;,;;(ii);..Thenomal closure, <,y,~> has p,q,n, m~bounded class"~k~,,,,,~-,,,,-,~,,',,,,L

=:is::,~.,;..,.~~.For' the p~oof ~~'~e~~'(~!~!~i~~I~!~~:~!~~~,!:~?~:~~l~c~~c;'f~~t~~~~~:;.~~:..,
Lemma 2.2 Let q bea',prime,andlet H=;A < x, > be the product of a

..~.ji~ite,~~~~a(;ab5{{~:'i",q=;''r:iu;~6;;f.~-{~,:~~c~~c;;i~i~;;i';S,.~>~..o/Erd~r q~. Let
"'';;-;O£FY =x'l., . Let k"oe a'field ofcharact,eristic different from q,.and let V be a finite

"~/:-:;;t,~;dimensIonal kH'-modulesuch that V ~[V,'[A,y]].'. Then'dir;:;Cv(xf~"1" dim V.
'<i",~;-<f~£;,;.Jl;fft.{If#f:J~~~1~4i!..'I!8, ~41'~g&t:E'i!cIk'l ,E,%'5~:<[.i)i"?'
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Proof. We may assume that V is irreducible and that k is algebraically closed.
Then we apply Clifford's Theorem to see that V is induced from a one-dimensional
kA-module.

Proof of Lemma 2.1. (i) We may assume that Q = A < :z: > and that
V = [V,[A, V]]. By Lemma 2.2, we find that dim V is bounded in terms of
the relevant parameters, and henceso is IQI.
(ii) Let R =< vCJ > have class t, let s = [~] + 1, and let A = /.(R). Here,
bi(X)} denotes the lower central series of a group X. Then A is abelian and
normal in Q. By (i), I[A, v]1isbounded. Let I[A,y]1= qUand define Ao =A, and
Ai+1 =[Ai, R, R]. Suppose that [Ai, R] f; 1 for some i. Then y does not central-
ize A,/Ai+l' For if [A;, v] :5 A;+l. then as A; and A;+1are normal subgroups
of Q, we find that [A;, R] ::; A;+1' so [A;, R] = [A;, R, RJ and [A;, R] = 1. Since

[y,A;) f; A;+1, we may choose an element a; E A; such that b; = [a.,V]~ A;+1'
Thus,

b; E ([A, y] n A;) \ ([A, V]n A.+d.

It follows that [Au, R] = 1. This is the claim.

We apply this to q-soluble linear groups. If X is a finite group, let Aq,O(X) =
1, Aq,1(X) =Oql,q(X), and Aq,;+l(X)jAq,i(X) =Oql,q(XjAq,i(X».

Proposition 2.3 Let p and q be primes and let G be a finite q- soluble linear
group acting faithfully on a vector space V over Fp. Let :z:be an element of
order qn in G and let y = xqn-l. Let dimCv(x) = rn. Then there is a number
s, bounded in terms ofp, q, n and rn, such that y E Aq,.(G).

Proof. Let Q be a Sylow q-subgroup of G containing X. Then by Lemma 2.1,..
the normal closure R of V in Q has bounded class. Now if A is any abelian .

normal subgroup of Q, then it is known that A ::; Aq,t(G) if q ;:::5 [1, Hall and
Higman], while if q =3 then A ::; Aq,2(G) and if q = 2 then A ~ Aq,3(G).[2].
From these facts and a simple induction the claim follows.

?\ow the aim is to prove the following.

I'

Theorem 2.4 Let G be a finite soluble group containing an element u of order
pmqn. where p and q are distinct piimes. Let C =Cc(u) and suppose that C
has abdian section rank at most r. Thenh(G) is pm, qn, r~bounded.

Proof. We will prove this by induction on n. If n = 0 then it follows from
Theorem 1.1. So suppose that n > O. Let Q = Opl(G). By Theorem 1.1, Q
has bounded Fitting height, and by Lemma 1.2, the hypotheses are inherited
by G/Q (with a different value of r.) Hence we may assume that Q = 1. Let
P =Qp(G). In a similar way we may assume that <P(G)= 1, so that we can
view G = G j P as a linear group acting on V =P. Let x be the q-part of u, let
z be the p-part, and let y = xqn-I. Let dimCv(x) = d. Considering the action
of z on Cv(x), we see that dimCv(u) ~ djpm. This tells us that d is bounded.
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Note .This would not work if z were an arbitrary q'-element.
By Proposition 2.3, we have y E >'q,c(G), where ciis bounded in terms of the
available parameters. Now we sh()~ .the following. i -- .

(*) The Fitting height of >'q,e(G) is bounded in terms of e and the other param-
eters.

For suppose that we have this for some value of e. By Lemma 1.2, we have that
if W =G/>'q,e(G). then Cw(u) has bounded abelian section rank, where the
bound is in terms of e and the other parameters. Considering in particular the
action of u on Oq/(W), we may apply Theorem 1.1 to conclude that Oq/(W)
has Fitting height bounded in terms of the various parameters. This gives the
inductive step.
Since c is bounded in terms of p, q, m ,n ,r, we may apply (*) to conclude
firstly that >'c,q(G) has Fitting height bounded in terms of these parameters,
and secondly that in CG/>,."c(G), the centralizer of u has abelian section rank
bounded in terms of these parameters. Now the order of the image of u in this
group divides pfflqn-l, and so by induction on n, this group has bounded Fitting
height. This concludes the proof of the theorem.
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