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Abstract

Given a finite group G and G-conjugacy class of involutions X, the
local fusion graph F(G, X) has X as its vertex set, with x, y ∈ X joined
by an edge if, and only if, x 6= y and the product xy has odd order. In
this note we investigate such graphs when G is a finite Coxeter group,
addressing questions of connectedness and diameter. In particular, our
results show that local fusion graphs may have an arbitrary number of
connected components, each with arbitrarily large diameter.
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1 Introduction

Let G be a finite group, with X a G-conjugacy class of involutions. We define
the local fusion graph F(G,X) by taking X to be our vertex set, and joining
vertices x, y ∈ X with an edge if, and only if, x 6= y and the product xy has odd
order. These graphs are so called because given two elements x, y ∈ X, and a
path

x = x0 → x1 → · · · → xm = y

from x to y in F(G,X), there exists an element g1g2 · · · gm−1 which conjugates
x to y, where gi ∈ 〈xi−1, xi〉 for 1 ≤ i ≤ m.

Local fusion graphs arise in a number of situations. For example, they can
be used to construct Fischer’s sporadic simple groups Fi22, Fi23 and Fi′24 [12].
Also, both Glauberman’s Z∗-theorem (for involutions - see Theorem 1 of [13])
and the Baer-Suzuki theorem (for the prime 2 - see Theorem 8.2 of [14]) may be
restated in terms of local fusion graphs, with the connection to the latter result
being further explored in [2], where it is shown that the local fusion graphs of
finite simple groups are connected. While in [3] the usefulness of local fusion
graphs in a computational context is highlighted, through a method to compute
involution centralisers.

In this note we investigate the local fusion graphs of finite Coxeter groups,
addressing two fundamental questions: when are such graphs connected, and
given a connected graph, what can we say about its diameter? This work may
be viewed as a sequel to [1], where these issues were resolved for the local fusion
graphs of finite symmetric groups. Similar problems have been tackled for other
graphs which are closely related to local fusion graphs. For example, commuting
involution graphs have a conjugacy class of involutions as their vertex set, with
distinct vertices joined by an edge if, and only if, the relevant involutions com-
mute. In [4], [5] and [6], properties of these graphs are investigated for a variety
of groups, including finite Coxeter groups. Even more closely related to the
graphs of the present article are S3-involution graphs, where vertices are again
involutions, and adjacent vertices must have product order 3. These objects
were studied in [10] for some finite projective special linear groups of dimension
2, and utilised further in [11].

Recall that the finite irreducible Coxeter groups have been classified (see
for example [15]), and consist of the three classical families C(An), C(Bn) and
C(Dn), along with the exceptional groups C(E6), C(E7), C(E8), C(F4), C(H3),
C(H4) and C(In). The structure of these groups is shown below.
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C(An) ∼= Sym(n+ 1), (n ≥ 1);
C(Bn) ∼= 2n : Sym(n), (n ≥ 2);
C(Dn) ∼= 2n−1 : Sym(n), (n ≥ 4);
C(E6) ∼= GO−6 (2);
C(E7) ∼= 2.Sp6(2);
C(E8) ∼= 2.O+

8 (2).2;
C(F4) ∼= 21+4

+ .32.22;
C(H3) ∼= 2×Alt(5);
C(H4) ∼= (SL2(5) ◦ SL2(5)) : 2;
C(In) ∼= Dih(2n).

Here, Alt(n) and Sym(n) denote the alternating and symmetric groups on n
letters respectively, and we have used Atlas notation [9]. Let us now summarise
our main results. Firstly, we have the classical families C(Bn) and C(Dn). The
notation used here will be explained in Section 2.

Theorem 1.1. Suppose G = C(Bn), n ≥ 2 and X is a G-conjugacy class of
involutions. Write G = N : H where N ∼= 2n and H ∼= Sym(n). If X ⊂ N ,
then F(G,X) is totally disconnected, while if X 6⊂ N then F(G,X) is connected,
unless n = 2m and X = tG, where

t = (
+
1,

+
2)(

+
3,

+
4) · · · (

+
2m− 1,

+
2m).

In the latter case F(G,X) has exactly two connected components, unless n = 4,
in which case F(G,X) is totally disconnected with 12 vertices.

Theorem 1.2. Suppose G = C(Dn), n ≥ 4 and X is a G-conjugacy class of
involutions. Write G = N : H where N ∼= 2n−1 and H ∼= Sym(n). If X ⊂ N ,
then F(G,X) is totally disconnected, while if X 6⊂ N then F(G,X) is connected.

If we have a connected local fusion graph F(G,X), we denote its diameter
by DiamF(G,X).

Theorem 1.3. Suppose G = C(Bn), where n ≥ 4.

(i) If n is even, then there exists a G-conjugacy class of involutions X such
that DiamF(G,X) = n − 1. Moreover, if X ′ is any other G-conjugacy
class of involutions such that F(G,X ′) is connected, then

DiamF(G,X ′) ≤ n− 1.

(ii) If n is odd, then there exists a G-conjugacy class of involutions X such
that DiamF(G,X) = n − 2. Moreover, if X ′ is any other G-conjugacy
class of involutions such that F(G,X ′) is connected, then

DiamF(G,X ′) ≤ n− 2.
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We shall see from Proposition 2.1 that, with possibly just one exception, the
local fusion graphs of C(Dn) are isomorphic to local fusion graphs of C(Bn).
Thus Theorem 1.3 also provides bounds on the diameters of the local fusion
graphs of C(Dn). As a consequence of our work on C(Bn) we have the following
more general result concerning local fusion graphs of finite groups.

Theorem 1.4. For any given r,m ∈ N, there exists a finite group G with
conjugacy class of involutions X such that F(G,X) has exactly m connected
components, each of which has diameter r.

Theorems 1.3 and 1.4 contrast with many results concerning the diameter
of graphs related to local fusion graphs. For example, in [6] it is shown that
for finite symmetric groups the diameter of commuting involution graphs is at
most 4, while in [4] it is proved that for any other finite irreducible Coxeter
group the diameter of a commuting involution graph is at most 5. Also, in [5],
we find analysis of the commuting involutions graphs of the majority of the
sporadic simple groups, and it is shown that their diameters are at most 4. For
the S3-involution graphs studied in [10], it is shown that their diameter is 3.
Additionally, for local fusion graphs themselves, in [1] we find that for finite
symmetric groups (excluding some small exceptions) local fusion graphs have
diameter 2. It is therefore worthwhile to note that Theorem 1.3 demonstrates
that no such absolute bounds exist for the diameters of local fusion graphs of
finite Coxeter groups of type Bn (and Dn).

Our final result concerns the exceptional Coxeter groups. If X is a G-
conjugacy class, then for x ∈ X and i ∈ N we define

∆i(x) = {y ∈ X | d(x, y) = i},

where d is the usual graph-theoretic distance metric, and refer to the i-th disc
of F(G,X) (with respect to x).

Theorem 1.5. Suppose that G is an exceptional finite Coxeter group and X is
a G-conjugacy class of involutions.

(i) If G = C(In), then F(G,X) is either a disjoint union of complete graphs,
or consists of a single vertex (see Lemma 3.1).

(ii) If G = C(E6), then DiamF(G,X) = 2.

(iii) If G = C(E7) and |X| > 1, then DiamF(G,X) = 2.

(iv) If G = C(E8) and |X| > 1, then DiamF(G,X) ≤ 3.

(v) If G = C(F4) and |X| > 1, then either F(G,X) is totally disconnected
with 18 vertices, or DiamF(G,X) ≤ 3.

(vi) If G = C(H3) and |X| > 1, then DiamF(G,X) = 2.

(vii) If G = C(H4) and |X| > 1, then DiamF(G,X) ≤ 3.
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For cases (ii)-(vii), the sizes of the discs ∆i(t) are given in Table 1.

Finally, the author would like to thank the referees who have reviewed var-
ious incarnations of this paper. Their suggestions greatly improved the final
outcome.

2 The Classical Groups

We now begin our analysis of the local fusion graphs of the finite classical
Coxeter groups. Since the groups C(An) have been tackled previously in [1],
here we concentrate on the groups C(Bn) and C(Dn). The Coxeter group
C(Bn) may be considered as the group of signed permutations of n objects
(see [4] or [15]). Let Sym(n) act on the set Ω = {1, . . . , n}, and define the i-th
‘sign change’ to be the element which sends i to −i and fixes all other j ∈ Ω.
The set of all such elements generates an elementary abelian group of order 2n,
and C(Bn) is isomorphic to the semidirect product of this group with Sym(n).
If we wish to emphasise the set upon which C(Bn) acts, we may write C(BΩ).
For n ≥ 4, C(Dn) is the subgroup of index 2 of C(Bn) generated by Sym(n)
and the elements of the elementary abelian subgroup involving an even number
of sign changes. A convenient way of expressing the elements of C(Bn) is to
write a permutation in Sym(n), including 1-cycles, along with a plus or minus
sign above each i, and say i is positive or negative respectively, for example

z = (
+
1,
−
3,

+
2)(
−
4) ∈ C(B4).

By convention we read the sign first, so z(1) = 3, z(2) = 1, z(3) = −2 and
z(4) = −4. Given a cycle ρ ∈ C(Bn), we say ρ is positive or negative depending
on whether the number of minus signs above its elements is even or odd, respec-
tively. The signed cycle type of an element of C(Bn) is defined to be the cycle
type of the element, including 1-cycles, with a plus or minus over each cycle,
depending on whether the cycle is positive or negative, respectively.

We may now state the following result, found in [8], which characterises the
conjugacy classes of C(Bn) and C(Dn).

Proposition 2.1. (i) Elements of C(Bn) are conjugate if and only if they
have the same signed cycle type.

(ii) Conjugacy classes in C(Dn) are parameterised by signed cycle type, with
one class for each signed cycle type except in the case where the signed cycle
type contains only even length, positive cycles. In the latter case there are
two classes for each signed cycle type, distinguished by the number of minus
signs modulo 4.

As we are considering C(Dn) as a subgroup of C(Bn), Proposition 2.1 (ii)
tells us that for x ∈ C(Dn) we have xC(Dn) = xC(Bn), unless x has only even
length, positive cycles. Let us now establish some notation. Recall that for an
element σ ∈ Sym(n), the support of σ is defined to be supp(σ) = Ω \fix(σ). We
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now extend this notion to C(Bn). Given x ∈ C(Bn), we define the S-support
of x, suppS(x), to be the support of the corresponding element of Sym(n). In
addition, we define the C-support of x, suppC(x), to be Ω \ fix(x). Here S and
C stand for ‘symmetric’ and ‘Coxeter’ respectively. To illustrate, if we again
take

z = (
+
1,
−
3,

+
2)(
−
4),

then suppS(z) = {1, 2, 3}, while suppC(z) = {1, 2, 3, 4} (since z(4) = −4). For
brevity, given two elements x and y of C(Bn) we shall write

∆x,y = suppS(x) ∪ suppS(y).

We define the weight of x, denoted w(x), to be the number of negative signs in
x. If X is a conjugacy class of involutions of C(Bn) or C(Dn), then given two
elements x, y ∈ X we define the 1-weight of the product xy, denoted w1(xy), to

be the number of negative 1-cycles (
−
i ) in xy such that i /∈ ∆x,y. For example,

suppose that

x = (
+
1,

+
2)(
−
3)(
−
4)(

+
5)(

+
6)

and
y = (

−
1,
−
2)(
−
3)(

+
4)(
−
5)(

+
6).

Then w(x) = 2 and w(y) = 4. Also,

xy = (
−
1)(
−
2)(

+
3)(
−
4)(
−
5)(

+
6)

which has 4 negative 1-cycles, so w(xy) = 4, but since 1, 2 ∈ ∆x,y we have
w1(xy) = 2.

We shall require the following easy lemma, which holds in general for local
fusion graphs.

Lemma 2.2. Let G be a group with G-conjugacy class of involutions X. Sup-
pose x, y ∈ X are such that d(x, y) = k in F(G,X), where d is the usual graph
metric. Then for any g ∈ CG(x), d(x, yg) = k.

Proof. This follows immediately from the observation that elements of CG(x)
induce graph automorphisms of F(G,X) which leave x fixed.

We now set G = C(Bn) where n ≥ 3, and work towards proving Theo-
rems 1.1 and 1.3. Clearly a G-conjugacy of involutions which lies in the ele-
mentary abelian normal 2-subgroup of G will yield a totally disconnected local
fusion graph. A more interesting collection of local fusion graphs of G are those
which have as vertex set a G-conjugacy class of signed transpositions, that is,
elements of G which contain exactly one 2-cycle. Let X be such a G-conjugacy
class. Our next lemma tells us precisely when two elements of X are adjacent
in F(G,X).

Lemma 2.3. If x, y ∈ X, then x and y are adjacent in F(G,X) if, and only
if, |∆x,y| = 3 and w1(xy) = 0.
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Proof. Suppose that x and y are adjacent in F(G,X). Then since x and y
contain only one 2-cycle each, the product xy must have order 3, and we must
certainly have |∆x,y| = 3. Furthermore, if w1(xy) ≥ 1, then xy must contain
negative 1-cycles, and consequently the product order must be divisible by 2.
This contradicts xy having order 3, and so w1(xy) = 0.

Now suppose that |∆x,y| = 3 and w1(xy) = 0. By the latter assumption, any
1-cycle (i) in the product xy, where i ∈ Ω \∆x,y, must be positive, and hence
have order 1. So we need only concern ourselves with the 3-cycle of xy. We
may without loss of generality assume that, without signs, we have x = (1, 2)(3)
and y = (1, 3)(2). Since x and y are G-conjugate (and the 1-cycles of x and y
outside ∆x,y have the same signs), we can apply Proposition 2.1 to deduce that
the 1-cycles (3) and (2) must have the same sign.

If the signs of x are the same as those of y, we get

xy = (
+
1,

+
2,

+
3),

which clearly has order 3, so x and y are adjacent in F(G,X). On the other
hand, any other valid signing of x and y will a yield a 3-cycle with two negative

signs and one positive, such as xy = (
−
1,
−
2,

+
3). An easy check shows that such

elements also have order 3. Thus x and y are adjacent in any case.

An easy consequence of Lemma 2.3 is that the local fusion graphs of C(Bn)
corresponding toG-conjugacy classes of signed transpositions are also S3-involution
graphs, as defined in [10]. We now prove a lemma which gives us a lower bound
on the distance between two G-conjugate signed transpositions in F(G,X).

Lemma 2.4. Suppose that x, y ∈ X, with x 6= y. If w1(xy) = k, then d(x, y) ≥
k + 1.

Proof. Firstly, note that if x is not connected to y in F(G,X), then by con-
vention d(x, y) =∞, and the result holds. So suppose x is connected to y, and
consider a shortest path from x to y in F(G,X), say

x = x0 → x1 → x2 → · · · → xr = y.

By Lemma 2.3, for 1 ≤ i ≤ r we have w1(xi−1xi) = 0 and |∆xi−1,xi | = 3.
Therefore, for each i, the signed 1-cycles of xi with C-support outside ∆xi−1,xi

are identical to those of xi−1, and xi contains exactly one signed 1-cycle which
does not appear in xi−1. Consequently w1(xxi) ≤ w1(xxi−1) + 1, for 1 ≤ i ≤ r.
Since w1(xx1) = 0, for all i ≤ k we must have w1(xxi) < k. As w1(xy) = k, it
follows that r ≥ k + 1.

Given x, y ∈ X, then since |suppS(x)| = |suppS(y)| = 2, it must be the case
that |∆x,y| = 2, 3 or 4. Lemmas 2.5 and 2.7 address each of these possibilities,
and provide us with straightforward expressions for the distance between x and
y in F(G,X) in terms of the 1-weight of the product xy.
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Lemma 2.5. Suppose x, y ∈ X, where x 6= y and |∆x,y| = 2 or 3. Then
d(x, y) = w1(xy) + 1, unless |∆x,y| = 2 and w1(xy) = 0, in which case d(x, y) =
2.

Proof. First suppose that |∆x,y| = 2, and that w1(xy) = k. Note that now
Proposition 2.1 implies that k must be even, so write k = 2m. If m = 0, then

since x 6= y without loss of generality the 2-cycles of x and y must be (
+
1,

+
2) and

(
−
1,
−
2), and using Lemma 2.3 we may easily find an element which is adjacent to

both x and y in F(G,X). So assume that m ≥ 1, and consequently we must have
n ≥ 4. If x and y agree on any signed 1-cycles, then in the product xy these will
be positive 1-cycles, which have order 1. It therefore suffices to ignore these 1-
cycles and consider x and y as elements of C(BΣ), where Σ = ∆x,y∪suppC(xy),
and prove the result in this context. So, without loss of generality we assume
that n = |∆x,y| + w1(xy). Using the vertex-transitivity of G on F(G,X), and
Proposition 2.1, we may assume that x and y are labelled so that

x = (
+
1,

+
2)(
−
3)(
−
4) · · · (

−
m+ 2)(

+
m+ 3) · · · (

+
2m+ 2)

and
y = (

ε
1,
ε
2)(

+
3)(

+
4) · · · (

+
m+ 2)(

−
m+ 3) · · · (

−
2m+ 2),

where ε ∈ {+,−}. By Lemma 2.4, d(x, y) ≥ 2m + 1. To show that this is in
fact an equality, we construct a path from x to y in F(G,X) as follows, using
Lemma 2.3 to verify adjacency at each step:

x = (
+
1,

+
2)(
−
3)(
−
4) · · · (

−
m+ 2)(

+
m+ 3) · · · (

+
2m+ 2),

z1 = (
+
1,

+
m+ 3)(

+
2)(
−
3)(
−
4) · · · (

−
m+ 2)(

+
m+ 4) · · · (

+
2m+ 2),

z2 = (
+
1,

+
3)(

+
2)(
−
4) · · · (

−
m+ 3)(

+
m+ 4) · · · (

+
2m+ 2),

z3 = (
+
1,

+
m+ 4)(

+
2)(

+
3)(
−
4) · · · (

−
m+ 3)(

+
m+ 5) · · · (

+
2m+ 2),

z4 = (
+
1,

+
4)(

+
2)(

+
3)(
−
5) · · · (

−
m+ 4)(

+
m+ 5) · · · (

+
2m+ 2),

...

z2m = (
+
1,

+
m+ 2)(

+
2)(

+
3) · · · (

+
m+ 1)(

−
m+ 3) · · · (

−
2m+ 2),

y = (
ε
1,
ε
2)(

+
3)(

+
4) · · · (

+
m+ 2)(

−
m+ 3) · · · (

−
2m+ 2).

Since this path has length 2m+ 1, we deduce that d(x, y) = 2m+ 1.
Now assume that |∆x,y| = 3 and w1(xy) = k. Here it need not be the case

that k is even. If k = 0 the result follows by Lemma 2.3, so assume that k ≥ 1.
Thus n ≥ 4. Using vertex-transitivity and Proposition 2.1 we see that, up to
relabelling, there are the following possibilities for x and y:

(i) k = 2m,

x = (
+
1,

+
2)(

δ
3)(
−
4) · · · (

−
m+ 3)(

+
m+ 4) · · · (

+
2m+ 3)
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and

y = (
ε
1,
ε
3)(

δ
2)(

+
4) · · · (

+
m+ 3)(

−
m+ 4) · · · (

−
2m+ 3);

(ii) k = 2m+ 1,

x = (
+
1,

+
2)(

δ
3)(
−
4) · · · (

−
m+ 3)(

−δ
m+ 4)(

+
m+ 5) · · · (

+
2m+ 4)

and

y = (
ε
1,
ε
3)(
−δ
2 )(

+
4) · · · (

+
m+ 3)(

δ
m+ 4)(

−
m+ 5) · · · (

−
2m+ 4),

where ε, δ ∈ {+,−}. In case (i), Lemma 2.4 implies that d(x, y) ≥ 2m + 1,
while in case (ii), Lemma 2.4 implies that d(x, y) ≥ 2m + 2. However, we may
construct paths from x to y in F(G,X) of length 2m + 1 and 2m + 2, in each
case respectively. Since the method used to construct these paths is very similar
in each case, we simply illustrate case (ii) where δ = +. Here a suitable path is

x = (
+
1,

+
2)(

+
3)(
−
4) · · · (

−
m+ 4)(

+
m+ 5) · · · (

+
2m+ 4),

z1 = (
+
1,

+
4)(
−
2)(

+
3)(
−
5) · · · (

−
m+ 4)(

+
m+ 5) · · · (

+
2m+ 4),

z2 = (
+
1,

+
m+ 5)(

−
2)(

+
3)(

+
4)(
−
5) · · · (

−
m+ 4)(

+
m+ 6) · · · (

+
2m+ 4),

z3 = (
+
1,

+
5)(
−
2)(

+
3)(

+
4)(
−
6) · · · (

−
m+ 5)(

+
m+ 6) · · · (

+
2m+ 4),

z4 = (
+
1,

+
m+ 6)(

−
2)(

+
3)(

+
4)(

+
5)(
−
6) · · · (

−
m+ 6)(

+
m+ 7) · · · (

+
2m+ 4),

...

z2m = (
+
1,

+
2m+ 4)(

−
2)(

+
3) · · · (

+
m+ 3)(

−
m+ 4) · · · (

−
2m+ 4),

z2m+1 = (
+
1,

+
m+ 4)(

−
2)(

+
3) · · · (

+
m+ 3)(

−
m+ 5) · · · (

−
2m+ 4),

y = (
ε
1,
ε
3)(
−
2)(

+
4) · · · (

+
m+ 4)(

−
m+ 5) · · · (

−
2m+ 4).

Lemma 2.6. Suppose x, y ∈ X with |∆x,y| = 4. Then there exists z ∈ X such
that d(z, y) = 1 and either

(i) |∆x,z| = 3 and w1(xz) = w1(xy); or

(ii) |∆x,z| = 4 and w1(xz) = w1(xy)− 1.

Furthermore, x is connected to y in F(G,X), and any shortest path from x to
y through z has length w1(xy) + 2.

Proof. Write w1(xy) = k. When k = 0 it may be easily checked that an element
z ∈ X exists which satisfies (i), and that d(x, y) = 2. Hence we may assume
that k ≥ 1, and so n ≥ 5. As y is certainly adjacent to some element z′ ∈ X
where |∆x,z′ | = 3, Lemma 2.5 implies that y is connected to x in F(G,X).

9



Without loss of generality we may label x and y so that

x = (
+
1,

+
2)(

τ
3)(

κ
4)(5)(6) · · · (n)

and
y = (

µ

1)(
ν
2)(

ε
3,
ε
4)(5)(6) · · · (n),

where τ, κ, µ, ν, ε ∈ {+,−}, and we make no assumption on the signs of the
unlabelled cycles of x and y. First suppose that {τ, κ} ∩ {µ, ν} 6= ∅, with say
ν = τ . Let

z = (
µ

1)(
ε
2,
ε
4)(

τ
3)(5)(6) . . . (n).

Then d(z, y) = 1 by Lemma 2.3, w1(xz) = w1(xy) and |∆x,z| = 3, so z satisfies
(i).

Now suppose that {τ, κ} ∩ {µ, ν} = ∅. Then we must have τ = κ and
µ = ν = −τ , so we may without loss of generality assume that x and y are
labelled so that

x = (
+
1,

+
2)(

τ
3)(

τ
4)(5)(6) . . . (n)

and
y = (

−τ
1 )(
−τ
2 )(

ε
3,
ε
4)(5)(6) . . . (n).

By Proposition 2.1, there must exist i, j ∈ {5, . . . , n} such that i 6= j, y contains

the cycles (
τ
i) and (

τ
j), and x contains the cycles (

−τ
i ) and (

−τ
j ) (and so n ≥ 6).

Without loss we may label x and y so that

x = (
+
1,

+
2)(

τ
3)(

τ
4)(
−τ
5 )(
−τ
6 ) . . . (n)

and
y = (

−τ
1 )(
−τ
2 )(

ε
3,
ε
4)(

τ
5)(

τ
6) . . . (n).

Let
z = (

−τ
1 )(
−τ
2 )(

ε
3,
ε
5)(

τ
4)(

τ
6) . . . (n).

Then d(z, y) = 1 by Lemma 2.3, |∆x,z| = 4 and w1(xz) = w1(xy) − 1, so z
satisfies (ii).

To prove the final statement of the lemma we use induction on k. We have
already noted that the lemma holds when k = 0. If z satisfies (i), then by
Lemma 2.5 we have d(x, z) = w1(xz) + 1 = w1(xy) + 1, and as d(z, y) = 1 this
implies that a shortest path from x to y through z must have length w1(xy)+2.
On the other hand, if z satisfies (ii) then w1(xz) = w1(xy)− 1. Hence we may
apply induction to see that d(x, z) = w1(xy) + 1, and again a shortest path
from x to y through z must have length w1(xy) + 2, as required to complete the
proof.

Lemma 2.7. Suppose x, y ∈ X with |∆x,y| = 4. Then d(x, y) = w1(xy) + 2.

10



Proof. By Lemma 2.6, y is connected to x in F(G,X), so let γ be a shortest
path from x to y, with z ∈ γ such that d(z, y) = 1. Using Lemma 2.3 there are
potentially five possibilities for z:

(i) |∆x,z| = 3 and w1(xz) = w1(xy);

(ii) |∆x,z| = 3 and w1(xz) = w1(xy) + 1;

(iii) |∆x,z| = 4 and w1(xz) = w1(xy)− 1;

(iv) |∆x,z| = 4 and w1(xz) = w1(xy); or

(v) |∆x,z| = 4 and w1(xz) = w1(xy) + 1.

In view of Lemma 2.6 it suffices to show that the possibilities (ii), (iv) and (v)
cannot occur.

First, suppose that (ii) holds. Then by Lemma 2.4 we have d(x, z) ≥
w1(xy)+2, which implies d(x, y) ≥ w1(xy)+3, contradicting Lemma 2.6. Next,
suppose (iv) holds. Then z must lie in the same CG(x)-orbit as y, which contra-
dicts γ being a shortest path using Lemma 2.2. Finally, suppose (v) holds. Then
by Lemma 2.4 we have d(x, z) ≥ w1(xz)+2, which implies d(x, y) ≥ w1(xy)+3,
again contradicting Lemma 2.6. Thus either (i) or (iii) must hold, and the result
follows by the final statement of Lemma 2.6.

Taken together, Lemmas 2.5 and 2.7 shows that the local fusion graphs of
C(Bn) which arise from conjugacy classes of signed transpositions are connected.
We can now prove the following result regarding the diameters of these local
fusion graphs.

Theorem 2.8. Let G = C(Bn), where n ≥ 4.

(i) If n is even, then there exist G-conjugacy classes of signed transpositions
X1 and X2 such that DiamF(G,X1) = n− 1 and DiamF(G,X2) = n− 2.
Moreover, if Y is any other G-conjugacy class of signed transpositions,
then DiamF(G, Y ) ≤ n− 1.

(ii) If n is odd, then there exists a G-conjugacy class of signed transpositions
X3 such that DiamF(G,X3) = n − 2. Moreover, if Y ′ is any other G-
conjugacy class of signed transpositions, then DiamF(G, Y ′) ≤ n− 2.

Proof. Suppose that n is even, and write n = 2m. Set X1 = xG1 , where

x1 = (
+
1,

+
2)(

+
3)(

+
4)(
−
5) · · · (

−
m+ 2)(

+
m+ 3) · · · (

+
2m).

If we now let

y1 = (
+
1)(

+
2)(

+
3,

+
4)(

+
5) · · · (

+
m+ 2)(

−
m+ 3) · · · (

−
2m),

then |∆x1,y1 | = 4 and w1(xy) = 2m− 4, so Lemma 2.7 tells us that

d(x1, y1) = 2m− 2 = n− 2.

11



Since it is impossible to choose y′1 ∈ X1 where w1(x1y
′
1) > w1(x1y1), Lemmas 2.5

and 2.7 show that this distance is maximal in F(G,X1), whence DiamF(G,X1) =
n− 2.

Next, set X2 = xG2 , where

x2 = (
+
1,

+
2)(
−
3) · · · (

−
m+ 1)(

+
m+ 2) · · · (

+
2m).

If we let
y2 = (

+
1,

+
2)(

+
3) · · · (

+
m+ 1)(

−
m+ 2) · · · (

−
2m),

then |∆x2,y2 | = 2 and w1(x2y2) = 2m− 2, so by Lemma 2.5 we have d(x2, y2) =
2m − 1 = n − 1. It is impossible to choose y′2 ∈ X2 such that w1(x2y

′
2) >

w1(x2y2), and if y′2 is such that |∆x2,y′2
| = 4 then we must have w1(x2y

′
2) <

w1(x2y2). Therefore, using Lemmas 2.5 and 2.7 we deduce that y2 is an element
of X2 at maximal distance from x2 in F(G,X2), and so DiamF(G,X2) = n−1.
To see the final statement of (i), note that if x′ and y′ are signed transpositions in
any other G-conjugacy class of signed transpositions Y , then w1(x′y′) < 2m−2,
so by Lemmas 2.5 and 2.7 we have d(x′, y′) ≤ 2m− 1 = n− 1.

Now suppose that n = 2m+ 1 and set X3 = xG3 , where

x3 = (
+
1,

+
2)(

+
3)(
−
4)(
−
5) · · · (

−
m+ 2)(

+
m+ 3) · · · (

+
2m+ 1).

If we let
y3 = (

+
1)(

+
2)(

+
3,

+
4)(

+
5) · · · (

+
m+ 2)(

−
m+ 3) · · · (

−
2m+ 1),

then |∆x3,y3 | = 4 and w1(x3y3) = 2m− 3, so by Lemma 2.7 we have d(x3, y3) =
2m− 1 = n− 2. It is possible to choose y′3 ∈ X3 such that w1(x3y

′
3) = 2m− 2,

however to do so we must have |∆x3,y′3
| = 2 or 3. Thus, using Lemmas 2.5

and 2.7 we deduce that y3 is at maximal distance from x3 in F(G,X), which
yields DiamF(G,X3) = n− 2. For the final statement of (ii), notice that for x′

and y′ in any other G-conjugacy class of signed transpositions Y ′, then either
w1(x′y′) ≤ n − 4, or w1(x′y′) = n − 3 and |∆x′,y′ | = 2 or 3. In both cases, by
Lemmas 2.5 and 2.7 we have DiamF(G, Y ′) ≤ n− 2.

The case where n = 3 is excluded from Theorem 2.8 since for G = C(B3)

and X = xG, where x = (
+
1,

+
2)(

+
3) or (

+
1,

+
2)(
−
3), we have DiamF(G,X) = 2.

Note that Theorem 2.8 partially proves Theorem 1.4, by showing the existence
of local fusion graphs with diameter r for all r ≥ 3. Since the existence of
local fusion graphs with diameters 1 and 2 is clear, to complete the proof of
Theorem 1.4 we just need to show that any number of connected components
is possible. This is resolved by our next result.

Lemma 2.9. Let H be a finite group, with X an H-conjugacy class of invo-
lutions, and suppose F(H,X) is connected. Let L = H o Sym(m). Then there
exists an L-conjugacy class of involutions Y such that F(L, Y ) has exactly m
connected components, each isomorphic to F(H,X).

12



Proof. The wreath product L = H o Sym(m) has base group H1 × · · · × Hm,
where Hi

∼= H for 1 ≤ i ≤ m. Let Y be the L-conjugacy class which contains the
canonical image of X in H1. Since Sym(m) acts transitively on the components
of the base group, Y can be considered as a union of m copies of X. Since
elements of Y from distinct components commute, they can never be adjacent
in F(L, Y ). It follows that F(L, Y ) has m connected components, each of which
is isomorphic to F(H,X).

Combining Lemma 2.9 with Theorem 2.8 now yields Theorem 1.4. Having
considered the case of signed transpositions, we now move to the opposite ex-
treme, those conjugacy classes of involutions which have at most one 1-cycle.
First we collect together some data for cases when the rank n is small, which
will be used in proving the more general results which follow.

Lemma 2.10. Suppose G = C(Bn), where 5 ≤ n ≤ 10.

(i) If n = 2m, set X = tG where

t = (
+
1,

+
2) . . . (

+
2m− 1,

+
2m).

Then F(G,X) has exactly two connected components. When n = 8 these
components have diameter 3, while if n = 6 or 10 this diameter is 2.

(ii) If n = 2m+ 1, set X = tGε where

tε = (
+
1,

+
2) . . . (

+
2m− 1,

+
2m)(

ε
2m+ 1)

and ε ∈ {+,−}. Then F(G,X) is connected, and DiamF(G,X) = 2.

Proof. Since these local fusion graphs have relatively small vertex sets, it is
straightforward to explicitly construct them using Magma [7], for example.

Lemma 2.11. Let G = C(Bn), and suppose σ ∈ G is a signed cycle. Then σ
has odd order if, and only if,

(i) the length of σ is odd; and

(ii) the weight of σ is even.

Proof. Without loss of generality suppose that, without signs, σ = (1, 2, . . . , k).
It is clearly the case that σ either has order k or 2k. Thus for σ to have odd
order it is necessary that (i) holds, so suppose that k is odd. If w(σ) = 0 then
certainly σ has odd order k. Suppose that w(σ) = 0, and let σ1 be equal to σ
multiplied by a single negative 1-cycle, say

σ1 = (
−
i )σ,

where i ∈ {1, . . . , k}. Then w(σ1) = 1. Moreover, we have

σk1 = (
−
1)(
−
2) . . . (

−
k),

13



and so σ1 has order 2k. If we now multiply σ1 by a negative 1-cycle, say

σ2 = (
−
j )σ1,

where j ∈ {1, . . . , k}, then we have w(σ2) = 0 or 2, and we get

σk2 = (
−
1)(
−
2) . . . (

−
k)σk1 = 1,

so σ2 has order k. More generally, if we multiply σ by an odd number of negative
1-cycles, the resulting product will have odd weight and order 2k, while if we
multiply σ by an even number of negative 1-cycles, the resulting product will
have even weight and order k. Since it is possible to reach any signed k-cycle in
G by multiplying a k-cycle of weight zero by a number of negative 1-cycles, we
deduce that if w(σ) is even the order of σ is k, while if w(σ) is odd the order of
σ is 2k.

Lemma 2.12. Suppose H = Sym(2m) acts naturally on Ω, and set X = xH ,
where

x = (1, 2)(3, 4) · · · (2m− 1, 2m).

If y ∈ X, then y is adjacent to x in F(H,X) if, and only if,

xy = σ1,1σ1,2σ2,1σ2,2 . . . σs,1σs,2

is a product of pairwise disjoint cycles, where for 1 ≤ r ≤ s the cycles σr,1 and
σr,2 have the same odd length. Moreover, if i, j ∈ Ω lie in the same transposition
of y, then we can label the cycles of xy so that i ∈ σ1,1 and j ∈ σ1,2.

Proof. This follows from Proposition 2.2 of [6].

We now consider C(Bn) for arbitrary rank n ≥ 3, and address the connected-
ness and diameter of those local fusion graphs which have as vertices involutions
which contain at most one 1-cycle. In preparation we introduce another piece
of notation. Given g ∈ C(Bn), we denote by g the element of Sym(n) we get by
ignoring all signs of g. For example, if g ∈ C(B6) and

g = (
+
1,
−
2,

+
3)(
−
4,
−
5)(

+
6),

then
g = (1, 2, 3)(4, 5)(6).

Lemma 2.13. Suppose G = C(B2m), where m ≥ 3, and let

t = (
+
1,

+
2)(

+
3,

+
4) . . . (

+
2m− 1,

+
2m),

with X = tG. Then F(G,X) has exactly two connected components, one con-
taining all x ∈ X with w(x) ≡ 0 mod 4, the other containing all x ∈ X with
w(x) ≡ 2 mod 4. Furthemore, the diameter of each component is at most 5.
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Proof. Note that Proposition 2.1 implies that all elements ofX have even weight.
Let G = Sym(2m), and denote by X the G-conjugacy class which contains the
element t. Suppose that x ∈ X is adjacent to t in F(G,X). Then tx must
be a product of pairwise disjoint, odd-length signed cycles, each of which has

even weight by Lemma 2.11. If (
−
i ,
−
j ) is a transposition in x, then, since t and

x must be adjacent in F(G,X), we may use Lemma 2.12 to see that
−
i and

−
j

lie in distinct cycles of tx. Therefore for every cycle of tx to have even weight
it must be that x has an even number of transpositions with weight 2, and so
w(x) ≡ w(t) mod 4. Since G acts vertex-transitively on F(G,X) we have that
every element of the connected component of F(G,X) which contains t has the
same weight as t modulo 4.

Now suppose that x ∈ X with w(x) ≡ w(t) mod 4. Since Lemma 2.10
completes the proof for m < 6, we may assume that m ≥ 6. By Theorem 1.1
of [1], F(G,X) has diameter 2, so there exists some element z ∈ X such that
x = z, and d(t, z) ≤ 2. We may arrange the (pairwise disjoint) 2-cycles of x and
z so that

x = x(1)x(2) . . . x(r)

and
z = z(1)z(2) . . . z(r),

and the following conditions are satisfied:

(i) the x(i) are products of three signed 2-cycles, except for possibly x(r) which
may be a product of four or five signed 2-cycles;

(ii) x(i) = z(i) for each i; and

(iii) w(x(i)) ≡ w(z(i)) mod 4, for each i.

Considering each pair x(i), z(i) as elements of C(B6) (or possibly C(B8) or
C(B10) for the final pair), we now apply Lemma 2.10 to see that for each i
there exist paths from z(i) to x(i) of length at most 3, in the relevant local fu-
sion graphs of C(B6), C(B8) or C(B10). Since both x(i) and z(i) are disjoint
from all other x(j), z(j) (where i 6= j), by taking products of suitable elements
from each such path, we may construct a path of length at most 3 from z to x
in F(G,X). Thus we have a path from t to x of length at most 5. It follows
that the elements of X with weight congruent to 0 modulo 4 form a connected
component of F(G,X). Since this accounts for exactly half the elements of
X, by the vertex-transitivity of F(G,X) we deduce that there are exactly two
connected components, the second of which must consist of the elements of X
with weight congruent to 2 modulo 4.

Lemma 2.14. Suppose G = C(B2m+1), where m ≥ 2, and let

t = (
+
1,

+
2)(

+
3,

+
4) . . . (

+
2m− 1,

+
2m)(

ε
2m+ 1),
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where ε ∈ {+,−}, with X = tGε . Then F(G,X) is connected, and

DiamF(G,X) ≤ 4.

Proof. Our argument here is similar to that of the previous proof, and we adopt
the same notation. Let x ∈ X. By Theorem 1.1 of [1], F(G,X) has diameter 2,
so there exists some element z ∈ X such that x = z, and d(t, z) ≤ 2. We may
arrange the (pairwise disjoint) cycles of x and z so that

x = x(1)x(2) · · ·x(r)

and
z = z(1)z(2) · · · z(r),

and the following conditions are satisfied:

(i) the x(i) are products of three signed 2-cycles, except for x(r) which is a
product of two, three or four signed 2-cycles with a signed 1-cycle;

(ii) x(i) = z(i) for each i; and

(iii) w(x(i)) ≡ w(z(i)) mod 4, for each i < r.

For 1 ≤ i < r, we may now consider each pair x(i), z(i) as elements of C(B6),
while the pair x(r), z(r) may be considered as elements of C(B5), C(B7) or
C(B9). Using Lemma 2.10 we now have d(z, x) ≤ 2, and consequently there
exists a path from t to x in F(G,X) of length at most 4.

Given an involution x ∈ C(BΩ), and a subset Σ ⊂ Ω, we denote by xΣ

the element of C(BΣ) we get by omitting all signed cycles of x which involve
elements of Ω \ Σ. For example, if Ω = {1, 2, 3, 4, 5, 6}, Σ = {1, 2, 5} and

x = (
−
1,
−
2)(

+
3,

+
4)(
−
5)(

+
6),

then
xΣ = (

−
1,
−
2)(
−
5).

We can now say something about the local fusion graphs of the remaining invo-
lution classes of C(Bn).

Theorem 2.15. Let G = C(Bn), where n ≥ 4, and let X be a G-conjugacy
class of involutions where the elements of X contain at least one 1-cycle. Then
F(G,X) is connected, with

DiamF(G,X) ≤ n− 1

if n is even, and
DiamF(G,X) ≤ n− 2

if n is odd.
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Proof. When n < 10 this can be verified computationally using Magma, so
assume n ≥ 10. Suppose t, x ∈ X, and without loss of generality assume that

x = (
+
1,

+
2) · · · (

+
2r − 1,

+
2r)(

−
2r + 1) · · · (

−
s)(

+
s+ 1) · · · (

+
n).

Since we have dealt with signed transpositions in Theorem 2.8, we may assume
that r ≥ 2. By Theorem 1.1 of [1] there exists some y ∈ X such that d(t, y) ≤ 2
and y = x, which without loss of generality we may label so that

y = (1, 2) · · · (2r − 1, 2r)(
ε2r+1

2r + 1) · · · (
εs
s )(

εs+1

s+ 1) · · · (
εn
n),

where εi ∈ {+,−} for i ∈ {2r + 1, . . . , n}, and we make no assumption on the
signs of the 2-cycles of y. Note that w1(xy) must be even by Proposition 2.1.
Suppose that x and y differ by 2k signed 1-cycles. Since r ≥ 2 it must be that
2k ≤ n− 4.

If k = 0 then, by ignoring all but one 1-cycle of x and y, we may apply
Lemma 2.14 to see that d(y, x) ≤ 4, and so d(t, x) ≤ 2 + 4 = 6, which suffices
since we have assumed n ≥ 10.

Next, suppose that k = 1. If we ignore all 2-cycles of x and y except
(1, 2), we can consider the resulting elements x̃ and ỹ as signed transpositions
in K = C(BΣ), where Σ = Ω \ {3, . . . , 2r}. By Lemma 2.5 there exists a path
in F(K, X̃) from ỹ to x̃ (where X̃ is the K-conjugacy class which contains x̃),
which has length 3. This induces a path of length 3 in F(G,X) from y to an
element z ∈ X such that z = x, and z and x agree on all signed 1-cycles. Now,
ignoring all but one 1-cycle of z and x, we may apply Lemma 2.14 to deduce
that d(z, x) ≤ 4. Thus d(t, x) ≤ 2 + 3 + 4 = 9, and again the result holds.

Now assume that k ≥ 2. Since r ≥ 2 we may also assume that both x and y
contain the 2-cycles (1, 2) and (3, 4). We may partition suppC(xy) \∆x,y into
two subsets A and B, such that the following conditions hold:

(i) either |A| = |B| = k, or |A| = k + 1 and |B| = k − 1; and

(ii) if we write K1 = C(BΣ1) and K2 = C(BΣ2), where Σ1 = {1, 2} ∪ A and
Σ2 = {3, 4} ∪B, then xΣi

and yΣi
are Ki-conjugate, for i = 1, 2.

In view of Proposition 2.1, condition (ii) above is equivalent to requiring that
the number of negative 1-cyles in xΣi be equal to the number of negative 1-
cycles in yΣi . Since both Σ1 and Σ2 have cardinality at least 3, we may apply
Lemma 2.5 to see that there exist paths in F(Ki, Xi) from yΣi

to xΣi
(where

Xi is the Ki-conjugacy class which contains xΣi
, for i = 1, 2). Since for each

i we have w1(xΣi
yΣi

) ≤ k + 1, these paths will be of length at most k + 2.
Furthermore, as all elements of X1 fix Σ2 pointwise, and all elements of X2 fix
Σ1 pointwise, we may multiply elements from these paths together (along with
any remaining signed cycles of y) to yield a path in F(G,X) of length at most
k + 2, between y and an element z ∈ X such that z = x, and z and x agree on
all signed 1-cycles. By Lemma 2.14, d(z, x) ≤ 4, so

d(t, x) ≤ 2 + (k + 2) + 4 = k + 8.
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First assume that r ≥ 4. Then 2k ≤ n− 8, and hence k ≤ n/2− 4. This yields

d(t, x) ≤ n/2 + 4.

Now assume that r = 2 or 3. Here we may apply Lemma 2.10 to show that
d(z, x) ≤ 2, and so in this case we have

d(t, x) ≤ 2 + (k + 2) + 2 = k + 6.

But r ≥ 2, and so 2k ≤ n− 4 which implies k ≤ n/2− 2. Consequently,

d(t, x) ≤ n/2 + 4

in this case also. Since n ≥ 10, and d(t, x) must be an integer, we have that
d(t, x) ≤ n−1 when n is even, and d(t, x) ≤ n−2 when n is odd, as required.

Notice that the establishment of Theorem 2.15 completes the proofs of The-
orems 1.1 and 1.3. We also have the following corollary, which completes the
proof of Theorem 1.2.

Corollary 2.16. Let G = C(Dn), with X a G-conjugacy class of involutions
whose elements contain at least one 2-cycle. Then F(G,X) is connected, with
Diam(F(G,X) ≤ n− 1 if n is even, and DiamF(G,X) ≤ n− 2 if n is odd.

Proof. This follows from Theorems 2.8 and 2.15, along with Lemma 2.13 and
Proposition 2.1, which tells us that the conjugacy class of C(Bn) for which the
local fusion graph has two connected components splits into two classes in G,
with local fusion graphs isomorphic to a connected component of the C(Bn)
graph.

3 The Exceptional Groups

We conclude by examining the local fusion graphs of the finite, exceptional
Coxeter groups, and proving Theorem 1.5. The cases when G = C(In) (the
dihedral groups) are covered by the following lemma.

Lemma 3.1. Let G = C(In). If n is odd then there is exactly one conjugacy
class of involutions, and the local fusion graph is the complete graph on n ver-
tices. If n is even then G has a central involution, and precisely two further
conjugacy classes of involutions. If we write n = 2km, where m is odd, then
each of these local fusion graphs has n/2 vertices, with 2k−1 connected compo-
nents, each component being a copy of the complete graph on m vertices.

Proof. If n is odd then it is straightforward to see that any product of two
involutions must have odd order, so assume that n = 2km where k ≥ 1 and m
is odd. We may present G as

G = 〈a, b | a2km = b2 = 1, bab = a−1〉.
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The non-trivial G-conjugacy classes of involutions are now

Ie = {aib | 0 ≤ i < 2km, i even}

and
Io = {aib | 0 ≤ i < 2km, i odd}.

Suppose that aib ∈ Ie. Then aib is adjacent to b in F(G, Ie) if, and only if,
(aib)b = ai has odd order, which occurs if, and only if, 2k divides i. Hence there
are m choices for i, and the connected component of F(G, Ie) which contains
b has m vertices. Now we may use the vertex-transitivity of G on F(G, Ie) to
deduce that there are 2k−1 connected components of F(G, Ie), each of which is a
copy of the complete graph on m vertices. The proof for F(G, Io) is similar.

When G = C(E6), C(E7), C(E8), C(F4), C(H3) and C(H4), we proceed
computationally. Representations of these groups are stored in Magma [7], and
all are small enough to make explicit calculation of their local fusion graphs
straightforward. Table 1 list the disc sizes for each local fusion graph of each
group, along with representative involutions from each conjugacy class, given as
words in the generators stored by Magma.
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Table 1: Disc sizes for exceptional Coxeter groups

Group Representative Class size |∆1(t)| |∆2(t)| |∆3(t)|
C(E6) w1 36 20 15 –
C(E6) w0 45 32 12 –
C(E6) w1w2 270 128 141 –
C(E6) w1w2w6 540 212 327 –

C(E7) w0 1 – – –
C(E7) w1 63 32 30 –
C(E7) w0w1 63 32 30 –
C(E7) w2w5w7 315 128 186 –
C(E7) w0w2w5w7 315 128 186 –
C(E7) w1w2 945 416 528 –
C(E7) w0w1w2 945 416 528 –
C(E7) w0w1w2w5w7 3780 1568 2211 –
C(E7) w1w2w5w7 3780 1568 2211 –

C(E8) w0 1 – – –
C(E8) w1 120 56 63 –
C(E8) w0w1 120 56 63 –
C(E8) (w2w3w4w5)3 3150 512 2588 49
C(E8) w1w2 3780 1472 2307 –
C(E8) w0w1w2 3780 1472 2307 –
C(E8) w1w2w5 37800 12344 25455 –
C(E8) w0w1w2w5 37800 12344 25455 –
C(E8) w1w2w5w7 113400 25280 88118 1

C(F4) w0 1 – – –
C(F4) w1 12 8 3 –
C(F4) w0w1 12 8 3 –
C(F4) w3 12 8 3 –
C(F4) w0w3 12 8 3 –
C(F4) (w2w3)2 18 – – –
C(F4) w1w3 72 24 46 1

C(H3) w0 1 – – –
C(H3) w1 15 12 2 –
C(H3) w0w1 15 12 2 –

C(H4) w0 1 – – –
C(H4) w1 60 44 15 –
C(H4) w0w1 60 44 15 –
C(H4) w1w3 450 168 280 1
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