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Abstract

Computing roots of scalar polynomials as the eigenvalues of Frobenius companion matrices using back-
ward stable eigenvalue algorithms is a classical approach. The introduction of new families of companion
matrices allows for the use of other matrices in the root-finding problem. In this paper, we analyze the
backward stability of polynomial root-finding algorithms via Fiedler companion matrices. In other words,
given a polynomial p(z), the question is to determine whether the whole set of computed eigenvalues of
the companion matrix, obtained with a backward stable algorithm for the standard eigenvalue problem,
are the set of roots of a nearby polynomial or not. We show that, if the coefficients of p(z) are bounded
in absolute value by a moderate number, then algorithms for polynomial root-finding using Fiedler ma-
trices are backward stable, and Fiedler matrices are as good as the Frobenius companion matrices. This
allows us to use Fiedler companion matrices with favorable structures in the polynomial root-finding
problem. However, when some of the coefficients of the polynomial is large, companion Fiedler matrices
may produce larger backward errors than Frobenius companion matrices, although in this case neither
Frobenius nor Fiedler matrices lead to backward stable computations. To prove this we obtain explicit
expressions for the change, to first order, of the characteristic polynomial coefficients of Fielder matrices
under small perturbations. We show that, for all Fiedler matrices except the Frobenius ones, this change
involves quadratic terms in the coefficients of the characteristic polynomial of the original matrix, while
for the Frobenius matrices it only involves linear terms. We present extensive numerical experiments
that support these theoretical results. The effect of balancing these matrices is also investigated. roots
of polynomials; eigenvalues; characteristic polynomial; Fiedler companion matrices; backward stability,
conditioning

1 Introduction

Let p(z) be a monic polynomial of degree n,

p(z) := zn +

n−1∑
k=0

akz
k, (1)

with ak ∈ C, for k = 0, . . . , n− 1. The first and second Frobenius companion matrices of p(z) are defined as

C1 :=



−an−1 −an−2 · · · −a1 −a0
1 0 · · · 0 0

0 1
. . . 0 0

...
. . .

. . .
...

...
0 · · · 0 1 0

 and C2 :=



−an−1 1 0 · · · 0

−an−2 0 1
. . .

...
...

...
. . .

. . . 0
−a1 0 0 · · · 1
−a0 0 0 · · · 0

 , (2)
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and they have the property that p(z) = det(zI−C1) = det(zI−C2). Hence, the eigenvalues of both C1 and C2

coincide with the roots of p(z). As a consequence, the root-finding problem for scalar monic polynomials (1)
can be reformulated as an eigenvalue problem. However, these two problems present relevant differences from
the numerical point of view. In particular, those regarding conditioning and backward errors. The difference
in this setting relies on the fact that, due to perturbations, the companion matrix may become a dense
matrix, which has not the structure of a companion matrix any more. In other words, small perturbations
of the companion matrix might not correspond to equally small perturbations of the associated polynomial.

To be more precise, a standard way to compute the roots of p(z) is just by computing the eigenvalues of
C1 (or C2). This is, for instance, the way followed by the MATLAB command roots, after balancing the
Frobenius matrix. The MATLAB command roots then uses the QR-algorithm on the Frobenius matrix to
get its eigenvalues. Though this may not be the best way to address the polynomial root-finding problem,
from the point of view of efficiency and storage (see, for instance, [26]), it has been extensively used because
of the advantages of the QR algorithm (robustness and backward stability). Nonetheless, to overcome the
mentioned drawbacks on the efficiency (measured in number of operations) and storage, several fast variants
of the QR method have been proposed, which take advantage of the structure of the companion matrix (see,
for instance, [2, 5, 6, 7, 9, ?, 19, 31, 33]), but none of them has been proved to be stable. In a different
line of research, also variants of C1, C2 have been proposed, devoted to improve the accuracy in the case of
multiple roots, where the standard companion matrix gives less accurate results than for simple roots (see
[8, 27]). In this paper, we are interested in the backward stability of the root-finding problem solved via
an eigenvalue backward stable method, but for a wider class of companion matrices (namely, the Fiedler
matrices, see [17]). Our work is motivated by [16] and [30], which address related issues for the Frobenius
matrices.

Let us first focus on the root-finding problem for p(z) using the first Frobenius companion matrix C1.
Since the QR-algorithm is backward stable, the whole ensemble of computed eigenvalues is the whole ensemble
of exact eigenvalues of a matrix C1 + E, where E is a dense matrix such that

‖E‖ = O(u)‖C1‖, (3)

for some matrix norm ‖ · ‖, and where u denotes the machine epsilon. However, this does not guarantee
that these (computed) eigenvalues are the roots of a nearby polynomial of p(z) or, in other words, that the
method is backward stable from the point of view of the polynomials. In this paper, we investigate this issue.
In order for the method to be backward stable from the point of view of the polynomials in a normwise sense,
the computed eigenvalues should be the exact roots of a polynomial p̃(z) such that

‖p̃− p‖
‖p‖

= O(u),

for some polynomial norm ‖ ·‖. As we will see in Section 3, the backward stability of polynomial root-finding
algorithms using companion matrices is closely related to the conditioning of the characteristic polynomial
under perturbations of these matrices. This conditioning can be measured through the first order term of
the Taylor expansion of the coefficients of the characteristic polynomial. In [16] it has been shown that, if

p̃(z) = det(zI − C1 − E) = zn +

n−1∑
k=0

ãkz
k (4)

then, to first order in (the entries of) E,

ãk − ak =

k∑
s=0

n−k−1∑
j=1

asEj−s+k+1,j −
n∑

s=k+1

n∑
j=n−k

asEj−s+k+1,j . (5)

If the eigenvalues of C1 are computed with a backward stable algorithm, it may be proved from (5) that, to
first order in E, the computed eigenvalues are the exact roots of a polynomial p̃(z) as in (4) such that

‖p̃− p‖
‖p‖

= O(u)‖p‖, (6)
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with E satisfying (3). Note that (6) does not imply that computing the roots of p(z) using C1 (or C2) is a
backward stable method from the point of view of the polynomials, since large values of ‖p‖ can give large
backward errors. This had been already noticed, for instance, in [25], where the authors analyze diagonal
scalings of the companion matrix to get small backward errors.

A key advantage in using Frobenius companion matrices in the root-finding problem is that they are easily
constructible from the polynomial, without performing any arithmetic operation, by means of a uniform
template valid for all polynomials. Any uniform template with these properties is what we mean by a
companion matrix.

In [17], the author expanded the family of companion matrices associated with the monic polynomial
p(z). These matrices were named Fiedler matrices in [11]. The family of Fiedler matrices includes C1 and C2

but, provided that n ≥ 3, it contains some other different matrices and, in fact, many others when n is large.
These matrices provide a new tool that could be used instead of C1 and C2 for computing the roots of p(z).
Some features of Fiedler matrices have been recently studied. For instance, in [12] the condition numbers for
inversion of different Fiedler matrices have been compared, and it has been proved that, in many cases, some
of the new Fiedler matrices have better conditioning than C1 and C2. Also, in [13], Fiedler matrices have
been used to get new lower and upper bounds for the modulus of the roots of p(z). We provide the formal
definition of Fiedler matrices in Section 2. For the moment, the only relevant information is that, to construct
them, we only need to know the polynomial p(z) and to fix a bijection σ : {0, 1, . . . , n−1} → {1, . . . , n}, and
that the Fiedler matrices contain, in different positions, exactly the same entries as C1 and C2. We denote
the Fiedler matrix associated with the polynomial p(z) and the bijection σ by Mσ(p), or Mσ for brevity.

A natural question is whether or not computing the roots of p(z) using a Fiedler matrix Mσ and a
backward stable eigenvalue algorithm is backward stable from the point of view of the polynomials, that is,
whether or not the computed roots are the exact roots of a polynomial p̃(z) such that ‖p̃ − p‖ = O(u)‖p‖.
As it happens with the Frobenius matrices, if we compute the roots of p(z) as the eigenvalues of Mσ using
a backward stable algorithm (for instance, the QR algorithm), then the computed roots are the exact
eigenvalues of Mσ + E, where ‖E‖ = O(u)‖Mσ‖. However, again, this does not guarantee the backward
stability from the point of view of the polynomials. The goal of this paper is to analyze this issue.

In order to accomplish this task we need to know how the coefficients of the characteristic polynomial of
Mσ change when the matrix is perturbed as Mσ + E, with E an arbitrary perturbation having no special
structure. This change can be estimated, up to first order in E, through the gradients ∇ak(Mσ), where

ak(X) : Cn2 → C is the kth coefficient of the characteristic polynomial of a matrix X ∈ Cn×n, considered
as a function of its entries. In particular, we find explicitly ∇ak(Mσ) in terms of the coefficients of p(z).
This allows us to get, up to first order, a formula for the variation of the characteristic polynomial of Mσ

under small perturbations of Mσ. From this formula, we analyze the backward stability of the polynomial
root-finding problem solved by applying backward stable eigenvalue algorithms to Fiedler matrices.

To obtain an expression for ∇ak(Mσ), we first prove that its coordinates coincide with the entries of the
(k+1)th coefficient of the matrix polynomial adj(zI−Mσ). Then, we get an explicit formula for adj(zI−A),
for A being a Fiedler matrix Mσ. This is a general theoretical result on Fiedler matrices that may be useful
in the future to analyze other features of this family of matrices.

For a precedent on the perturbation analysis of the characteristic polynomial, we refer the reader to [24].
In that paper, several bounds are derived for the variation of the characteristic polynomial of an arbitrary
matrix A under perturbations, in terms of symmetric functions of the singular values of A. The bounds there
are very pessimistic for general matrices. However, here we take advantage of the sparsity and the structure
of the Fiedler matrices to get more specific bounds depending on the coefficients of p(z).

Throughout this paper, if A ∈ Cn×n is a matrix, then ‖A‖∞ denotes the usual matrix ∞-norm (see

[22, p. 108]). In particular, for a vector v =
[
v1 . . . vn

]T ∈ Cn, we have ‖v‖∞ = max{|v1|, . . . , |vn|}.
Similarly, for a polynomial p(z) =

∑n
k=0 akz

k (not necessarily monic), ‖p‖∞ is the norm on the vector space
of scalar polynomials of degree less than or equal to n defined as

‖p‖∞ := max{|an|, |an−1|, . . . , |a1|, |a0|}.

Notice that, since we deal in this paper with monic polynomials, an = 1 and we always have ‖p‖∞ ≥ 1.
The main results of this work are Theorem 3.7 and Corollary 3.13. Theorem 3.7 gives, to first order in

E, the coefficients of the characteristic polynomial of Mσ +E, and Corollary 3.13 tells us that if we compute
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the roots of a monic polynomial p(z) as the eigenvalues of a Fiedler matrix Mσ other than the Frobenius
companion matrices using a backward stable eigenvalue algorithm, then the computed roots are the exact
roots of a monic polynomial p̃(z) such that

‖p̃− p‖∞
‖p‖∞

= O(u)‖p‖2∞, (7)

which implies that computing the roots of p(z) using any of the Fiedler matrices of p(z) is not backward
stable if ‖p‖∞ is large. For the Frobenius companion matrices, Corollary 3.13 recovers (6). In Section 4 we
provide numerical experiments that support this theoretical result.

As a consequence of (6) and (7) we get the following conclusions:

(C1) From the point of view of the normwise backward errors in the (monic) polynomial p(z), any Fiedler
matrix can be used for solving the root-finding problem with the same reliability as Frobenius compan-
ion matrices when ‖p‖∞ = O(1). In this case, the root-finding problem solved by applying a backward
stable eigenvalue algorithm on any Fiedler companion matrix is a backward stable method.

(C2) However, when ‖p‖∞ is large none of the Fiedler matrices leads to a backward stable algorithm for
the root-finding problem and, moreover, any Fiedler matrix other than Frobenius companion matrices
may produce much larger backward errors than the ones produced when using Frobenius matrices.

Note, in particular, that since ‖p‖∞ ≥ 1, no Fiedler matrix can improve the behavior of Frobenius
matrices in the root-finding problem from the point of view of backward errors. Anyway, the particular
structure of some Fiedler matrices can make their use more efficient than the use of classical Frobenius
companion matrices. For instance, we could take advantage of the pentadiagonal structure of some Fiedler
matrices (which exist for any value of n, see [11]) to devise structured versions of the LR algorithm to get
its eigenvalues in O(n2) flops. However, as for all structured methods for the root-finding problem, stability
can not yet be guaranteed.

We have also considered the effect of balancing (see [28]) Fiedler companion matrices on the backward
errors of the root-finding problem for p(z) using a Fiedler matrix Mσ. The numerical experiments carried
out in Section 4 indicate that balancing very often improves the backward errors for general polynomials,
including some polynomials for which the backward error without balancing is quite large. However, we
prove that, when |an−1| is much larger than |an−2|, the condition number of p(z) using any balanced Fiedler
matrix is large, and so is the backward error. Some experiments on polynomials with |an−1| much larger
than |an−2| show that, indeed, balancing the Fiedler matrices does not guarantee backward stability for the
root-finding polynomial problem.

The paper is organized as follows. In Section 2 we introduce Fiedler matrices and their basic properties.
In Section 3 we analyze, to first order, the change of the coefficients of the characteristic polynomial of
Fiedler matrices under matrix perturbations, and we connect it with the backward error of the polynomial
root-finding problem solved via an eigenvalue algorithm. This section contains the main results of the paper.
Section 4 is devoted to numerical experiments that illustrate the theoretical results obtained in Section 3. In
Section 5 we provide a geometric interpretation of the change, to first order, of the characteristic polynomial
of Fiedler matrices in terms of the orbit space under similarity of these matrices. This is motivated by the
one in [16] for Frobenius companion matrices, and gives a decomposition of Cn×n as the sum of the tangent
space to the similarity orbit of a Fiedler matrix and the Sylvester space of matrices associated to this Fiedler
matrix. Section 6 presents a summary of the main contributions of the paper.

2 Fiedler matrices. Definition and basic properties

For a given polynomial p(z) as in (1), we define the n× n matrices

M0 :=

[
In−1 0

0 −a0

]
and Mk :=


In−k−1

−ak 1
1 0

Ik−1

 , k = 1, . . . , n− 1, (8)
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which are the basic factors used to build all Fiedler matrices. Here and in the rest of the paper Ij denotes
the j × j identity matrix. In [17] Fiedler matrices are constructed as the product

Mi1Mi2 · · ·Min ,

where (i1, i2, . . . , in) is any possible permutation of the n-tuple (0, 1, . . . , n − 1). In order to better express
certain key properties of this permutation and the resulting Fiedler matrix, in [11] the authors index the
product of the Mi factors in a slightly different way, as it is described in the following definition.

Definition 2.1. Let p(z) = zn +
∑n−1
k=0 akz

k, with n ≥ 2, and let Mi, for i = 0, 1, . . . , n− 1, be the matrices
defined in (8). Given any bijection σ : {0, 1, . . . , n − 1} → {1, . . . , n}, the Fiedler matrix of p(z) associated
with σ is the n× n matrix

Mσ(p) := Mσ−1(1) · · ·Mσ−1(n). (9)

We want to notice that σ(i) in (9) describes the position of the factor Mi in the product
Mσ−1(1) · · ·Mσ−1(n), i.e., σ(i) = j means that Mi is the jth factor in the product. We want to note also that
the building factors (8) of (9) depend also on p(z) (to be precise, they depend on its coefficients). However,
in this case we do not write explicitly this dependence for the sake of simplicity. For the same reason, we
will also drop the dependence on p in Mσ when there is no risk of confusion (namely, until Section 5).

The family of matrices {Mk}n−1k=0 satisfies the following commutativity relations

MiMj = MjMi for |i− j| 6= 1. (10)

It is proved in [17] that all Fiedler matrices of p(z) are similar, so they have p(z) as characteristic
polynomial. Frobenius companion matrices of p(z) are particular cases of Fiedler matrices, namely,

C1 = Mn−1Mn−2 · · ·M1M0 and C2 = M0M1 · · ·Mn−2Mn−1 .

Observe that the matrices Mi are symmetric, and therefore the transpose of any Fiedler matrix is another
Fiedler matrix, obtained by reversing the order of the Mi factors in (9).

The relations (10) imply that some Fiedler matrices associated with different bijections σ are equal. For
example, for n = 3, the Fiedler matrices M0M2M1 and M2M0M1 are equal. These relations suggest that the
relative positions of the matrices Mi and Mi+1 in the product Mσ are of fundamental interest in studying
Fiedler matrices. This motivates Definition 2.2, partially introduced in [11].

Definition 2.2. Let σ : {0, 1, . . . , n− 1} → {1, . . . , n} be a bijection.

(a) For i = 0, . . . , n−2, we say that σ has a consecution at i if σ(i) < σ(i+ 1) and that σ has an inversion
at i if σ(i) > σ(i+ 1).

(b) The positional consecution-inversion sequence of σ, denoted by PCIS(σ), is the (n − 1)-tuple
(v0, . . . , vn−2) such that vj = 1 if σ has a consecution at j and vj = 0 otherwise.

Remark 2.3. We note that σ has a consecution at i, that is vi = 1, if and only if Mi is to the left of Mi+1

in the product defining the Fiedler matrix Mσ, while σ has an inversion at i, that is vi = 0, if and only if
Mi is to the right of Mi+1 in Mσ. This simple observation on Definition 2.2 will be used freely.

In order to keep the notation in future sections reasonably simple we introduce the following definitions.

Definition 2.4. Let σ : {0, 1, . . . , n−1} → {1, . . . , n} be a bijection with PCIS(σ) = (v0, v1, . . . , vn−2), then:

(a) The extended positional consecution-inversion sequence of σ, denoted by EPCIS(σ), is the n-tuple
(v0, v1, . . . , vn−1), where vn−1 = vn−2.

(b) For 0 ≤ i ≤ j ≤ n− 2, we set

iσ(i : j) :=

j∑
k=i

(1− vk) and cσ(i : j) :=

j∑
k=i

vk

for, respectively, the number of inversions and consecutions of σ from i to j. We also set iσ(i : j) :=
cσ(i : j) := 0 for i > j.
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The following immediate identities will be used several times along the paper:

iσ(i : j) + cσ(i : j) = j − i+ 1, for 0 ≤ i ≤ j ≤ n− 2, (11)

iσ(0 : i) + cσ(0 : j) ≤ n− 1, for 0 ≤ i, j ≤ n− 2. (12)

We close this section with the following notion, not strictly related to Fiedler matrices, that will be used
along the paper.

Definition 2.5. Let p(z) = zn +
∑n−1
k=0 akz

k be a monic polynomial of degree n. For d = 0, 1, . . . , n, the
degree d Horner shift of p(z) is the polynomial pd(z) = zd + an−1z

d−1 + · · ·+ an−d+1z + an−d.

Notice that the Horner shifts of p(z) satisfy the following recurrence relation{
p0(z) = 1 , and
pd(z) = zpd−1(z) + an−d , for d = 1, 2, . . . , n.

(13)

3 Backward error, conditioning, and first order perturbation terms
of the characteristic polynomial

A natural definition of the normwise backward error of the computed roots, λ̃1, . . . , λ̃n, of the monic poly-
nomial (1) via a certain algorithm is

η∞(λ̃1, . . . , λ̃n) :=
‖p̃− p‖∞
‖p‖∞

,

where p̃(z) =
∏n
i=1(z − λ̃i). Note that this notion of backward error coincides with the relative distance, in

the∞-norm, between the original polynomial p(z) and the monic polynomial p̃(z) whose roots are λ̃1, . . . , λ̃n.
The key in our approach is that the roots are computed as the eigenvalues of a (companion) matrix, A, so
that the computed roots are the exact eigenvalues of a certain perturbation of A, say A + E. In other
words, we have p(z) = det(zI − A) and, following (4) for a general companion matrix A, we also have
p̃(z) = det(zI − (A+ E)). Hence, the difference between p(z) and p̃(z) can be measured from the variation
of the coefficients of the characteristic polynomial of A under small perturbations of A.

Hence, we consider the kth coefficient of the characteristic polynomial of a matrix X = [xij ] ∈ Cn×n as

a function of the entries of X, ak(X) : Cn2 → C, for k = 0, 1, . . . , n− 1. Equivalently:

det(zI −X) = zn +

n−1∑
k=0

ak(X)zk.

The function ak(X) is a multivariable polynomial function of the entries of the matrix X. Therefore, the
first order term in E of its Taylor polynomial centered at A is (see, for instance [21, Th. 3.8]) for functions
of several complex variables)

ak(A+ E) = ak(A) +

n∑
i,j=1

∂ak(X)

∂xij

∣∣∣∣
X=A

Eij = ak(A) +∇ak(A) · vec(E), for k = 0, 1, . . . , n− 1, (14)

where, for a given m× n matrix M = [mij ], vec(M) is the vectorization of M , namely, the column vector

vec(M) := [m11 . . . mm1m12 . . . mm2 . . . m1n . . . mmn]T

(see [23, Def. 4.2.9], for instance), and

∇ak(A) =
[
∂ak(X)
∂x11

∣∣∣
X=A
· · · ∂ak(X)

∂xn1

∣∣∣
X=A

∂ak(X)
∂x12

∣∣∣
X=A
· · · ∂ak(X)

∂xn2

∣∣∣
X=A
· · · ∂ak(X)

∂x1n

∣∣∣
X=A
· · · ∂ak(X)

∂xnn

∣∣∣
X=A

]
.

Therefore, to first order in E, we have

|ak(A+ E)− ak(A)| = |∇ak(A) · vec (E)|.
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For any Fiedler matrix Mσ, we will get an explicit expression of ∇ak(Mσ) in terms of the entries of Mσ or,
equivalently, in terms of the coefficients of its characteristic polynomial p(z). The corresponding expression
was given in [16] for the Frobenius companion matrices, which are particular cases of Fiedler matrices. The
general expression we provide here, valid for any Fiedler matrix, requires different techniques to the ones
employed in [16].

The following well-know result (known as Jacobi’s formula, see [4]) provides us a description of the
gradient of the determinant. We include a short proof here for completeness.

Lemma 3.1. Let A ∈ Cn×n, and consider a small perturbation A+E, with E ∈ Cn×n. Then, the function

det : Cn×n −→ C
X 7−→ det(X),

is analytic in a neighborhood of A, and

det(A+ E) = det(A) + tr(adj(A)E) +O(‖E‖2),

where ‖ · ‖ is any norm in Cn×n, adj(A) denotes the adjugate matrix of A (see [3]), and tr(B) denotes the
trace of B.

Proof. The function det : Cn×n −→ C is clearly analytic in a neighborhood of A, since it is a polynomial
function on the entries of X ∈ Cn×n. Moreover, analogously to (14), with the function det instead of ak, we
get

det(A+ E) = det(A) +∇ det(A) · vec(E) +O(‖ E ‖2).

Now, it is straightforward to check that

∂ det(X)

∂xij

∣∣∣∣
X=A

= (adj(A))ji

(see also [3, Fact 10.11.21]). The result now follows from the identity tr(AB) = vec(AT )T · vec(B), which is
valid for every A,B ∈ Cn×n.

As an immediate consequence of Lemma 3.1, applied to p(z) = det(zI − A), we get Proposition 3.2,
which gives a description of the gradient of the coefficients of the characteristic polynomial of A and, as a
consequence, an expression for the variation of the characteristic polynomial under small perturbations, up
to first order.

Proposition 3.2. Let A ∈ Cn×n and z ∈ C. Let us write the adjoint matrix of zI −A as

adj(zI −A) =

n−1∑
k=0

zkPk+1, (15)

with Pk+1 ∈ Cn×n, for k = 0, 1, . . . , n − 1. Let ak(X) : Cn2 → C be the kth coefficient of the characteristic
polynomial of a matrix X = (xij) ∈ Cn×n, and let ∇ak(A) be the gradient of the function ak(X) evaluated
at A. Then, for k = 0, 1, . . . , n− 1,

∇ak(A) = −
[
vec (PTk+1)

]T
.

As a consequence, if A+ E is a small perturbation of A, with E ∈ Cn×n, then

det(zI−(A+E))−det(zI−A) = −
n−1∑
k=0

zk
[
vec(PTk+1)

]T ·vec(E)+O(‖E‖2) = −
n−1∑
k=0

zk tr(Pk+1E)+O(‖E‖2),

where ‖ · ‖ is any norm in Cn×n.
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Proof. From Lemma 3.1 and (15), we have

det(zI − (A+ E)) = det(zI −A)− tr(adj(zI −A)E) +O(‖E‖2)

= det(zI −A)−
∑n−1
k=0 z

ktr(Pk+1E) +O(‖E‖2)

= det(zI −A)−
∑n−1
k=0 z

k
[
vec(PTk+1)

]T · vec(E) +O(‖E‖2),

and the expression for ∇ak(A) follows immediately from this.

Proposition 3.2 tells us that the variation of the characteristic polynomial of A ∈ Cn×n is given, to first
order, by the trace of adj(zI −A). This adjugate matrix is an n×n matrix whose entries are polynomials of
degree at most n− 1 or, equivalently, a matrix polynomial of size n×n with degree at most n− 1. Actually,
its degree is exactly n− 1, because of the identity: (zI −A) · adj(zI −A) = det(zI −A)In. In Section 3.1 we
give an explicit expression for the entries of adj(zI −A), for A being an arbitrary Fiedler matrix Mσ. Then,
in Section 3.2, we use this information, following Proposition 3.2, to present an explicit expression for the
variation, up to first order, of the coefficients of the characteristic polynomial of Mσ or, in other words, an
explicit expression for ∇ak(Mσ).

3.1 Adjugate matrix of zI −Mσ

The main result of this section is Theorem 3.3, which gives an explicit expression for the adjugate matrix
of zI −Mσ. As we have seen in (15), this matrix is not a constant matrix, but a matrix polynomial in the
variable z. We use the notation Cn×n[z] for the set of n× n matrix polynomials.

An explicit expression for the adjugate in the case of first and second Frobenius companion matrices was
already known (see [18, Ch. IV §4] or [16, p. 768]):

adj(zI − C2) =


p0(z)
p1(z)
...

pn−1(z)

 [zn−1 · · · z 1
]
− p(z)



0
1 0

z 1
. . .

... z
. . .

. . .
...

...
. . .

. . .
. . .

zn−2 zn−3 · · · z 1 0


, (16)

and adj(zI −C1) = (adj(zI − C2))
T

. Here p0(z), . . . , pn−1(z) are the Horner shifts introduced in Definition
2.5. Equation (16) has a very particular structure: it is a sum of a rank-1 matrix plus a matrix whose (i, j)
entry is of the form p(z)pij(z), where pij(z) is a polynomial of degree at most n − 2. We will prove that
this structure is shared also by adj(zI −Mσ), for any Fiedler matrix Mσ. For example, if we consider the

Fiedler matrix Mσ of a degree-6 monic polynomial p(z) = z6 +
∑5
k=0 akz

k, with PCIS(σ) = (1, 0, 1, 0, 1), we
will show that

adj(zI −Mσ) =


z2

z2p1(z)
z

zp3(z)
1

p5(z)


[
z3p0(z) z2 z2p2(z) z zp4(z) 1

]
− p(z)


0 0 1 0 z 0
1 0 p1(z) 0 zp1(z) 0
0 0 0 0 1 0
z 1 p2(z) 0 p3(z) 0
0 0 0 0 0 0
z2 z zp2(z) 1 p4(z) 0

 .

Theorem 3.3. Let p(z) = zn +
∑n−1
k=0 akz

k be a polynomial and pd(z), for d = 0, 1, . . . , n− 1, the degree d
Horner shift of p(z). Let σ : {0, 1, . . . , n− 1} → {1, . . . , n} be a bijection with EPCIS(σ) = (v0, v1, . . . , vn−1)
and let Mσ be the Fiedler matrix of p(z) associated with σ. Let xσ, yσ ∈ Cn[z] be the polynomial vectors
whose kth entry is

xσ(k) =

{
ziσ(0:n−k−1)pk−1(z) if vn−k = 1,
ziσ(0:n−k−1) if vn−k = 0,

and yσ(k) =

{
zcσ(0:n−k−1)pk−1(z) if vn−k = 0,
zcσ(0:n−k−1) if vn−k = 1,

(17)
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for k = 1, 2, . . . , n, and let Aσ ∈ Cn×n[z] be the matrix whose (i, j) entry is

Aσ(i, j) =



0 if vn−i = vn−j = 0 and i ≥ j,
ziσ(n−j+1:n−i−1) if vn−i = vn−j = 0 and i < j,
zcσ(n−i+1:n−j−1) if vn−i = vn−j = 1 and i > j,
0 if vn−i = vn−j = 1 and i ≤ j,
0 if vn−i = 0 and vn−j = 1,
zcσ(n−i+1:n−j−1)pj−1(z) if vn−i = 1, vn−j = 0 and i > j,
ziσ(n−j+1:n−i−1)pi−1(z) if vn−i = 1, vn−j = 0 and i < j,

(18)

for i, j = 1, 2, . . . , n. Then,
adj(zI −Mσ) = xσy

T
σ − p(z)Aσ.

Note that xσ, yσ and Aσ depend on the variable z, though we drop it for the ease of notation.
Before proving Theorem 3.3 we state and prove some technical lemmas.

Lemma 3.4. Let xσ and yσ be the vectors defined in (17), and Aσ be the matrix defined in (18). Then, Aσ
is the unique n× n matrix satisfying the following two properties:

(i) The entries of Aσ are polynomials in z, and

(ii) all entries of xσy
T
σ − p(z)Aσ are polynomials of degree less than or equal to n− 1.

Proof. Throughout this proof we use the following notation:

qk(z) := −akzk − ak−1zk−1 − · · · − a1z − a0 = zk+1pn−k−1(z)− p(z),

for k = 0, 1, . . . , n− 1. Note that qk(z) is a polynomial of degree k.
To prove that the entries of Aσ are polynomials, it suffices to see that the exponents of the powers of

z appearing in the entries of (18) are nonnegative. This is immediate by Definition 2.4. To prove that the
(i, j) entry of xσy

T
σ − p(z)Aσ is a polynomial of degree less than or equal to n− 1 we consider each case in

(18) separately.

(1) vn−i = vn−j = 0 and i ≥ j: The (i, j) entry of xσy
T
σ − p(z)Aσ is equal to

xσ(i)yσ(j)− p(z)Aσ(i, j) = ziσ(0:n−i−1)+cσ(0:n−j−1)pj−1(z)

which is a polynomial of degree less than or equal to n− 1, because, using (11),

iσ(0 : n− i− 1) + cσ(0 : n− j − 1) + j − 1 = iσ(0 : n− i− 1)− iσ(0 : n− j − 1) + n− 1 ≤ n− 1.

(2) vn−i = vn−j = 0 and i < j: Using (11), the (i, j) entry of xσy
T
σ − p(z)Aσ is equal to

xσ(i)yσ(j)− p(z)Aσ(i, j) = ziσ(0:n−i−1)+cσ(0:n−j−1)pj−1(z)− p(z)ziσ(n−j+1:n−i−1)

= ziσ(n−j+1:n−i−1)(zn−j+1pj−1(z)− p(z))
= ziσ(n−j+1:n−i−1)qn−j(z),

which is a polynomial of degree less than n− 1, because

iσ(n− j + 1 : n− i− 1) + n− j ≤ n− i− 1 < n− 1.

(3) vn−i = vn−j = 1 and i > j: Using (11), the (i, j) entry of xσy
T
σ − p(z)Aσ is equal to

xσ(i)yσ(j)− p(z)Aσ(i, j) = ziσ(0:n−i−1)+cσ(0:n−j−1)pi−1(z)− p(z)zcσ(n−i+1:n−j−1)

= zcσ(n−i+1:n−j−1)(zn−i+1pi−1(z)− p(z))
= zcσ(n−i+1:n−j−1)qn−i(z),

which is a polynomial of degree less than n− 1, because

cσ(n− i+ 1 : n− j − 1) + n− i ≤ n− j − 1 < n− 1.
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(4) vn−i = vn−j = 1 and i ≤ j: The (i, j) entry of xσy
T
σ − p(z)Aσ is equal to

xσ(i)yσ(j)− p(z)Aσ(i, j) = ziσ(0:n−i−1)+cσ(0:n−j−1)pi−1(z),

which is a polynomial of degree less than or equal to n− 1, because, using (11),

iσ(0 : n− i− 1) + cσ(0 : n− j − 1) + i− 1 = cσ(0 : n− j − 1)− cσ(0 : n− i− 1) + n− 1 ≤ n− 1.

(5) vn−i = 0 and vn−j = 1: The (i, j) entry of xσy
T
σ − p(z)Aσ is equal to

xσ(i)yσ(j)− p(z)Aσ(i, j) = ziσ(0:n−i−1)+cσ(0:n−j−1)

which is a polynomial of degree less than or equal to n− 1, by (12).

(6) vn−i = 1, vn−j = 0 and i > j: Using (11), the (i, j) entry of xσy
T
σ − p(z)Aσ is equal to

xσ(i)yσ(j)− p(z)Aσ(i, j) = ziσ(0:n−i−1)+cσ(0:n−j−1)pi−1(z)pj−1(z)− p(z)zcσ(n−i+1:n−j−1)pj−1(z)
= zcσ(n−i+1:n−j−1)pj−1(z)(zn−i+1pi−1(z)− p(z))
= zcσ(n−i+1:n−j−1)pj−1(z)qn−i(z),

which is a polynomial of degree less than n− 1, because

cσ(n− i+ 1 : n− j − 1) + j − 1 + n− i ≤ i− j − 1 + j − 1 + n− i = n− 2.

(7) vn−i = 1, vn−j = 0 and i < j: Using (11), the (i, j) entry of xσy
T
σ − p(z)Aσ is equal to

xσ(i)yσ(j)− p(z)Aσ(i, j) = ziσ(0:n−i−1)+cσ(0:n−j−1)pi−1(z)pj−1(z)− p(z)ziσ(n−j+1:n−i−1)pi−1(z)
= ziσ(n−j+1:n−i−1)pi−1(z)(zn−j+1pj−1(z)− p(z))
= ziσ(n−j+1:n−i−1)pi−1(z)qn−j(z),

which is a polynomial of degree less than n− 1, because

iσ(n− j + 1 : n− i− 1) + i− 1 + n− j ≤ j − i− 1 + i− 1 + n− j = n− 2.

Now, suppose that there is another matrix B, whose entries are polynomials in z, and such that the entries
of the matrix xσy

T
σ −p(z)B are polynomials in z of degree less than or equal to n−1. Let W1 = xσy

T
σ −p(z)Aσ

and let W2 = xσy
T
σ − p(z)B, then, W1 −W2 = p(z)(B − Aσ) is a matrix whose entries are polynomials of

degree less than or equal to n − 1, but if Aσ 6= B, then p(z)(B − Aσ) has, at least, one entry which is a
polynomial of degree greater than or equal to n, hence Aσ = B.

Lemma 3.5 is key to prove Theorem 3.3. It allows us to relate adj(zI − Mσ) with the adjugate of
an (n − 1) × (n − 1) matrix obtained by deflating zI −Mσ in a certain way. In the following, a matrix
polynomial P (z) ∈ Cn×n[z] is said to be unimodular if detP (z) is a nonzero constant. In other words, P (z)
has a polynomial inverse.

Lemma 3.5. Let p(z) = zn+
∑n−1
k=0 akz

k, let σ : {0, 1, . . . , n−1} → {1, . . . , n} be a bijection with PCIS(σ) =
(v0, v1, . . . , vn−2), let Mσ be the Fiedler matrix of p(z) associated with σ, and define the unimodular matrix
polynomials Q(z), R(z) ∈ Cn×n[z] as

Q(z) :=

 1 0
z 1

In−2

 and R(z) :=

 0 1
−1 p1(z)

In−2

 .
Then,

(a) if σ has a consecution at n− 2,

Q(z)(zIn −Mσ)R(z) =

[
1

zIn−1 − M̃ρ

]
,
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(b) if σ has an inversion at n− 2,

R(z)T (zIn −Mσ)Q(z)T =

[
1

zIn−1 − M̃ρ

]
,

where ρ : {0, 1, . . . , n − 2} → {1, . . . , n − 1} is a bijection such that PCIS(ρ) = (v0, v1, . . . , vn−3), and

M̃ρ = M̃ρ−1(1)M̃ρ−1(2) · · · M̃ρ−1(n−1), with

M̃k =


In−k−2

−ak 1
1 0

Ik−1

 , for k = 1, 2, . . . , n− 3,

and

M̃0 =

[
In−2

−a0

]
, M̃n−2 =

−p2(z) + z 1
1 0

In−3

 .
Proof. We only prove part (a) because part (b) is similar. So, let us assume that σ has a consecution at
n − 2. Then, using the commutativity relations (10), the factors of Mσ can be rearranged until Mn−1 is
adjacent on the right to Mn−2, that is, Mσ = XMn−2Mn−1Y , where X,Y are products of Mi matrices, with
i < n− 2. Now, since Q(z) and R(z) commute with Mi, for i < n− 2, we have

Q(z)(zIn −Mσ)R(z) = zQ(z)R(z)−XQ(z)Mn−2Mn−1R(z)Y

=


0 z 0
−z z2 + zp1(z) 0
0 0 z

zIn−3

−X

−1 z 0
−z z2 − an−2 1
0 1 0

In−3

Y

=


0 z 0
−z z2 0
0 0 z

zIn−3

−X


−1 z 0
−z z2 − z 0
0 0 0

0n−3

+


0 0 0
0 −p2(z) + z 1
0 1 0

In−3


Y

=


1

z
z

zIn−3

−X


0 0 0
0 −p2(z) + z 1
0 1 0

In−3

Y
=

[
1

zIn−1

]
−
[

0

M̃ρ−1(1)M̃ρ−1(2) · · · M̃ρ−1(n−1)

]
=

[
1

zIn−1 − M̃ρ

]
,

where we have used that p2(z) = zp1(z) + an−2 and the fact that multiplying any matrix of the form
diag(A, 0n−2), with A ∈ C2×2, by Mk, for k = 0, 1, . . . , n− 3, keeps that matrix unchanged. Finally, notice

that the relative positions of the matrices M̃0, M̃1, . . . , M̃n−2 in M̃ρ are the same as the relative positions of
the matrices M0,M1, . . . ,Mn−2 in Mσ, therefore PCIS(ρ) = (v0, v1, . . . , vn−3).

Remark 3.6. Some important observations about the matrix M̃ρ in Lemma 3.5 are in order:

(a) The matrix M̃i, for i = 0, . . . , n− 3 is obtained from Mi by removing the first row and column.

(b) The matrix M̃ρ can be seen formally as a Fiedler matrix of the polynomial r(z) := zn−1 +
∑n−2
k=0 bkz

k,
where bn−2 = p2(z)− z and bk = ak for k = 0, 1, . . . , n− 3. Notice that r(z) = p(z) for all z ∈ C. We
also want to emphasize that the formal (n− 2)th coefficient of r(z) is not an scalar, but a polynomial
in z.

(c) The formal Horner shifts of r(z) satisfy: r0(z) = p0(z) = 1 and rk(z) = pk+1(z) for k = 1, 2, . . . , n− 2.
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Now, armed with Lemmas 3.4 and 3.5, we are in the position to prove Theorem 3.3.

Proof. (of Theorem 3.3) The proof proceeds by induction in n. For n = 2 there are only two Fiedler
matrices, namely the first and second Frobenius companion matrices. For these two matrices we have

adj(zI − C2) = adj

([
a1 + z −1
a0 z

])
=

[
z 1
−a0 a1 + z

]
=

[
1

p1(z)

] [
z 1

]
− p(z)

[
0 0
1 0

]
and

adj(zI − C1) = adj

([
a1 + z a0
−1 z

])
=

[
z −a0
1 a1 + z

]
=

[
z
1

] [
1 p1(z)

]
− p(z)

[
0 1
0 0

]
,

which are the matrices in the statement of Theorem 3.3 with PCIS(σ) = (1) and PCIS(σ) = (0), respectively.
Assume that the result is true for Fiedler matrices of size (n − 1) × (n − 1). To prove it for size n × n, we
have to distinguish two cases, namely, whether σ has a consecution or an inversion at n − 2. Suppose that
σ has a consecution at n− 2 (the proof when σ has an inversion at n− 2 is similar and we omit it). Then,
by Lemma 3.5, we have that

zIn −Mσ = Q(z)−1
[

1

zIn−1 − M̃ρ

]
R(z)−1,

therefore

adj(zIn −Mσ) = adj
(
R(z)−1

)
adj

([
1

zIn−1 − M̃ρ

])
adj
(
Q(z)−1

)
=

= R(z)

[
p(z)

adj(zIn−1 − M̃ρ)

]
Q(z),

where we have used the identities adj(AB) = adj(B)adj(A), detR(z) = detQ(z) = 1, and det(zIn−1−M̃ρ) =
p(z). By the induction hypothesis

adj(zIn −Mσ) = R(z)

[
p(z)

xρy
T
ρ − p(z)Aρ

]
Q(z)

= R(z)

[
0
xρ

] [
0 yTρ

]
Q(z)− p(z)R(z)

[
−1

Aρ

]
Q(z).

Note that in the induction step we may see M̃ρ as a Fiedler matrix associated with r(z) = zn−1+
∑n−2
k=0 bkz

k,
with bi, for i = 0, . . . , n− 2, as in Remark 3.6, part (b). To finish the proof it suffices to prove the following
three identities:

(i) xσ = R(z)

[
0
xρ

]
, (ii) yσ = QT (z)

[
0
yρ

]
, and (iii) Aσ = R(z)

[
−1

Aρ

]
Q(z).

(i) From the expressions of PCIS(σ) and PCIS(ρ) we have iρ(0 : k−1) = iσ(0 : k−1), for k = 1, 2, . . . , n−
2. Also we have that the Horner shifts corresponding to M̃ρ are p0(z), p2(z), . . . , pn−1(z). These
observations imply that xρ(k) = xσ(k + 1), for k = 2, 3, . . . , n− 1 (note that, for the permutation ρ, n
must be replaced by n− 1 in (17)). Therefore

R(z)

[
0
xρ

]
=

 0 1
−1 p1(z)

In−2

 0
ziρ(0:n−3)

xρ(2 : n− 1)

 =

 ziρ(0:n−3)

ziρ(0:n−3)p1(z)
xρ(2 : n− 1)

 =

ziσ(0:n−2)p0(z)
ziσ(0:n−3)p1(z)
xσ(3 : n)

 = xσ,

where we have used, since vn−2 = 1, that iσ(0 : n− 3) = iσ(0 : n− 2) and p0(z) = 1.

(ii) From the expressions of PCIS(σ) and PCIS(ρ) we have cρ(0 : k−1) = cσ(0 : k−1), for k = 1, 2, . . . , n−
2. We also have that the Horner shifts corresponding to M̃ρ are p0(z), p2(z), . . . , pn−1(z). These
observations imply that yρ(k) = yσ(k + 1), for k = 2, 3, . . . , n− 1. Therefore

Q(z)T
[

0
yρ

]
=

1 z
0 1

In−2

 0
zcρ(0:n−3)

yρ(2 : n− 1)

 =

 zcρ(0:n−3)+1

zcρ(0:n−3)

yρ(2 : n− 1)

 =

zcσ(0:n−2)zcσ(0:n−3)

yσ(3 : n)

 = yσ,
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where we have used, since vn−2 = 1, that cσ(0 : n− 2) = cσ(0 : n− 3) + 1.

(iii) We prove this using Lemma 3.4. From (i) and (ii) we know that

adj(zI −Mσ) = xσy
T
σ − p(z)R(z)

[
−1

Aρ

]
Q(z).

But the entries of R(z)diag(−1, Aρ)Q(z) are polynomials in z and, moreover, the entries of adj(zI−Mσ)
are polynomials of degree less than or equal to n− 1. Therefore, by the uniqueness proved in Lemma
3.4, we get:

R(z)

[
−1

Aρ

]
Q(z) = Aσ.

3.2 First-order perturbation of the coefficients of the polynomial det(zI −Mσ)

In this section we show how the coefficients of the characteristic polynomial of any Fiedler companion matrix
Mσ change when we perturb Mσ with a dense matrix E. More precisely, we give, to first order in E, the
coefficients of the characteristic polynomial of Mσ + E.

Theorem 3.7. Let p(z) = zn +
∑n−1
k=0 akz

k be a monic polynomial, let σ : {0, 1, . . . , n− 1} → {1, . . . , n} be
a bijection with EPCIS(σ) = (v0, v1, . . . , vn−1), let Mσ be the Fiedler companion matrix of p(z) associated
with σ, and let E ∈ Cn×n be an arbitrary matrix. If the characteristic polynomial of Mσ + E is denoted by
p̃(z) = zn +

∑n−1
k=0 ãkz

k, then, to first order in E,

ãk − ak = −
n∑

i,j=1

p
(σ,k)
ij (a0, a1, . . . , an−1)Eij , k = 0, 1, . . . , n− 1, (19)

where, for i, j = 1, 2, . . . , n, the function p
(σ,k)
ij (a0, a1, . . . , an−1) is a multivariable polynomial in the coeffi-

cients of p(z). More precisely, p
(σ,k)
ij (a0, a1, . . . , an−1) is equal to:

(a) if vn−i = vn−j = 0 :

• ak+iσ(n−j:n−i) ,

if j ≥ i and n− k − i+ 1 ≤ iσ(n− j : n− i) ≤ n− k;

• −ak+1−iσ(n−i:n−j−1) ,

if j < i and k + 1 + i− n ≤ iσ(n− i : n− j − 1) ≤ k + 1;

• 0 , otherwise;

(b) if vn−i = vn−j = 1 :

• ak+cσ(n−i:n−j) ,

if j ≤ i and n− k − j + 1 ≤ cσ(n− i : n− j) ≤ n− k;

• −ak+1−cσ(n−j:n−i−1) ,

if j > i and k + 1 + j − n ≤ cσ(n− j : n− i− 1) ≤ k + 1;

• 0 , otherwise;

(c) if vn−i = 1 and vn−j = 0 :

• 1 , if iσ(0 : n− j − 1) + cσ(0 : n− i− 1) = k ,

• 0 , otherwise;
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(d) if vn−i = 0 and vn−j = 1 :

•
l=min{k+1−cσ(n−j:n−i−1),i−1}∑

l=max{0,k+1+j−cσ(n−j:n−i−1)−n}

−(an+1−i+l ak+1−cσ(n−j:n−i−1)−l) ,

if j > i and k + 2 + j − i− n ≤ cσ(n− j : n− i− 1) ≤ k + 1;

•
l=min{k+1−iσ(n−i:n−j−1),j−1}∑

l=max{0,k+1+i−iσ(n−i:n−j−1)−n}

−(an+1−j+l ak+1−iσ(n−i:n−j−1)−l) ,

if j < i and k + 2 + i− j − n ≤ iσ(n− i : n− j − 1) ≤ k + 1;

• 0 , otherwise;

where we set an := 1.

Proof. From Proposition 3.2, the coefficients of the characteristic polynomial of Mσ+E satisfy, to first order
in E,

ãk − ak = −
n∑

i,j=1

Pk+1(j, i)Eij ,

where Pk+1(j, i) is the (j, i) entry of Pk+1 which, according to (15) is the kth matrix coefficient of the

matrix polynomial adj(zI −Mσ). Therefore p
(σ,k)
ij (a0, a1, . . . , an−1) is the kth coefficient of the (j, i) entry of

adj(zI−Mσ). From Theorem 3.3 and the proof of Lemma 3.4, we know that the (j, i) entry of adj(zI−Mσ),
in each of the cases considered in the statement, is:

(a) ziσ(0:n−j−1)+cσ(0:n−i−1)pi−1(z), if j ≥ i, or ziσ(n−i+1:n−j−1)qn−i(z), if j < i (see (1) and (2), respec-
tively, in the proof of Lemma 3.4);

(b) ziσ(0:n−j−1)+cσ(0:n−i−1)pj−1(z), if j ≤ i, or zcσ(n−j+1:n−i−1)qn−j(z), if j > i (see (3) and (4) in the
proof of Lemma 3.4);

(c) ziσ(0:n−j−1)+cσ(0:n−i−1) (see (5) in the proof of Lemma 3.4);

(d) zcσ(n−j+1:n−i−1)pi−1(z)qn−j(z), if j > i, or ziσ(n−i+1:n−j−1)pj−1(z)qn−i(z), if j < i (see (6) and (7) in
the proof of Lemma 3.4).

Now, it is just a straightforward computation to check that the formulas given in the statement coincide
with the kth coefficient of the previous polynomials.

Remark 3.8. According to the notation in (14), we have

∇ak(Mσ) = −
[
p
(σ,k)
11 . . . p

(σ,k)
n1 p

(σ,k)
12 . . . p

(σ,k)
n2 . . . p

(σ,k)
1n . . . p(σ,k)nn

]T
,

where we have dropped the dependence on a0, . . . , an−1 for brevity.

Remark 3.9. For k = n− 1, and σ an arbitrary bijection, a direct verification in Theorem 3.7 gives

p
(σ,n−1)
ij (a0, . . . , an−1) =

{
1 if i = j
0 otherwise

.

Then, for any Fiedler matrix Mσ, it follows from (19) that

an−1(Mσ + E)− an−1(Mσ) = −
n∑
i=1

Eii.

But, since the (n−1)th coefficient of the characteristic polynomial of A is equal to −tr(A), this is a restatement
of the well-know identity:

tr(Mσ + E) = tr(Mσ) + tr(E).
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We want to emphasize that p
(σ,k)
ij (a0, a1, . . . , an−1) are always linear or quadratic polynomials in the

coefficients a0, . . . , an−1. They depend, at a first stage, on whether the bijection σ has a consecution or an

inversion at n − i and n − j. In particular, p
(σ,k)
ij (a0, a1, . . . , an−1) can only be quadratic when there is a

consecution at n− j and an inversion at n− i. This implies the following corollary.

Corollary 3.10. Let Mσ be C1 or C2 in the statement of Theorem 3.7, then p
(σ,k)
ij (a0, a1, . . . , an−1) in (19)

is a polynomial of degree at most 1 in a0, . . . , an−1, for all k = 0, 1, . . . , n− 1, and all 1 ≤ i, j ≤ n. For the

remaining Fiedler matrices Mσ, there is always some k and some i, j such that p
(σ,k)
ij (a0, a1, . . . , an−1) is a

quadratic polynomial in a0, a1, . . . , an−1.

Proof. Let us first recall that the bijection associated with C1 is σ1 = (σ1(0), σ1(1), . . . , σ1(n− 1)) = (n, n−
1, . . . , 1), whereas the bijection associated with C2 is σ2 = (σ2(0), σ2(1), . . . , σ2(n−1)) = (1, 2, . . . , n). Hence,
σ1 has no consecutions, whereas σ2 has no inversions.

Then, it remains to show that, if σ : {0, 1, . . . , n − 1} → {1, . . . , n} is a bijection having a consecution
at n − j and an inversion at n − i, for some 2 ≤ i, j ≤ n, then there is some 0 ≤ k ≤ n − 1 such that

p
(σ,k)
ij (a0, a1, . . . , an−1) has degree 2. Note, first, that it must be i 6= j. Without loss of generality, let us

assume that j > i. The proof for the case j < i is analogous. We need to prove that, in the sum defining

p
(σ,k)
ij (a0, a1, . . . , an−1) in the first bullet of case (d) in Theorem 3.7 there is at least one monomial aras such

that 0 ≤ r, s ≤ n− 1. More precisely, we need to prove:

(i) There is some 0 ≤ k ≤ n− 1 such that k + 2 + j − i− n ≤ cσ(n− j : n− i− 1) ≤ k + 1.

(ii) There is some l, with max{0, k+1+j−cσ(n−j : n−i−1)−n} ≤ l ≤ min{k+1−cσ(n−j : n−i−1), i−1},
such that 0 ≤ n+ 1− i+ l ≤ n− 1 and 0 ≤ k + 1− cσ(n− j : n− i− 1)− l ≤ n− 1.

For this, it suffices to take k = cσ(n− j : n− i− 1)− 1 = cσ(n− j + 1 : n− i− 1) and l = 0. Note that
(ii) is fulfilled for these values of k and l, because i ≥ 2.

The expressions given in Theorem 3.7 for the variation of the coefficients of the characteristic polynomial
of Mσ are involved in general (that is, for arbitrary Fiedler matrices). We will show them explicitly in
Section 3.2.2 for some particularly relevant Fiedler matrices, including the Frobenius companion matrices.

The following result describes one property of the polynomials p
(σ,k)
ij (a0, . . . , an−1) that will be used later.

Lemma 3.11. Let p
(σ,k)
ij (a0, a1, . . . , an−1) be the polynomial defined in (19). Then:

(a) For k = 0, 1, . . . , n− 1,

p
(σ,k)
ii (a0, a1, . . . , an−1) =

{
ak+1 if i ≥ n− k ,
0 if i < n− k ,

with an = 1.

(b) If σ has a consecution at n− 2, then p
(σ,0)
12 (a0, a1, . . . , an−1) = −a0, and if σ has an inversion at n− 2,

then p
(σ,0)
21 (a0, a1, . . . , an−1) = −a0.

Proof. From Theorem 3.7 we have p
(σ,k)
ii (a0, a1, . . . , an−1) = ak+1, if n−1 ≥ k ≥ n− i (namely, if i ≥ n−k),

and p
(σ,k)
ii (a0, a1, . . . , an−1) = 0 otherwise. This proves part (a).

For part (b), if σ has a consecution at n − 2, then following the notation of Theorem 3.7, we have

vn−2 = vn−1 = 1, and cσ(n − 2 : n − 2) = 1, so part (b) of Theorem 3.7 gives p
(σ,0)
12 (a0, a1, . . . , an−1) =

−a0. Similarly, if σ has an inversion at n − 2, then vn−2 = vn−1 = 0, and part (a) of Theorem 3.7 gives

p
(σ,0)
21 (a0, a1, . . . , an−1) = −a0.

To identify those indices k for which∇ak(Mσ) contains quadratic terms in a0, . . . , an−1 may be interesting
in practice. Notice that the presence of such quadratic terms implies that the sensitivity of the coefficient
ak(Mσ) to perturbations of Mσ is quadratic in a0, . . . , an−1, instead of linear. This implies in turn that, for
large values of a0, . . . , an−1, we can expect much larger changes after small perturbations in these coefficients
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than in the ones where ∇ak(Mσ) contains only linear terms. We have seen in Corollary 3.10 that, for all
Fiedler matrices but the Frobenius ones, there is always at least one k such that ∇ak(Mσ) contains quadratic
terms. Moreover, the proof of Corollary 3.10 tells us that if i, j are such that σ has a consecution at n − j
and an inversion at n − i, and j > i (respectively, j < i), then for k = cσ(n − j + 1 : n − i − 1) (resp.,
k = iσ(n − i + 1 : n − j − 1)) the gradient ∇ak(Mσ) contains quadratic terms. In particular, Lemma 3.12
states that, for all Fiedler matrices but the Frobenius ones, ∇a0(Mσ) contains always quadratic polynomials
in a0, . . . , an−1

Lemma 3.12. Let p
(σ,k)
ij (a0, a1, . . . , an−1) be the polynomial defined in (19), and let t ∈ {0, 1, . . . , n− 3}.

(a) If PCIS(σ) = (v0, v1, . . . , vt = 1, vt+1 = 0, vt+2 = 0, . . . , vn−2 = 0) then

p
(σ,0)
2,n−t(a0, a1, . . . , an−1) = −an−1a0.

(b) If PCIS(σ) = (v0, v1, . . . , vt = 0, vt+1 = 1, vt+2 = 1, . . . , vn−2 = 1) then

p
(σ,0)
n−t,2(a0, a1, . . . , an−1) = −an−1a0.

Proof. We prove only part (a) because part (b) is similar. Since n− t > 2 and k− cσ(n− j+ 1 : n− i− 1) =
−cσ(t+ 1 : n− 3) = 0, from part (d) of Theorem 3.7,we have

p
(σ,0)
2,n−t(a0, a1, . . . , an−1) =

l=min{0,1}∑
l=max{0,−cσ(t+1:n−3)−t}

−an−1+l ak−cσ(t+1:n−3)−l = −an−1a0.

The main result, from the theoretical point of view, in this section is a direct consequence of Theorem
3.7.

Corollary 3.13. Let p(z) = zn+
∑n−1
k=0 akz

k be a monic polynomial, and Mσ be a Fiedler companion matrix
of p(z). Assume that the roots of p(z) are computed as the eigenvalues of Mσ with a backward stable algorithm
i. e., an algorithm that computes the exact eigenvalues of some matrix Mσ +E, with ‖E‖∞ = O(u)‖Mσ‖∞.
Then the computed roots are the exact roots of a polynomial p̃(z) such that:

(a) If Mσ = C1, C2,
‖p̃− p‖∞
‖p‖∞

= O(u)‖p‖∞, (20)

(b) if Mσ 6= C1, C2,
‖p̃− p‖∞
‖p‖∞

= O(u)‖p‖2∞, (21)

where u is the machine precision. In other words, the backward error of the computed roots λ̃1, . . . , λ̃n is

η∞(λ̃1, . . . , λ̃n) =

{
O(u)‖p‖∞, if Mσ = C1, C2,
O(u)‖p‖2∞, if Mσ 6= C1, C2.

Proof. If the eigenvalues of Mσ are computed with a backward stable algorithm, the computed eigenvalues are
the exact eigenvalues of a matrix Mσ+E, for some matrix E ∈ Cn×n such that ‖E‖∞ = O(u)‖Mσ‖∞. Thus,

the computed eigenvalues are the exact roots of the polynomial p̃(z) = zn+
∑n−1
k=0 ãkz

k = det(zI−Mσ−E).
From Theorem 3.7, to first order in E,

|ãk − ak| =

∣∣∣∣∣∣
n∑

i,j=1

p
(σ,k)
ij (a0, a1, . . . , an−1)Eij

∣∣∣∣∣∣ ≤
n∑

i,j=1

∣∣∣p(σ,k)ij (a0, a1, . . . , an−1)
∣∣∣ · |Eij | ≤

≤
(

max
1≤i,j≤n

|Eij |
)
·

 n∑
i,j=1

|p(σ,k)ij (a0, a1, . . . , an−1)|

 .
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Notice, also from Theorem 3.7, that the absolute value of every polynomial p
(σ,k)
ij (a0, a1, . . . , an−1) is bounded

by n‖p‖2∞ and that, by Corollary 3.10, the square in the norm of p is necessary in all Fiedler matrices except
the Frobenius companion matrices, where it can be replaced by 1. Therefore,

max
k=0,1,...,n−1

|ãk − ak| = ‖p̃− p‖∞ = O(u)‖Mσ‖∞‖p‖2∞ = O(u)‖p‖3∞,

where we have used that maxi,j=1,2,...,n |Eij | = O(u)‖Mσ‖∞ and ‖Mσ‖∞ = O(1)‖p‖∞ (see [13, Th. 3.3]).

3.2.1 Recursive formula for the derivatives of the coefficient of the characteristic polynomial

In Section 3.1 we have given an explicit formula for the entries of adj(zI −Mσ), with Mσ being an arbitrary
Fiedler matrix. The aim of this subsection is to provide, in Proposition 3.14, a recursive formula for the
coefficients of adj(zI−A) when viewed as a matrix polynomial in z, where A ∈ Cn×n is an arbitrary matrix.
This is an interesting theoretical result that gives an alternative description of the coefficients of adj(zI−A)
and, as a consequence of Lemma 3.1, of the gradient of the characteristic polynomial of A. But it may also
have a practical interest, as it provides a recursive way to construct these coefficients.

Proposition 3.14. [18, Ch. 4, §4] Let A ∈ Cn×n and let p(z) = zn +
∑n−1
k=0 akz

k be the characteristic
polynomial of A. Let the matrices A1, A2, . . . , An ∈ Cn×n be defined by the following recurrence relation{

An = I , and
Ak = A ·Ak+1 + akI, for k = n− 1, n− 2, . . . , 1.

(22)

Then,

adj(zI −A) =

n−1∑
k=0

zkAk+1.

We note that, as a consequence of the recursive relations of the Horner shifts (13), the matrices Ak are
the Horner shifts of p(z) = det(zI −A) evaluated at A. More precisely:

Ak = pn−k(A) = An−k + an−1A
n−k−1 + · · ·+ ak+1A+ akI .

With this in mind, Proposition 3.2 gives the following expression for the gradient of the kth coefficient of
the characteristic polynomial of A:

∇ak(A) = −
[
vec(pn−k−1(AT ))

]T
, for k = 0, 1, . . . , n− 1. (23)

Proposition 3.14 has been used in [16] to get an explicit formula for the derivatives of the coefficients
of det(zI − C), with C being a Frobenius companion matrix. For this, the authors take advantage of the
explicit expression of the matrices Ak defined in (22) with A = C, which are very simple in this case (see [16,
p. 768]). However, for A being an arbitrary Fiedler matrix, the matrices Ak become much more involved,
and it is not easy to get an explicit expression of these matrices just using (22). For this reason, we have
obtained the expression of the entries of adj(zI −A) by other means. However, Proposition 3.14 gives us an
alternative way to get adj(zI −A) using the Horner shifts of A.

We want to emphasize that, as a consequence of the previous remarks, the polynomial p
(σ,k)
ij (a0, a1, . . . , an−1)

in Theorem 3.7 corresponds to the (j, i) entry of the matrix pn−k−1(Mσ). In the following section, we display
these matrices for some particular relevant cases, including the Frobenius companion matrices. It is also
interesting to note that Corollary 3.10 implies that the first and second Frobenius companion matrices are
the only Fiedler matrices Mσ for which all Horner shifts pk(Mσ) have entries which are linear multivariable
polynomials in the coefficients of p(z). For all other Fiedler matrices Mσ, there is at least one k such that
pk(Mσ) contains some quadratic entries.

3.2.2 Some particular cases

We obtain in this section the explicit expression (19) for particular Fiedler matrices that are, or may be, of
interest in practice. We start with the classical Frobenius companion matrices in Theorem 3.15, where we
get analogous formulas to the ones obtained in [16] for the Frobenius companion matrix considered in that
paper.
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Theorem 3.15. Let p(z) = zn +
∑n−1
k=0 akz

k be a monic polynomial of degree n, let C = C1 or C2 be the

first or second Frobenius companion matrix of p(z), and let E ∈ Cn×n. If p̃(z) = zn +
∑n−1
k=0 ãkz

k is the
characteristic polynomial of C + E. Then, to first order in E, for k = 0, 1, . . . , n− 1:

(i) If C = C1:

ãk − ak =

k∑
s=0

n−k−1∑
j=1

asEj−s+k+1,j −
n∑

s=k+1

n∑
j=n−k

asEj−s+k+1,j . (24)

(ii) If C = C2:

ãk − ak =

k∑
s=0

n−k−1∑
i=1

asEi,i−s+k+1 −
n∑

s=k+1

n∑
i=n−k

asEi,i−s+k+1. (25)

Proof. For claim (i), we recall that, if σ is the bijection associated with C1, then PCIS(σ) = (0, . . . , 0). For
this bijection, iσ(n− j : n− i) = j − i+ 1 holds for i ≤ j. Then, applying part (a) in Theorem 3.7, we get

ãk − ak =
∑
j<i

k+1+i−n≤i−j≤k+1

aj−i+1+kEij −
∑
j≥i

n−k−i+1≤j−i+1≤n−k

aj−i+1+kEij .

With the change of variables s = j − i+ 1 + k the claim is proved.
For claim (ii), we recall that the bijection σ associated with C2 satisfies PCIS(σ) = (1, . . . , 1). For this

bijection, cσ(n− i : n− j) = i− j + 1, when j ≤ i. Then, applying part (b) in Theorem 3.7, we get

ãk − ak =
∑
j>i

k+1+j−n≤j−i≤k+1

ai−j+1+kEij −
∑
j≤i

n−k−j+1≤i−j+1≤n−k

ai−j+1+kEij .

Again, we use the change of variables s = i− j + 1 + k to get the result .

According to (23), the matrix pn−k−1(AT ) encodes the information about ∇ak(A). In particular, the
(i, j) entry of pn−k−1(AT ) is the coefficient of Eij in (14). In the case of Frobenius companion matrices,
these Horner shifts can be computed without too much effort, since they are equal to:

pn−k−1(CT1 ) = pn−k−1(C2) =



0 . . . 0 1 0
−ak an−1 1
...

. . .
... an−1

. . .

−a1
. . . −ak ak+1

...
. . . 1

−a0
. . .

... ak+1
. . . an−1

. . . −a1
. . .

...
0 −a0 0 ak+1


, for k = 0, 1, . . . , n− 1,

(26)
where the first block-column contains n−k−1 columns, and the second block-column contains k+1 columns.
The reader may check that, indeed, the (i, j) entry of (26) is the coefficient of Eij in (24). The same happens
with the transpose of (26) and formula (25).

Excluding the Frobenius companion matrices, the simplest Fiedler matrices are those corresponding to
bijections with just one inversion (resp., consecution) at 0, and consecutions (resp., inversions) elsewhere.
These particular Fiedler matrices present several numerical advantages that may be of interest in new
enhancements of the current codes for the Polynomial Eigenvalue Problem (like MATLAB’s polyeig). To
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be precise, one of these matrices is

F = M0(Mn−1Mn−2 · · ·M1) =


−an−1 1
−an−2 0 1
...

. . .
. . .

−a1 0 −a0
1 0 · · · 0 0

 ,

and the other one is FT .

Theorem 3.16. Let p(z) = zn +
∑n−1
k=0 akz

k be a monic polynomial of degree n, let Mσ = F be the Fiedler

companion matrix of p(z) with PCIS(σ) = (0, 1, 1, , . . . , 1) and let E ∈ Cn×n. If p̃(z) = zn +
∑n−1
k=0 ãkz

k is
the characteristic polynomial of F + E, then, to first order in E,

ãk − ak =

n−1∑
j=k+1

a0an+k+1−jEnj +

k∑
s=0

n−k−2∑
i=1

asEi,i+k+1−s +

k∑
s=1

asEn−k−1,n−s − En−k−1,n

−
n∑

s=k+1

n−1∑
i=n−k

asEi,i+k+1−s − En−k−1,n − ak+1Enn.

(27)

Proof. To compute the polynomials p
(σ,k)
ij (a0, a1, . . . , an−1) in (19), according to Theorem 3.7, we distinguish

the following cases:

(a) If j = n and i = 1, 2, . . . , n−1, we have vn−j = 0 and vn−i = 1 and iσ(0 : n− j−1)+ cσ(0 : n− i−1) =

n − i − 1. Therefore, p
(σ,k)
in (a0, a1, . . . , an−1) = 1 if i = n − k − 1 and p

(σ,k)
ij (a0, a1, . . . , an−1) = 0

otherwise.

(b) If j = n and i = n, we have vn−j = vn−i = 0 and iσ(n − j : n − i − 1) = 0. Therefore,

p
(σ,k)
nn (a0, a1, . . . , an−1) = ak+1 if n− 1 ≥ k ≥ 0 and p

(σ,k)
nn (a0, a1, . . . , an−1) = 0 otherwise.

(c) If j = 1, 2, . . . , n−1 and i = n, we have vn−j = 1 and vn−i = 0 and iσ(n−i+1 : n−j−1) = 0. Therefore,

p
(σ,k)
nj (a0, a1, . . . , an−1) = −an+k−j+1a0 if j ≥ k + 1 and p

(σ,k)
nj (a0, a1, . . . , an−1) = 0 if j < k + 1.

(d) If i, j = 1, 2, . . . , n− 1 and j ≤ i, we have vn−i = vn−j = 1 and cσ(n− i : n− j) = i− j + 1. Therefore,

p
(σ,k)
ij (a0, a1, . . . , an−1) = ak+1+i−j if n− k− j + 1 ≤ i− j + 1 ≤ n− k and p

(σ,k)
ij (a0, a1, . . . , an−1) = 0

otherwise. With the change of variable s = k + 1 + i − j we get p
(σ,k)
i,i+k+1−s(a0, a1, . . . , an−1) = as if

k + 1 ≤ s ≤ n and n− k ≤ i ≤ n− 1, and p
(σ,k)
i,i+k+1−s(a0, a1, . . . , an−1) = 0 otherwise.

(e) If i, j = 1, 2, . . . , n− 1 and j > i, we have vn−i = vn−j = 1 and cσ(n− j : n− i− 1) = j − i. Therefore,

p
(σ,k)
ij (a0, a1, . . . , an−1) = ak+1+i−j if k + 1 + j − n ≤ j − i ≤ k + 1 and p

(σ,k)
ij (a0, a1, . . . , an−1) = 0

otherwise. With the change of variable s = k + 1 + i − j we get p
(σ,k)
i,i+k+1−s(a0, a1, . . . , an−1) = as if

0 ≤ s ≤ k and 1 ≤ i ≤ n− k − 1, and p
(σ,k)
i,i+k+1−s(a0, a1, . . . , an−1) = 0 otherwise.

Theorem 3.16 illustrates how a single change in the PCIS of the Frobenius companion matrix, i. e., just to
change the position of the factor M0 in the product defining C1 and C2, implies the appearance of quadratic
terms in the coefficients of p(z) in the formula for the gradient of the coefficients of the characteristic
polynomial (see the first summand in the right-hand-side of (27)). As before, this can also be seen by
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explicitly displaying the Horner shifts evaluated at F :

pn−k−1(F ) =



0 1 0

−ak an−1
. . .

...
...

. . .
...

. . . 1 0
−a1 −ak ak+2 an−1 −a0

−a0
. . .

... −ak ak+1
. . .

... −a0an−1
. . . −a1

...
. . . ak+2

...
−a0 −a1 ak+1 −a0ak+2

1 ak+1


, for k = 0, 1, . . . , n− 3,

p1(F ) =



0 0
−an−2 1
−an−3 an−1 1
... an−1

. . .
...

. . . 1
−a1 an−1 −a0

1 0 an−1


, and p0(F ) = I.

The number of columns in the first block-column of pn−k−1(F ) above is n − k − 1, and the number of
columns in the second block column is k + 1. The reader may check that the (i, j) entry of pn−k−1(F )T is
the coefficient of Eij in (27).

Our last example is the case of a pentadiagonal Fiedler matrix. For any n ≥ 3, there are at least four pen-
tadiagonal matrices corresponding to bijections whose PCIS are (1, 0, 1, 0, . . .), (0, 1, 0, 1, . . .), (1, 1, 0, 1, 0, . . .),
and (0, 0, 1, 0, 1, 0, . . .) (see [11]). Formulas here, as can be seen in Theorem 3.17, become much more involved.

Theorem 3.17. Let p(z) = zn +
∑n−1
k=0 akz

k be a monic polynomial of degree n, let Mσ be the Fiedler

companion matrix of p(z) with PCIS(σ) = (1, 0, 1, 0, . . .) and let E ∈ Cn×n. If p̃(z) = zn +
∑n−1
k=0 ãkz

k is the
characteristic polynomial of Mσ + E, then, to first order in E,

ãk − ak = −
n∑

s=k+1

 n/2∑
r=dn+s

2
e−k

asE2(k+r−s)+1,2r−1 +

n/2∑
r=bn+s

2
c−k

asE2r,2(k+r−s+1)


+

k∑
s=0

dn+s
2
e−k−1∑
r=1

asE2(k+r−s)+1,2r−1 +

bn+s
2
c−k−1∑
r=1

asE2r,2(k+r−s+1)

−
min{n

2
,n−k−1}∑

s=max{1,n
2
−k}

E2s,2(n−k−s)−1

+

k∑
s=max{0,2k−n+2}

s−k+n
2∑

r=1

min{s,2r−2}∑
m=max{0,2k+2r−s−n}

an−2r+2+mas−mE2r−1,2(k−s+r)

+

s−k+n
2
−1∑

r=1

min{s,2r−1}∑
m=max{0,2k+2r−s−n+1}

an−2r+1+mas−mE2(k+r−s)+1,2r


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if n is an even number, or

ãk − ak = −
n∑

s=k+1

 n+1
2∑

r=dn+s
2
e−k

asE2r−1,2(k−s+r)+1 +

n−1
2∑

r=bn+s
2
c−k

asE2(k−s+r+1),2r


+

k∑
s=0

dn+s
2
e−k−1∑
r=1

asE2r−1,2(k−s+r)+1 +

bn+s
2
c−k−1∑
r=1

asE2(k−s+r+1),2r

−
min{n+1

2
,n−k−1}∑

s=max{1,n+1
2
−k}

E2s−1,2(n−k−s)

+

k∑
s=max{0,2k−n+2}

s−k+n−1
2∑

r=1

 min{s,2r−1}∑
m=max{0,2k−n−s+2r+1}

an−2r+1+mas−mE2r,2(k−s+r)+1

+

min{s,2r−2}∑
m=max{0,2k−n−s+2r}

an−2r+2+mas−mE2(k−s+r),2r−1


if n is an odd number.

Proof. We give a sketch of the proof when the degree of p(z) is even, since the odd case is similar. To

compute the polynomials p
(σ,k)
ij (a0, a1, . . . , an−1) in (19) we have to distinguish several cases.

(a) If i and j are odd numbers, then we get

p
(σ,k)
ij (a0, a1, . . . , an−1) =


ak+1+ j−i

2
, if j ≥ i and n− i+j

2 ≤ k ≤ n− 1− j−i
2 ,

−ak+1+ j−i
2
, if j < i and i−j

2 − 1 ≤ k ≤ n− 1− i+j
2 ,

0, otherwise.

(b) If i and j are even numbers, then we get

p
(σ,k)
ij (a0, a1, . . . , an−1) =


ak+1+ i−j

2
, if j ≤ i and n− i+j

2 ≤ k ≤ n− 1− i−j
2 ,

−ak+1+ i−j
2
, if j > i and j−i

2 − 1 ≤ k ≤ n− 1− i+j
2 and

0, otherwise.

(c) If i is an odd number and j is an even number, then we get

p
(σ,k)
ij (a0, a1, . . . , an−1) =

{
1, if k = n− i+j+1

2 ,
0, otherwise.

(d) If i is an even number and j is an odd number, then we get

p
(σ,k)
ij (a0, a1, . . . , an−1) =



min{k− j−i−1
2 ,i−1}∑

m=max{0,k− j−i−1
2 −n+j}

−an−i+1+mak− j−i−1
2 −m, if j > i and j−i−1

2 ≤ k ≤ n− j−i+3
2 ,

min{k− i−j−1
2 ,j−1}∑

m=max{0,k− i−j−1
2 −n+i}

−an−j+1+mak− i−j−1
2 −m, if j < i and i−j−1

2 ≤ k ≤ n− i−j+3
2 ,

0, otherwise.

The result follows from these formulas for p
(σ,k)
ij (a0, a1, . . . , an−1), together with some algebraic manipulations

and appropriate changes of variables.

For the pentadiagonal Fiedler matrix we have considered in Theorem 3.17, the matrices pn−k−1(Mσ),
for k = 0, 1, . . . , n − 1, do not have a simple structure. For illustrative purposes, we include here a 6 × 6
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example. Let Mσ be the Fiedler companion matrix of the polynomial p(z) = z6 +
∑5
k=0 akz

k associated with
a bijection σ such that PICS(σ) = (1, 0, 1, 0, 1). This matrix is

Mσ =


−a5 1 0 0 0 0
−a4 0 −a3 1 0 0

1 0 0 0 0 0
0 0 −a2 0 −a1 1
0 0 1 0 0 0
0 0 0 0 −a0 0

 .

Then, it can be seen that

p0(Mσ) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , p1(Mσ) =


0 1 0 0 0 0
−a4 a5 −a3 1 0 0

1 0 a5 0 0 0
0 0 −a2 a5 −a1 1
0 0 1 0 a5 0
0 0 0 0 −a0 a5

 ,

p2(Mσ) =


0 0 −a3 1 0 0
−a3 0 −a2 − a3a5 a5 −a1 1

0 1 a4 0 0 0
−a2 0 −a1 − a2a5 a4 −a0 − a1a5 a5

1 0 a5 0 a4 0
0 0 −a0 0 −a0a5 a4

 ,

p3(Mσ) =


0 0 −a2 0 −a1 1
−a2 0 −a1 − a2a5 0 −a0 − a1a5 a5

0 0 0 1 0 0
−a1 −a2 −a0 − a1a5 − a2a4 a3 −a0a5 − a1a4 a4

0 1 a4 0 a3 0
−a0 0 −a0a5 0 −a0a4 a3

 ,

p4(Mσ) =


0 0 −a1 0 −a0 0
−a1 0 −a0 − a1a5 0 −a0a5 0

0 0 0 0 −a1 1
−a0 −a1 −a0a5 − a1a4 0 −a0a4 − a1a3 a3

0 0 0 1 a2 0
0 −a0 −a0a4 0 −a0a3 a2

 ,

p5(Mσ) =


0 0 −a0 0 0 0
−a0 0 −a0a5 0 0 0

0 0 0 0 −a0 0
0 −a0 −a0a4 0 −a0a3 0
0 0 0 0 0 1
0 0 0 −a0 −a0a2 a1

 .

Unlike the previous cases C2 and F , there does not seem to be a simple pattern for pn−k−1(Mσ) for
arbitrary n, with σ : {0, 1, . . . , n− 1} → {1, . . . , n} being the bijection such that PCIS(σ)= (1, 0, 1, 0, . . .).

3.3 Balancing and backward errors

Balancing is a standard preprocessing technique for computing the eigenvalues of a given matrix A, which
leads, very often, to more accurate results, especially when the entries of A have very different magnitudes (see
[28]). Actually, balancing is implemented by default as an initial step in the command eig for computing
eigenvalues in MATLAB. Balancing consists of performing diagonal similarities DAD−1 (i. e., with D
diagonal) to A, in order to reduce the norm of A by equilibrating as much as possible the ∞−norm of all
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rows and columns. In addition, very frequently balancing reduces the eigenvalue condition numbers (see [20,
§7.2.2]).

Balancing first computes in exact arithmetic a matrix DMσD
−1, which has the same characteristic

polynomial as Mσ, namely p(z). Then a backward stable algorithm is applied to compute the eigenvalues of

DMσD
−1, so that we get the exact eigenvalues of DMσD

−1 + Ẽ, with

‖Ẽ‖ = O(u)‖DMσD
−1‖, (28)

for some matrix norm ‖ · ‖. Now, we can get a crude formula like (19) for the change of the coefficients of
the characteristic polynomial of DMσD

−1 using the identity:

det(zI −DMσD
−1 − Ẽ) = det(zI −Mσ −D−1ẼD),

and applying Theorem 3.7 with the perturbation D−1ẼD instead of E. In particular, following the arguments
in the proof of Corollary 3.13, we get

|ãk − ak| ≤ n2 max
1≤i,j≤n

(∣∣∣∣p(σ,k)ij (a0, a1, . . . , an−1)
dj
di

∣∣∣∣) · max
1≤i,j≤n

|Ẽij | ,

with Ẽ as in (28). In this way, we get a formula which provides an “a posteriori” (that is, once the diagonal
parameters di are known) measure for the backward error of the polynomial root-finding problem using
balanced Fiedler matrices.

Though the numerical experiments carried out in Section 4 indicate that balancing usually produces
smaller backward errors, we see in Proposition 3.23 that, for any degree, there are infinitely many polynomials
for which the condition numbers of all coefficients of the characteristic polynomial of any matrix DMσD

−1

are large. This shows that, though in practice balancing Fiedler matrices may be a good strategy for the
root-finding problem, there are polynomials, with any degree, for which the strategy does not lead to small
backward errors.

3.4 Conditioning of the characteristic polynomial

The developments carried out at the beginning of this section are closely related to the conditioning of the
characteristic polynomial of the matrix A. The condition number of the characteristic polynomial provides a
measure of its sensitivity to perturbations of the matrix. As we have seen at the beginning of this section, this
is in turn related with the gradient of the coefficients of the characteristic polynomial. In this subsection, we
introduce the condition number (absolute and relative) for the coefficients of the characteristic polynomial,
and we relate it with (the norm of) its gradient. In this way, we will see that the backward stability
of the polynomial root-finding problem via eigenvalue methods is determined by the conditioning of the
characteristic polynomial.

Let us first assume that the entries of the matrix E in (14) satisfy |Eij | ≤ ε‖vec(A)‖∞. Then, using
Holder’s inequality |uT v| ≤ ‖uT ‖∞‖v‖∞ (with ‖

[
u1 . . . un

]
‖∞ = |u1|+ · · ·+ |un|)1, from (14) we get,

up to first order, the following inequalities:

|ak(A+ E)− ak(A)| ≤ ‖∇ak(A)‖∞ · ‖vec(E)‖∞ ≤ ε‖∇ak(A)‖∞ · ‖vec(A)‖∞ . (29)

It is straightforward to show that there exists a particular matrix E with ‖vec(E)‖∞ = ε‖vec(A)‖∞ such
that |∇ak(A) · vec(E)| = ‖∇ak(A)‖∞‖vec(E)‖∞. For this matrix the bound in (29) is attained to first order
in ε. With this in mind, Proposition 3.18 immediately follows.

Proposition 3.18. Let A ∈ Cn×n and ak : Cn2 → C be the kth coefficient of the characteristic polynomial
of X ∈ Cn×n, considered as a function of X. We define the condition numbers κ(ak, A) and κrel(ak, A) as

κ(ak, A) := lim
ε→0

sup

{
|ak(A+ E)− ak(A)|

ε
: ‖vec(E)‖∞ ≤ ε‖vec(A)‖∞

}
(30)

1Note that, according to the definition of ‖ · ‖∞ for m× n matrices, see [22, p. 108], the expressions for ‖u‖∞ and ‖uT ‖∞
are different.
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and

κrel(ak, A) := lim
ε→0

sup

{
|ak(A+ E)− ak(A)|

ε|ak(A)|
: ‖vec(E)‖∞ ≤ ε‖vec(A)‖∞

}
. (31)

Then

κ(ak, A) = ‖∇ak(A)‖∞ · ‖vec(A)‖∞ and κrel(ak, A) =
‖∇ak(A)‖∞ · ‖vec(A)‖∞

|ak(A)|
.

The definition of condition number introduced in (30) and (31) may look like non-standard, because of
the inclusion of vectorizations. However, the presence of vec(E) is motivated by (14). We have included also
vec(A) in the definition to make it more natural. Moreover, due to the identity

‖vec(Mσ)‖∞ = ‖p‖∞, (32)

valid for any Fiedler matrix Mσ, this choice will allow us to get a simpler formula for κ(ak,Mσ) (see (34)
below).

Now, Proposition 3.18, together with (23), give us the following formulas for κ(ak, A) and κrel(ak, A).

Corollary 3.19. Let A ∈ Cn×n and let κ(ak, A) and κrel(ak, A) be the condition numbers defined in (30)
and (31), respectively. Then, for k = 0, 1, . . . , n− 1,

κ(ak, A) = ‖vec(pn−k−1(A))‖1 · ‖vec(A)‖∞ and κrel(ak, A) =
‖vec(pn−k−1(A))‖1 · ‖vec(A)‖∞

|ak(A)|
, (33)

where pn−k−1(z) is the degree n− k − 1 Horner shift of the polynomial p(z) := det(zI −A).

Note that, according to (33), the relative and absolute condition numbers depend on the norms of A and
the degree n − k − 1 Horner shift of the characteristic polynomial of A. This Horner shift depends in turn
on the coefficients ak+1, . . . , an−1 of the characteristic polynomial evaluated at A, namely: pn−k−1(A) =
An−k−1 + an−1(A)An−k−2 + · · ·+ ak+1(A)I.

In particular, when A = Mσ is a Fiedler matrix of the polynomial (1), formula (33) together with Theorem
3.7 and (32), give

κ(ak,Mσ) = ‖p‖∞
n∑

i,j=1

|p(σ,k)ij (a0, a1, . . . , an−1)|, (34)

where p
(σ,k)
ij (a0, a1, . . . , an−1) are given in Theorem 3.7, and they are polynomials of degree at most 2 in the

coefficients of p, namely a0, . . . , an−1.
By considering the maximum condition numbers of all coefficients of the characteristic polynomial we

arrive to the following notion.

Definition 3.20. Let A ∈ Cn×n and set p(z) = det(zI − A). Let κ(ak, A) and κrel(ak, A) be the condition
numbers defined in (30) and (31), respectively. We define the condition number and the relative condition
number of the characteristic polynomial of A with respect to perturbations of A as

κ(p,A) = max
k=0,1,...,n−1

κ(ak, A) and κrel(p,A) = max
k=0,1,...,n−1

κrel(ak, A). (35)

The following result provides bounds for the absolute and relative condition numbers of the characteristic
polynomial when A is a Fiedler matrix.

Proposition 3.21. Let p(z) = zn +
∑n−1
k=0 akz

k be a monic polynomial, and Mσ be a Fiedler companion
matrix of p(z). Let κ(p,Mσ) and κrel(p,Mσ) be as in (35). Then,

‖p‖2∞ ≤ κ(p,Mσ) ≤ n3‖p‖3∞ and
‖p‖2∞

max{|a0|, |a1|, . . . , |an−1|}
≤ κrel(p,Mσ) ≤ n3‖p‖3∞

min{|a0|, |a1|, . . . , |an−1|}
.

Moreover, if C = C1, C2 denotes both the first and second Frobenius companion matrices, then

‖p‖2∞ ≤ κ(p, C) ≤ n3‖p‖2∞ and
‖p‖2∞

max{|a0|, |a1|, . . . , |an−1|}
≤ κrel(p, C) ≤ n3‖p‖2∞

min{|a0|, |a1|, . . . , |an−1|}
.
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Proof. The bound κ(ak,Mσ) ≤ n3‖p‖3∞ follows immediately from (34) and the bound |p(σ,k)ij (a0, a1, . . . , an−1)| ≤
n‖p‖2∞ (see Corollary 3.10), valid for all i, j = 1, . . . , n.

From (34) and Lemma 3.11, it follows that κ(ak,Mσ) ≥ (k + 1)|ak+1| · ‖p‖∞, for k = 0, 1, . . . , n− 1, and
κ(a0,Mσ) ≥ |a0| · ‖p‖∞. Therefore

κ(p,Mσ) = max
k=0,1,...,n−1

κ(ak,Mσ) ≥ ‖p‖2∞.

Finally, from
κ(ak,Mσ)

max{|a0|, |a1|, . . . , |an−1|}
≤ κ(ak,Mσ)

|ak|
≤ κ(ak,Mσ)

min{|a0|, |a1|, . . . , |an−1|}
we get the bounds for κrel(p,Mσ) in the statement.

For the Frobenius companion matrices, we just note that as a consequence of Corollary 3.10, we have

|p(σ,k)ij (a0, a1, . . . , an−1)| ≤ n‖p‖∞, where σ is the permutation corresponding to either the first or the second
Frobenius companion matrix.

Remark 3.22. The factor n3 appearing in all upper bounds in Proposition 3.21 usually overestimates the
condition numbers. It is due to an n2 factor coming from the maximum possible number of nonzero poly-

nomials p
(σ,k)
ij (a0, a1, . . . , an−1) in the sum of the right-hand side in (34). This number is usually much less

than n2. For instance, it is equal to (k + 1)(2n − 2k − 1) for the first and second Frobenius companion
matrices, as can be seen from (26). It is also (k+1)(2n−2k−1) for the coefficients ak with k = 2, . . . , n−1,
equal to 3n − 4 for a1 and equal to n for a0, for the Fiedler matrix F in Theorem 3.16, as can be seen by
looking at the matrices pn−k−1(F ) in Section 3.2.2.

3.4.1 Balancing and condition numbers

Though similar matrices have the same characteristic polynomial, the sensitivity of its coefficients may be
quite different. In other words, the condition numbers κ(ak, A) and κrel(ak, A) defined in (30) and (31) are
not invariant under diagonal similarity. Since q(SAS−1) = Sq(A)S−1, for any polynomial q(z) and any
invertible matrix S, formula (33) gives

κ(ak, SAS
−1) = ‖vec(Spn−k−1(A)S−1)‖1‖vec(SAS−1)‖∞ (36)

and

κrel(ak, SAS
−1) =

‖vec(Spn−k−1(A)S−1)‖1‖vec(SAS−1)‖∞
|ak(A)|

.

The norms of the vectors in the right hand side of the previous expression can be quite different for different
matrices S. The optimal balancing for a given A (or, equivalently, a given polynomial p(z) = det(zI − A))
from the point of view of the sensitivity of the characteristic polynomial (or, equivalently, from the point
of view of backward errors of the root-finding problem via eigenvalue methods) would be given by some
nonsingular diagonal matrix D such that κrel(p,DAD

−1) is minimal among all nonsingular diagonal matrices
D (see [28] for the eigenvalue problem). In the particular case of Fiedler matrices, the following result provides
a lower bound for this minimal conditioning.

Proposition 3.23. . Let p(z) = zn+
∑n−1
k=0 akz

k be a monic polynomial, let σ : {0, 1, . . . , n−1} → {1, . . . , n}
be a bijection, let Mσ be the Fiedler companion matrix of p(z) associated with σ and let D ∈ Cn×n be a
diagonal and nonsingular matrix. Then, for k = 0, 1, . . . , n− 1,

κ(ak, DMσD
−1) ≥ (k + 1)|an−1| · |ak+1| and κrel(ak, DMσD

−1) ≥ (k + 1)|an−1| · |ak+1|
|ak|

,

where we set an = 1.

Proof. We prove the result for κ(ak, DMσD
−1), since the bound for the relative condition number can be

obtained just dividing by |ak|. The result is a consequence of the fact that diagonal similarity does not
change the diagonal entries of a matrix. From (36),

κ(ak, DMσD
−1) ≥‖diag(Dpn−k−1(Mσ)D−1)‖1 · ‖diag(DMσD

−1)‖∞ =

=‖diag(pn−k−1(Mσ))‖1 · ‖diag(Mσ)‖∞ .
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Now we prove that diag(Mσ) = (−an−1, 0, . . . , 0) and diag(pn−k−1(Mσ)) = (0, . . . , 0, ak+1, . . . , ak+1), where
the coefficient ak+1 appears (k + 1) times.

For the diagonal of Mσ the proof proceeds by induction in n. The case n = 2 is immediate, since the only

possible Mσ are
[
−a1
1
−a0
0

]
and

[
−a1
−a0

1
0

]
. We assume that the identity is true for Fiedler matrices associated

with polynomials of degree n− 1. For degree n, we have to distinguish two cases.

(a) If σ has a consecution at n − 2 then, using MATLAB notation for columns and rows, Mσ may be
written as,

Mσ =

[
−an−1 1 0
W (:, 1) 0 W (:, 2 : n− 1)

]
,

where W ∈ C(n−1)×(n−1) is a Fiedler companion matrix of the polynomial zn−1 +
∑n−2
k=0 akz

k (see [12,
p. 949]). Therefore, diag(Mσ) = (−an−1, 0,W (2, 2),W (3, 3), . . . ,W (n− 1, n− 1)) = (−an−1, 0, . . . , 0),
by induction.

(b) If σ has an inversion at n− 2 then Mσ may be written as

Mσ =

−an−1 W (1, :)
1 0
0 W (2 : n− 1, :)

 ,
where W ∈ C(n−1)×(n−1) is a Fiedler companion matrix of the polynomial zn−1 +

∑n−2
k=0 akz

k (see [12,
p. 949]). Therefore, diag(Mσ) = (−an−1, 0,W (2, 2),W (3, 3), . . . ,W (n− 1, n− 1)) = (−an−1, 0, . . . , 0),
by induction.

From Lemma 3.11 and equation (23), the (i, i) entry of pn−k−1(Mσ) is equal to p
(σ,k)
ii (a0, a1, . . . , an−1) =

ak+1, if n − 1 ≥ k ≥ n − i (that is, i ≥ n − k), and p
(σ,k)
ii (a0, a1, . . . , an−1) = 0, otherwise. This concludes

the proof.

3.5 Backward stability for ‖p‖∞ moderate and coefficientwise backward stability

Corollary 3.13 indicates that computing the roots of scalar polynomials as the eigenvalues of an arbitrary
Fiedler matrix is not backward stable if ‖p‖∞ is large, even if we compute the eigenvalues using a backward
stable algorithm. This is revealed by the presence of the factor ‖p‖∞ in (20) and ‖p‖2∞ in (21). However,
when ‖p‖∞ is moderate, (21) guarantees backward stability. This fact is in accordance with results in [32,
p. 576], where the authors prove that solving matrix Polynomial Eigenvalue Problems by applying the
QZ algorithm to the Frobenius companion matrix is backward stable, provided that the original matrix
polynomial has been previously scaled so that all coefficients have norm less than or equal to 1. For scalar
polynomials (not necessarily monic), this condition can be always achieved by dividing all coefficients of the
original polynomial p(z) by some sufficiently large number. However, if we want to restrict ourselves to the
set of monic polynomials to use the QR algorithm, this is not a valid strategy any more, since we could get
a non-monic polynomial after dividing the coefficients of p(z) (monic). In order to keep the polynomial p(z)
as in (1) within the set of monic polynomials, we can consider another kind of scaling as, for instance:

p̂(z) := αnp(z/α) = zn +

n−1∑
k=0

akα
n−kzk.

Now, α can be chosen so that |akαn−k| ≤ 1, for all k = 0, 1, . . . , n − 1. Note that the roots of p(z) can be
easily recovered from those of p̂(z) just dividing by α. Once all coefficients of p̂(z) have absolute value less
than or equal to 1, we can apply the QR algorithm to any Fiedler companion matrix of p̂(z) to get its roots,
and then recover the roots of p(z). However, this does not guarantee that the method is backward stable.
It is not difficult to find examples of quadratic polynomials p(z) such that there is a polynomial q̂(z) with
‖p̂− q̂‖ = O(u)‖p̂‖, but ‖p− q‖/‖p‖ is O(1), with q(z) = (1/α2)q̂(αz).

We want to emphasize that we are not considering in this paper the backward errors of single roots of p,
but the backward error of the set of all roots of p. Backward errors of single roots has been considered in
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[29] for the more general case of matrix Polynomial Eigenvalue Problems. In particular, the backward error

of a single computed root λ̃ considered in [29] is:

η(λ̃) = min
{
ε : (p+ ∆p)(λ̃) = 0, |∆ai| ≤ ε|ai|, i = 0, 1, . . . , n

}
,

where p(z) =
∑n
k=0 akz

k, and ∆p(z) =
∑n
k=0(∆ak)zk are not necessarily monic. It is shown in [29, The-

orem 7] that, for quadratic matrix polynomials all whose coefficients have 2-norm equal to 1, computing
the eigenvalues of its companion pencil (defined in [29, p. 347]) with a backward stable algorithm gives a
coefficientwise backward stable method for the Quadratic Eigenvalue Problem. Though, as we have men-
tioned above, we are considering different notions of backward error, this fact seems to be in accordance
with Corollary 3.13 when ‖p‖∞ = 1 and with the discussion right below.

We also emphasize that the backward stability of polynomial root-finding when ‖p‖∞ = 1 does not
guarantee small relative backward errors in each coefficient. In other words, we can not guarantee that

max
k=0,1,...,n−1

|ãk − ak|
|ak|

= O(u) (37)

even in the case ‖p‖∞ = 1. In Section 4 we show some numerical experiments where ‖p‖∞ = 1 and (37)
does not hold. However, when |ak| is moderate, for all k = 0, 1, . . . , n− 1, and not too close to zero (loosely
speaking, of order Θ(1)), then (20)–(21) imply that (37) holds, also in accordance with [29].

4 Numerical experiments

In this section we provide numerical experiments that support our theoretical results. In particular, our
goals are: (i) to show whether or not the bounds in (20)–(21) correctly predicts the dependence on the
norm of p(z) of the largest backward error that may be obtained if the roots of p(z) are computed as the
eigenvalues of a Fielder matrix with a backward stable eigenvalue algorithm; (ii) to show that if the roots
of a polynomial p(z), with moderate coefficients, are computed as the eigenvalues of a Fiedler matrix, then
this process is normwise backward stable, regardless of the Fiedler matrix that is used, which implies that,
in this situation, any Fiedler matrix can be used for the root-finding problem with the same reliability as
the Frobenius companion matrices; (iii) to investigate, from the point of view of backward errors, the effect
of balancing Fiedler matrices; and (iv) following [16], to show that Theorem 3.7 may be used to predict the
backward error when the roots of a monic polynomial are computed as the eigenvalues of a Fiedler matrix.
Along this section we denote by u = 2−52 the machine epsilon in IEEE double precision arithmetic.

Given a monic polynomial p(z) of degree n, we denote by {λ̃1, λ̃2, . . . , λ̃n} the roots of p(z) computed
as eigenvalues of a Fiedler matrix Mσ using a backward stable eigenvalue algorithm. If we denote by
p̃(z) the monic polynomial of degree n whose roots are {λ̃1, λ̃2, . . . , λ̃n}, namely, p̃(z) =

∏n
k=0(z − λ̃k) =

zn +
∑n−1
k=0 ãkz

k, then we are interested in the following quantities:

• the normwise backward error (NBE): ‖p̃− p‖∞/‖p‖∞, and

• the coefficientwise backward error (CBE): maxk=0,1,...,n−1 (|ãk − ak|/|ak|).

In the numerical experiments, we consider monic polynomials of degree 20 and the following Fiedler
companion matrices associated with degree-20 polynomials:

(a) the second Frobenius companion matrix Mσ1
= C2,

(b) the Fiedler matrix Mσ2
with PCIS(σ2) = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1), which is a penta-

diagonal matrix,

(c) the Fiedler matrix Mσ3 with PCIS(σ3) = (0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), and

(d) the Fiedler matrix Mσ4
with PCIS(σ4) = (1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1).
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Recall that the matrices Mσ2 and Mσ3 are the Fiedler matrices considered in Theorems 3.17 and 3.16,
respectively.

Given a monic polynomial p(z) of degree 20 and a Fiedler matrix Mσ associated with p(z), to compute
the polynomial p̃(z) we proceed as follows. First, we compute the eigenvalues of Mσ using the function

eig in MATLAB (with and/or without balancing, see comments below); then, if {λ̃1, λ̃2, . . . , λ̃20} denote

the computed eigenvalues, we compute the polynomial p̃(z) =
∏20
k=1(z − λ̃k) = z20 +

∑19
k=0 ãkz

k using the
function vpa (variable precision arithmetic) followed by the command poly on a diagonal matrix whose

diagonal entries are {λ̃1, λ̃2, . . . , λ̃20}, in MATLAB with 32 decimal digits of accuracy.

4.1 Numerical experiments that show the dependence of the normwise back-
ward error with ‖p‖∞

In this subsection, we perform numerical experiments to determine whether or not the largest normwise
backward errors that may be obtained if the roots of monic polynomials are computed as the eigenvalues of
a Fiedler matrix Mσ with a backward stable eigenvalue algorithm, behave like ‖p̃−p‖∞/‖p‖∞ = O(u)‖p‖2∞,
when Mσ is a Fiedler matrix other than the Frobenius ones, or like ‖p̃ − p‖∞/‖p‖∞ = O(u)‖p‖∞, when
Mσ is one of the Frobenius companion matrices, as it is predicted by Corollary 3.13. We perform numerical
experiments with and without balancing the Fiedler matrices. Our results show that if we do not balance
the Fiedler matrices the bound in Corollary 3.13, although in a lot of cases is very pessimistic, predicts
well the dependence with ‖p‖∞ of the largest backward errors. If the Fiedler matrices are balanced, our
results show that there is still a dependence with ‖p‖∞ of the largest normwise backward errors, and that
this dependence is similar for all Fiedler matrices. Also we show that the backward errors that are usually
obtained when the Fiedler matrices are balanced are almost independent of the norm of the polynomials,
and that polynomial root-finding algorithms using Fiedler matrices are usually normwise backward stable.

In order to see the dependence of the backward error with ‖p‖∞ we proceed as follows. For each
k = 0, 1, . . . , 10 we generate 500 random degree-20 polynomials with coefficients of the form a · 10c, where a
is drawn from the uniform distribution on the interval [−1, 1] and c is drawn from the uniform distribution
on the interval [−k, k], also we set a0 = 10k. The reasons to set a0 = 10k is to fix the infinite norm of the 500
random polynomials to be 10k. For each of these 11 samples of 500 random polynomials, we compute the
normwise backward errors, as it is explained at the beginning of Section 4, when their roots are computed
as the eigenvalues of the four Fiedler matrices Mσ1

,Mσ2
,Mσ3

,Mσ4
, with and without balancing them.

In Figures 1-(a), 1-(b), 1-(c), and 1-(d) we plot the decimal logarithms of the maximum and the min-
imum normwise backward errors obtained for each of the 11 samples of 500 random polynomials against
the logarithms of the norm of the polynomials, when their roots are computed as the eigenvalues of
Mσ1

,Mσ2
,Mσ3

,Mσ4
, respectively, without balancing them. We also plot a linear fitting for the logarithms

of the maximum normwise backward errors in order to get the dependence with ‖p‖∞.
As may be seen in Figures 1-(a), 1-(b), 1-(c), and 1-(d), there is a dependence with ‖p‖∞ of the largest

normwise backward errors of the form ‖p‖α∞. From the linear fittings we obtain α = 0.85 for Mσ1 = C2,
α = 1.9 for Mσ2 , α = 1.7 for Mσ3 , and α = 1.8 for Mσ4 . This is consistent with the bound in Corollary
3.13, which predicts α = 1 for the Frobenius companion matrices C1 and C2, and α = 2 for Fiedler matrices
other than the Frobenius ones. Also note that in Figures 1-(a),1-(b),1-(c) and 1-(d) it may be seen that the
bound in Corollary 3.13 is in some cases very pessimistic, since there are polynomials for which we get small
normwise backward errors, regardless of their norms.

Next, we investigate the effect of balancing the Fiedler matrices in the backward errors. In Figures 2-(a),
2-(b), 2-(c), and 2-(d), we plot the decimal logarithms of the maximum and the minimum normwise backward
errors obtained for each of the 11 samples of 500 random polynomials against the logarithms of the norm
of the polynomials, when their roots are computed as the eigenvalues of Mσ1

,Mσ2
,Mσ3

,Mσ4
, respectively,

but in this case the Fiedler matrices are balanced before we compute their eigenvalues. As in the previous
experiment, we plot a linear fitting for the logarithms of the maximum normwise backward errors in order
to get the dependence with ‖p‖∞. We also plot the ninth decile of the normwise backward error for each of
the 11 samples.

As may be seen in Figures 2-(a), 2-(b), 2-(c), and 2-(d), there is a dependence of the largest backward
errors with the norm of the polynomials of the form ‖p‖α∞, but this dependence is more or less similar for
all four Fiedler matrices. In particular, from the linear fittings, we get α = 0.59 for Mσ1

= C2, α = 0.71 for
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Figure 1: Decimal logarithms of the maximum and minimum normwise backward errors obtained for each of the 11 samples
of 500 random degree-20 polynomials, for k = 0, 1, . . . , 10, with a fixed infinite norm equal to 10k and with coefficients of the
form a · 10c, where a is drawn from the uniform distribution on [−1, 1] and c is drawn from the uniform distribution on [−k, k],
and where we set a0 = 10k, when their roots are computed as the eigenvalues of the Fiedler matrices Mσ1 ,Mσ2 ,Mσ3 ,Mσ4 ,
without balancing them.

Mσ2
, α = 0.67 for Mσ3

, and α = 0.71 for Mσ4
. Also notice that 90% of the backward errors obtained when

the roots of the polynomials are computed as the roots of Mσ1
,Mσ2

,Mσ3
,Mσ4

are excellent, since they are
more or less between 10−12 and 10−16, even for polynomials with norms as large as 1010.

4.2 Numerical experiments with polynomials of moderate coefficients

In this subsection we show that, from the point of view of backward errors, when the coefficients of p(z)
are bounded in absolute value by a moderate number, any Fiedler matrix may be used for the root-finding
problem with the same reliability as the Frobenius companion matrices. In particular, we provide numerical
evidence that supports what we claim in Section 3.5, namely, that computing the roots of a monic polynomial
p(z) as in (1), with |ai| moderate, for i = 0, 1, . . . , n − 1, as the eigenvalues of a Fiedler matrix using a
backward stable eigenvalue algorithm is normwise backward stable, regardless of the Fiedler matrix that is
used. In addition, we show that to have |ai| moderate, for i = 0, 1, . . . , n− 1, it is not enough to guarantee
coefficientwise backward stability. Finally, we provide numerical evidence that supports the last sentence in
Section 3.5, namely, that (37) holds when |ai| = Θ(1), for i = 0, 1, . . . , n− 1, regardless of the Fiedler matrix
that is used.

In the first set of numerical experiments, we consider a random sample of 1000 degree-20 polynomials
with coefficients drawn from the uniform distribution on the interval [−100, 100], but we set a19 = 10−10.
The reason for setting a19 = 10−10 is to show that we may have a small normwise backward error but, at the
same time, we may have a big coefficientwise backward error. In Table 1, we give the mean, the maximum
and the minimum of the decimal logarithms of the normwise and coefficientwise backward errors (Log-Mean
NBE, Log-Maximum NBE, Log-Minimum NBE, Log-Mean CBE, Log-Maximum CBE and Log-Minimum
CBE, respectively) obtained when the roots of the polynomials are computed as the eigenvalues of the Fiedler
matrices Mσ1

,Mσ2
,Mσ3

,Mσ4
, without balancing them.

As may be seen in Table 1, the normwise backward errors obtained when the roots of the polynomials
are computed as the eigenvalues of Mσ1

,Mσ2
,Mσ3

,Mσ4
are excellent for all four Fiedler matrices. But also

note that this is not true for the coefficientwise backward errors. These results are consistent with the claims
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Figure 2: Decimal logarithms of the maximum and minimum normwise backward errors obtained for the 11 samples of 500
random degree-20 polynomials with, for k = 0, 1, . . . , 10, a fixed infinite norm equal to 10k and with coefficients of the form
a · 10c, where a is drawn from the uniform distribution on [−1, 1] and c is drawn from the uniform distribution on [−k, k],
and where we set a0 = 10k, when their roots are computed as the eigenvalues of the Fiedler matrices Mσ1 ,Mσ2 ,Mσ3 ,Mσ4 ,
balancing them before computing their eigenvalues.

in Section 3.5.
Next, we consider a random sample of 1000 degree-20 polynomials with coefficients of the form 10c1

where c1 is drawn from the uniform distribution on the interval [−2, 2]. In Table 2 we give the mean, the
maximum and the minimum of the decimal logarithms of the normwise and coefficientwise backward errors
(Log-Mean NBE, Log-Maximum NBE, Log-Minimum NBE, Log-Mean CBE, Log-Maximum CBE and Log-
Minimum CBE, respectively) obtained when the roots of the polynomials are computed as the eigenvalues
of the Fiedler matrices Mσ1

,Mσ2
,Mσ3

,Mσ4
, without balancing them.

As may be seen in Table 2, the normwise backward errors obtained when the roots of the polynomials
are computed as the eigenvalues of Mσ1

,Mσ2
,Mσ3

,Mσ4
are excellent, as in Table 1. The coefficientwise

backward errors are not so small as the normwise ones, but they are still excellent since we are dealing with
polynomials whose coefficients may have absolute values that differ in four orders of magnitude.

4.3 Numerical experiments balancing Fiedler matrices

In this subsection we perform numerical experiments to study, from the point of view of backward errors, the
effect of balancing Fiedler matrices. We show that, when a Fiedler matrix Mσ is balanced before computing
its eigenvalues, the backward error obtained if we compute the roots of p(z) as the eigenvalues of Mσ may be
much smaller than the backward error that is obtained when Mσ is not balanced, regardless of the Fiedler
matrix that is used. We show also that balancing a Fiedler matrix is usually enough to guarantee that the
process of computing the roots of a polynomial as the eigenvalues of a Fiedler matrix is normwise backward
stable, even if the polynomial has large coefficients. Finally, we investigate the effect of the size of the
coefficient an−1, since Proposition 3.23 suggests that it plays a key role in getting or not backward stability
after balancing Fiedler matrices. To be precise, Proposition 3.23 shows that, for large values of |an−1|, the
condition number of any coefficient of the characteristic polynomial of any Fiedler matrix will be large,
regardless of the balancing. This leads us to expect large backward errors when |an−1| is large.
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Mσ1
Mσ2

Mσ3
Mσ4

Log-Mean NBE -13.6 -12.6 -13.6 -12.5

Log-Maximum NBE -12.9 -11.7 -12.1 -11.6

Log-Minimum NBE -14.5 -13.4 -14.3 -13.4

Log-Mean CBE -3.5 -3.8 -3.6 -3.8

Log-Maximum CBE -2.7 -2.9 -2.7 -2.9

Log-Minimum CBE -6.7 -6.9 -7.1 -6.3

Table 1: Mean, maximum and minimum of the decimal logarithms of the normwise (NBE) and coefficientwise (CBE) backward
errors obtained for 1000 random degree-20 polynomials, with coefficients drawn from the uniform distribution on [−100, 100] and
setting a19 = 10−10, when their roots are computed as the eigenvalues of the Fiedler matrices Mσ1 ,Mσ2 ,Mσ3 ,Mσ4 , without
balancing them.

Mσ1 Mσ2 Mσ3 Mσ4

Log-Mean NBE -14.1 -13.2 -14.1 -13.3

Log-Maximum NBE -13.4 -11.8 -12.5 -11.7

Log-Minimum NBE -14.7 -14.5 -14.8 -14.8

Log-Mean CBE -11.0 -10.2 -11.0 -10.2

Log-Maximum CBE -10.0 -8.3 -9.1 -8.4

Log-Minimum CBE -12.4 -12.2 -12.6 -12.7

Table 2: Mean, maximum and minimum of the decimal logarithms of the normwise (NBE) and coefficientwise (CBE) backward
errors obtained for 1000 random degree-20 polynomials, with coefficients of the form 10c1 , where c1 is drawn from the uniform
distribution on [−2, 2], when their roots are computed as the eigenvalues of the Fiedler matrices Mσ1 ,Mσ2 ,Mσ3 ,Mσ4 , without
balancing them.

We consider a random sample of 1000 degree-20 polynomials with coefficients of the form

a1 · 10c1 + i a2 · 10c2 , (38)

where i denotes the imaginary unit, and a1, a2 are drawn from the uniform distribution on the interval
[−1, 1] and c1 and c2 are drawn from the uniform distribution on the interval [−10, 10]. These polynomials,
considered in [30], allow us to measure the normwise backward errors with varying orders of magnitude in
the coefficients of p(z). We also consider a second sample of 1000 degree-20 polynomials with coefficients of
the form (38), but we fix a19 = 1.

For the first sample of random polynomials, in Tables 3-(a) and 3-(b) we give the mean, the maximum and
the minimum of the decimal logarithms of the normwise backward errors (Log-Mean NBE, Log-Maximum
NBE, Log-Minimum NBE, respectively) obtained when the roots of the polynomials are computed as the
eigenvalues of Mσ1 ,Mσ2 ,Mσ3 ,Mσ4 , when these Fiedler matrices are not or are balanced, respectively.

Several observations may be drawn from the data in Tables 3-(a) and 3-(b). First note, from the data
in Log-Maximum NBE in Table 3-(a), that if the Fiedler matrices are not balanced, the backward errors
obtained may be very large. Note also that the largest of these backward errors is consistent with (20)
for the Frobenius companion matrices, and with (21) for Fiedler matrices other than the Frobenius ones.
Second, note that the process of balancing the Fiedler matrices makes that the backward errors obtained
after balancing may be much smaller than the backward errors obtained when the Fiedler matrices are not
balanced (this is especially evident for Mσ2

and Mσ3
). Finally, note, from the data in Log-Maximum NBE

in Table 3-(b), that there are polynomials for which balancing the Fiedler matrices does not guarantee that
the process of computing their roots as the eigenvalues of Fiedler matrices is normwise backward stable.

In Tables 4-(a) and 4-(b) we display the mean, the maximum and the minimum of the decimal logarithms
of the normwise backward errors (Log-Mean NBE, Log-Maximum NBE, Log-Minimum NBE, respectively)
that are obtained when the roots of the polynomials of the second sample are computed as the eigenvalues of
the four Fiedler matricesMσ1

,Mσ2
,Mσ3

,Mσ4
, when the Fiedler matrices are not or are balanced, respectively.
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(a) The Fiedler matrices are not balanced.

Mσ1
Mσ2

Mσ3
Mσ4

Log-Mean NBE -10.5 -2.4 -9.9 -3.0

Log-Maximum NBE -5.8 3.2 0.1 3.5

Log-Minimum NBE -14.7 -8.9 -14.7 -10.0

(b) The Fiedler matrices are balanced.

Mσ1
Mσ2

Mσ3
Mσ4

Log-Mean NBE -13.1 -13.1 -13.1 -12.9

Log-Maximum NBE -8.1 -7.5 -8.0 -7.8

Log-Minimum NBE -14.7 -14.9 -15.1 -14.8

Table 3: Mean, maximum, and minimum of the decimal logarithms of the normwise backward errors obtained for a sample
of 1000 random degree-20 polynomials, with coefficients of the form (38), when their roots are computed as the eigenvalues of
the Fiedler matrices Mσ1 ,Mσ2 ,Mσ3 ,Mσ4 , without balancing and with balancing.

Recall that for this sample of degree-20 random polynomials we set a19 = 1.

(a) The Fiedler matrices are not balanced.

Mσ1 Mσ2 Mσ3 Mσ4

Log-Mean NBE -6.9 -3.2 -6.9 -3.4

Log-Maximum NBE -5.6 3.0 -3.4 3.0

Log-Minimum NBE -9.8 -10.6 -9.9 -11.1

(b) The Fiedler matrices are balanced.

Mσ1
Mσ2

Mσ3
Mσ4

Log-Mean NBE -13.9 -13.9 -13.9 -13.7

Log-Maximum NBE -11.6 -11.1 -11.6 -10.4

Log-Minimum NBE -15.1 -14.8 -15.0 -15.0

Table 4: Mean, maximum, and minimum of the decimal logarithms of the normwise backward errors obtained when the roots
of the polynomials of the second sample of random polynomials (i. e., coefficients from (38) and a19 = 1) are computed as the
eigenvalues of the four Fiedler matrices Mσ1 ,Mσ2 ,Mσ3 ,Mσ4 , without balancing and with balancing.

As in the first sample of random polynomials, we may see in Tables 4-(a) and 4-(b) that the backward
errors obtained when the Fiedler matrices are not balanced may be very large. Also, we may see that the
backward errors may be much smaller when the Fiedler matrices are balanced. Finally note that for this
second sample the largest backward errors obtained when the Fiedler matrices are balanced are smaller than
the largest ones obtained for the first sample.

4.4 Using Theorem 3.7 to predict the coefficientwise backward error

In this subsection we show that Theorem 3.7 can be used to predict the coefficientwise backward error,
without computing explicitly the polynomial p̃(z) (something that may not be possible for high degree
polynomials, since using vpa makes this process very slow), and that this backward error is usually small
for all Fiedler matrices if the process of balancing is used. Of course, the normwise backward error can be
also predicted from Theorem 3.7, but we omit it for brevity. As in [16] and [30], we explore the following
degree-20 monic polynomials:

(p1) the Wilkinson polynomial: p(z) =
∏20
k=1(z − k),

(p2) the monic polynomial with zeros: −2,−1.8,−1.6, . . . , 1.6, 1.8,
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(p3) p(z) = (20!)
∑20
k=0 z

k/k!,

(p4) the Bernoulli polynomial of degree 20,

(p5) p(z) =
∑20
k=0 z

k,

(p6) the monic polynomial with zeros 2−10, 2−9, . . . , 28, 29,

(p7) the Chebyshev polynomial of degree 20,

(p8) the monic polynomial with zeros equally spaced on a sine curve, that is,

p(z) =

9∏
k=−10

(
z − 2π

19
(k + 0.5)− i · sin 2π

19
(k + 0.5)

)
.

As in [16], we first compute the coefficients exactly or with high precision using Mathematica. We then read
these coefficients into MATLAB and take the rounded coefficients stored in MATLAB as our official test
cases. Also, we consider again the four Fiedler companion matrices associated with degree-20 polynomials
introduced at the beginning of Section 4, namely Mσ1

,Mσ2
,Mσ3

,Mσ4
.

We repeat the numerical experiments performed in [16]. Our results show that Theorem 3.7 always
predicts a small componentwise backward error, regardless of the Fiedler matrix that is used, and that this
predicted backward error is usually pessimistic by at most one, two or three orders of magnitude, except for
the polynomial p6, where the predicted backward error is pessimistic by 6 orders of magnitude. Note that
in this case the ratio (|a19| · |a1|) /|a0| is of order 219, so Proposition 3.23 ensures that the condition number
for the coefficient a0 is large. However, the perturbations in the numerical experiments does not seem to
affect this coefficient in such a severe way.

In order to use Theorem 3.7 to predict the coefficientwise backward error, we need to model the back-
ward error introduced by the algorithm for computing the eigenvalues of a Fiedler matrix. Since standard
eigenvalue algorithms first balance the matrix, if we set Bσ := DMσD

−1, where D is the diagonal matrix
that balances Mσ, then a backward stable eigenvalue algorithm applied to a Fiedler matrix Mσ computes
the exact eigenvalues of the matrix Bσ + Ẽ, with ‖Ẽ‖ = O(u)‖Bσ‖. Due to these considerations, we model
the backward error introduced by a backward stable eigenvalue algorithm applied to Mσ by means of an
error matrix Ẽ = (Ẽij), with

Ẽij = 2−52 · ‖Bσ‖2 · εij for i, j = 1, 2, . . . , 20, (39)

where εij is drawn from the uniform distribution on the interval [−1, 1]. If we denote by {λ̃1, λ̃2, . . . , λ̃n} the

eigenvalues of Bσ + Ẽ then, since a similarity transformation does not change the characteristic polynomial
of a matrix, these eigenvalues are the roots of the characteristic polynomial of D−1(Bσ + Ẽ)D = Mσ + E,

where E = D−1ẼD, that is, they are the roots of the polynomial det(zI − Mσ − E) = p̃(z) = zn +∑n−1
k=0 ãnz

k. Then, we can use Theorem 3.7 to compute the coefficients of p̃(z), up to first order in E, and
use maxak 6=0 |ãk−ak|/|ak| as a prediction of the coefficientwise backward error. Finally we can compare this
predicted backward error with the observed one, computed as explained at the beginning of Section 4.

In Table 5, we display the decimal logarithms of the predicted and the observed coefficientwise backward
error (Log Predicted CBE and Log Observed CBE, respectively), when the roots of the polynomials p1-p8
are computed as the eigenvalues of the Fiedler matrices Mσ1

,Mσ2
,Mσ3

,Mσ4
.

As may be seen in Table 5, the coefficientwise backward errors are well predicted by Theorem 3.7, with
the exception of the polynomial p6. In [16] it was also observed that the coefficientwise backward error for
p6, when the Frobenius companion matrix is used to compute its roots, was far more favorable than the
predicted one. For this polynomial and for the four Fiedler matrices Mσ1

,Mσ2
,Mσ3

,Mσ4
, the coefficientwise

backward error comes from |ã0 − a0|/|a0|. The most important conclusion to be extracted from Table 5 for
our purposes is that the four Fiedler matrices Mσ1

,Mσ2
,Mσ3

, and Mσ4
behave equally well from the point

of view of backward errors in polynomials p1− p8.
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(a) Mσ1

p1 p2 p3 p4 p5 p6 p7 p8

Log Predicted CBE -12.0 -10.4 -13.4 -13.3 -13.7 -8.8 -12.3 -13.6

Log Observed CBE -13.9 -13.5 -14.2 -13.8 -13.9 -13.8 -14.7 -14.6

(b) Mσ2

p1 p2 p3 p4 p5 p6 p7 p8

Log Predicted CBE -12.3 -12.1 -10.3 -13.3 -13.4 -9.3 -13.2 -13.3

Log Observed CBE -13.8 -14.0 -12.0 -13.8 -13.6 -14.1 -13.7 -13.9

(c) Mσ3

p1 p2 p3 p4 p5 p6 p7 p8

Log Predicted CBE -12.1 -12.9 -13.5 -13.0 -13.7 -8.8 -12.3 -13.5

Log Observed CBE -14.0 -13.8 -13.7 -14.1 -13.9 -13.8 -14.7 -14.3

(d) Mσ4

p1 p2 p3 p4 p5 p6 p7 p8

Log Predicted CBE -12.3 -12.8 -12.8 -13.5 -13.3 -9.6 -13.9 -13.7

Log Observed CBE -14.0 -14.2 -13.4 -14.1 -13.9 -14.0 -15.1 -14.1

Table 5: Decimal logarithms of the predicted and observed coefficientwise backward error for the Fiedler matrices
Mσ1 ,Mσ2 ,Mσ3 ,Mσ4 of the eight polynomials p1-p8.

5 The Sylvester space of Fiedler matrices

The study of the geometry of matrix spaces sheds light on the explanation of numerical processes involving
matrices or matrix pencils. In particular, the theory of orbits has been used in the analysis of errors of
the algorithms for computing eigenvalues and canonical forms (see [1], [14, 15] and [16]). In this section,
and inspired by the motivating paper by [16], we analyze from a geometrical point of view the polynomial
root-finding problem solved as an eigenvalue problem with Fiedler companion matrices. Our main result is
Theorem 5.4, where we prove that the space of Sylvester matrices associated with a given Fiedler matrix
Mσ is transversal to the similarity orbit of Mσ. This result extends the corresponding one for Frobenius
companion matrices [16, Prop. 2.1].

Let p(z) be a monic polynomial as in (1) and let Mσ be a Fiedler matrix of p(z). Let us consider the
Euclidean matrix space Cn×n with the usual Frobenius inner product

(A,B) = tr(AB∗),

where M∗ denotes the conjugate transpose of M ∈ Cn×n. In this space, the set of matrices similar to a given
matrix A ∈ Cn×n is a differentiable manifold in Cn×n. This manifold is the orbit of A under the action of
similarity:

O(A) := {SAS−1 : det(S) 6= 0}.

We will refer to the elements of a manifold as points, even though all manifolds considered in this paper are
manifolds whose points are matrices.

It is known that the tangent space of O(A) at A is the set

TAO(A) := {AX −XA for some X ∈ Cn×n}.

The normal space of O(A) at A, denoted by NAO(A), is the set of matrices orthogonal to any matrix in
TAO(A):

NAO(A) := {Y ∈ Cn×n such that (Y, V ) = 0, for all V ∈ TAO(A)},

34



and the centralizer of A is the set of matrices commuting with A:

C(A) := {X ∈ Cn×n such that AX −XA = 0}

The following facts are already known:

(a) C(A∗) = NAO(A) (see [1, Lemma, p. 34]).

(b) If A is a non-derogatory matrix, then:

(b1) C(A) = {q(A) : q is a polynomial} (see [23, Th. 3.2.4.2]).

(b2) dimC(A) = n (see [1, Corollary, p. 35]).

(c) Mσ is a non-derogatory matrix, for all σ.

For claim (c), just recall that Mσ is similar to C1, and that C1 is non-derogatory (see [23, p. 147]).
As a consequence of claims (a)–(c) above, we have that dimNMσ

O(Mσ) = n, for all σ, so there is a basis
of NMσ

O(Mσ) consisting of n matrices which are polynomials in M∗σ . This is stated in Proposition 5.1.

Proposition 5.1. Let p(z) = zn +
∑n−1
k=0 akz

k be a monic polynomial, σ : {0, 1, . . . , n− 1} → {1, . . . , n} be
a bijection, Mσ be the Fiedler matrix of p(z) associated with the bijection σ, and let pd(z) be the dth Horner
shift of p(z), for d = 0, 1, . . . , n. Set p0(Mσ) = In and

pn−k(Mσ) = Mn−k
σ + an−1M

n−k−1
σ + · · ·+ ak+1Mσ + akI, for k = 1, . . . , n− 1.

Then {pk(Mσ)∗}n−1k=0 is a basis for NMσ
O(Mσ).

Note that the set {pk(Mσ)∗}n−1k=0 is linearly independent because, since Mσ is non-derogatory, its minimal
polynomial coincides with its characteristic polynomial. Any n linearly independent polynomials in M∗σ
would serve as a basis for NMσ

O(Mσ), but in Section 3.2.1 we have seen that the matrices pk(Mσ) play an
important role in determining how the coefficients of the characteristic polynomial of Mσ change when the
matrix is perturbed (see (23)).

First order perturbations of the coefficients of p(z), with p(z) = det(zI − C1), have been studied in [16].
To do so, the authors decompose the perturbation matrix E as

E = Etan + Esyl, (40)

where Etan belongs to the tangent space to O(C1) at C1 and Esyl is of the form

Esyl =


E11 . . . E1n

0 . . . 0
...

. . .
...

0 . . . 0

 .
The matrix Esyl belongs to the tangent space (at any point) to the Sylvester space of C1. We recall that the
(affine) Sylvester space of C1 is the set of all matrices of the form

E11 E12 . . . E1n

1 0 . . . 0
. . .

. . .
...

1 0

 ,
that is, the set of “all first Frobenius companion matrices”2. It may be proved that, to first order in
E, the matrix Etan does not affect the coefficients of p(z). Below, we prove an equivalent result for any
Fiedler matrix Mσ. For this, we first define the Sylvester space of any Fiedler matrix, which is a natural
generalization of the Sylvester space of C1.

2We note that the companion matrix considered in [16] is not exactly C1, but the companion matrix obtained from C1 in
(2) after performing a symmetry through the main anti-diagonal, and accordingly with the Sylvester space.
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Definition 5.2. (Sylvester space of a Fiedler matrix) Let σ : {0, 1, . . . , n − 1} → {1, . . . , n} be a bijection.
Then, the (affine) Sylvester space associated with the bijection σ, denoted by Syl(σ), is the set of Fiedler
matrices associated with σ, that is,

Syl(σ) :=

{
Mσ(p) : p(z) = zn +

n−1∑
k=0

ckz
k, ck ∈ C

}
,

where Mσ(p) is the matrix in (9).

For example, the Sylvester space associated with the bijection σ, such that PCIS(σ) = (1, 1, 1, 0, 0, 0), is
the set of matrices of the form 

c6 c5 c4 c3 1 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 c2 0 1 0
0 0 0 c1 0 0 1
0 0 0 c0 0 0 0


,

where ck ∈ C, for k = 0, 1, . . . , 6, may take any value. The tangent space of Syl(σ) at a given point, denoted
by TSyl(σ), is the set of matrices that we get if we remove the entries identically equal to 1 in the matrix
above. In other words, the underlying vector space to the affine space. For example, for the previous bijection
σ, the tangent space of Syl(σ) is the set of matrices of the form

c6 c5 c4 c3 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 c2 0 0 0
0 0 0 c1 0 0 0
0 0 0 c0 0 0 0


,

where ck ∈ C, for k = 0, 1, . . . , 6, may take any value. Observe that the tangent space of Syl(σ) in any
matrix M ∈ Syl(σ) is independent of M . This is the reason why we just write TSyl(σ) without specifying
the base point.

In order to extend the transversality identity (40) to the Sylvester space of any Fiedler matrix, we first
need the following result, which is in turn an extension of [16, Eq. (5), p. 768].

Lemma 5.3. Let Esyl be a matrix in TSyl(σ) with nonzero entries equal to Esyl
0 , Esyl

1 , . . . , Esyl
n−1, where

the entry Esyl
k , for k = 0, 1, . . . , n − 1, is in the same position as the coefficient −ak in Mσ. Then, for

k = 0, 1, . . . , n− 1,
tr(Esyl pn−k−1(Mσ)) = −Esyl

k . (41)

Proof. Let p̃(z) = zn+
∑n−1
k=0 ãkz

k be the characteristic polynomial of Mσ +Esyl. We know, by Propositions
3.2 and 3.14, that ãk = ak − tr(Esyl pn−k−1(Mσ)) + O(‖Esyl‖2). But Mσ + Esyl is a Fiedler matrix of the

polynomial zn +
∑n−1
k=0(ak + Esyl

k )zk, therefore we have ãk = ak + Esyl
k . From these two formulas we get

tr(Esyl pn−k−1(Mσ)) +O(‖Esyl‖2) = −Esyl
k .

Since this last equation is true regardless of the value of Esyl
0 , Esyl

1 , . . . , Esyl
n−1, (41) follows.

Theorem 5.4. Let p(z) = zn +
∑n−1
k=0 akz

k be a monic polynomial, σ : {0, 1, . . . , n − 1} → {1, . . . , n} be a
bijection, and let Mσ be the Fiedler matrix of p(z) associated to the bijection σ. Then Syl(σ) is transversal
to O(Mσ) at Mσ, i.e., every matrix E ∈ Cn×n can be expressed as

E = Etan + Esyl, (42)

where Esyl ∈ TSyl(σ) and Etan ∈ TMσ
O(Mσ).
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Proof. Let Esyl be a matrix in TSyl(σ) with nonzero entries Esyl
k := −tr(E pn−k−1(Mσ)), for k = 0, 1, . . . , n−

1, where the entry Esyl
k is in the same position as −ak in Mσ. We may write the matrix E as Esyl + Etan,

where Etan = E − Esyl. We have to check that Etan ∈ TMσ
O(Mσ). Indeed, using Lemma 5.3,

tr(E pn−k−1(Mσ)) = tr(Esyl pn−k−1(Mσ))+tr(Etan pn−k−1(Mσ)) = tr(E pn−k−1(Mσ))+tr(Etan pn−k−1(Mσ)).

From this, we deduce that tr(Etan pn−k−1(Mσ)) = 0, for k = 0, 1, 2, . . . , n − 1. But, from Proposition 5.1,
we have that {pk(Mσ)∗}n−1k=0 is a basis for NMσ

O(Mσ), therefore Etan ∈ TMσ
O(Mσ).

Theorem 5.4, together with (41) show us that the component Etan of the perturbation matrix E does not
contribute to the first order term of ak(Mσ+E), so that only the “transversal complement” Esyl contributes
to first order. In other words:

ak(Mσ+E) = ak−tr(pn−k−1(Mσ)E))+O(‖E‖2) = ak−tr(pn−k−1(Mσ)Esyl)+O(‖E‖2) = ak(Mσ+Esyl)+O(‖E‖2).

Also, from the considerations above, if Esyl
k denotes, as in Lemma 5.3, the entry of Esyl which is located in

the same position as the coefficient −ak in Mσ, then we have, up to first order in E,

Esyl
k = ak(Mσ + E)− ak = −

n∑
i,j=1

p
(σ,k)
ij (a0, a1, . . . , an−1)Eij , (43)

as in (19), with p
(σ,k)
ij (a0, a1, . . . , an−1) given by Theorem 3.7. Recall that the remaining entries of Esyl are

zero. Hence, from (42) and (43) we may get explicit expressions for the entries of Etan = E −Esyl in terms
of the entries of E and the coefficients a0, a1, . . . , an−1.

We want to emphasize that in the approach followed by [16], the fact that Esyl is transversal to the
tangent space of O(C1) at C1 is key to get the first order expression for ak(C1 + E). More precisely: using
this transversality (namely, equation (42) with Esyl being the Sylvester space for C1), together with the

identity tr(pn−k(C1)Etan) = 0, and the explicit expression −Esyl
k−1 = tr(pn−k(C1)E), both them valid for

k = 1, . . . , n, they get an explicit expression for tr(pn−k(C1)E), which is the first order term of ak−1(C1+E).
This can be done because the matrices pn−k(C1), for k = 1, . . . , n, have a simple structure that allows to
compute tr(pn−k(C1)Esyl) easily and explicitly, for all k = 1, . . . , n. Unfortunately, for arbitrary Fiedler
matrices, to get explicit expressions of tr(pn−k(Mσ)E) by hand is quite involved. Hence, we have obtained
the first-order term of ak(Mσ +E) directly from adj(zI −Mσ). This approach is completely independent of
the transversality of Esyl and the tangent space, though, as we have seen in Theorem 5.4, this fact is still
true for arbitrary Fiedler matrices.

6 Conclusions

In this paper, we have analyzed some numerical features of the polynomial root-finding problem when
considered as a standard eigenvalue problem by means of Fiedler companion matrices. In particular, we
have described the first-order change of the characteristic polynomial of any Fiedler matrix under small
perturbations of the matrix. This description has led us to conclude that polynomial root-finding algorithms
based on backward stable eigenvalue algorithms using Fiedler companion matrices, are backward stable only
if ‖p‖∞ is moderate. More precisely, given a monic polynomial p(z), if p̃(z) denotes the monic polynomial
whose roots are the computed eigenvalues of a Fiedler companion matrix of p(z), obtained with a backward
stable eigenvalue algorithm, then it is not possible to guarantee, in general, that

‖p̃− p‖∞
‖p‖∞

= O(u),

where u is the machine epsilon of the computer. Namely, the computed roots of p(z) are not necessarily the
roots of a nearby polynomial. We have seen, however, that

‖p̃− p‖∞
‖p‖∞

= O(u)‖p‖2∞,
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for any Fiedler companion matrix other than the first and second Frobenius companion matrices, and that

‖p̃− p‖∞
‖p‖∞

= O(u)‖p‖∞,

for the first and second Frobenius companion matrices (which are particular cases of Fiedler matrices).
Extensive numerical experiments have been included to illustrate these theoretical results.
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