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SUMMARY
A computational method is given for solving the forward modeling problem for transient elec-
tromagnetic exploration. Its key features are discretization of the quasi-static Maxwell’s equa-
tions in space using the first-kind family of curl-conforming Nédélec elements combined with
time integration using rational Krylov subspace methods. We show how rational Krylov sub-
space methods may be used to solve the same problem in the frequency domain followed by a
synthesis of the transient solution using the fast Hankel transform, arguing that the pure time-
domain is more efficient. We also propose a simple method for selecting the pole parameters of
the rational Krylov subspace method which leads to convergence within an a priori determined
number of iterations independent of mesh size and conductivity structure. These poles are re-
peated in a cyclic fashion, which, in combination with direct solvers for the discrete problem,
results in significantly faster solution times than previously proposed schemes.
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1 INTRODUCTION

XXXXXXXXXXXXXXXXXXX

The rapid numerical inversion and simulation of 3-D electromag-
netic (EM) measurements to obtain maps of electromagnetic con-
ductivity of subsurface regions of interest remains one of the major
computational challenges of geoelectromagnetic prospecting. The
forward simulation or modeling step, in which the response of a
given conductivity distribution is computed, is a key element in the
inversion process since it must be carried out multiple times for
each inversion. The availability of fast forward modeling codes is
therefore of crucial importance.

A broad distinction in EM forward modeling schemes is be-
tween time-domain and frequency-domain methods. In the first, the
time evolution of electromagnetic fields is propagated forward in
time, whereas in the latter the Fourier components of these fields
are computed for a suitable collection of frequencies, which are
then transformed numerically to the time domain. Both approaches
are mathematically equivalent and, as we demonstrate below, can
be approximated to desired accuracy using rational Krylov sub-
space approximations; however, as will become clear, simpler and
more accurate numerical methods for TEM forward modeling re-
sult when performing all calculations in the time domain.

The finite-difference time-domain (FDTD) scheme introduced
by Yee (1966) based on staggered tensor product grids in space has
been widely used to model responses of 2-D and 3-D conductivity
structures by time-stepping (Taflove 1995). The Yee discretization
combined with explicit and implicit time-stepping also forms the
basis of transient electromagnetic modeling in the geophysics liter-
ature. Among these are Oristaglio and Hohmann (1984), where the
2-D problem of transient electromagnetics is solved with an explicit
time-integration scheme proposed by DuFort and Frankel (1953)

combined with an upward continuation boundary condition at the
air-Earth interface. This approach was extended to model 3-D inho-
mogeneities in Wang and Hohmann (1993). Commer and G. New-
man (2004) present a finite difference scheme for the simulation
of transient electromagnetic fields generated by galvanic sources.
They were able to compute the initial conditions by solving a sta-
tionary 3-D Poisson problem, as it appears, e.g., in the numerical
solution of the 3-D DC resistivity problem. Moreover, their algo-
rithm was designed to run on parallel computer architectures.

The stability constraints of explicit time-stepping schemes for
the parabolic quasi-static Maxwell equations require excessively
small time steps for fine spatial resolution. Although each time step
consists of essentially a matrix-vector product, small time steps can
lead to high computational demands. As demonstrated in Oristaglio
and Hohmann (1984), the DuFort-Frankel method allows the time
step to increase with the square root of simulation time as the inte-
gration progresses.

Unlike explicit schemes, implicit methods solve a linear sys-
tems of equations to obtain the solution for each desired time step.
M. M. Goldman and Stoyer (1983) have simulated transients for 2-
D structures with axial symmetry by implicit time-stepping. Haber
et al. (2002) simulated 3-D transients employing a backward Eu-
ler scheme, a variant of the implicit time-stepping method. At each
time step, they solved the system of linear equations arising from a
finite volume discretization. The system was solved with a precon-
ditioned biconjugate gradient method.

Transient electromagnetic fields may also be obtained by
inverse Fourier transformation of sufficiently many frequency-
domain solutions. G. A. Newman et al. (1986) implemented an
integral equation formulation in the frequency domain, and trans-
formed the solutions back to the time domain using a fast Han-
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kel transform. A similar approach was proposed by Mulder et al.
(2008), who compute a small number of frequency-domain solu-
tions and transform a spline-interpolated set of solutions to the time
domain. The discrete times for which a transient can be calculated
depend on the sampling interval as well as the bandwidth of the
discrete solutions given in the frequency domain. Generally, for a
transient spanning from very early to late times, e.g., from 10−6

to 10−3 seconds, many—typically around 100—frequency-domain
solves are necessary, which requires an unreasonably high numeri-
cal effort.

Improvements over explicit or implicit time-stepping can be
achieved using Krylov subspace methods. Like time-stepping,
Krylov subspace methods for solving the quasi-static Maxwell’s
equations require a matrix vector product or linear system solve
at each iteration. However, the approximations at the desired time
values are obtained by choosing a near-best approximation from a
global subspace whose dimension increases with each Krylov iter-
ation. For the frequency-domain approach the solution at the de-
sired frequencies required for Fourier synthesis are approximated
in a similar fashion. V. L. Druskin and Knizhnerman (1988) used a
spectral Lanczos decomposition method to obtain an arbitrary num-
ber of frequency-domain solution at a substantially lower numerical
cost. Moreover, they pioneered the use of Krylov subspace methods
to evaluate transients directly in the time domain (V. L. Druskin and
Knizhnerman 1994; V. L. Druskin, Knizhnerman, and Lee 1999)
and subsequently extended their research towards rational Krylov
methods (Knizhnerman et al. 2009; V. L. Druskin, Knizhnerman,
and Zaslavsky 2009; V. Druskin, Lieberman, et al. 2010; V. Druskin
and Zaslavsky 2011; V. L. Druskin and Simoncini 2011; Zaslavsky
et al. 2011; V. Druskin, Remis, et al. 2014). Börner et al. (2008)
combined a shift-and-invert Krylov subspace projection method to
evaluate the matrix resolvent function in the frequency domain, and
the Fourier method to transform the obtained solutions back to time
domain using a fast Hankel transform.

In this paper, which is an extension of Börner et al. (2008) to
the time domain as well as higher order rational Krylov subspace
approximations, we demonstrate how optimal values of the param-
eters which determine a rational Krylov method known as poles can
be obtained a priori using a surrogate optimization technique. The
resulting poles are problem and mesh independent, and thus do not
change with discretization features such as the mesh size or spectral
interval of the system matrices. This property can be exploited to
model conductivity structures with large coefficient jumps, which
appear naturally when topography has to be included in the geo-
physical model. Moreover, our approach produces a cyclic pole se-
quence consisting of a small number of distinct poles selected to
guarantee an a priori determined level of accuracy in the transient
within a known number of iterations. When combined with direct
methods for the solution of the discrete linear systems, this leads
to considerable computational savings, since the number of matrix
factorizations equals the number of distinct poles employed (here
between one and four). In particular, the computational work for the
factorizations can be amortized over all rational Krylov iterations.
An additional benefit of using cyclically repeated poles is that the
linear systems associated with each pole can be solved concurrently
in a parallel computing environment. In this case a larger number
of cyclically repeated poles can be chosen to match the number of
available processing units.

The remainder of this paper is organized as follows: We
first recall in Section 2 the governing partial differential equations
(PDEs) of geoelectromagnetic induction in the time and frequency
domains and relate these via the Fourier transform. This is followed

by a description of the spatial discretization using Nédélec finite el-
ements on a tetrahedral mesh, specifying the discrete solutions in
the time and frequency domains. We reformulate the problem in
terms of matrix functions and demonstrate how a solution can be
obtained by a rational Arnoldi approximation. In Section 3 we de-
rive the rational Arnoldi method for the evaluation of the action of
a function of a matrix on a given vector and show how this can be
applied to solve the discrete problem in the time and frequency do-
mains. We show how optimal poles can be chosen for the rational
Krylov method for which the approximation converges uniformly
with respect to both spatial mesh size and conductivity structure.
We conclude in Section 4 with two numerical examples. As a first
problem, we deal with a simple model of a layered half-space to
demonstrate that our approach yields accurate results. We compare
the results obtained by our method to results obtained by inverse
Fourier transform of large-scale frequency-domain solutions. The
choice of this simple model ensures that our results can be com-
pared to an analytical solution. As a second numerical example, we
show the performance of our method for a homogeneous half-space
with topography.

2 MATHEMATICAL MODEL AND DISCRETIZATION

2.1 Governing Equations

We begin by recalling the governing equations of electromagnetic
induction. Neglecting displacement currents and eliminating the
magnetic field, the time-dependent Maxwell’s equations for the
electric field intensity e = e(x , t) read

σ∂te +∇×(µ−1∇× e) = −∂tj e, t ∈ R. (1)

The spatial coordinate x is assumed to vary in a computational do-
main Ω ⊂ R3 containing the air-Earth interface. The magnetic per-
meability µ = µ0 = 4π · 10−7 Vs/Am is that of free space and
the electric conductivity σ = σ(x ) is a given function defined on
Ω. Along the boundary ∂Ω of Ω we impose the perfect conductor
boundary condition

n × e = 0 , (2)

and we make the implicit assumption that the boundary has been
placed at sufficient distance from sources that the effects of the
boundary conditions are negligible compared to discretization er-
rors.

2.2 Source Terms

We consider a source density j e resulting from a stationary trans-
mitter with a driving current that is shut off at time t = 0, giving

j e(x , t) = q(x )H(−t), (3)

in which H denotes the Heaviside unit step function and the vector
field q denotes the spatial current pattern. Specifically, we consider
a transmitter consisting of a small horizontal square wire-loop car-
rying a stationary current, thus generating a good approximation of
a vertical magnetic dipole. In particular, we note that the resulting
current density is divergence-free, i.e.,

∇· q = 0. (4)
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2.3 Time-Domain Formulation

Denoting by δ(t) = ∂tH(t) the Dirac delta distribution concen-
trated at the origin t = 0, the combination of (1), (2) and (3) results
in the boundary value problem

σ∂te +∇×(µ−1∇× e) = q(x )δ(t) on Ω× R, (5a)

n × e = 0 along ∂Ω (5b)

for the electric field intensity e as a function of time and space on
the entire time axis. For time-domain simulations it is more conve-
nient to formulate (5) as the initial-boundary value problem

σ∂te +∇×(µ−1∇× e) = 0 on Ω× (0,∞), (6a)

e|t=0 = q on Ω, (6b)

n × e = 0 on ∂Ω× (0,∞). (6c)

2.4 Frequency-Domain Formulation

To formulate the same problem in the frequency domain, we apply
the Fourier transform in time, denoted by the operator F , to both
sides of (1), and introduce the transformed electric field

E(x , ω) := (Fe)(ω) =

∫ ∞
−∞

e(x , t) e−iωt dt, ω ∈ R,

where the angular frequency ω has units rad/s. Observing the the
correspondence (FH)(ω) = πδ(ω) + 1

iω
, where δ denotes the

Dirac delta distribution concentrated at zero, as well as the scal-
ing and derivative laws for the Fourier transform, we obtain the
frequency-domain equation

∇×(µ−1∇×E)+iωσE = −iωq
(
πδ(ω)− 1

iω

)
, ω ∈ R.

(7)
To simplify the problem, we introduce the impulse response electric
field ei = ei(x , t) as the solution of (1) with impulsive source
current j ei (x , t) = q(x )δ(t). In view of the relation (Fδ)(ω) ≡ 1,
its Fourier transform Ei = Ei(x , ω) satisfies

∇×(µ−1∇×Ei) + iωσEi = −iωq . (8)

We note that the fields E and Ei in equations (7) and(8) sat-
isfy the same homogeneous boundary condition (2) and the same
PDE with right-hand sides which are both scalar multiples of q ,
implying

E(ω) =

(
πδ(ω)− 1

iω

)
Ei(ω). (9)

Transforming back to the time domain results in the transient solu-
tion

e(x , t) =
1

2π

∫ ∞
−∞

E(x , ω) eiωt dω

=
1

2π

∫ ∞
−∞

(
πδ(ω)− 1

iω

)
Ei(ω) eiωt dω

=
1

2
Ei(0)− 1

2π

∫ ∞
−∞

Ei(ω)

iω
eiωt dω t ∈ R

(10)

where the DC component Ei(0) vanishes since the source field q
is divergence-free.

2.5 Finite Element Discretization

Our numerical approximation for both the time- and frequency-
domain formulations is based on a finite element discretization
in space using first-kind Nédélec spaces on unstructured tetrahe-
dral meshes. A theoretical background on Nédélec elements can
be found in Monk (2003); their implementation is described in
Gopalakrishnan et al. (2005) and Kirby (2014).

2.5.1 Variational Formulation

The standard variational formulation for Maxwell’s equations seeks
the electric field in the Sobolev space

H (curl; Ω) = {u ∈ L2(Ω)3 : ∇×u ∈ L2(Ω)3}.

Since we impose the homogeneous boundary condition (2) along
the entire boundary ∂Ω, we restrict the fields further to the subspace

V := {u ∈ H (curl; Ω) : n × u = 0 along ∂Ω}.

Multiplying (6) by an arbitrary stationary vector field φ ∈ V and
integrating by parts yields the variational problem of seeking e =
e(x , t) ∈ C([0,∞); V ) such that

(σ∂te,φ) + (µ−1∇× e,∇×φ) = 0 , t ∈ (0,∞), (11a)

(e|t=0,φ) = (q ,φ), (11b)

for all φ ∈ V , where (·, ·) denotes the inner product on L2(Ω)3.

2.5.2 Discretization in Space

We employ a Galerkin discretization in space obtained by restrict-
ing the trial and test functions e and φ in the weak form (11)
to a finite-dimensional subspace V h ⊂ V consisting of first-
kind Nédélec finite elements on a tetrahedral mesh Th. Nédélec
elements are a natural approximation of electromagnetic vector
fields in that they are curl-conforming, i.e., they mimic the tangen-
tial continuity properties of the fields under approximation, per-
mitting jumps in the normal field components whenever the con-
ductivity is discontinuous across an interfaces. On each tetrahe-
dron K ∈ Th the functions in V h consist of vector polynomials
v ∈P3

k−1 ⊕Sk,, where Pk denotes the space of polynomials in
three variables of complete degree k ∈ N0 and

Sk = {v ∈ P̃3
k : v · x = 0}

with P̃k denoting the space of homogeneous polynomials of (ex-
act) degree k. In our numerical experiments we have used Nédélec
elements of order k = 1 and k = 2, sometimes also known as lin-
ear and quadratic Nédélec elements. The discrete approximation
of the solution of the variational formulation (11) is then obtained
by restricting it to the subspace V h, i.e., by determining eh ⊂ V h

such that, for all test functions φ ∈ V h, there holds

(σ∂te
h,φ) + (µ−1∇× eh,∇×φ) = 0 , t > 0, (12a)

(eh|t=0,φ) = (q ,φ). (12b)

Expanding the discrete solution eh ∈ V h in a basis {φ1, . . . ,φN}
of V h, (12) becomes the ODE initial-value problem

M∂tu(t) + Cu(t) = 0, t ∈ (0,∞) Mu(0) = q, (13)

for the vector u(t) containing the N coefficients of the finite ele-
ment approximation eh(t) with respect to the Nédélec basis at time
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t ≥ 0. Here the mass and curl-curl matrices M and C as well as the
vector q of initial values are given in terms of the Nédélec basis by

[M]i,j = (σφj ,φi), [C]i,j = (µ−1∇×φj ,∇×φi),

[q]i = (q ,φi), for i, j = 1, . . . , N.

For the frequency-domain formulation we may employ the same
spatial discretization, in terms of which (8) becomes the linear sys-
tem of equations

(C + iωM)u(ω) = −iωq (14)

for the coefficient vector u(ω) of the impulse-response solution at
frequency ω with respect to the Nédélec basis.

2.5.3 Representation as Matrix Functions

The explicit solution of the semi-discretized time-domain problem
(13) is given in terms of the matrix exponential function

u(t) = exp(−tM−1C)M−1q = f t(A)b, (15)

with

f t(z) = exp(−tz), A = M−1C, b = M−1q.

Similarly, the finite element discretization (14) of the frequency-
domain problem (8) has the solution

u(ω) = −iω(C + iωM)−1q = −iω(A + iωI)−1b, (16)

so that

u(ω) = gω(A)b with gω(z) =
iω

z + iω
.

Applying the inverse Fourier transform (10) back to the time do-
main to the discrete frequency-domain solution vector u(ω) yields

(F−1u)(t) =
1

2π

∫ ∞
−∞

(A + iωI)−1beiωt dω. (17)

To show that the transformed discrete frequency-domain solution
agrees with that of the time domain, we express the latter using
contour integration. Recall that, as an entire function, the function
f t in (15) may be represented as the Cauchy integral

f t(z) =
1

2πi

∫
Γ

f t(ζ)

ζ − z dζ, (18)

where Γ is a contour surrounding the point z in the complex plane.
The same contour integral may be used to evaluate f t(A) provided
the contour Γ contains all eigenvalues of A in its interior. Since

M1/2AM−1/2 = M−1/2CM−1/2,

we see that A is similar to the matrix on the right-hand side,
which is symmetric and, since M is symmetric positive definite
and C symmetric positive semidefinite, is also symmetric positive
semidefinite. The eigenvalues of A therefore lie on the nonnegative
real axis. The zero eigenvalues of C are associated with discrete
gradient fields. These are not present in the given solution due to
the fact that the field q is divergence-free. We may therefore ig-
nore the zero eigenvalue and use the imaginary axis as the inte-
gration contour in (18). Parametrizing the imaginary axis by −iω,
ω ∈ (−∞,∞), we obtain

u(t) = f t(A)b =
1

2πi

∫
Γ

(ζI− A)−1f t(ζ) dζ b

=
1

2π

∫ ∞
−∞

(A + iωI)−1eiωt dω b,

which coincides with (17).

3 RATIONAL ARNOLDI APPROXIMATION

We have seen in the previous section that the space-discretized so-
lution (15) at time t as well as the frequency-domain solution (16)
at frequency ω can be expressed as the result of either the matrix ex-
ponential or resolvent function applied to a given vector. When the
matrix in question is large and sparse, as arises in the discretiza-
tion of partial differential operators such as Maxwell’s equations,
Krylov subspace approximations can be applied to obtain efficient
solution methods. In this section we briefly recall a very general
Krylov subspace algorithm known as the rational Arnoldi method
for approximating the action f(A)b, A = M−1C, of a generic
matrix function f using an orthogonalization procedure in the M-
inner product defined as 〈x, y〉M := yHMx with induced norm
‖x‖M :=

√
〈x, x〉M. Here yH denotes the complex conjugate trans-

pose of y. In the application to the discretized Maxwell operator
the symmetric positive definite matrix M defining the inner prod-
uct will be the finite element mass matrix, which is the continuous
L2(Ω) inner product restricted to the finite element space. Starting
with the vector v1 = b/‖b‖M, we construct the basis vector vj+1

M-orthogonal to v1, v2, . . . , vj using the recursion

vj+1hj+1,j = (I− A/ξj)
−1Avj −

j∑
i=1

vihi,j .

Collecting these basis vectors in a matrix Vm+1 =
[v1, v2, . . . , vm+1] ∈ CN×(m+1) and the orthogonalization coeffi-
cients in the upper Hessenberg matrix Hm = [hi,j ] ∈ C(m+1)×m,
it is easily verified that these quantities satisfy a rational Arnoldi
decomposition (see Ruhe (1994a) and Ruhe 1994b)

AVm+1(Im + HmXm) = Vm+1Hm,

where Xm = diag(ξ−1
1 , ξ−1

2 , . . . , ξ−1
m ) ∈ Cm×m and Im ∈

C(m+1)×m is the identity matrix with an appended bottom row of
zeros. Note that VHm+1MVm+1 = Im+1. Also note that the vector
vm+1 depends on the pole ξm but this is not so for the remaining
Krylov basis vectors v1, v2, . . . , vm; hence we can set ξm = ∞
without altering the span of Vm. In this case we obtain a reduced
rational Arnoldi decomposition

AVmKm = Vm+1Hm, Km = Im + HmXm, (19)

which can also be written in the form

AVm = VmHmK−1
m + hm+1,mvm+1e

T
mK−1

m . (20)

Using this decomposition one may construct the rational Arnoldi
approximation of order m defined by

fm := Vmf(HmK−1
m )VHmb ≈ f(A)b. (21)

We will see in the following that this approximation enjoys some
remarkable properties. Multiplying the decomposition (20) from
the left by VHmM, using the facts that VHmMvm+1 = 0 and
A = M−1C, we find the simple relation

VHmMAVm = VHmCVm = HmK−1
m := Am.

In principle, the projected m × m matrix Am can be computed
at little cost as HmK−1

m from quantities of the reduced rational
Arnoldi decomposition (19), however, if Km is ill-conditioned this
computation may suffer from numerical instabilities. In particular,
HmK−1

m may no longer be numerically Hermitian even though C
is. In such cases it is advisable to compute Am via explicit projec-
tion VHmCVm.

We next recall a theorem which characterizes the rational
Arnoldi approximation as the action of a rational function rm
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which interpolates the function f . Several variants of this result
have appeared in the literature, both for polynomial (Ericsson 1990;
Saad 1992) and rational Krylov spaces (Beckermann and Reichel
2009 or Güttel 2010, Theorem 5.8). Here in the following, Pm−1

denotes the linear space of all polynomials of degree at mostm−1,
and Pm−1/qm−1 is the linear space of rational functions of type
(m− 1,m− 1) with prescribed denominator qm−1.

Theorem 3.1. The rational Arnoldi approximation fm of f(A)b
associated with the reduced rational Arnoldi decomposition (19)
satisfies

fm = Vmf(HmK−1
m )VHmb = rm(A)b,

where rm ∈ Pm−1/qm−1 interpolates f in Hermite’s sense
(i.e., counting multiplicities) at the eigenvalues Λ(HmK−1

m ) =
Λ(VHmCVm), where qm−1(z) = (1 − z/ξ1)(1 − z/ξ2) · · · (1 −
z/ξm−1).

It follows from Theorem 3.1 that the rational Arnoldi approxima-
tion fm is exact if f is itself a rational function in Pm−1/qm−1,
i.e., a rational function of type (m − 1,m − 1) with prescribed
denominator qm−1. This exactness implies that fm satisfies a near-
optimality property in the M-norm. Similar results for optimality in
the 2-norm have been given in (Ericsson 1990; Saad 1992; Becker-
mann and Reichel 2009; Güttel 2010).

The following result is the key to error analysis of ra-
tional Krylov methods and the optimal selection of the poles
ξ1, . . . , ξm−1, as it bounds the approximation error in terms of the
interpolation error of rm on an interval of the real line:

Theorem 3.2. The rational Arnoldi approximation fm for f(A)b
associated with the reduced rational Arnoldi decomposition (19)
satisfies

‖f(A)b−fm‖M ≤ 2‖b‖M min
rm∈Pm−1/qm−1

max
z∈[α,β]

|f(z)−rm(z)|,

(22)
where [α, β] is an interval containing the eigenvalues of A =
M−1C.
Proof: A straightforward calculation using the triangle inequality
for vector norms and the fact that rm(A)b = Vmrm(Am)VHmb by
Theorem 3.1 shows

‖f(A)b− fm‖M
= ‖f(A)b− rm(A)b + rm(A)b− fm‖M
≤ ‖f(A)b− rm(A)b‖M

+ ‖Vmrm(Am)VHmb− Vmf(Am)VHmb‖M.

We now bound from above each of the two terms in this
sum. For the first term we use the facts that g(A) =
M−1/2g(M1/2AM−1/2)M1/2 for any function g such that g(A)
is a well-defined matrix function, the matrix M1/2AM−1/2 is Her-
mitian and similar to A, and ‖M−1/2x‖M = ‖x‖2. We obtain

‖(f − rm)(A)b‖M
= ‖M−1/2(f − rm)(M1/2AM−1/2)M1/2b‖M
= ‖(f − rm)(M1/2AM−1/2)M1/2b‖2
≤ ‖(f − rm)(M1/2AM−1/2)‖2‖M1/2b‖2
= ‖b‖M max

λ∈Λ(A)
|f(λ)− rm(λ)|.

For the second term we have

‖Vm(rm − f)(Am)VHmb‖M = ‖(rm − f)(Am)VHmb‖2
≤ ‖(rm − f)(Am)‖2‖VHmb‖2
≤ ‖b‖M max

λ∈Λ(A)
|rm(λ)− f(λ)|,

where we have used the facts ‖Vmx‖M = ‖x‖2 and ‖VHmb‖2 =
‖b‖M. Adding both inequalities and noting that Λ(Am) is con-
tained in the spectral interval of A, and taking the maximum over
all admissible rational functions rm ∈ Pm−1/qm−1 completes
the proof.

The stated results now enable us to propose our new strategy for
selecting the poles ξ1, ξ2, . . . , ξm−1 (the zeros of qm−1) for the
TEM forward modeling problem.

3.1 Error Estimation Using a Surrogate Problem

The near-optimality property stated in Theorem 3.2 means that the
optimization of parameters for the rational Arnoldi approximation
essentially reduces to the problem of finding a denominator poly-
nomial qm−1 such that the right-hand side of the error bound (22)
becomes small. Note that the zeros ξ1, . . . , ξm−1 of qm−1 corre-
spond to the poles used in the rational Arnoldi method for con-
structing a basis of the rational Krylov space. Given such a poly-
nomial qm−1 and an interval [α, β], the min-max expression on
the right of (22) could be computed by the Remez algorithm for
uniform best approximation of f on [α, β] (see, e.g., Meinardus
and Schumaker 1967). However, the computation of rational best
approximants can suffer numerical instabilities and, in addition,
our problem is complicated by the fact we are ultimately inter-
ested in rational approximation of parameter-dependent functions
f(z) = f t(z) = exp(−tz) or f(z) = gω(z) = iω/(z + iω) in
the time- and frequency-domain cases, respectively. We propose an
alternative approach which is tailored to our problem and computa-
tionally more robust: we will estimate the min-max expression by
using the rational Arnoldi method itself. For ease of exposition we
first consider the problem of parameter-independent approximation
of f and then introduce the parameter for f t or gω later.

Given the function f and a denominator polynomial qm−1,
our aim is to estimate the error

err(f, qm−1) := min
rm∈Pm−1/qm−1

max
z∈[0,+∞]

|f(z)− rm(z)|.

Note that we have formally set [α, β] = [0,+∞] because this will
allow us to obtain error bounds that are independent of the spectral
interval of A. The quantity maxz∈[0,+∞] |f(z)− rm(z)| will exist
if f is bounded on [0,+∞] and qm−1 has no poles there; both
conditions are naturally satisfied in our situation where f = f t or
f = gω , respectively.

In order to avoid the discretization of an unbounded inter-
val we introduce the variable ẑ ∈ [1, 2], the transformation z =
(ẑ − 1)−1 − 1, the transformed function f̂(ẑ) = f(z), and the
transformed denominator q̂m−1(ẑ) = (1−ẑ/ξ̂1) · · · (1−ẑ/ξ̂m−1),
where each ξ̂j = (ξj + 1)−1 + 1. Instead of the above expression
for the error we now consider

err(f, qm−1) = min
r̂m∈Pm−1/q̂m−1

max
ẑ∈[1,2]

|f̂(ẑ)− r̂m(ẑ)|.

We then use the rational Arnoldi method for approximating f̂(Â)b̂

in the Euclidian inner product with a diagonal surrogate matrix Â
having sufficiently dense eigenvalues in [1, 2], and the vector b̂ =
[1, . . . , 1]T . Let the associated rational Arnoldi approximation be
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denoted as f̂m = r̂m(Â)b̂. Then by the definition of Â and b̂ we
have

‖f̂(Â)b̂− f̂m‖∞ = max
λ̂∈Λ(Â)

|f̂(λ̂)− r̂m(λ̂)|

≤ max
ẑ∈[1,2]

|f̂(ẑ)− r̂m(ẑ)|

= err(f, qm−1),

(23)

where the expression on the left-hand side is easy to compute as
f̂(Â)b̂ is explicitly known (a function of a diagonal matrix is the
diagonal matrix of the function values). Note that building a ratio-
nal Krylov basis with Â is computationally inexpensive as we only
need to solve linear systems with a diagonal matrix.

As becomes clear from (23) we can only compute a lower
bound for err(f, qm−1) with the described procedure. However,
the inequality in (23) can be expected to be sufficiently sharp if
Λ(Â) is a sufficiently dense discretization of [1, 2], so that “spec-
tral adaptation” in the rational Arnoldi method does not yet occur
(which means that the method behaves as if the spectrum of Â were
a continuum). A detailed analysis of spectral adaptation in the ratio-
nal Arnoldi method is given in Beckermann, Güttel, and Vandebril
(2010) and Beckermann and Güttel (2012), where it is shown that
the region of “deflated eigenvalues” depends on the ratio m/N̂ ,
that is, the number of rational Arnoldi iterations m compared to
the size N̂ of the surrogate matrix Â. For all numerical results re-
ported below, specifically in Table 1, we have used m ≤ 72 and
found that, with a diagonal matrix Â with N̂ = 3000 equidistant
eigenvalues in the interval [1, 2], no noticeable spectral adaptation
occurred. A further increase of N̂ did not change the results in any
digit reported in Table 1.

We remark that more elaborate strategies for choosing N̂ and
the eigenvalues of the surrogate Â could be motivated by the inter-
polation characterization in Theorem 3.1. For example, one could
start with a small number of N̂1 = 2m equispaced eigenvalues and
then refine the spectrum to N̂2, N̂3, . . . eigenvalues by adding ge-
ometric means of rational Ritz values. We have not implemented
such a strategy here as the pole optimization is a one-time calcula-
tion requiring negligible computing time compared to the solution
of the forward modeling problem.

3.2 Pole Optimization

As we shall argue below that there is no advantage to performing
the forward modeling in the frequency domain, we shall restrict
the following discussion to the time-domain case where f(z) =
f t(z) = e−tz .

Now that err(f, qm−1) can be estimated efficiently for a
given qm−1 and any function f = f t (all Arnoldi approximants
f̂tm for f t(Â)b̂ can be extracted from the same rational Krylov
space), it remains to find a fixed “optimal” qm−1 which minimizes
err(f t, qm−1) uniformly for all parameters t ∈ [tmin, tmax]. This
is a constrained nonlinear optimization problem:

(P0) Find qm−1(z) =
∏m−1
j=1 (1− z/ξj) such that

max
t∈[tmin,tmax]

err(f t, qm−1) ≈ max
t∈[tmin,tmax]

‖f̂ t(Â)b̂− f̂
t

m‖∞

is minimal, with the constraint that the poles ξj be negative.

To enable the efficient solution of this problem we have ap-
plied two further constraints. First, we assume that m− 1 is divis-

ible by an integer ` < m and qm−1(z) is factored in the form

qm−1(z) =
∏̀
j=1

(1− z/ξj)(m−1)/`.

This reduces the problem of finding m − 1 parameters to that of
finding merely ` parameters. Recall again that the poles ξ1, . . . , ξ`
correspond to shifts in linear system solves, so reusing these shifts
for (m − 1)/` rational Arnoldi iterations is also convenient when
direct solvers are employed. Note, however, that this constraint on
the factorization of qm−1 leads to the somewhat counter-intuitive
effect that, for m constant, the error err(f t, qm−1) may slightly
increase as the number of distinct parameters ` increases (see, for
example, Table 1).

Second, for f t = exp(−tz) we can restrict the set of
admissible poles further by using a result of Andersson 1981,
which states that the best uniform rational approximant rm−1(z)
of type (m − 1,m − 1) with negative poles that minimizes
maxz∈[0,∞] | exp(−z) − rm−1(z)| is of the form pm−1(z)/(1 −
z/ξ)m−1, i.e., all poles are concentrated at ξ < 0. Moreover,
by scaling z to tz we find that the best uniform rational ap-
proximant rm−1(z) of type (m − 1,m − 1) with negative poles
that minimizes maxz∈[0,∞] | exp(−tz)− rm−1(z)| is of the form
pm−1(z)/(1− tz/ξ)m−1 with some polynomial pm−1 ∈Pm−1,
i.e., all poles are concentrated at tξ < 0. It is therefore rea-
sonable to restrict the poles ξ1, . . . , ξ` for uniform approxima-
tion of f t(z) = exp(−tz) with t ∈ [tmin, tmax] to the inter-
val [ξmin, ξmax], where ξmin < 0 is the optimal concentrated
pole of the rational approximant pm−1(z)/(1 − tz/ξmin)m−1 for
exp(−tminz), and ξmax = ξmintmin/tmax.

To summarize, we arrived at the following optimization
problem:

(P1) Find qm−1(z) =
∏`
j=1(1− z/ξj) such that

max
t∈[tmin,tmax]

err(f t, qm−1) ≈ max
t∈[tmin,tmax]

‖f̂ t(Â)b̂− f̂
t

m‖∞

is minimal, with the constraint being that all ξj ∈ [ξmin, ξmax].

We have used MATLAB to solve this minimization problem
for the time interval [tmin, tmax] = [10−6, 10−3], with m −
1 = 12, 24, . . . , 72 and ` = 1, 2, 3, 4. As this problem seems to
have many local minima, we determined the parameters ξ1, . . . , ξ`
by first performing a global search on a coarse discretization of
[ξmin, ξmax] with 100 logarithmically equispaced points, and then
refining the result using MATLAB’s fmincon routine. The surro-
gate problem was of size N̂ = 3000. The results are reported in
Table 1.

This table can be used in the following way: if no parallel so-
lution of linear systems is desired, Table 1 reveals that it is most
efficient to use two cyclically repeated poles. To determine the op-
timal poles for a time interval of, say, [10−6, 10−3], one reads off
the two poles in the first row for which the desired level of accu-
racy is reached. The first column of this row then gives the number
required rational Krylov iterations (m − 1) (the resulting rational
Krylov space is of dimension m). For example, to achieve an er-
ror level below 10−7 it is sufficient to run m − 1 = 36 rational
Krylov iterations and repeat the two poles ξ1 = −3.32e + 4 and
ξ2 = −3.88e + 06 cyclically 18 times. By the scaling argument
given above, the table can also be used for other time intervals con-
sisting of 3 decades. For the time interval [10−5, 10−2], for exam-
ple, the poles have to be relaced by ξ1/10 and ξ2/10.
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[Table 1 about here.]

The poles in Table 1 have been optimized to give a uniform ap-
proximation over a time interval. We note that it is also easily possi-
ble to optimize the poles with respect to a positive weight function
w(t) by minimizing maxt∈[tmin,tmax] w(t) · err(f t, qm−1). This
can be used to improve the approximation in certain parts of the
time interval, such as for late times, particularly when the asymp-
totic behavior of the transient is known from analytic solutions (cf.
Ward and Hohmann (1987)).

3.3 Relation to Existing Work and Other Pole Selection
Strategies

In this section we briefly review some other pole selection strate-
gies. For a more detailed survey we refer to Güttel 2013.

The problem of optimizing a single repeated negative pole for
approximating exp(−t0A)b for a single time point t0 was con-
sidered in Eshof and Hochbruck 2006. In case of a single pole
the corresponding rational approximation problem can be trans-
formed into an equivalent polynomial approximation problem, and
this problem can be solved numerically using the Remez algorithm
Eshof and Hochbruck 2006. Our problem of uniform approxima-
tion on a time interval [tmin, tmax] can be seen as a generalization,
but in the case of two or more cyclically repeated poles it does not
seem to be possible to find an equivalent polynomial formulation.
A result bounding the error of rational Arnoldi approximants with
cyclically repeated poles in terms of the error of single pole approx-
imants was given in Güttel 2010, p. 113–115.

A different route of computing poles asymptotically optimal
for all t > 0 was followed in V. L. Druskin, Knizhnerman, and
Zaslavsky 2009. Here the constructed negative poles are given in
terms of elliptic functions and it is shown that the rational Arnoldi
method with these parameters will converge for all time parameters
t > 0 with a geometric rate given by

lim sup
m→∞

‖ exp(−tA)b− ftm‖1/m ' exp

(
− π2

4 log(2/δ)

)
, (24)

where µ =
(

1−δ
1+δ

)2

and δ =
√

λmin
λmax

, with λmax and λmin denot-
ing the largest and smallest nonzero eigenvalue of A, respectively.
Note that the convergence rate on the right of (24) deteriorates with
a growing condition number λmax/λmin of A, hence this approach
cannot be expected to give convergence independent of mesh or
conductivity structure. On the other hand, the rate is independent
of the length of the time interval [tmin, tmax], so this approach be-
comes favourable when the condition number of A is moderate and
[tmin, tmax] is a very large interval. See V. Druskin, Lieberman, et
al. 2010 for an adaptive version of this pole selection approach. We
end by remarking that these asymptotically optimal pole sequences
consist of pairwise distinct poles, so no factorizations of shifted ma-
trices can be reused in the rational Arnoldi method when a direct
solver is employed.

3.4 Relation Between Frequency and Time Domain
Approaches

We have discussed an approach for approximating the transient of
the TEM solution directly in time domain. However, as mentioned
in Section 1, an alternative approach is to synthesize the time-
domain solution from frequency-domain solutions by computing

the inverse Fourier transform (10). The latter can be efficiently ap-
proximated numerically to desired accuracy by fast Hankel trans-
form (FHT) techniques as described in Johansen and Sørensen
(1979) and refined in Christensen (1990), where also bounds on the
number of frequency-domain solutions required for a sufficiently
accurate transient can be found. By using rational Krylov subspace
approximation in the frequency domain a uniformly accurate so-
lution approximation u(ω) is available for all frequencies as soon
as a Krylov subspace of sufficiently large dimension has been con-
structed (cf. Börner et al. (2008)). As a consequence, considerably
fewer frequency-domain problems need to be solved than necessary
to obtain an accurate transient via the FHT.

In both the time and frequency domains the rational Krylov
spaces are constructed using the same matrix A and initial vector
b, but may differ in the pole sequence, which should be chosen
in an optimal fashion for the function gω in the frequency domain
and f t in the time domain. We argue that the frequency domain ap-
proximation followed by FHT cannot yield a significantly better ap-
proximation than that obtained in the time domain: the FHT results
in a time domain approximation which is a linear combination of
vectors from the frequency domain Krylov space. One could then,
using the same poles as in the frequency domain, construct a ra-
tional Krylov approximation of f t(A)b, and the near-optimality of
the rational Krylov approximation (see Theorem 3.2) would select
an approximation which is at least as good as the FHT-transformed
frequency domain approximation. Using poles in the time domain
which are chosen in an optimal fashion for the function f t would
only further improve this approximation. For this reason we restrict
ourselves to time-domain examples in the following section.

4 NUMERICAL EXPERIMENTS

We present a series of numerical experiments for two model prob-
lems to illustrate the important features of the rational Arnoldi ap-
proximation of TEM in the time and frequency domains. In the first
set we consider the transient response of a vertical magnetic dipole
located atop a layered half-space. For this model problem there is
a closed-form solution available (see Ward and Hohmann 1987),
which can be used as a reference solution to analyze the contribu-
tions of the errors due to the boundary condition, the finite element
discretization and the rational Arnoldi approximation. We are able
to verify that the convergence of the rational Arnoldi approximation
is uniform in both time and frequency.

A model with terrain topography serves as a second numer-
ical example. We demonstrate that models incorporating surface
topography can be modeled without additional numerical effort. In
the past, the inclusion of the air half-space has often been avoided
due to specific limitations of the involved time integration meth-
ods. More specifically, all variants of the explicit Euler method,
e.g., the DuFort-Frankel method, require small time steps which
are bounded by the square root of the lowest electrical conductiv-
ity within the model. Typical values for the choice of the air half-
space conductivity range between 10−14 and 10−6 S/m. Polyno-
mial Krylov methods generally require more iterations when the
air layer is included in the discretization. In view of these limi-
tations it has often been desired to exclude the air layer from the
computational domain (Oristaglio and Hohmann 1984; Y. Gold-
man, Hubans, et al. 1986; Y. Goldman, Joly, et al. 1989; Wang
and Hohmann 1993). However, the physical effect of the insulat-
ing air layer on the electric field and its spatial derivative normal
to this plane can be expressed by a boundary condition imposed at
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the Earth’s surface. This boundary condition is non-local, i.e., it in-
corporates all degrees of freedom associated with tetrahedron faces
adjacent with this boundary. To express the boundary condition at
a single point at this plane, a convolution type integral has to be
assembled and incorporated into the discretized curl-curl operator
as a dense block matrix. Hence, the numerical effort for the compu-
tation of transients with a non-local boundary condition exhibits a
significantly lower efficiency due to the increased memory require-
ments. This poses a limit on the speed of the linear system solves
which form the numerical kernel of rational Krylov methods.

4.1 Layered Half-Space

We first consider the model of a layered half-space. A layer with
an electrical resistivity of 30 Ω ·m and a thickness of 30 m is em-
bedded in a homogeneous half-space of 100 Ω ·m at a depth of
100 m. A vertical magnetic dipole source is approximated by a
small 10× 10 m2 horizontal loop located at the Earth’s surface,
i.e., at z = 0.

The computational domain Ω consists of a cube of side length
2 km centered at the origin, which is also the center of the square
transmitter coil. We used the mesh generator of the COMSOL fi-
nite element package (Version 3.5a) to generate a tetrahedral mesh.
By making the line segments which form the transmitter coil suffi-
ciently small and fixing a sufficiently small maximal element size in
the vicinity of the observation point, a local refinement of the mesh
near transmitter and receiver was achieved. Fig. 1 shows the trace
of the tetrahedral mesh looking down on the surface z = 0, where
the local refinement in the vicinity of the dipole source is visible.
The mesh employed for the computations consists of 24,582 tetra-
hedra. The matrices M and C in the time- and frequency-domain
discretizations (13) and (14) have dimensions N = 27, 623 and
N = 152, 078 for the Nédélec spaces of order k = 1 and k = 2,
respectively.

Fig. 2 shows the decrease of the relative error to the true dis-
crete transient measured in the ‖ · ‖M-norm against the number of
rational Arnoldi iterations for spatial discretization with Nédélec
elements of order k = 1 (left column) and k = 2 (right column),
each using one, two and three cyclically repeated poles in the ra-
tional Arnoldi method (rows one, two and three). The poles were
optimized for a Krylov space of dimension 36 (cf. Tab. 1). Each
line corresponds to the transient of the electric field at for a dis-
crete set of times between t = 10−6s to 10−3s. The dashed black
line denotes the error level guaranteed uniformly for all times by
the number of poles according to Table 1, which are clearly seen
to be achieved. As one can observe both from Table 1 as well as
Fig. 2, using three (or four) poles does not result in a further error
decrease after m = 37 Arnoldi iterations compared to using only
two cyclically repeated poles. However, using a higher number of
cyclically repeated poles offers more potential for parallel solution
of the linear systems as mentioned in Section 1.

For the purpose of comparison a frequency domain-based so-
lution was computed in addition to the time domain approximation
via the rational Arnoldi method. To eliminate the error of applying
the rational Arnoldi method in the frequency-domain, we computed
the frequency domain solutions directly at all frequencies required
by the FHT in order to obtain a sufficiently accurate transient. In
the following, we refer to this approximation as the brute force
frequency-domain solution, which differs from the analytical so-
lution only by the spatial finite element discretization error. Fig. 3
shows, for a first-order Nédélec discretization in space, a compar-
ison of the accuracy of the transient evaluated at x = (100, 0, 0)

obtained for a rational Arnoldi approximation using Krylov spaces
of dimension m = 13 (left column) and m = 73 (right column)
based on one, two and three cyclically repeated poles (rows one,
two and three), against the analytical solution (black line) and the
brute force frequency domain approximation (green line). It can be
observed that an approximation essentially indistinguishable from
the brute force approximation is achieved already for m = 13. The
difference to the analytical solution is due to the spatial resolution,
which is improved in the analogous plots in Fig. 4 for a second-
order Nédélec discretization based on the same mesh. Here we ob-
serve that a larger Krylov space is necessary for the Arnoldi error
to reach the level of discretization error. Fig. 5 gives the error of
the transient against simulation time for Krylov spaces of different
dimensions for first (left column) and second (right column) order
Nédélec discretization. A summary of run times is given in Fig. 6,
where we observe the quadratic dependence on the Krylov space
dimension m with a higher constant for second-order Nédélec ele-
ments.

For the construction of the rational Arnoldi basis we have used
one, two, and three poles which have been repeated 1, 2, . . . , 6
times, thus yielding a rational Krylov space with m − 1 =
12, 24, . . . , 72. The appropriate poles are listed in Tab. 1. The nu-
merical effort is dominated by the number of LU factorization steps
necessary (one for each pole), and one additional LU factorization
for the evaluation of the vector b = M−1q. Even though a linear
system with A has to be solved in each Arnoldi iteration, the cyclic
repetition of the poles yields a remarkable saving in computational
time (Tab. 2).

[Table 2 about here.]

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

[Figure 4 about here.]

[Figure 5 about here.]

[Figure 6 about here.]

4.2 Homogeneous Subsurface with Topography

As outlined above, our proposed pole selection method yields ratio-
nal Arnoldi approximations which exhibit a uniform convergence
that is independent of the properties of the underlying spatial dis-
cretization. Therefore, it seems attractive to include the air layer
in the computational domain, which allows for the modeling of to-
pography. The use of finite elements for the spatial discretization
further adds to this benefit, as it allows for greater flexibility in
approximating a curved air-Earth interface. We demonstrate this
by computing transients generated by a vertical magnetic dipole
source laid out atop a homogeneous half-space in the vicinity of
a morphological hill-shaped feature. The interface between the air
and the conducting half-space shows a moderate morphology ac-
centuated at the center of the plane z = 0 around x = y = 0 m.
The hill has a height of 38 m and a circular shape with a diameter
of approximately 200 m (Fig. 7). At large distance from the hill, the
interface between air and Earth is a horizontal plane aligned with
z = 0. Fig. 7 shows the trace of the tetrahedral mesh from vari-
ous azimuth and elevation angles. A comparison of transients ∂tBz
measured at the plane y = 0 at the points x = [−10, 0, 130, 270]
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m and z = [0, 38, 0, 0] m are plotted in Fig. 8. A distinct distor-
tion of the transient signal is visible at early times in the vicinity of
the hill. Snapshots of the magnitude of the horizontal component of
the induced electrical current system J in A ·m−2 across the plane
y = 0 are given in Fig. 9 for times t = [10−6, 10−5, 10−4] s.

[Table 3 about here.]

Tables 2 and 3 give a breakdown of the run times required
for the different phases of the solution process for both numerical
test cases. The computations were carried out in MATLAB R2012b
pinned to 8 cores of an Intel Xeon E5-4620 (Sandy Bridge) sys-
tem (2.2 GHz). For the direct sparse linear solves we employed the
PARDISO solver (Schenk and Gärtner 2004) as contained in the
Intel MKL. It can be observed that the computation of the rational
Arnoldi approximant using formula (21) is negligible compared to
the construction of the rational Arnoldi decomposition (20). The
resulting run time is still far below the brute force approximation in
which all frequency domain solutions required for the FHT trans-
formation to the time domain are computed by solving a full finite
element system.

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

5 CONCLUSIONS

We have presented a computational method for 3-D transient elec-
tromagnetic forward modeling based on Nédélec finite element dis-
cretization in space and rational Krylov subspace approximation for
the time integration. Once the finite element discretization in space
is given, the method requires only the selection of a small number
of cyclically repeated poles which parametrize the rational Arnoldi
method. These poles can be obtained from Table 1 depending on the
desired accuracy or, if sparse direct solvers are to be employed for
the finite element systems in parallel, on the available level of par-
allelism. The attractive features of our rational Arnoldi method is
the uniform accuracy in time independent of spatial mesh width or
conductivity structure. Moreover, the cyclic reuse of a small num-
ber of poles allows the amortization of a small number of matrix
factorizations over the generation of the rational Krylov space. This
represents an advantage over previously proposed pole sequences
which are not mesh independent and require a new matrix factor-
ization at every Krylov iteration. If iterative methods are used to
solve the finite element systems an added benefit is that the poles
as given in Table 1 lie well separated from the origin, suggesting
that the resulting shifted linear systems are well-conditioned. By
expressing the time and frequency domain problems in terms of
matrix functions we have emphasized both the relationship of the
two formulations as well as how both can be solved using rational
Krylov subspace approximation.
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5 Absolute error between the transient ∂tBz evaluated at x = (100, 0, 0) m extracted from rational Arnoldi approximations
with m− 1 = 12, 24, . . . , 72 and the transient obtained by the analytical solution for the layered half-space.
6 Plot of run times in seconds required to obtain a rational Arnoldi approximation of order m for linear and quadratic Nédélec
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(a)

(b)

Figure 1. Trace of the tetrahedral finite element mesh on the plane z = 0 (a). Panel (b) zooms into the area of transmitter and receiver. The air layer, which
has a thickness of 1000 m, has been omitted in the plots.
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Figure 2. Errors of the rational Arnoldi approximations of dimension m = 1, 2, . . . , 37 with respect to a higher order rational Arnoldi approximation
(m = 42) for all desired times t ∈ [10−6 . . . 10−3] s, where the poles used are those optimized for m− 1 = 36.
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Figure 3. Comparison of transients ∂tBz evaluated at x = (100, 0, 0) m extracted from a rational Arnoldi approximation of order m = 13 and m = 73
(left and right columns, resp.) using 1, 2, and 3 cyclically repeated poles (top, middle, and bottom row, resp.) with an analytical solution, and the brute force
solution obtained by inverse Fourier transform of frequency-domain solutions (14) for the layered half-space model. Nédélec FE of order k = 1.
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Figure 4. Comparison of transients ∂tBz evaluated at x = (100, 0, 0) m extracted from a rational Arnoldi approximation of order m = 13 and m = 73
(left and right columns, resp.) using 1, 2, and 3 cyclically repeated poles (top, middle, and bottom row, resp.) with an analytical solution, and the brute force
solution obtained by inverse Fourier transform of frequency-domain solutions (14) for the layered half-space model. Nédélec FE of order k = 2.
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Figure 5. Absolute error between the transient ∂tBz evaluated at x = (100, 0, 0) m extracted from rational Arnoldi approximations with m − 1 =
12, 24, . . . , 72 and the transient obtained by the analytical solution for the layered half-space.
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(a)

(b)

(c)

Figure 7. Trace of the tetrahedral finite element mesh used for computation of the transients: Perspective view (a), view from above onto Earth’s surface (b),
vertical slice along the plane y = 0 (c). The air layer, which has a thickness of 1000 m, has been omitted in all pictures.
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Figure 8. Comparison of transients ∂tBz computed from a rational Arnoldi approximation of order m = 36 with an analytical solution, and a brute force
solution obtained by inverse Fourier transform of frequency-domain solutions for the topography model, Nédélec elements of order k = 2, taken at the plane
y = 0 at points x = [−130, 0, 130, 270] m, and z = [0, 38, 0, 0] m. The 20×20 m2 transmitter loop source is centered at x = 200 m.
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(a)

(b)

(c)

Figure 9. Snapshots of the induced current system given in A/m2 at times t = [10−6, 10−5, 10−4] s taken at the plane y = 0 m.
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Table 1. Table of parameters for building a rational Krylov space for approximating f t(z) = exp(−tz) for all t ∈ [10−6, 10−3] and z ∈ [0,∞]. The column
on the left corresponds to the dimension of the rational Krylov space minus 1. Each cell gives (an approximation for) the achievable uniform approximation
error of f t(z) for all t and z, with the required cyclically repeated poles ξj shown in brackets.

m− 1 error (1 repeated pole) error (2 repeated poles) error (3 repeated poles)

12 1.71e-02 2.39e-03 2.39e-03
(-5.66e+04) (-1.26e+04, -7.88e+05) (-8.17e+03, -1.70e+05, -9.99e+05)

24 9.64e-04 1.33e-05 1.42e-05
(-1.13e+05) (-2.52e+04, -2.56e+06) (-8.36e+03, -2.41e+05, -5.23e+06)

36 2.94e-05 7.45e-08 1.05e-07
(-1.57e+05) (-3.32e+04, -3.88e+06) (-1.27e+04, -3.76e+05, -6.95e+06)

48 2.00e-06 4.87e-10 8.86e-10
(-2.14e+05) (-4.59e+04, -5.00e+06) (-2.06e+04, -4.23e+05, -1.23e+07)

60 1.02e-07 2.63e-12 6.88e-12
(-2.69e+05) (-5.40e+04, -6.30e+06) (-2.60e+04, -5.34e+05, -1.38e+07)

72 3.82e-09 2.11e-14 5.66e-14
(-3.14e+05) (-6.35e+04, -7.58e+06) (-2.60e+04, -6.73e+05, -1.96e+07)

m− 1 error (4 repeated poles)

12 2.29e-03
(-7.04e+03, -3.35e+04, -7.61e+05, -7.61e+05)

24 1.21e-05
(-1.04e+04, -4.08e+04, -1.37e+06, -5.36e+06)

36 6.74e-08
(-2.76e+04, -4.08e+04, -2.45e+06, -6.51e+06)

48 5.08e-10
(-2.76e+04, -6.02e+04, -2.98e+06, -9.62e+06)

60 2.85e-12
(-4.08e+04, -7.32e+04, -4.41e+06, -9.62e+06)

72 2.23e-14
(-3.35e+04, -1.08e+05, -5.36e+06, -1.17e+07)
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Table 2. Summary of runtimes for the layered half-space model, which consists of 24,582 tetrahedra.

Nédélec order k = 1 k = 2

Problem size N = 27, 623 N = 152, 078

Brute-force solution 66.36 s 739.14 s
Construction of decomposition (20) for three
poles repeated 12 times

3.9 s 38.62 s

Evaluation of formula (21) 0.05 s 0.08 s
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Table 3. Summary of runtimes for the topography model, which consists of 28,849 tetrahedra.

Nédélec order k = 2

Problem size N = 181, 302

Brute-force solution 899.4 s
Construction of decomposition (20) for three poles repeated 12 times 44.86 s
Evaluation of formula (21) 0.09 s


