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Abstract. The Fréchet derivative Lf of a matrix function f : Cn×n �→ Cn×n controls the
sensitivity of the function to small perturbations in the matrix. While much is known about the
properties of Lf and how to compute it, little attention has been given to higher order Fréchet
derivatives. We derive sufficient conditions for the kth Fréchet derivative to exist and be continuous
in its arguments and we develop algorithms for computing the kth derivative and its Kronecker form.
We analyze the level-2 absolute condition number of a matrix function (“the condition number of
the condition number”) and bound it in terms of the second Fréchet derivative. For normal matrices
and the exponential we show that in the 2-norm the level-1 and level-2 absolute condition numbers
are equal and that the relative condition numbers are within a small constant factor of each other.
We also obtain an exact relationship between the level-1 and level-2 absolute condition numbers for
the matrix inverse and arbitrary nonsingular matrices, as well as a weaker connection for Hermitian
matrices for a class of functions that includes the logarithm and square root. Finally, the relation
between the level-1 and level-2 condition numbers is investigated more generally through numerical
experiments.

Key words. matrix function, Fréchet derivative, Gâteaux derivative, higher order derivative,
matrix exponential, matrix logarithm, matrix square root, matrix inverse, matrix calculus, partial
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1. Introduction. Matrix functions f : Cn×n �→ Cn×n such as the matrix expo-
nential, the matrix logarithm, and matrix powers At for t ∈ R are being used within
a growing number of applications including model reduction [5], numerical solution
of fractional partial differential equations [9], analysis of complex networks [13], and
computer animation [35]. Increasingly the Fréchet derivative is also required, with
recent examples including computation of correlated choice probabilities [1], registra-
tion of MRI images [6], Markov models applied to cancer data [14], matrix geometric
mean computation [24], and model reduction [33], [34]. Higher order Fréchet deriva-
tives have been used to solve nonlinear equations on Banach spaces by generalizing
the Halley method [4, sec. 3].

The Fréchet derivative of f at A ∈ Cn×n is the unique function Lf(A, ·) that is
linear in its second argument and for all E ∈ Cn×n satisfies

(1.1) f(A+ E)− f(A)− Lf(A,E) = o(‖E‖).

An important role of the Fréchet derivative is in the definition of condition numbers
for matrix functions [20, sec. 3.1], [26]. The absolute and relative condition numbers
measure the sensitivity of f(A) to small absolute and relative perturbations in A,
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1020 NICHOLAS J. HIGHAM AND SAMUEL D. RELTON

respectively, and are defined by

condabs(f,A) := lim
ε→0

sup
‖E‖≤ε

‖f(A+ E)− f(A)‖
ε

= max
‖E‖=1

‖Lf(A,E)‖,(1.2)

condrel(f,A) := lim
ε→0

sup
‖E‖≤ε‖A‖

‖f(A+ E)− f(A)‖
ε‖f(A)‖ = max

‖E‖=1
‖Lf(A,E)‖ ‖A‖

‖f(A)‖ .
(1.3)

Associated with the Fréchet derivative is its Kronecker form: the unique matrix
Kf (A) ∈ Cn2×n2

such that for any E ∈ Cn×n [20, eq. (3.17)]

(1.4) vec(Lf (A,E)) = Kf(A) vec(E),

where vec is the operator stacking the columns of a matrix vertically from first to
last. The condition numbers condabs and condrel can be estimated by applying a
matrix norm estimator to the Kronecker matrix Kf (A) [20, Alg. 3.22], which requires
evaluating the Fréchet derivative in multiple directions E. This idea has been used
in [2], [3], and [21] for the matrix exponential, the matrix logarithm, and matrix
powers, respectively.

We will refer to condabs and condrel as level-1 condition numbers. Since the
estimation of the condition number is itself subject to rounding errors it is important
to know the condition number of the condition number, which we call the level-2
condition number. It has been shown by Demmel [11, sec. 7] for matrix inversion, the
eigenproblem, polynomial zero-finding, and pole assignment in linear control problems
that the level-1 and level-2 (relative) condition numbers are equivalent; for matrix
inversion D. J. Higham [18] obtains explicit constants in the equivalence. Cheung
and Cucker [10] also derive tight bounds on the level-2 (relative) condition number
for a class of functions that includes the matrix inverse. One purpose of our work
is to investigate the connection between the level-1 and level-2 (absolute) condition
numbers of general matrix functions.

The level-2 condition number is intimately connected with the second Fréchet
derivative. There is little or no literature on higher Fréchet derivatives of matrix
functions. Another goal of this work is to develop the existence theory for higher order
derivatives and to derive methods for computing the derivatives. The computational
aspects of estimating the norms of certain quantities involving higher order derivatives
are considered in [22].

This work is organized as follows. In section 2 we define higher order Fréchet
derivatives and summarize previous research into derivatives of matrix functions. In
section 3 we obtain conditions for the existence and continuity of the kth order Fréchet
derivative and also give an algorithm for computing it given only the ability to com-
pute the matrix function f . The Kronecker matrix form of the kth order Fréchet
derivative is discussed in section 4 and an algorithm is given for computing it. In sec-
tion 5 we define and analyze the level-2 condition number. We derive an upper bound
for general functions f in terms of the second Kronecker form. For the exponential
function we show that the level-1 and level-2 absolute condition numbers are equal
and that the level-2 relative condition number cannot be much larger than the level-1
relative condition number. We also derive an exact relation between the level-1 and
level-2 absolute condition numbers of the matrix inverse, as well as a result connecting
the two absolute condition numbers for Hermitian matrices for a class of functions
that includes the logarithm and square root. Via numerical experiments we compare
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HIGHER ORDER FRÉCHET DERIVATIVES 1021

the level-1 and level-2 condition numbers with different functions on unstructured
matrices. Concluding remarks are given in section 6.

2. Higher order derivatives. The kth Fréchet derivative of f : Cn×n �→ Cn×n

at A ∈ Cn×n can be defined recursively as the unique multilinear function1 L
(k)
f (A)

of the matrices Ei ∈ Cn×n, i = 1: k, that satisfies

L
(k−1)
f (A+ Ek, E1, . . . , Ek−1)− L

(k−1)
f (A,E1, . . . , Ek−1)

− L
(k)
f (A,E1, . . . , Ek) = o(‖Ek‖),(2.1)

where L
(1)
f (A) is the first Fréchet derivative. Assuming L

(k)
f (A) is continuous at A,

we can view the kth Fréchet derivative as a mixed partial derivative

(2.2) L
(k)
f (A,E1, . . . , Ek) =

∂

∂s1
· · · ∂

∂sk

∣∣∣∣
(s1,...,sk)=0

f(A+ s1E1 + · · ·+ skEk),

as explained by Nashed [32, sec. 9] in the more general setting of Banach spaces. From
this equality it is clear that the order in which the derivatives are taken is irrelevant
[8, p. 313], [16, Thm. 8], [30, Thm. 4.3.4], so the Ei can be permuted without changing
the value of the Fréchet derivative. The kth Fréchet derivative of a matrix function
also satisfies the sum, product, and chain rules (the proofs given in [20, Chap. 3] for
the first Fréchet derivative are readily extended to higher order derivatives). Further
information on higher order Fréchet derivatives in Banach spaces can be found in
[12, sec. 8.12], [25, Chap. 17], and [30, sec. 4.3], for example.

We mention that some authors prefer to denote the kth Fréchet derivative by
Dkf(A)(E1, . . . , Ek). Our notation has the advantage of being consistent with the
notation in the matrix function literature for the first Fréchet derivative (1.1).

Previous research into higher derivatives of matrix functions has primarily focused
on different types of derivatives. Mathias [29] defines the kth derivative of a matrix
function by

(2.3)
dk

dtk

∣∣∣∣
t=0

f(A(t)),

where A(t) : R �→ C
n×n is a k times differentiable path at t = 0 with A(0) = A.

When A′(0) = E, the first derivative of f along the path A(t) is equivalent to the
first Fréchet derivative (assuming the latter exists) but this agreement does not hold
for higher order derivatives.

Najfeld and Havel [31] investigate a special case of Mathias’s type of derivative
that corresponds to A(t) = A+ tV . They find that [31, Thm. 4.13]

(2.4) f

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣
A V

. . .
. . .

A V
A

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

f(A) D
[1]
V f(A) · · · D

[q]
V f(A)

q!

f(A)
. . .

...
. . . D

[1]
V f(A)

f(A)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

1We write L
(k)
f (A) as shorthand for L

(k)
f (A, ·, . . . , ·) when we want to refer to the mapping at A

and not its value in a particular set of directions.
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1022 NICHOLAS J. HIGHAM AND SAMUEL D. RELTON

where the argument of f is a block q × q matrix and D
[k]
V f(A) = dk

dtk |t=0f(A(t)).
This is a generalization of the formula for evaluating a matrix function on a Jordan
block [20, Def. 1.2].

There is also a componentwise derivative for matrix functions (including the
trace and determinant) which Magnus and Neudecker summarize in [28, pp. 171–
173]. Athans and Schweppe apply this type of derivative to the matrix exponential
in [7].

3. Existence and computation of higher Fréchet derivatives. One ap-
proach to investigating the existence of higher order Fréchet derivatives is to general-
ize the series of results for the first Fréchet derivative found in [20, Chap. 3]. However,
this yields a somewhat lengthy development. Instead we present an approach that
leads more quickly to the desired results and also provides a scheme for computing
the Fréchet derivatives.

We first state three existing results on which we will build. Let D be an open
subset of C and denote by Cn×n(D, p) the set of matrices in Cn×n whose spectrum
lies in D and whose largest Jordan block is of size p.

Theorem 3.1 (Mathias [29, Lem. 1.1]). Let f be p − 1 times continuously dif-
ferentiable on D. Then f exists and is continuous on C

n×n(D, p).
Theorem 3.2. Let f be 2p− 1 times continuously differentiable on D. Then for

A ∈ Cn×n(D, p) the Fréchet derivative Lf(A,E) exists and is continuous in both A
and E ∈ Cn×n.

Proof. This is a straightforward strengthening of [20, Thm. 3.8] (which has p = n)
with essentially the same proof.

Theorem 3.3 (Mathias [29, Thm. 2.1]). Let f be 2p − 1 times continuously
differentiable on D. For A ∈ Cn×n(D, p),

(3.1) f

([
A E
0 A

])
=

[
f(A) Lf(A,E)
0 f(A)

]
.

We need the Gâteaux derivative of f at A in the direction E (also known as the
directional derivative), which is defined by

(3.2) Gf (A,E) =
d

dt

∣∣∣∣
t=0

f(A+ tE) = lim
ε→0

f(A+ εE)− f(A)

ε
.

Gâteaux differentiability is a weaker notion than Fréchet differentiability: if the
Fréchet derivative exists then the Gâteaux derivative exists and is equal to the Fréchet
derivative. Conversely, if the Gâteaux derivative exists, is linear in E, and is contin-
uous in A, then f is Fréchet differentiable and the Gâteaux and Fréchet derivatives
are the same [8, sec. X.4], [32, sec. 8, Rem. 3].

Now define the sequence Xi ∈ C2in×2in by

(3.3) Xi = I2 ⊗Xi−1 +

[
0 1
0 0

]
⊗ I2i−1 ⊗ Ei, X0 = A,

where ⊗ is the Kronecker product [17], [27, Chap. 12] and Im denotes the m × m
identity matrix. Thus, for example, X1 =

[
A E1

0 A

]
and

(3.4) X2 =

⎡
⎢⎣
A E1 E2 0
0 A 0 E2

0 0 A E1

0 0 0 A

⎤
⎥⎦ .

c© 2014 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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HIGHER ORDER FRÉCHET DERIVATIVES 1023

We will need the following lemma, which is a corollary of [23, Thm. 3.2.10.1] and
[29, Lem. 3.1].

Lemma 3.4. If the largest Jordan block of A ∈ Cn×n is of size p then the largest
Jordan block of Xk is of size at most 2kp.

Now we can give our main result, which generalizes Theorems 3.2 and 3.3.

Theorem 3.5. Let f be 2kp − 1 times continuously differentiable on D. Then

for A ∈ Cn×n(D, p) the kth Fréchet derivative L
(k)
f (A) exists and L

(k)
f (A,E1, . . . , Ek)

is continuous in A and E1, . . . , Ek ∈ C
n×n. Moreover, the upper right n× n block of

f(Xk) is L
(k)
f (A,E1, . . . , Ek).

Proof. Our proof is by induction on k, with the base case k = 1 given by Theo-
rems 3.2 and 3.3. Suppose the result holds for some m between 1 and k− 1. To prove
that it holds for m+ 1 consider

(3.5) f(Xm+1) = f

([
Xm I2m ⊗ Em+1

0 Xm

])
,

which exists by Lemma 3.4 and Theorem 3.1. If we apply (3.1) to f(Xm+1) we see
that its upper-right quarter is

(3.6) Lf (Xm, I2m ⊗ Em+1) = lim
ε→0

f(Xm + ε(I2m ⊗ Em+1))− f(Xm)

ε
,

since the Fréchet derivative equals the Gâteaux derivative.

Now consider Xm+ε(I2m⊗Em+1), which is the matrix obtained from (3.3) with A
replaced by A+ εEm+1. For ε sufficiently small the spectrum of Xm+ ε(I2m ⊗Em+1)
lies within D by continuity of the eigenvalues. Hence we can apply the inductive
hypothesis to both f(Xm) and f(Xm + ε(I2m ⊗ Em+1)), to deduce that their upper-
right n× n blocks are, respectively,

(3.7) L
(m)
f (A,E1, . . . , Em), L

(m)
f (A+ εEm+1, E1, . . . , Em).

Hence the upper-right n× n block of (3.6), which is also the upper-right n× n block
of f(Xm+1), is

[f(Xm+1)]1n = lim
ε→0

L
(m)
f (A+ εEm+1, E1, . . . , Em)− L

(m)
f (A,E1, . . . , Em)

ε

=
d

dt

∣∣∣∣
t=0

L
(m)
f (A+ tEm+1, E1, . . . , Em),(3.8)

which is the Gâteaux derivative of the mth Fréchet derivative in the direction Em+1.
From our earlier discussion of the Gâteaux derivative we need to show that (3.8)
is continuous in A and linear in Em+1 so that it is equal to the (m + 1)st Fréchet
derivative.

The continuity in A is trivial since f is sufficiently differentiable to be a continuous
function of Xm by Theorem 3.1 and the map from f(Xm) to its upper-right n× n
block is also continuous. Now we show the linearity in Em+1. Let us denote by
σ the map from a matrix to its upper-right n× n block. Recalling that (3.8) is the
upper-right n× n block of (3.6), since the first Fréchet derivative is linear in its second

c© 2014 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

07
/2

5/
14

 to
 8

6.
5.

34
.3

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1024 NICHOLAS J. HIGHAM AND SAMUEL D. RELTON

argument we have

d

dt

∣∣∣∣
t=0

L
(m)
f (A+ t(E + F ), E1, . . . , Em) = σLf (Xm, I2m ⊗ (E + F ))

= σLf (Xm, I2m ⊗ E) + σLf (Xm, I2m ⊗ F )

=
d

dt

∣∣∣∣
t=0

L
(m)
f (A+ tE,E1, . . . , Em)

+
d

dt

∣∣∣∣
t=0

L
(m)
f (A+ tF,E1, . . . , Em),

which shows the required linearity. We have now shown that the Gâteaux derivative
of the mth Fréchet derivative is equal to the (m+ 1)st Fréchet derivative. The proof
follows by induction.

As an example, Theorem 3.5 shows that the second derivative L
(2)
f (A,E1, E2) is

equal to the (1, 4) block of f(X2), where X2 is given by (3.4). More generally, the
theorem gives the following algorithm for computing arbitrarily high order Fréchet
derivatives.

Algorithm 3.6. Given A ∈ Cn×n, the direction matrices E1, . . . , Ek ∈ Cn×n,
and a method to evaluate the matrix function f (assumed sufficiently smooth), this

algorithm computes L = L
(k)
f (A,E1, . . . , Ek).

1 X0 = A
2 for i = 1: k
3 Xi = I2 ⊗Xi−1 + [ 0 1

0 0 ]⊗ I2i−1 ⊗ Ei

4 end
5 F = f(Xk)
6 Take L to be the upper-right n× n block of F .
Cost: Assuming that evaluating f at an n× n matrix costs O(n3) flops, applying

f naively to Xk gives an overall cost of O(8kn3) flops. Clearly this algorithm rapidly
becomes prohibitively expensive as k grows, though exploiting the block structure of
Xk could lead to significant savings in the computation.

To conclude this section we emphasize that the condition in Theorem 3.5 that
f has 2kp − 1 derivatives, which stems from a bound on the worst possible Jordan
structure of Xk, is not always necessary. It is easy to show there is always an E such
that X1 has a Jordan block of size 2p − 1, so the condition is necessary for k = 1.
However, in the appendix, we provide an example of a matrix A for which fewer than
4p − 1 derivatives are required for the existence of f(X2). Determining the exact
number of derivatives needed for the existence of f(Xk) given the Jordan structure
of A is an open problem.

4. Kronecker forms of higher Fréchet derivatives. The Kronecker form of
the first Fréchet derivative is given by (1.4). The principal attraction of the Kronecker
form is that it explicitly captures the linearity of the Fréchet derivative, so that
standard linear algebra techniques can be applied and certain explicit formulas and
bounds can be obtained. Indeed, in the Frobenius norm the absolute condition number
(1.2) of a matrix function is

(4.1) condabs(f,A) = ‖Kf(A)‖2,
as is easily shown from (1.4). For the 1-norm, condabs(f,A) is within a factor n
of ‖Kf(A)‖1 [20, Lem. 3.18], so for both the 1-norm and the 2-norm estimating
condabs(f,A) reduces to estimating a norm of Kf(A).

c© 2014 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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HIGHER ORDER FRÉCHET DERIVATIVES 1025

In this section we derive a Kronecker form for the kth Fréchet derivative and show
how it can be computed. We assume that the kth Fréchet derivative L

(k)
f (A,E1, . . . , Ek)

is continuous in A, which allows reordering of the Ei, as noted in section 2.

To begin, since L
(k)
f (A,E1, . . . , Ek) is linear in Ek we have

(4.2) vec(L
(k)
f (A,E1, . . . , Ek)) = K

(1)
f (A,E1, . . . , Ek−1) vec(Ek),

for some unique matrix K
(1)
f (A,E1, . . . , Ek−1) ∈ Cn2×n2

. Since the Ei can be per-
muted within the kth Fréchet derivative it follows that the Ei can be permuted in (4.2).
For example, using the third Fréchet derivative,

K
(1)
f (A,E1, E2) vec(E3) = K

(1)
f (A,E3, E1) vec(E2).

We can use this fact to show that K
(1)
f (A,E1, . . . , Ek−1) is linear in each Ei.

Lemma 4.1. Assuming that L
(k)
f (A) is continuous in A, K

(1)
f (A,E1, . . . , Ek−1)

is linear in each Ei.
Proof. Using the definition (4.2) and the freedom to reorder the Ei within K

(1)
f

we write

K
(1)
f (A,E1, . . . , Ei + Fi, . . . , Ek−1) vec(Ek)

= vec
(
L
(k)
f (A,E1, . . . , Ei + Fi, . . . , Ek−1, Ek)

)
= K

(1)
f (A,E1, . . . , Ei−1, Ei+1, . . . , Ek−1, Ek) vec(Ei + Fi)

= K
(1)
f (A,E1, . . . , Ei−1, Ei+1, . . . , Ek−1, Ek) (vec(Ei) + vec(Fi))

=
(
K

(1)
f (A,E1, . . . , Ei, . . . , Ek−1) +K

(1)
f (A,E1, . . . , Fi, . . . , Ek−1)

)
vec(Ek).

Since this is true for any matrix Ek, the matrices on the left- and right-hand sides

must be equal, and hence K
(1)
f (A,E1, . . . , Ek−1) is linear in Ei.

Now since K
(1)
f (A,E1, . . . , Ek−1) is linear in each Ei it is linear in Ek−1, and so

(4.3) vec(K
(1)
f (A,E1, . . . , Ek−1)) = K

(2)
f (A,E1, . . . , Ek−2) vec(Ek−1),

where K
(2)
f (A,E1, . . . , Ek−2) ∈ Cn4×n2

. By the same argument as in the proof of
Lemma 4.1 this matrix is also linear in each Ei and continuing this process we even-

tually arrive at K
(k)
f (A) ∈ Cn2k×n2

, which we call the Kronecker form of the kth
Fréchet derivative.

We can relate K
(k)
f (A) to the kth Fréchet derivative by repeatedly taking vec of

the kth Fréchet derivative and using vec(CXD) = (DT ⊗ C) vec(X); this is done in
the following sequence of inequalities, where in moving from the second to the third
equality we take C = In2 :

vec(L
(k)
f (A,E1, . . . , Ek)) = K

(1)
f (A,E1, . . . , Ek−1) vec(Ek)

= vec
(
K

(1)
f (A,E1, . . . , Ek−1) vec(Ek)

)
= (vec(Ek)

T ⊗ In2 )K
(2)
f (A,E1, . . . , Ek−2) vec(Ek−1)

= (vec(Ek−1)
T ⊗ vec(Ek)

T ⊗ In2) vec(K
(2)
f (A,E1, . . . , Ek−2))

= · · ·
= (vec(E1)

T ⊗ · · · ⊗ vec(Ek)
T ⊗ In2) vec(K

(k)
f (A)).(4.4)
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1026 NICHOLAS J. HIGHAM AND SAMUEL D. RELTON

In the remainder of this section we give an algorithm to compute the Kronecker

form. Consider K
(k)
f (A)em where em is the mth unit vector, so that this product

gives us the mth column of K
(k)
f (A). We know from the above that this can be

written as vec(K
(k−1)
f (A,E1)), where vec(E1) = em. Therefore to obtain the mth

column of K
(k)
f (A) we require K

(k−1)
f (A,E1) and as above we can find each column of

this matrix as K
(k−1)
f (A,E1)ep = vec(K

(k−1)
f (A,E1, E2) where E2 is chosen so that

vec(E2) = ep. Continuing in this way we obtain the following algorithm, of which
[20, Alg. 3.17] is the special case with k = 1.

Algorithm 4.2. The following algorithm computes the Kronecker form K
(k)
f (A)

of the kth Fréchet derivative L
(k)
f (A).

1 for m1 = 1:n2

2 Choose E1 ∈ Rn×n such that vec(E1) = em1 .
3 for m2 = 1:n2

4 Choose E2 ∈ Rn×n such that vec(E2) = em2 .
5 . . .
6 for mk = 1:n2

7 Choose Ek ∈ Rn×n such that vec(Ek) = emk
.

8 Compute L
(k)
f (A,E1, . . . , Ek) using Algorithm 3.6.

9 Set the mkth column of K
(1)
f (A,E1, . . . , Ek−1)

to vec(L
(k)
f (A,E1, . . . , Ek)).

10 end
11 . . .

12 Set the m2th column of K
(k−1)
f (A,E1) to vec(K

(k−2)
f (A,E1, E2)).

13 end

14 Set the m1th column of K
(k)
f (A) to vec(K

(k−1)
f (A,E1)).

15 end

Cost: O(8kn3+2k) flops, since line 8 is executed n2 times for each of the k matrices
Ei.

The cost of this method depends heavily upon k, which governs both the depth
of the algorithm and the cost of evaluating the kth Fréchet derivative in line 8. How-
ever, even calculating the Kronecker form of the first Fréchet derivative costs O(n5)
flops, so this algorithm is viable only for small matrices and small k. Nevertheless,

the algorithm is useful for testing algorithms for estimating ‖K(k)
f (A)‖ and hence

‖L(k)
f (A)‖.
5. The level-2 condition number of a matrix function. It is important to

understand how sensitive the condition number is to perturbations in A, since this
will affect the accuracy of any algorithm attempting to estimate it, such as those in
[2], [3], [21]. The quantity that measures this sensitivity is called the level-2 condition
number.

The level-2 condition number is obtained by taking the absolute (or relative)
condition number of the absolute (or relative) condition number, offering four pos-
sibilities. In this investigation we mainly limit ourselves to analyzing the absolute
condition number of the absolute condition number,

(5.1) cond
[2]
abs(f,A) = lim

ε→0
sup

‖Z‖≤ε

| condabs(f,A+ Z)− condabs(f,A)|
ε

,
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HIGHER ORDER FRÉCHET DERIVATIVES 1027

where condabs(f,X) is defined in (1.2). However in section 5.1 for the exponential we
also consider the relative condition number of the relative condition number,

(5.2) cond
[2]
rel(f,A) = lim

ε→0
sup

‖Z‖≤ε‖A‖

| condrel(f,A+ Z)− condrel(f,A)|
ε condrel(f,A)

.

We begin this section by deriving a bound for the level-2 absolute condition
number for general functions f in the Frobenius norm. Using the second Fréchet
derivative we have, from (1.2) and (2.1),

(5.3) condabs(f,A+ Z) = max
‖E‖=1

‖Lf(A,E) + L
(2)
f (A,E,Z) + o(‖Z‖)‖.

Therefore using the triangle inequality in the numerator of (5.1) we obtain

| condabs(f,A+ Z)− condabs(f,A)| =
∣∣∣∣ max
‖E‖=1

‖Lf(A,E) + L
(2)
f (A,E,Z) + o(‖Z‖)‖

− max
‖E‖=1

‖Lf(A,E)‖
∣∣∣∣

≤ max
‖E‖=1

‖L(2)
f (A,E,Z) + o(‖Z‖)‖.

Using this inequality in the definition of the level-2 condition number (5.1) we see

cond
[2]
abs(f,A) ≤ lim

ε→0
sup

‖Z‖≤ε

max
‖E‖=1

‖L(2)
f (A,E,Z/ε) + o(‖Z‖)/ε‖

= sup
‖Z‖≤1

max
‖E‖=1

‖L(2)
f (A,E,Z)‖

= max
‖Z‖=1

max
‖E‖=1

‖L(2)
f (A,E,Z)‖,(5.4)

where the supremum can be replaced with a maximum because we are working on
a finite-dimensional vector space and the maximum is attained for ‖Z‖ = 1 because
the second Fréchet derivative is linear in Z. We will see in subsection 5.2 that this
upper bound is attained for the matrix inverse and the Frobenius norm. Note that

the upper bound (5.4) can be thought of as ‖L(2)
f (A)‖.

Now restricting ourselves to the Frobenius norm and recalling that ‖X‖F =
‖ vec(X)‖2 we obtain

cond
[2]
abs(f,A) ≤ max

‖Z‖F=1
max

‖E‖F=1
‖L(2)

f (A,E,Z)‖F

= max
‖Z‖F=1

max
‖ vec(E)‖2=1

‖K(1)
f (A,Z) vec(E)‖2 by (4.2)

= max
‖Z‖F=1

‖K(1)
f (A,Z)‖2

≤ max
‖Z‖F=1

‖K(1)
f (A,Z)‖F

= max
‖ vec(Z)‖2=1

‖K(2)
f (A) vec(Z)‖2 by (4.3)

= ‖K(2)
f (A)‖2.(5.5)

For general functions f it is difficult to say more about the level-2 condition
number. In the next few subsections we focus on the matrix exponential, the inverse,
and a class of functions containing both the logarithm and the square root.
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1028 NICHOLAS J. HIGHAM AND SAMUEL D. RELTON

5.1. Matrix exponential. For the matrix exponential let us consider the level-2
absolute condition number in the 2-norm for normal matrices

(5.6) A = QDQ∗, Q unitary, D = diag(di).

Note first that for a normal matrix A, using the unitary invariance of the 2-norm
we have ‖eA‖2 = ‖eD‖2 = eα(D) = eα(A), where the spectral abscissa α(A) is the
greatest real part of any eigenvalue of A.

Van Loan [36] shows that normality implies condrel(exp, A) = ‖A‖2 and from
(1.2) and (1.3) we therefore have condabs(exp, A) = eα(A).

To analyze the level-2 absolute condition number of the matrix exponential we
require the following lemma.

Lemma 5.1. For a normal matrix A and an arbitrary matrix Z,

eα(A)−‖Z‖2 ≤ ‖eA+Z‖2 ≤ eα(A)+‖Z‖2 ,

and for a given A both bounds are attainable for some Z.
Proof. To get the lower bound we recall from [20, Thm. 10.12] that eα(X) ≤ ‖eX‖2

for any matrix X ∈ Cn×n. We also know from [15, Thm. 7.2.2] that the eigenvalues
of A+ Z are at most a distance ‖Z‖2 from those of A and so

eα(A)−‖Z‖2 ≤ ‖eA+Z‖2,

and it is easy to see that this inequality is attained for Z = − diag(ε, . . . , ε).
For the upper bound, using the Lie–Trotter product formula [20, Cor. 10.7] gives

eA+Z = lim
m→∞(eA/meZ/m)m.

Hence we have

‖eA+Z‖2 = lim
m→∞ ‖(eA/meZ/m)m‖2 ≤ lim

m→∞ ‖eA/m‖m2 ‖eZ/m‖m2
= lim

m→∞ eα(A/m)me‖Z/m‖2m = eα(A)+‖Z‖2 .

It is straightforward to show that Z = diag(ε, . . . , ε) attains this upper bound, com-
pleting the proof.

We can now show that the level-2 absolute condition number of the matrix expo-
nential is equal to the level-1 absolute condition number for normal matrices.

Theorem 5.2. Let A ∈ C
n×n be normal. Then in the 2-norm cond

[2]
abs(exp, A) =

condabs(exp, A).
Proof. By taking norms in the identity

(5.7) Lexp(A+ Z,E) =

∫ 1

0

e(A+Z)(1−s)Ee(A+Z)sds,

from [20, eq. (10.15)] we obtain

condabs(exp, A+ Z) = max
‖E‖2=1

‖Lexp(A+ Z,E)‖2

≤
∫ 1

0

‖e(A+Z)(1−s)‖2‖e(A+Z)s‖2 ds,
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HIGHER ORDER FRÉCHET DERIVATIVES 1029

and furthermore since scalar multiples of A are normal and α(sA) = sα(A) for s ≥ 0,
we can apply Lemma 5.1 twice within the integral to get

condabs(exp, A+ Z) ≤ eα(A)+‖Z‖2 .

Also we can obtain the lower bound

condabs(exp, A+ Z) = max
‖E‖2=1

‖L(A+ Z,E)‖2
≥ ‖Lexp(A+ Z, I)‖2

=

∥∥∥∥
∫ 1

0

e(A+Z)(1−s)e(A+Z)sds

∥∥∥∥
2

= ‖eA+Z‖2 ≥ eα(A)−‖Z‖2 ,

so that overall, combining these two inequalities,

(5.8) eα(A)−‖Z‖2 ≤ condabs(exp, A+ Z) ≤ eα(A)+‖Z‖2 .

With some further manipulation we can use these bounds to show that

(5.9) sup
‖Z‖2≤ε

| condabs(exp, A+ Z)− eα(A)| ≤ eα(A)+ε − eα(A).

From the definition of the level-2 condition number (5.1) we have

cond
[2]
abs(exp, A) = lim

ε→0
sup

‖Z‖2≤ε

| condabs(exp, A+ Z)− eα(A)|
ε

.

Using the upper bound (5.9) on the numerator we see that

cond
[2]
abs(exp, A) ≤ lim

ε→0

eα(A)+ε − eα(A)

ε
= eα(A).

For the lower bound we use the fact that condabs(exp, A+ εI) = eα(A)+ε (since A+ εI
is normal) to obtain

cond
[2]
abs(exp, A) ≥ lim

ε→0

| condabs(exp, A+ εI)− eα(A)|
ε

= lim
ε→0

eα(A)+ε − eα(A)

ε
= eα(A).

This completes the proof, since condabs(exp, A) = eα(A).
We can also show that the level-2 relative condition number cannot be much

larger than the level-1 relative condition number for normal matrices. In the next

result we exclude A = 0, for which cond
[2]
rel(exp, A) in (5.2) is undefined due to a zero

denominator.
Theorem 5.3. Let A ∈ Cn×n \ {0} be normal. Then in the 2-norm

1 ≤ cond
[2]
rel(exp, A) ≤ 2 condrel(exp, A) + 1.

Proof. Combining the definition of the level-2 relative condition number (5.2) with
the facts that condrel(exp, X) = condabs(exp, X)‖X‖2/‖eX‖2 for any X ∈ Cn×n, by
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1030 NICHOLAS J. HIGHAM AND SAMUEL D. RELTON

(1.2) and (1.3), and condrel(exp, A) = ‖A‖2 for normal A (mentioned at the beginning
of this section), we have

(5.10) cond
[2]
rel(exp, A) = lim

ε→0
sup

‖Z‖2≤ε‖A‖2

| condabs(exp, A+ Z) ‖A+Z‖2

‖eA+Z‖2
− ‖A‖2|

ε‖A‖2 .

For the lower bound note that for anyX ∈ Cn×n we have ‖eX‖2 ≤ condabs(exp, X)
[20, Lem. 10.15] and therefore taking X = A+ Z we obtain

condabs(exp, A+ Z) ‖A+Z‖2

‖eA+Z‖2
− ‖A‖2

ε‖A‖2 ≥ ‖A+ Z‖2 − ‖A‖2
ε‖A‖2 .

Using this bound in (5.10) we see that

cond
[2]
rel(exp, A) ≥ lim

ε→0
sup

‖Z‖2≤ε‖A‖2

‖A+ Z‖2 − ‖A‖2
ε‖A‖2

= lim
ε→0

(1 + ε)‖A‖2 − ‖A‖2
ε‖A‖2 = 1,

where the supremum is attained for Z = εA.
For the upper bound we first combine Lemma 5.1 and (5.8) to obtain

e−2‖Z‖2 ≤ condabs(exp, A+ Z)

‖eA+Z‖2 ≤ e2‖Z‖2 .

After some further manipulation we obtain the bound

| condabs(exp, A+ Z) ‖A+Z‖2

‖eA+Z‖2
− ‖A‖2|

ε‖A‖2 ≤ e2‖Z‖2 − 1

ε
+ e2‖Z‖2

‖Z‖2
ε‖A‖2 .

Using this inequality in (5.10) we see that

cond
[2]
rel(exp, A) ≤ lim

ε→0
sup

‖Z‖2≤ε‖A‖2

(
e2‖Z‖2 − 1

ε
+ e2‖Z‖2

‖Z‖2
ε‖A‖2

)

= lim
ε→0

(
e2ε‖A‖2 − 1

ε
+ e2ε‖A‖2

)

= 2‖A‖2 + 1

= 2 condrel(exp, A) + 1,

which completes the proof.

5.2. Matrix inverse. Assume now that A is a general nonsingular matrix. For
the matrix inverse f(A) = A−1, we have Lf (A,E) = −A−1EA−1. From the definition
of the absolute condition number (1.2) we have

condabs(x
−1, A) = max

‖E‖=1
‖A−1EA−1‖,

so for any subordinate matrix norm we conclude from [3, Lem. 3.4] that

(5.11) condabs(x
−1, A) = ‖A−1‖2,
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HIGHER ORDER FRÉCHET DERIVATIVES 1031

and that this maximum is attained for a rank-1 matrix E. However the level-2 absolute
condition number is best analyzed in the Frobenius norm, which is not subordinate.
The absolute condition number in the Frobenius norm is given by

condabs(x
−1, A) = max

‖E‖F=1
‖A−1EA−1‖F

= max
‖ vec(E)‖2=1

‖(A−T ⊗A−1) vec(E)‖2
= ‖(A−T ⊗A−1)‖2 = ‖A−1‖22,(5.12)

which is also shown in [18, eq. (2.4)]. Using (5.12) in the definition of the level-2
absolute condition number (5.1) we have that in the Frobenius norm

cond
[2]
abs(x

−1, A) = lim
ε→0

sup
‖E‖F≤ε

|‖(A+ E)−1‖22 − ‖A−1‖22|
ε

,

= lim
ε→0

sup
‖E‖F≤ε

|σ̃−2
n − σ−2

n |
ε

,

where σn and σ̃n are the smallest singular values of A and A + E, respectively.
Now consider the singular value decomposition (SVD) A = UΣV ∗, where Σ =
diag(σ1, . . . , σn) and σ1 ≥ · · · ≥ σn > 0. We know from [15, Cor. 8.6.2] that
σ̃n = σn + e where |e| ≤ ‖E‖2 ≤ ‖E‖F ≤ ε, and clearly the perturbation E that
maximizes the numerator of the above equation moves σn closer to 0. Therefore when
ε < σn the value of σ̃n that maximizes the numerator is σ̃n = σn−ε, which is attained
by E = U diag(0, . . . , 0,−ε)V ∗, with ‖E‖2 = ‖E‖F = ε. Continuing with this choice
of E we see that

cond
[2]
abs(x

−1, A) = lim
ε→0

|(σn − ε)−2 − σ−2
n |

ε
=

2

σ3
n

= 2‖A−1‖32.(5.13)

In fact the bound (5.4) on the level-2 absolute condition number is exact in this case.

We can see this by maximizing the Frobenius norm of L
(2)
x−1(A,E,Z) = A−1EA−1ZA−1

+A−1ZA−1EA−1 using standard results.

From (5.12) and (5.13) we obtain the following result.

Theorem 5.4. For nonsingular A ∈ Cn×n,

(5.14) cond
[2]
abs(x

−1, A) = 2 condabs(x
−1, A)3/2.

This difference between the level-1 and level-2 absolute condition numbers for the
inverse is intriguing since D. J. Higham [18, Thm. 6.1] shows that the relative level-1
and level-2 relative condition numbers for the matrix inverse are essentially equal for
subordinate norms.

5.3. Hermitian matrices. The previous two sections gave relationships be-
tween the level-1 and level-2 absolute condition numbers for the exponential and the
inverse. Interestingly these correspond closely to relationships between the first and
second derivatives of the respective scalar functions: for f(x) = ex, |f ′′| = |f ′| and
for f(x) = x−1, |f ′′| = |2(f ′)3/2|. It is therefore natural to wonder whether anal-

ogous relations, such as cond
[2]
abs(log, A) = condabs(log, A)

2 and cond
[2]
abs(x

1/2, A) =
2 condabs(x

1/2, A)3, hold for suitable classes of A. The next result, which applies to
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1032 NICHOLAS J. HIGHAM AND SAMUEL D. RELTON

Hermitian matrices and a class of functions that includes the logarithm and the square
root, provides a partial answer.

Theorem 5.5. Let A ∈ Cn×n be Hermitian with eigenvalues λi arranged so that
λ1 ≥ · · · ≥ λn and let f : R → R be such that f(A) is defined and f has a strictly
monotonic derivative. Then in the Frobenius norm,

(5.15) condabs(f,A) = max
i

|f ′(λi)|.

Moreover, if the maximum in (5.15) is attained for a unique i, say i = k (with k = 1
or k = n since f ′ is monotonic), then

(5.16) cond
[2]
abs(f,A) ≥ |f ′′(λk)|.

Proof. Using [20, Cor. 3.16] we see that condabs(f,A) = maxi,j |f [λi, λj ]|, where
f [λi, λj ] is a divided difference. But f [λi, λj ] = f ′(θ) for some θ on the closed interval
between λi and λj [20, eq. (B.26)], and since f ′ is monotonic it follows that |f [λi, λj ]| ≤
max(|f ′(λi)|, |f ′(λj)|), with equality for i = j, and (5.15) follows.

We can write A = QΛQ∗, where Q is unitary and Λ = diag(λ1, . . . , λn). Now
define Z = QDQ∗, where D differs from the zero matrix only in that dkk = ε, so
that the eigenvalues of A+ Z are λi, for i 	= k, and λk + ε. Then, by the assumption
on k, for sufficiently small ε the maximum of |f ′| over the eigenvalues of A + Z is
|f ′(λk + ε)|. Therefore using this Z in (5.1) we obtain

cond
[2]
abs(f,A) ≥ lim

ε→0

∣∣∣∣condabs(f,A+ Z)− condabs(f,A)

ε

∣∣∣∣
= lim

ε→0

∣∣∣∣ |f
′(λk + ε)| − |f ′(λk)|

ε

∣∣∣∣
=

∣∣∣∣limε→0

f ′(λk + ε)− f ′(λk)

ε

∣∣∣∣
= |f ′′(λk)|.

Note that when applying this result to the matrix logarithm and square root we
require A to be Hermitian positive definite, since these functions are not defined for
matrices with negative eigenvalues.

5.4. Numerical experiments. We have a full understanding of the relation-
ship between the level-1 and level-2 absolute condition numbers for the matrix inverse
but our results for the matrix exponential, logarithm, and square root are applica-
ble only to normal or Hermitian matrices. We now give a numerical comparison of

condabs(f,A) and cond
[2]
abs(f,A) for the matrix exponential, logarithm, and square

root using unstructured matrices in the Frobenius norm.
Our test matrices are taken from The Matrix Computation Toolbox [19] and the

MATLAB gallery function and we use 5× 5 matrices because the cost of computing
the first and second Kronecker forms using Algorithm 4.2 is O(n5) and O(n7) flops,
respectively. Most of the matrices are neither normal nor Hermitian, so our previous
analyses (except for the inverse) do not apply. The matrix exponential and logarithm
are computed using the algorithms from [2] and [3] and the square root is computed
using the MATLAB function sqrtm. All experiments are performed in MATLAB
2013a.

For arbitrary matrices we are unable to compute the level-2 condition number
exactly so instead we use the upper bound (5.5) which we refer to as lvl2 bnd in this
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Fig. 1. Level-1 absolute condition number and lvl2 bnd for the matrix exponential in the
Frobenius norm sorted by decreasing value of condabs(exp, A).

section. Experiments comparing lvl2 bnd to the exact level-2 condition number for
the inverse showed that they agreed reasonably well over our test matrices: the mean
and maximum of the factor by which lvl2 bnd exceeded the level-2 condition number
were 1.19 and 2.24 times, respectively. In 66% cases the overestimation factor was
less than 1.2. The level-1 condition number can be computed exactly in the Frobenius
norm using [20, Alg. 3.17].

Figure 1 compares the level-1 condition number and lvl2 bnd for the matrix
exponential on the 49 test matrices for which the matrix exponential did not overflow.
The values are sorted in decreasing order of condabs(exp, A). Note that in each case
lvl2 bnd is greater than or equal to the level-1 condition number. We see that the
two lines are almost equal for arbitrary matrices in the Frobenius norm, with the
most serious disagreement on the first few ill conditioned problems. This suggests
that for the matrix exponential it may be possible to show that the level-1 and level-2
condition numbers are equal or approximately equal for a wider class of matrices than
just the normal matrices, to which Theorem 5.2 applies.

Figure 2 compares the level-1 condition number and lvl2 bnd for the matrix
logarithm over the 49 test matrices for which the matrix logarithm and its condition
number are defined, sorted by decreasing values of condabs(log, A). We have also plot-
ted the square of the level-1 condition number; we see that it bears a striking similarity
to the level-2 condition number, consistent with Theorem 5.5, since |f ′′(λ)| = |f ′(λ)2|.

Our final experiment compares the level-1 condition number and lvl2 bnd for the
matrix square root on the 51 test matrices where the square root and its condition
number are defined, again sorted by decreasing values of condabs(x

1/2, A). Figure 3
shows two plots with the same data but with different y-axes so the fine details can be
seen. We have also plotted 2 condabs(x

1/2, A)3 which, consistent with Theorem 5.5,
provides a reasonable estimate of lvl2 bnd except for the first few problems, which
are very ill conditioned.

6. Concluding remarks. We have derived sufficient conditions for the exis-
tence and continuity of higher order Fréchet derivatives of matrix functions as well as
methods for computing the kth Fréchet derivative and its Kronecker form. These lay
the foundations for further investigation of higher order Fréchet derivatives and their
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Fig. 2. Level-1 absolute condition number and lvl2 bnd for the matrix logarithm in the Frobe-
nius norm sorted by decreasing value of condabs(log, A).

use in applications. In [22] we apply this work to develop an efficient algorithm for
estimating the condition number of Fréchet derivatives of matrix functions.

We have also investigated the level-2 condition number for matrix functions, show-
ing that in a number of cases the level-2 condition number can be related to the level-1
condition number, through equality, a functional relationship, or a bound. It is an
interesting open question whether stronger results can be proved, but our numerical
experiments give some indication that this may be possible.

Appendix. The necessity of the conditions in Theorem 3.5. As mentioned
at the end of section 3, our assumption in Theorem 3.5 that f has 2kp− 1 derivatives
is not necessary for the existence of the kth Fréchet derivative. Our method of proof
employs Xk and to evaluate f(Xk) we need f to have pk − 1 continuous derivatives,
where pk is the size of the largest Jordan block of Xk (see Theorem 3.1). From
Theorem 3.4 we know that pk ≤ 2kp where p is the size of the largest Jordan block
of A; this is the bound used in Theorem 3.5, but it is possible for Xk to have smaller
Jordan blocks. The following example shows that for a specially chosen A only 4p− 2
derivatives are needed for the existence of f(X2).

Take A = J where J ∈ Cn×n is a Jordan block of size n with eigenvalue 0. We
first show that rank(X2) ≤ n−2. Note from (3.4) that the first column of X2 is 0 and
the (n+1)st and (2n+1)st columns have at most n nonzero elements corresponding to
the first columns of E1 and E2, respectively. Since A has 1’s on its first superdiagonal
we see that columns 2: n are the unit vectors e1, . . . , en−1 and they span all but the
last element of the (n + 1)st and (2n + 1)st columns. Therefore if [E1]n,1 = 0 or
[E2]n,1 = 0 the respective column can be written as a linear combination of columns
2: n. On the other hand if both are nonzero then we can write the (2n+1)st column
as a linear combination of columns 2: n + 1. Thus there are at most n − 2 linearly
independent columns in X2 and so rank(X2) ≤ n− 2.

This means that X2 has at least two Jordan blocks and therefore the largest
Jordan block is of size at most 4n−1, meaning 4n−2 derivatives of f are sufficient for
the existence of f(X2) by Theorem 3.1, which is slightly weaker than the requirement
in Theorem 3.5 (with k = 2 and p = n) of 4n− 1 derivatives.

The general problem of determining the Jordan structure of Xk given the Jordan
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Fig. 3. Top: Level-1 absolute condition number and lvl2 bnd for the matrix square root in the
Frobenius norm sorted by decreasing value of condabs(log, A). Bottom: Zoomed view of same data
with narrowed y-axis.

structure of A remains open. Indeed the minimum number of derivatives required for
the existence of the kth Fréchet derivative is also unknown; this number is potentially
less than the number of derivatives required for the existence of f(Xk).
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