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Abstract: In this paper we use a mixture of numerical methods includiini¢e difference and body fitted co-ordinates
to form a robust stable numerical scheme to solve the inverstiag model presented in the paper by Bar-llan
and Strange (1996). This allows us to apply our methodologynadels with different stochastic processes
that does not have analytic solutions.

1 Introduction project would happen at a price higher than the de-
cision to mothball. Following on from this, Bar-llan
Most investment projects take a long time to be- and Strange (1996) applied investment lags on irre-
come operational so there are often periods where aversible investments and they found that a lag can re-
firm will incur losses before the project starts gener- duce the effects of uncertainty in an investment, since
ating income. Such a period might be referred to as the investor has more time to act on an unexpected
the “construction lag”, “time to build ” or “Investment  fallin the price or changes in the investment. In order
Lag” (Costeniuc et al., 2008). These investment lags to generate the results for their model, they present an
can be quite lengthy which can result in a serious cost analytic technique, (see Brekke and @ksendal, 1994,
for the investor, an example of which is described by for more details). The method as described by Bar-
MacRae (1989) where it could take up to 10 years llan and Strange (1996) is flawed in that it relies on
to see the positive income when investing in a power the particular form of the process, so they can only
generating plant — similar situations can be found in solve the problem with a simple geometric Brown-
investment projects on natural resources. For exam-ian motion. The contribution of this paper is to ap-
ple, when an oil company buys a license from a gov- ply a more generic numerical approach which can
ernment, it takes time to search fields and estimate be extended to many classes of stochastic processes.
the fields’ reserve quantity before the beginning of oil We present a robust numerical technique for solving
production. Thus, when evaluating a project such as generic problems of this type.
this the “lag” should be taken into consideration. If
the sale price of a firm’s product is modelled by a
stocha;tic process, thep the Iag_ brings addgd risk_ oo M odel Framework
the project since the price may rise or fall during this
lag, resulting in a negative cash flow. This situation )
and its effect on an investment has been studied by, e follow the general framework as laid down
Gauthier and Morellec (2000) and they implied that PY Bar-llan and Strange (1996) in valuing a firm that
it a has significant consequences on investment deci-c2n Pay (on deliveryk > 0 units to exercise an irre-
sions. versible option to produce and sell 1 unit of product
The use of option theory to value and assess in- P& unit time forever. The marginal cost of production
vestment decisions has a long history going back 'S © Per unit, and both the future revenues and costs
to Myers (1977), but it was Brennan and Schwartz '€ discounted atthe ratemfThe project can later be
(1985) that first allowed the project to be mothballed aPandonedat a costbE 0. The price of the product
rather than abandoned so that it could be reopened at 41 follows a standard geometric Brownian motion
later date. They showed that if there was a fixed cost d

to move between the states, the decision to start the = pdt+odz (1)



where
* pis the rate of return of the prodult,
* o is the volatility of the product pric&,

» dzis the increment of the standard Wiener pro-
cess.

and given that we optimally decide to invest the fol-
lowing must hold

Vo(PH) =V2(P) — ke " (5)
Vo(PH) = V3 (Py). (6)
General solutions to the ODE in (3) can be found

When the investment starts, in many cases, it takesof the form

time from the decision to invest until the time the

Vo(P) = BPP (7)

project begins to generate revenue. For example, if \yhereB is a constant anfl is the positive solution of

a firm wishes to build an oil refinery it will make that
decision depending on today’s oil price but it usually
takes around 6- 7 years to start producing oil (Sen-
ate, 2002). We shall dendte> 0 to be the investment
lag in our model.

the characteristic equation of

0-2
SEE-1)+1E-p=0. ®)

ForVi(P), if we assume it is optimal to sell prod-

As aresultthe firm at any one time may be in three ycts over the next small period in time we have

different states. The states are characterised as
* Vo(P) Inactive firm.

In this stage there is no money invested and

no revenue.

* V»(Pt) the firm in the process of construction
wheret is the clock that starts after the decision
is made (<t < h).

In this stage the firm has made the decision
to invest and is waiting until timba when the firm
will pay k and start production.

* Vi(P) Active firm and generating revenue.
In this state we have invested the amoknt
and it is working and generating the amounfof
for each unit produced.

Our goal is to find at what price of the product should
we invest and for what price should we leave the
project. We shall denotBy as the price at which it
is high enough to start construction at a cosk@f®"
(discounted value of the payment at tite: 0), and

P as the price of product which is low enough to
abandon the project for cost bf

2.1 Calculatingthe Firm’s Value at
Different Situations

Suppose it is not optimal to invest at an infinitesimal
period ofdt, then

Vo(R) = & P"E¢ [Vo(Rrat)] )

whereR is the price at timé. Using Ito’s Lemma we
can write

2
ZPAG(P) +UP(P) — pVo(P) = 0. (3)

The boundary condition fd? = 0 is simply
IIDILnOVO(P) = Oa (4)

Vi(R) = & PUE Vi (Piar)]
d
t

where the extra term here is the total amount of profit
from selling at the rate one product per unit time. We
calculate the value of the active firm in the same man-
ner as we did in the inactive case to arrive at

2
SPAVY(P) + UPU(P) ~ pVa(P) =0 —P.  (9)
The boundary condition & — oo takes the form
P w
lim Vy(P) = Iim —— — —. 10
Jim V1(P) Ll syt (10)
Therefore, solutions of equation (9) can be written
P w
Vi(P) = AP* 4+ —— — —, 11
1(P) o—1 D (11)

whereA is yet to be determined amul is the nega-
tive solution of equation (8). Since we can optimally
decide to shut down operations we also have

Vi(RL) =Vo(PL) I (12)
Vi(R) = Vo(PL). (13)

These form the solution of the investment and
disinvestment problem in Pindyck and Dixit (1996),
where the time to build is not considered. For the in-
vestment lag problem, we must now consider the extra
state of the firnV»(P,t) during the lag. Giving that we
are waiting for production to start we can write

Vo(R,t) = € PUE Vo(Ryan t+dt)],  (14)
and following standard procedure we obtain
Ny 1, 500V
—S 4z — 1
a 2" P2 (15)

Vo
P2 _ o\ =
+H 3 PV2 0



where the boundary conditions are

lim Vo(Pt) = —le PV, (16)
P—0
p—1)(h-1) —p(h-1)
lim Va(Pt) = lim Pe _we . an
and
. AP* 4 P _ @ if P> P,
imVo(Pt) = H P =
fimVa(P) {BPB—I if P<RP

These equations describe the three states of the firm,

which all need to be solved to determiReandPy.

3 Numerical Approach

Although this problem has been solved in Bar-1lan

and Strange (1996) and later again by Sgdal (2006),

in this paper we present a new methodology which
gives more flexibility to the practitioner. The ideaisto
solve the problem using finite differences with body-
fitted co-ordinates to quickly solve fét; andP_. To
simplify the algebrain the method we first apply a log
transformation to the ODEs (3) and (9) and the PDE
(15).

3.1 Derivation

To solve the problem we define two gridsxandy
each of which haven+ 1 points. We apply log trans-
forms to the equations involving andV- by setting

P:PLeV:>y:In<E>, (18)
P
The grid itself is generated from
— Ymin — Ymax
Ay = — (19)
using the parameters

Likewise, for equation involving/y we apply a log
transform

P
P4 =y (21)
The grid becomes
Ax — Xmin — Xmax (22)

m
such that

First we can apply the log transform (18) to the
equation of the active firm value (9) to get

O'2 62V1

76—)/2+(H—7)a—y—pvlzw—|:’|_ey- (24)
Using the notation
vi=Va(P = Re™) =Vy(e") (25)

we apply standard finite differencing and a Newton
linearisation with

K48 andP ~ PR aRL (26)

wherek is the number of iterations. The resulting
scheme is given by

o> 2u-0\_; 4 o? i
(ot g ) 34+ (a0 o4

(27)
o>  2u—0*\ i1 o
+<Zy+ ahy )6\/‘1 +e"oP. = F(P) (28)
where
vt vt

T(P)——EGW (29)

( 102)\/1“_ .171+ Vi —P e +w

— =3 “oay pvi—F -

Now for the smooth pasting boundary conditions we
use a one sided difference of the form

—3(V] +8W) + 4(vi + &) — (V2 + &v3)
20yR
; (30)
and to calculat®(P.) we use central differencing
_ Vo(RL(1+4y)) —Vo(RL(1—-A4y))

Vi(P=R)=

Vo 31

o(PL) 20yA (31)
where the values of \p(P.(1 + Ay)) and
Vo(PL(1—Ay)) must be interpolated.  For the

contact boundary condition Bt= P we expand with
a Taylor series to get

V) — V§(PL)SPL = Vo(PL) —V§ (32)

Similarly, for the inactive or mothballed firm
Vo(P) defined in equation(3), we apply a log transfor-
mation onPy with standard differencing and a New-
ton linearisation. The result is the same left hand side
as in (28) withdvj anddP_ replaced bydv, anddPy,
and the right hand side is now given by

_}ozvicf1 — 2%+

FP) =3 2002 (33)
1 ) Vi0+1 —Vio_l .
(H— 50 )T +pVvp.



As before the boundary conditions become
OV —V3(Pu)dPH = Vo(P) —ke P"— ' (34)
and

33V —4dvg v 2
INGE o

Com=1, gm-2
Vi) - 2B VG

20Xy

(35)
whereVa(Py) here isvo(Py,t = 0) which must be cal-
culated from (15).

We can use either quadrature integration (Andri-
copoulos et al., 2003) or finite difference to solve
for Vo in (15). For any poinix of the n points on
Vo(x,t = 0) we have

Volxt=0) = AK) [ BxyNalyt = hidy. (36

then we calculate the value ¥ using

1

_ — kx—$02k2h—ph
A(X) = Tme 2°%"8 , (37)
and
B(x,y) = & (< ¥*/20°L/ky, (38)
and
2(p—d)
k= 52 -1 (39)

whered is the dividendsd = p — y). The reason we

calculatévs(y,t = 0) usingVz(y,t = h) that is because

we solve the problem backwards in time where
fed<1iP<Rh) ~

{ Va(y)
(40)

Vo(y) -1
Given the fact we have applied a different transforma-
tions onVp andV; we must interpolatep to get values

ife>1P>R)

Va(y,t =h)

in they grid points using the relation
x=y-+log(2). (41)

We may use the asymptotic form of the solution to fill
in the gaps outside the grid, then we write

Ymax
Valx,t=0) =AX)( | BxyVa(yit =hiy+1a+1s)
Ymin
(42)
where
Ymin
I = —/ B(x,y)lehdy (43)
and
o0 - (P-wh  \yeph
I3 = / B(X, - d 44
3 ymax(y)(p_H p)y (44)

4 Cox-Ingersoll-Ross M odel

In a novel extension to the problem, we set the
process followed by the sale price as a Cox-Ingersoll-
Ross (CIR) process. These sort of processes are often
appropriate when modelling commaodity prices as the
price tends to a mean value over a long time scale. We
can write the new price process as

dP = k(® — P)dt+ 0v/Pdz (45)
such that

* K is the speed of reversion

* @ :is the long term mean level

ando andP are as defined previously. Now the equa-
tions of\Vp(P), V1(P) andV,(P) will become

2
ZPV(P) +K(®—P)VG(P) — pVo(P) =0, (46)
2
% PVY(P) + K(® — P)V(P) — pVa(P) =w—P. (47)
and
N, P ,0%,
o 2% P2 (48)
Vo
®—P)—=—p\rb=0.
+K( ) ap P2 0
At P = 0 we solve the degenerate ODE %Gr
KOVy—pVo=0 (49)
and the degenerate PDE fér
oV Vo B
o + K(Da—P —pV2=0 (50)
For largeP we set
P 0]
VieP gy K2 P s e, (51)
p+K p(P+K) P
and assume a linear solution fér so solve
Vo Vo _
The terminal condition foY, is as before given by
) Va(P) if P>PR
Vz(P,t—h)—{ Vo(P)—1 if P<R

The smooth pasting conditions are the same as
those defined in equations (5), (6) and (12), (13). We
now transform theéP-grid with a linear stretch get
andy grids

P=yR forVi(P) =Vi(yR)

P = xRy for Vo(P) = Vo(xP4). (53)
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Therefore, equation (47) will be transformed to

1
SOWM +K(@-YR)V[-pRVI=P(0-yR) &
(55)
and (46) will be transformed to

%ozx 4+ K(D—XxPy)V—pPuVo=0.  (56)

We can follow the same method using a finite differ- o 02 g2 08 !
ence scheme with Newton linearisation. To calcu-

late Vs, we must now solve the PDE using a Crank- Figure 3: The values di of Py with u=0,p = 0251 =
Nicolson scheme since the kernel does not exist for &K= 1,0=1,0° = 0.01 using Algebraic equations vs the
this price process. numerical method

5 Results T

In figure 1, the switch from closed to in- uf
construction o — Vo — ke P") happens whefy =
1.14632 which is the optimal price to start construc-
tion, while atP. = 0.793442 the price is so low that
it is not worth continuing productiorvf — Vo —1).

We can notice in this figure th&, is higher tharR , 09 -
which is to be expected since we should only invest 08s | 1
if the price is higher than the abandon price. Now we os |
compare our results to those of Sgdal (2006) in figure \
3, and we find that our method generates valud3 of 0 2 ‘R " 8 0
andPy that are very close to the previous method. To

demonstrate the integrity of our scheme, in figure 2 Figure 4: The values df_ of P4 on CIR process using for
we plot the value ofy for an increasing number of  different values oh with k = 0.01,® = 1.,p = .0251 =
nodes. The convergence of the scheme can be showf-k=1w=10=01




3 N a body-fitted co-ordinate algorithm to solve an invest-
R 1 ment lag problem presented in Bar-llan and Strange
ul 1 (1996) and with a very high convergence rate and
an acceptable speed of computing. Additionally, we
have shown the the results presented in this paper are
as accurate as the results presented in Sgdal (2006)
for the GBM process. Moreover, we have applied this
model on other stochastic process such as CIR mean
reversion process and have shown the results.
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