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Abstract

We give necessary and sufficient conditions for the almost sure (a.s.)
relative stability of the overshoot of a random walk when it exits from a
two-sided symmetric region with curved boundaries. The boundaries are
of power-law type, ±rnb, r > 0, n = 1, 2, · · · , where 0 ≤ b < 1, b 6= 1/2.
In these cases, the a.s. stability occurs if and only if the mean step length
of the random walk is finite and nonzero, or the step length has a finite
variance and mean zero.
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1 Introduction

This paper continues the investigation begun in [3] of the asymptotic behaviour
of the overshoot of a random walk when it exits from a two-sided symmetric
region with curved boundaries of power-law form. In what follows, S = (Sn, n ≥
0), S0 = 0, will denote the random walk with step size Xn = Sn − Sn−1 (some-
times we write X(n)), which is assumed to be non-degenerate with distribution
function F, and b will be a constant in the range [0, 1). We define the exit time

Tr = min{n ≥ 1 : |Sn| > rnb}, r > 0 (1.1)

(with Tr = ∞ if |Sn| ≤ rnb for all n ≥ 1), and the overshoot by

Or := |STr
| − rT b

r . (1.2)

Our aim is to find necessary and sufficient conditions for the overshoot to be
almost surely (a.s.) asymptotically small as compared to the boundary, viz, for

Or

rT b
r

=
1

r

(

|STr
|

T b
r

− r

)

a.s.
→ 0 as r → ∞; (1.3)

we refer to this as almost sure relative stability of the overshoot.
For the case 0 ≤ b < 1, b 6= 1/2, it was shown in [3] and [4] (see also [5] for

the case 0 < b < 1/2 and [9] and [6] for the case b = 0) that the in probability
version of (1.3) can occur in two and only two situations; S has to be relatively

stable, in the sense that Sn/cn
P
→ ±1 for some positive norming sequence cn,

or else, if b < 1/2, S must belong to the domain of attraction of the Normal
distribution, without centering. (We write S ∈ RS or S ∈ D0(N).) Moreover
in case b = 0 it was also shown in [6] that a necessary and sufficient condition
(NASC) for the a.s. result (1.3) is:

either EX2 < ∞ and EX = 0, or 0 < |EX | ≤ E|X | < ∞. (1.4)

In the present paper we generalise this result to the case of curved (power
law) boundaries. This is not a straightforward exercise since the techniques
required to deal with almost sure results for non-constant boundaries have not
previously been worked out, and it was not at all obvious that we could expect
such a clearcut equivalence as in (1.4). (Nevertheless, our methods rely on some
basic relationships worked out in [3] and [4].) As it turns out, we do get a very
easily interpretable answer. The dichotomy in (1.4) essentially extends to our
situation, and its simplicity augers well for possible applications of our result in
statistics and elsewhere.

As another application, we provide in Proposition 5 below an alternative
derivation of a key result in [10] concerning the limsup behaviour of the random
walk.
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Theorem 1 If 0 ≤ b < 1 and b 6= 1
2 , the following are equivalent:

(i)

{

(1.4), for 0 ≤ b < 1/2,
0 < |EX | ≤ E|X | < ∞, for 1/2 < b < 1;

(1.5)

(ii) Tr

a.s.
< ∞ for all r > 0 and

Or

rT b
r

a.s.
→ 0 as r → ∞; (1.6)

and

(iii) Tr

a.s.
< ∞ for all r > 0 and lim sup

r→∞

|STr
|

rT b
r

a.s.
< L for some L ∈ (1,∞). (1.7)

Remark 2 From Theorem 3.1 in [6] we can read off two more probabilistic
conditions which are also equivalent to (1.4) and hence to (1.5)–(1.7) for the

values of b specified; with S∗
n = max1≤r≤n |Sr| and |X

(1)
n | = max1≤r≤n |Xr| they

are

lim
n→∞

S∗
n

|Xn|

a.s.
= ∞, (1.8)

and

lim
n→∞

S∗
n

|X
(1)
n |

a.s.
= ∞. (1.9)

We will also need an analytic condition equivalent to (1.4) which can be
found in Lemma 4.2 of [6]; to state it we need some notation. We write X for
a generic step in the random walk, and put, for x > 0,

G(x) = P (|X | > x), U(x) =
∫ x

0
2yG(y)dy,

A(x) = E((X ∧ x) ∨ (−x)), k(x) = x−2U(x) + x−1|A(x)|.
(1.10)

Then the condition is

I =

∫

[0,∞)

x2|dG(x)|

U(x) + x|A(x)|
=

∫

[0,∞)

|dG(x)|

k(x)
< ∞. (1.11)

(We remark that [3], [4] and [12] use a slightly different but closely related
function h(·) rather than k(·) in (1.11) and elsewhere; these are equivalent in
our context, as pointed out in [6].)

3



Proof of Theorem 1: The result is known from [6] for b = 0 (note that we
always have Tr < ∞ a.s. for all r > 0 in this case, as long as X is not degenerate

at 0), so take 0 < b < 1. First assume (1.5). Then for 0 < b ≤ 1/2, Tr

a.s.
< ∞ for

all r > 0 follows from the law of the iterated logarithm or from the strong law of
large numbers, according as EX2 < ∞ and EX = 0, or 0 < |EX | ≤ E|X | < ∞;
while for 1/2 < b < 1 it follows from the strong law of large numbers, under the
assumption that 0 < |EX | ≤ E|X | < ∞. Also (1.5) implies (1.4) which implies
(1.8). So, replacing n by Tr, we can argue that

|XTr
|

|STr
|

a.s.
→ 0 as r → ∞,

and hence, because |STr
| ≤ rT b

r + |XTr
|, we have for large enough r

0 <
1

r

(

|STr
|

T b
r

− r

)

≤
|XTr

|

rT b
r

≤
|XTr

|

|STr
| − |XTr

|

a.s.
→ 0,

which is (1.6). Clearly this implies (1.7), and our major task is to show that
(1.7) implies (1.5), which we will do by establishing (1.11), and then arguing
that this gives (1.5) for the values of b specified.

So, let (1.7) hold. First note that, since |STr−1 | ≤ rT b
r , a consequence of

(1.7) is that

lim sup
r→∞

|XTr
|

rT b
r

≤ lim sup
r→∞

|STr
|

rT b
r

+ 1
a.s.
< L + 1 := K, (1.12)

where of course K ∈ (2,∞). Moreover (1.7) implies the corresponding in prob-
ability condition, so by Theorems 2.4 and 2.5 of [4] (see also Theorems 2.1–2.3
of [3]) we know that either 0 < b < 1, b 6= 1/2, and S ∈ RS, or 0 < b < 1/2
and S ∈ D0(N). In the first case it is known that either A(x) is positive for all
large enough x, or negative for all large enough x, that |A(x)| is slowly varying
at ∞, and that U(x) = o(x|A(x)|) as x → ∞; and thus that

k(x) = x−2U(x) + x−1|A(x)| ∽ x−1|A(x)|.

In the second case it is known that U is slowly varying at ∞, and that x|A(x)| =
o(U(x)) as x → ∞; and thus that k(x) ∽ x−2U(x). Furthermore, in both cases,

G(x)

k(x)
→ 0 as x → ∞. (1.13)

So from now on we can assume that k(·) ∈ RV (−1) or that 0 < b < 1/2
and k(·) ∈ RV (−2). (Here RV (α) is the class of positive functions which are
regularly varying at ∞ with index α; see [1]). This allows us to rewrite (1.11)
in a simpler form: we have

J :=

∫ ∞

1

G(x)dx

xk(x)
=

∫ ∞

1

|dG(x)|

∫ x

1

dy

yk(y)
,
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and since the inner integral is asymptotic to c/k(x) as x → ∞ (here and through-
out c, c1, c2, · · · denote generic positive constants whose values can change from
one line to the next), we see that J < ∞ is equivalent to (1.11). Next note that
for r > 0 and x > 2r

P

(

|XTr
|

T b
r

> x

)

=
∑

i≥1

P (Tr = i, |Xi| > xib) =
∑

i≥1

G(xib)P (Tr ≥ i). (1.14)

To exploit this, we need some results about P (Tr ≥ i) and P (Tr ≤ i); these are
proved in [3] and [4] by establishing extensions of the classical results for b = 0
in [12]. (Γr is defined using the h(·) function for 0 < b < 1/2 in [3] and extended
to 0 < b < 1 in [4], Section 4. Again we can equivalently use the k(·) function
as in (1.15) and [11].)

Proposition 3 If 0 < b < 1 we can define a function Γ by

Γr = inf{x : xk(rxb) ≥ 1}, r > 0. (1.15)

Then Γr → ∞ as r → ∞,

Γrk(rΓb
r) = 1, r > 0, (1.16)

there is a δ > 0 with
P (Tr ≤ δΓr) ≤ 1/2, (1.17)

and for any a > 0
∞
∑

m=1

ma−1P (Tr ≥ m) ≈ Γa
r . (1.18)

[Here and elsewhere ≈ means that the ratio of the two sides is in [c1, c2], for
some 0 < c1 < c2 < ∞, for all sufficiently large r.]

Another useful fact, valid in all cases, is that

x2

y2
≤

k(y)

k(x)
≤ 3, y ≥ x > 0. (1.19)

In our particular situation, we have extra information (see [1], pp. 28–29). As
the inverse of a function in RV (1− b) or RV (1− 2b), we have Γ ∈ RV (1/1− b)
when k(·) ∈ RV (−1), and Γ ∈ RV (1/1 − 2b) when k(·) ∈ RV (−2). (Recall in
this latter case that b < 1/2.)

Using (1.17) in (1.14) gives, for x > 2r > 0,

P

(

|XTr
|

T b
r

> x

)

≥
1

2

∑

k≤δΓr

G(xkb) ≥
δΓr

2
G(xδbΓb

r)

=
δG(δbxΓb

r)

2k(rΓb
r)

, (1.20)
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where we have also used (1.16). Now write g(r) = rΓb
r, let g−1 denote an

asymptotic inverse of g; that is, g−1(x) = inf{r : g(r) > x}, for large x, [1], p.
28, and put

r(n) = g−1(2n), n ≥ 1.

Then g ∈ RV (1/1−b) or g ∈ RV ((1−b)/(1−2b)), and we have g−1 ∈ RV (1−b)
or RV ((1− 2b)/(1− b)). Also, g−1 is nondecreasing. So we can fix n0 such that
r(n) is strictly increasing for n ≥ n0 and

sup
x≥2n0

|
g(g−1(x))

x
− 1| ≤

1

2
.

We will also write r(·) for a continuous and increasing interpolant of r on [n0,∞),
so that

1

2
≤

r(x)Γb
r(x)

2x
≤

3

2
for all x ≥ n0,

and define the event

En :=

{

|XTr(n)
|

T b
r(n)

> 2Kr(n)

}

.

Putting r = r(n) and x = 2Kr(n)/δb, K > δb, in (1.20) gives, for n ≥ n0,

P (En) = P

(

|XTr(n)
|

T b
r(n)

> 2Kr(n)

)

≥
δG(2Kr(n)Γb

r(n))

2k(r(n)Γb
r(n))

=
δG(2Kg(r(n)))

2k(g(r(n)))
≥

c1G(4K2n)

k(2n)
, (1.21)

where c1 > 0 and we have used (1.19). Hence

∑

m≥n≥n0

P (En) ≥ c1

∑

m≥n≥n0

G(4K2n)

k(2n)
≥ c2

∑

m≥n≥n0

∑

2n≤j<2n+1

G(4Kj)

jk(j)

= c2

∑

2m+1>j≥2n0

G(4Kj)

jk(j)
≥ c3

∫ 8K2m

4K2n0

G(x)dx

xk(x)
. (1.22)

So if we can show that
∑

n≥n0
P (En) is finite, this would give J < ∞, thus

(1.11), hence (1.4). Since we already know that either 0 < b < 1, b 6= 1/2, and
S ∈ RS, or 0 < b < 1/2 and S ∈ D0(N), we deduce (1.5).

We reach this conclusion by contradiction, showing that the assumption
∑

n≥n0

P (En) = ∞ (1.23)

leads to P (En i.o.) > 0, which of course would contradict (1.7). So now we
assume (1.23) and aim to apply the generalized Borel-Cantelli lemma in Spitzer
([13], p. 317); to do this we need to establish that

lim sup
n→∞

∑n
i=1

∑n
j=i+1 P (Ei ∩ Ej)

(
∑n

1 P (Ei))
2 < ∞. (1.24)
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Establishing (1.17) requires some rather intricate though not routine calcula-
tions. So as not to interrupt the main points we relegate this to the Appendix,
and complete this section with some comments and the application to [10].

Remark 4 The argument in the first paragraph of the proof of Theorem 1 in
fact will show that (1.4) implies a.s. relative stability of the overshoot whenever
b ≥ 0 and Tr < ∞ a.s. for all r > 0; thus, when 0 < b < 1 and (1.4) holds,
or when b ≥ 1 and E|X |1/b = ∞. So we have sufficient conditions for the a.s.
relative stability in all cases. As discussed in [3] and [4], for the converses, the
cases b = 1/2, b = 1 clearly have special features and the case b > 1 seems to
present special difficulties.

Finally we point our that our result leads to an alternative proof of the
following result, due to Kesten and Maller in [10].

Proposition 5 Assume that 1
2 < b < 1, E|X | < ∞, EX = 0, E(X+)

1
b = ∞,

and

X
a.s.
≥ −c, for some 0 < c < ∞. (1.25)

Then

lim sup
n→∞

Sn

nb

a.s.
= ∞. (1.26)

Proof: Because we assume that E|X |
1
b = ∞, it follows from the Markinkiewicz-

Zygmund strong law of large numbers (see [2], p. 125) that

lim sup
n→∞

|Sn|

nb

a.s.
= ∞,

so if (1.26) failed, we would have

lim sup
n→∞

Sn

nb

a.s.
< ∞ and lim inf

n→∞

Sn

nb

a.s.
= −∞.

This would then imply that

lim
r→∞

XTr

a.s.
< 0.

In view of (1.25) this would imply that |XTr
| = −XTr

= O(rT b
r ), a.s., hence

|STr
| = O(rT b

r ), a.s., as r → ∞, and so (1.7) would hold, giving a.s. relatively
stability of the overshoot. But this is equivalent to (1.5), contradicting our
assumptions, and proving our claim.

Remark 6 Actually it is shown in [10] that the Proposition holds without the
assumption (1.25). But the result of Proposition 5 as we state it provides a key
step in the proof in [10].
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2 Appendix: Proof of (1.24)

In the case b = 0 it is possible to find an upper bound for P (En) which
differs from the lower bound only by a constant multiple; when b > 0 things are
a little more complicated. We proceed as follows. From (1.14) and (1.18), for r
large enough,

P

(

|XTr
|

T b
r

> x

)

≤
∑

i≤Γr

G(xib) + G(xΓb
r)
∑

i>Γr

P (Tr ≥ i)

≤
∑

i≤Γr

G(xib) + c1G(xΓb
r)Γr ≤ (1 + c1)

∑

i≤Γr

G(xib).

Put r = r(n) and x = 2Kr(n), K > 2, in this to get

P (En) ≤ c2

∑

i≤Γr(n)

G(2Kr(n)ib) := c2εn, n ≥ n0. (2.1)

Now note that

n
∑

i=n0

εi =
n
∑

i=n0

∑

m≤Γr(i)

G(2Kr(i)mb) ≤
n
∑

i=n0

∫ Γr(i)

z=0

G(2Kr(i)zb)dz

=
1

b

n
∑

i=n0

(2Kr(i))−1/b

∫ 2Kr(i)Γb
r(i)

y=0

y
1−b

b G(y)dy

≤ c1

∫ n

n0

(r(u))−1/b

∫ 4K2u

y=0

y
1−b

b G(y)dydu

= c1

∫ c22
n

y=0

y
1−b

b G(y)dy

∫

n≥u≥n0,2u≥y/c2

(r(u))−1/bdu

≤ c3

∫ c22
n

y=0

y
1−b

b G(y)dy

∫

n≥u≥n0,2u≥y/c2

du

2
u
b k(2u)

≤ c4

∫ c22
n

y=0

y
1−b

b G(y)dy

∫ ∞

y/c2

dv

v
1+b

b k(v)
. (2.2)

Noting that the integrand is regularly varying with index strictly less than −1,
we see that

∫ ∞

y/c2

dv

v
1+b

b k(v)
∽

c5

y
1
b k(y)

as y → ∞,

and hence

n
∑

i=n0

εi ≤ c6

∫ c22
n

y=0

y
1−b

b G(y)

y
1
b k(y)

dy = c6

∫ c22
n

y=0

G(y)

yk(y)
dy.
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Going back to (2.1) and writing V (x) =
∫ x

y=0
G(y)
yk(y)dy, we see that

n
∑

i=n0

P (Ei) ≤ c7V (c22
n), n ≥ n0, (2.3)

and because we are assuming that the lefthand side tends to ∞ as n → ∞, we
have

∫ ∞

y=0

G(y)

yk(y)
dy = ∞.

Since
xV ′(x)

V (x)
=

G(x)

k(x)
→ 0,

we see that V ∈ RV (0), and we conclude from (1.22) and (2.3) that

n
∑

i=n0

P (Ei) ≈ V (2n). (2.4)

Now take j > i ≥ n0 fixed and write P (Ei ∩ Ej) = Pi,j + Qi,j, where Pi,j =
P (Ei∩Ej , Tr(i) < Tr(j)) and Qi,j = P (Ei∩Ej , Tr(i) = Tr(j)). Note that, without
loss of generality, we can take 2K as large as we wish; initially we take 2K > 2,
and write

Pi,j =
∞
∑

m=1

∞
∑

l=m+1

P (Ei ∩ Ej , Tr(i) = m, Tr(j) = l)

=

∞
∑

m=1

∞
∑

l=m+1

P{Am,i ∩ Bl,j}, say, (2.5)

where

Am,i =

{

max
1≤v<m

|Sv|

vb
≤ r(i), |Xm| > 2Kr(i)mb

}

,

Bl,j =

{

max
1≤v<l

|Sv|

vb
≤ r(j), |Xl| > 2Kr(j)lb

}

.

(2.5) is valid because max1≤v<m |Sv|/vb ≤ r(i) and |Xm| > 2Kr(i)mb imply
|Sm|/mb > r(i), thus Tr(i) = m, and similarly with m replaced by l and i
replaced by j.

Next we split this sum and write Pi,j = P
(1)
i,j + P

(2)
i,j , where

P
(1)
i,j =

∞
∑

m=1

∑

1≤t<m∗

P{Am,i ∩ Bm+t,j},

∆ > 0 is a fixed positive constant, and m∗ denotes the integer part of ∆m. Note
that if Bm+t,j occurs for a value of t with 1 ≤ t < m∗, then

|Sm+v| ≤ r(j)(m + v)b ≤ r(j)(1 + ∆)bmb for v = 0, 1, · · · t − 1;
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also |Sm| ≤ r(j)mb. So if we write Ŝv = Sm+v − Sm, which is independent of
Am,i for v = 0, 1, · · · , then we have

max
1≤v<t

|Ŝv| ≤ r(j)(1 + ∆)bmb + r(j)mb ≤ 2Kr(j)mb,

as long as we take K large enough that (1 + ∆)b + 1 ≤ K. Thus we have, for
l > m,

∑

1≤t≤m∗

P (Bm+t,j|Am,i)

≤
∑

1≤t≤m∗

P

(

max
1≤v<t

|Ŝv| ≤ Kr(j)mb, |Xm+t| > 2Kr(j)mb

)

=
∑

1≤t≤m∗

P
(

T (0)(Kr(j)mb)) = t, |Xt| > 2Kr(j)mb
)

≤ P
(

T (0)(Kr(j)mb) ≤ m∗
)

,

where we have written T (0)(r) for Tr in the case b = 0. For this we have, from
[12],

P
(

T (0)(Kr(j)mb) ≤ m∗
)

≤ cm∗k
(

Kr(j)mb
)

.

Next we show that

∞
∑

j=i+1

k
(

Kr(j)mb
)

≤ ck
(

r(i)mb
)

for m ≥ 1 and i ≥ n0. (2.6)

We have r(n + 1)/r(n) → γ, where γ = 21−b (in case b < 1) or 2(1−2b)/(1−b) (in
case b < 1/2), so 1 < γ < 2. Thus without loss of generality we can assume
that

1 < γ1 ≤
r(n + 1)

r(n)
≤ γ2 < 2 for all n ≥ n0.

So when j ≥ i ≥ n0 we have r(j) ≥ r(i)γj−i
1 , and hence by (1.19), as i → ∞,

∞
∑

j=i+1

k
(

Kr(j)mb
)

≤ 3

∞
∑

j=i+1

k
(

Kr(i)γj−i
1 mb

)

≤ c

∫ ∞

0

k
(

Kr(i)γx
1 mb

)

dx = c

∫ ∞

1

k
(

Kr(i)ymb
) dy

y

= c

∫ ∞

Kr(i)mb

k(z)
dz

z
∼ ck

(

Kr(i)mb
)

∼ ck(r(i)mb),

and (2.6) follows.
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Thus, since P (Am,i) = P (Tr(i) ≥ m)G(2Kr(i)mb), and 2i−1 ≤ r(i)Γb
r(i) ≤

3.2i−1, we have the bound

n
∑

j=i+1

P
(1)
i,j ≤ c

∞
∑

m=1

mP (Tr(i) ≥ m)G(2Kr(i)mb)k
(

r(i)mb
)

≤ c
∑

m≤Γr(i)

mG(2Kr(i)mb)k
(

r(i)mb
)

+ 3cG(2Kr(i)Γb
r(i))k(r(i)Γb

r(i))
∑

m>Γr(i)

mP (Tr(i) ≥ m)

= c{σ(1, i) + σ(2, i)}, say

(where we used (1.19) in the second inequality). Now by (1.18) with a = 2 we
have

σ(2, i) ≤ 2cG(2Kr(i)Γb
r(i))k(r(i)Γb

r(i))Γ
2
r(i)

≤ 6σ(1, i) (using (1.19)again)

so we need only consider σ(1, i). By repeating the calculation leading to (2.2)
we see that

n
∑

i=n0

σ(1, i) ≤ c4

∫ c22
n

y=0

y
2−b

b G(y)k(y)dy

∫ ∞

y/c2

dv

v
2+b

b {k(v)}2
.

Again the integrand is regularly varying with index strictly less than −1, so it
follows that

∫ ∞

y/c2

dv

v
2+b

b {k(v)}2
∽

c5

y
2
b {k(y)}2

as y → ∞,

and hence
n
∑

i=n0

σ(1, i) ≤ c6

∫ c22
n

y=0

y
2−b

b G(y)

y
2
b k(y)

dy = c6V (c22
n).

From (2.4) we now deduce

lim sup
n→∞

∑n
i=1

∑n
j=i+1 P

(1)
i,j

(
∑n

1 P (Ei))
2 < ∞. (2.7)

We can also write

P
(2)
i,j =

∞
∑

m=1

∞
∑

s=1

P{Am,i ∩ Bm+m∗+s,j .}

11



Again write Ŝv = Sm+v − Sm and now take K ≥ (2 + ∆)((1 + ∆)/∆)b. Then

∞
∑

s=1

P (Bm+m∗+s,j |Am,i)

≤

∞
∑

s=1

P

(

max
v<s

|Ŝm∗+v|

(m + m∗ + v)b
≤ 2r(j),

|Xm+m∗+s|

(m + m∗ + s)b
> 2Kr(j)

)

≤

∞
∑

s=1

P

(

max
v<m+s

|Ŝm∗+v|

(m∗ + v)b
≤ 2

(

1 + ∆

∆

)b

r(j),
|Xm+m∗+s|

(m + m∗ + s)b
> 2Kr(j)

)

≤
∞
∑

t=m+1

P

(

max
v<t

|Ŝv|

vb
≤ Kr(j),

|Xm+t|

(m + t)b
> 2Kr(j)

)

≤ P
(

|X
(

TKr(j)

)

| > 2Kr(j)T b
Kr(j)

)

.

It follows that

P
(2)
i,j ≤

∞
∑

m=1

P
(

|XTr(i)
| ≥ m

)

G
(

2Kr(i)mb
)

P
(

|XTKr(j)
| > 2Kr(j)T b

Kr(j)

)

= P
(

|XTr(i)
| ≥ 2Kr(i)T b

Kr(i)

)

P
(

|XTKr(j)
| > 2Kr(j)T b

Kr(j)

)

= P (Ei)P (E′
j),

where it is easy to check that
∑n

n0
P (E′

j) ≈

∑n
n0

P (Ej). Thus

lim sup
n→∞

∑n
i=1

∑n
j=i+1 P

(2)
i,j

(
∑n

1 P (Ei))
2 < ∞. (2.8)

Finally, we write

Qi,j =

∞
∑

m=1

P

(

max
v<m

|Sv|

vb
≤ r(i), |Xm| > 2Kr(j)mb

)

=
∞
∑

m=1

P

(

max
v<m

|Sv|

vb
≤ r(i)))

)

G(2Kr(j)mb)

≤

Γr(i)
∑

m=1

G(2Kr(j)mb) + G(2Kr(j)Γb
r(i))

∑

m>Γr(i)

P (Tr(i) ≤ m)

≤

Γr(i)
∑

m=1

G(2Kr(j)mb) + cΓr(i)G(2Kr(j)Γb
r(i)) (using (1.18))

≤ (1 + c)

Γr(i)
∑

m=1

G(2Kr(j)mb).

12



Recall that when j ≥ i ≥ n0 we have r(j) ≥ r(i)γj−i
1 ; thus

Qi,j ≤ (1 + c)

Γr(i)
∑

m=1

G(2Kγj−i
1 r(i)mb). (2.9)

At this stage we need the following technical fact;

Lemma 7 Define

W (x) =

∫ ∞

x

G(y)

y
dy. (2.10)

Then if S ∈ RS or S ∈ D0(N) we have, for some c > 0,

∫ x

1

W (y)

yk(y)
dy ≤ cV (x) for all sufficiently large x. (2.11)

Proof of Lemma 7: First consider the case that S ∈ D0(N), when

k(x) ∼

U(x)

x2
, where U(x) =

∫ x

0

2yG(y)dy,

and we have

U ∈ RV (0) and
x2G(x)

U(x)
→ 0 as x → ∞.

Thus

2W (x) =

∫ ∞

x

2yG(y)

y2
dy =

∫ ∞

x

U ′(y)

y2
dy

= −
U(x)

x2
+ 2

∫ ∞

x

U(y)

y3
dy = o

(

U(x)

x2

)

.

Now
∫ x

1

W (y)

yk(y)
dy ∽

∫ x

1

yW (y)

U(y)
dy,

and

∫ x

1

G(y)

yk(y)
dy ∽

∫ x

1

yG(y)

U(y)
dy, as x → ∞.

But
∫ x

1

yG(y)

U(y)
dy =

∫ x

1

G(y)

y

y2

U(y)
dy = −

∫ x

1

W ′(y)
y2

U(y)
dy

=
W (1)

U(1)
−

x2W (x)

U(x)
+

∫ x

1

W (y)

U(y)2
{

2yU(y) − y2U ′(y)
}

dy

= O(1) + 2

∫ x

1

yW (y)

U(y)2
{

U(y) − y2G(y)
}

dy

= O(1) + {2 + o(1)}

∫ x

1

yW (y)

U(y)
dy,

13



and the result follows.
If S ∈ RS we have A(x) > 0 for all large enough x, or A(x) < 0 for all large

enough x, and |A(x)| is in RV (0); and we also have U(x) = o(xA(x)) as x → ∞.
So, taking A(x) > 0 for all large enough x, we have

2W (x) =

∫ ∞

x

2yG(y)

y2
dy =

∫ ∞

x

U ′(y)

y2
dy

= −
U(x)

x2
+ 2

∫ ∞

x

U(y)

y3
dy

= o

(

A(x)

x
+ 2

∫ ∞

x

A(y)

y2
dy

)

= o

(

A(x)

x

)

.

If we now observe that
∫ x

1

G(y)

A(y)
dy =

∫ x

1

G(y)

y

y

A(y)
dy = −

∫ x

1

W ′(y)
y

A(y)
dy

=
W (1)

A(1)
−

xW (x)

A(x)
+

∫ x

1

W (y)

A(y)
{1 −

yA′(y)

A(y)
}dy

= O(1) + {1 + o(1)}

∫ x

1

W (y)

A(y)
dy,

because (yA′(y))/A(y) → 0 as y → ∞, then this case is also proven. A similar
proof works if A(x) < 0 for all large enough x.

Using Lemma 7, we can argue that

n
∑

i=1

n
∑

j=i+1

Γr(i)
∑

m=1

G(2Kγj−i
1 r(i)mb)

≤

∫ n

x=0

∫ ∞

y=0

∫ r(x)Γb
r(x)

w=0

w
1−b

b r(x)−
1
b G(2Kγy

1w)dwdydx

≤ c

∫ n

x=0

∫ ∞

y=0

∫ 3.2x−1

w=0

w
1−b

b G(2Kγy
1w)

2
x
b k(2x)

dwdydx

= c

∫ 2n

v=1

∫ 3.v/2

w=0

∫ ∞

z=1

w
1−b

b G(2Kzw)

zv
1+b

b k(v)
dzdwdv

= c

∫ 2n

v=1

∫ 3.v/2

w=0

w
1−b

b W (2Kw)

v
1+b

b k(v)
dwdv (using(2.10))

≤ c

∫ 3.2n−1

w=0

w
1−b

b W (2Kw)dw

∫ ∞

v=2w/3

dv

v
1+b

b k(v)

≤ c

∫ 3.2n−1

w=0

W (2Kw)

wk(w)
dw

≤ cV (3.2n) (using(2.11))

∼ cV (2n), as n → ∞.
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Together with (2.7) and (2.8), this concludes the proof of (1.24), and the theorem
is proved.
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