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MILDNESS AND THE DENSITY OF RATIONAL POINTS ON

CERTAIN TRANSCENDENTAL CURVES

G. O. JONES, D. J. MILLER, AND M. E. M. THOMAS

Abstract. We use a result due to Rolin, Speissegger and Wilkie to show that
definable sets in certain o-minimal structures admit definable parameteriza-

tions by mild maps. We then use this parameterization to prove a result on

the density of rational points on curves defined by restricted Pfaffian functions.

1. Introduction

The main result of this note is a generalization of some results of Pila ([9]) to
a wider collection of curves. Before stating the result, we need some definitions.
A sequence f1, . . . , fr : U → R of analytic functions on an open set U ⊆ Rn
is said to be a Pfaffian chain of order r and degree α if there are polynomials
Pi,j ∈ R[X1, . . . , Xn+j ] of degree at most α such that

dfj =

n∑
i=1

Pi,j(x̄, f1(x̄), . . . , fj(x̄))dxi, for j = 1, ..., r.

Given such a chain, we say that a function f : U → R is Pfaffian of order r and de-
gree (α, β) with chain f1, . . . , fr, if there is a polynomial P ∈ R[X1, . . . , Xn, Y1, . . . , Yr]
of degree at most β such that f(x̄) = P (x̄, f1(x̄), . . . , fr(x̄)).

Let U ⊆ Rn be an open set containing [0, 1]n. To every function f : U → R, we

associate a new function f̂ : Rn → R defined by

f̂(x̄) =

{
f(x̄) if x̄ ∈ [0, 1]n,

0 otherwise.

Recall that Ran is the expansion of the real ordered field by all functions of the

form f̂ , where f : U → R is analytic, [0, 1]n ⊆ U and n ≥ 1. We let RresPfaff be the
reduct of this structure given by the same description, but with the word ‘analytic’
replaced by ‘Pfaffian’.

For q ∈ Q, the height of q is H(q) = max{|a|, b}, where q = a
b , a, b ∈ Z, b ≥ 1

and gcd(a, b) = 1. The height of q̄ ∈ Qn, again written H(q̄), is defined as the
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maximum of the heights of the coordinates of q̄. For a set X ⊆ Rn and H ≥ 1, we
let

X(Q, H) = {q̄ ∈ X ∩Qn : H(q̄) ≤ H}.

A transcendental function f : Rn → R is one that does not satisfy any non-zero
polynomial equation P (y, x1, . . . , xn) = 0, for P ∈ R[Y,X1, . . . , Xn].

Proposition 1.1. Suppose that f : R → R is a transcendental analytic function
definable in RresPfaff, and let X = graph(f). Then there exist c > 0 and γ > 0 such
that for H ≥ 3

#X(Q, H) ≤ c(logH)γ .

When f is Pfaffian, and not assumed to be definable in RresPfaff, this result is due
to Pila ([9]). The extra generality here, as far as functions definable in RresPfaff are
considered, is to include functions implicitly defined by restricted Pfaffian functions.

The proof of the proposition is a modification of Pila’s proof in [8]. To this end,
we need a parameterization result which, although a simple consequence of a result
due to Rolin, Speissegger and Wilkie ([11]), may be of some independent interest.
We need two further definitions, the first of which is due to Pila ([10]). We use
the following multi-index notation: for any α = (α1, . . . , αk) ∈ Nk, we define the
modulus |α| := α1 + . . . + αk, the factorial α! := α1! · . . . · αk! and the differential
operator

Dα :=
∂|α|

∂xα1
1 . . . ∂xαk

k

.

Definitions 1.2. Let A > 0, C ≥ 0. A C∞ function φ : (0, 1)k → (0, 1) is said to
be (A,C)-mild if

|Dαφ(x̄)| ≤ α!(A|α|C)|α|

for all α ∈ Nk, all x̄ ∈ (0, 1)k (where 00 = 1). We say that a map Φ : (0, 1)k →
(0, 1)n is (A,C)-mild if each of its coordinate functions is (A,C)-mild.

Definitions 1.3. Fix an o-minimal structure R̃ expanding the real field, and let
X ⊆ Rn be definable. A parameterization of X is a finite set S of definable maps
Φ1, . . . ,Φl : (0, 1)dimX → Rn such that X =

⋃
Im(Φi). A parameterization is said

to be (A,C)-mild if each of the parameterizing maps is (A,C)-mild. We say that

R̃ admits C-mild parameterization if for every definable set X ⊆ (0, 1)n there is an
(A,C)-mild parameterization of X, for some A.

Example 1.4. For a compact box B ⊆ Rn, suppose that f = (f1, . . . , fm) : B →
Rm extends to an analytic function in a neighborhood of B. Then there exist (for
example, by [6, 2.2.10]) positive constants A and K such that

|Dαfi(x)| ≤ α!KA|α|

for all x ∈ B, α ∈ Nn, and i ∈ {1, . . . ,m}. If B = [0, 1]n and f((0, 1)n) ⊆ (0, 1)m,
then by making A larger we may take K = 1, in which case the graph of f |(0,1)n

has an (A, 0)-mild parameterization consisting of one map, namely Φ : (0, 1)n →
(0, 1)n+m defined by Φ(x̄) = (x̄, f(x̄)).

Proposition 1.5. Any reduct of Ran expanding the real ordered field admits 0-mild
parameterization.
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We remark on the relationship between the notion of a mild function and that of
a Gevrey function. In [4], van den Dries and Speissegger consider RG , the expansion
of the real ordered field by the class of Gevrey functions G, which is a certain family
of real-valued C∞ functions on the sets [0, R] =

∏n
i=1[0, Ri], for each n ∈ N and

R1, . . . , Rn > 0, which are analytic on (0, R] =
∏n
i=1(0, Ri]. For each n-ary function

f : [0, R]→ R in G there exist constants A,B > 0 and κ ∈ (0, 1] such that

|Dαf(x)| ≤ α!AB|α||α|κ|α|

for all x ∈ [0, R] and α ∈ Nn (see [4, 2.6]). It follows that RG is definably equivalent
to an expansion of the real ordered field by a family of functions, each of which is
(B, κ)-mild for some B > 0 and κ ∈ (0, 1]. It is therefore natural to ask whether
RG admits 1-mild parameterization. To the best of our knowledge, this question is
open and does not follow from the methods of this paper. The proof of Proposition
1.5 considers a set X ⊆ (0, 1)n definable in some fixed reduct of Ran, and uses
[11] to construct a parameterization Φ1, . . . ,Φl : (0, 1)dimX → (0, 1)n of X such
that the definable maps Φ1, . . . ,Φl all extend to (definable) analytic functions on a
neighborhood of [0, 1]dimX , from which Proposition 1.5 follows using Example 1.4.
In contrast, [4] relies on the model completeness construction in [3], and therefore
represents a set X ⊂ (0, 1)n definable in RG as a finite union of projections of
manifolds which are zero sets of Gevrey functions, but which are not themselves
graphs of Gevrey functions. The question of whether such manifolds have 1-mild
parameterizations appears to be open.

2. C-parameterization

In this section we observe that the results in [11] imply a parameterization result.
So, we work in the setting of [11], and fix, for every compact box B ⊆ Rn and every
n ∈ N, an R-algebra CB of functions f : B → R such that the following hold.

(C1) Each of the projection functions 〈x1, . . . , xn〉 7→ xi, restricted to B, is in
CB , and for every function f ∈ CB the restriction of f to the interior of B
is C∞.

(C2) If B′ ⊆ Rm is a compact box and g1, . . . , gn ∈ CB′ are such that g(B′) ⊆ B,
where g = 〈g1, . . . , gn〉, then for every f ∈ CB , the composition f ◦ g is in
CB′ .

(C3) For every compact box B′ ⊆ B and function f ∈ CB , the restriction of f to
B′ is in CB′ . For every f ∈ CB there is a compact box B′ ⊆ Rn, the interior
of which contains B, and a function g ∈ CB′ such that g|B = f .

(C4) For every f ∈ CB and i = 1, . . . , n, the partial derivative ∂f
∂xi

is in CB .

Note that the partial derivatives in (C4) exist by (C1) and (C3). Since we shall
not need the precise statements of the remaining assumptions, we only state rough
versions of them. The full details can be found in [11].

(C5) For each n ≥ 1 and each box B ∈ Rn containing the origin, the collection
of germs at the origin of functions in CB forms a quasianalytic class.

(C6) This collection of germs is closed under extraction of implicit functions.
(C7) This collection of germs is closed under monomial division.
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The example which will interest us is as follows. Suppose that R̃ is a polynomially
bounded o-minimal expansion of the real field. For each compact box, let CB be the
collection of definable functions f : B → R which admit a definable C∞ extension
to some open set containing B. By well known properties of o-minimal structures
([2],[7]) these algebras satisfy the above requirements. In particular, if R̃ is a reduct
of Ran, then each function f in CB is the restriction to B of an analytic function
defined in a neighborhood of B, as in Example 1.4.

We now recall some further definitions from [11]. Given a polyradius r̄ =
〈r1, . . . , rn〉 ∈ (0,∞)n we let Ir̄ =

∏
(−ri, ri) and let Īr̄ be the topological clo-

sure of Ir̄. Write Cn,r̄ for CĪr̄ .

Definition 2.1. A set A ⊆ Rn is called a basic C-set if there are r̄ ∈ (0,∞)n and
f, g1, . . . , gk ∈ Cn,r̄ such that

A = {x̄ ∈ Ir̄ : f(x̄) = 0, g1(x̄) > 0, . . . , gk(x̄) > 0}.

A finite union of basic C-sets is called a C-set. A set A ⊆ Rn is called C-semianalytic
if for every ā ∈ Rn there is an r̄ ∈ (0,∞)n such that

(A− ā) ∩ Ir̄
is a C-set. If A is also a manifold, we call A a C-semianalytic manifold.

Given m ≤ n and an injective λ : {1, . . . ,m} → {1, . . . , n}, we write πλ : Rn →
Rm for the projection x̄ 7→ 〈xλ(1), . . . , xλ(m)〉.

Definition 2.2. Let r̄ ∈ (0,∞)n. A set M ⊆ Ir̄ is said to be C-trivial if one of the
following holds:

(i) M = {x̄ ∈ Ir̄ : x1�10, . . . , xn�n0}, where �i ∈ {<,=, >} for each i;
(ii) there exist a permutation λ of {1, . . . , n}, a C-trivial N ⊆ Is̄ and a g ∈
Cn−1,s̄, where s̄ = 〈rλ(1), . . . , rλ(n−1)〉, such that g(Is̄) ⊆ (−rλ(n), rλ(n)) and
πλ(M) = graph(g|N ).

Note that C-trivial sets are necessarily manifolds; we shall refer to them as C-
trivial manifolds. A C-seminanalytic manifold M ⊆ Rn is called trivial if there
exist ā ∈ Rn and a C-trivial manifold N ⊆ Rn such that M = N + ā.

We need two results from [11].

Fact 2.3. ([11, 4.7]) Suppose that A ⊆ Rn is a bounded C-semianalytic set and
that k ≤ n. Then there are trivial C-semianalytic manifolds Ni ⊆ Rni for some
ni ≥ n, i = 1, . . . J , such that

πk(A) = πk(N1) ∪ · · · ∪ πk(NJ)

where πk|Ni
is an immersion, for each i. (Here, πk is projection onto the first k

coordinates.)

Let RC be the expansion of the real ordered field by all functions f̂ , for f ∈
Cn,r̄, n ∈ N, r̄ ∈ (0,∞)n, where f̂(x̄) = f(x̄) on Īr̄ and f̂(x̄) = 0 on Rn \ Īr̄.

Fact 2.4. ([11, 5.2 and 5.4]) The structure RC is o-minimal, model complete and
polynomially bounded.
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We now use these results to prove a parameterization result. We work in the
structure RC .

Definition 2.5. Let X ⊆ Rn be definable. A C-parameterization of X is a finite
set S of maps Φ1, . . . ,Φl whose coordinate functions are in C[0,1]dim X such that
{Φi|(0,1)dim X : i = 1, . . . , l} is a parameterization of X.

Example 2.6. Let r̄ ∈ (0,∞)n. Let M = {x̄ ∈ Ir̄ : x1�10, . . . , xn�n0}, where
�i ∈ {<,=, >} for each i. Let λ1, . . . , λm be, in order, the indices for which �i is
either < or >. For each i, define the map φi : (0, 1)m → R by

φi(x̄) =


−rjxj if i = λj and �i is <,

rjxj if i = λj and �i is >,

0 otherwise.

We now see that M has a C-parameterization consisting of one map, namely Φ :
(0, 1)m → Rn given by Φ(x̄) := (φ1(x̄), . . . , φn(x̄)).

Now we easily have the following, by induction on n.

Lemma 2.7. Suppose that M ⊆ Rn is a C-trivial manifold. Then there is a C-
parameterization S of M with #S = 1.

Proposition 2.8. Suppose that X ⊆ Rn is a bounded definable set. Then X has a
C-parameterization.

Proof. By model completeness, there is an m ≥ 0 and a quantifier-free definable
set A ⊆ Rn+m such that X = π(A). Using the fact that RC is an expansion of the
real field, we may assume that A is bounded and that A is C-semianalytic. By Fact
2.3,

X = π(N1) ∪ · · · ∪ π(Nk)

for some C-trivial manifolds N1, . . . , Nk, where each π|Ni is an immersion. Thus
dim(X) = max{dim(N1), . . . ,dim(Nk)}. A C-parameterization of X can be con-
structed by composing the functions in the C-parameterizations of each of the
Ni with the projections π, and then trivially extending any of these functions to
(0, 1)dimX if their domain is (0, 1)dimNi with dimNi < dim(X). �

Note that Proposition 1.5 follows immediately from applying Proposition 2.8 to
the given reduct of Ran and then using Example 1.4.

3. Curves

We now prove Proposition 1.1. In fact, we prove a result about the number of
points in a fixed number field k ⊆ R of degree l. We use the absolute multiplicative
height H on k, which agrees with the height on Q given in the introduction (for
the definition of H, see [1]). For X ⊆ Rn and H ≥ 1, we let X(k,H) = X ∩ {ā ∈
kn : H(ā) ≤ H}. The following is a special case of [10, Corollary 3.3].

Fact 3.1. Suppose that X ⊆ (0, 1)2 is definable in Ran with dimension 1 and that
S is an (A, 0)-mild parameterization of X. Then there is an absolute constant c0
such that X(k,H) is contained in a union of at most

#S · cl0 ·A2(1+o(1))
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intersections of X with algebraic curves of degree bl · logHc. Here the 1 + o(1) is
taken as H →∞ with absolute implied constant, and b·c denotes integer part.

Given a function F : Rm → R, we let V (F ) = {x̄ ∈ Rm : F (x̄) = 0}.

Lemma 3.2. Suppose that f : (a, b) → (0, 1), with (a, b) ⊆ (0, 1), is a transcen-
dental analytic function definable in RresPfaff. Suppose further that graph(f) =
π(V (F )), where F : R2+n → R is a Pfaffian function of order r and degree (α, β),
and π is the projection onto the first two coordinates. If P : R2 → R is a nonzero
polynomial of degree d then

(1) #(graph(f) ∩ V (P )) ≤ 2r(r+1)/2+1(n+ 2)r(α+ 2d′)n+r+2

where d′ = max{d, β}.

Proof. Let P̃ : R2+n → R be given by P̃ (x, y, z̄) = P (x, y). Then graph(f)∩V (P ) =

π(V (F ) ∩ V (P̃ )). The number of points in graph(f) ∩ V (P ) is thus bounded by

the number of connected components of V (F )∩V (P̃ ) (there are only finitely many
points in graph(f) ∩ V (P ), as we have assumed that f is transcendental). By
Khovanskii’s theorem (as presented in [5, 3.3]) there are at most

2r(r−1)/2+1d′(α+ 2d′ − 1)n+1((2(n+ 2)− 1)(α+ d′)− 2n− 2)r

such components, and clearly this is less than the right hand side of (1). �

Proposition 3.3. Suppose that f : (a, b) → (0, 1), with (a, b) ⊆ (0, 1), is a tran-
scendental analytic function definable in RresPfaff and let X = graph(f). Then there
are c, γ > 0 such that (for H ≥ e)

#X(k,H) ≤ c(logH)γ .

Proof. By model completeness of RresPfaff (see [12]), we may suppose that X =
π(V (F )) for some Pfaffian function F : R2+n → R and some n ≥ 0. Suppose that
F is of order r and degree (α, β). By Proposition 1.5 we can take an (A, 0)-mild
parameterization S of X, for some A. Combining Fact 3.1 with Lemma 3.2 (with
d = bl logHc), we have

#X(k,H) ≤ #S · cl0 ·A2(1+o(1))2r(r+1)/2+1(n+ 2)r(α+ 2 max{β, d})n+r+2

≤ c(logH)γ

where γ = n+ r + 2. �

The collection of points of a number field k of height at most H is preserved
under the inversions x → ±x±1. Therefore, in counting such points on the graph
of a transcendental analytic function f : R → R, we may instead consider the
graphs of a finite collection of transcendental analytic functions, each defined on a
subinterval of (0, 1), together with a finite collection of points in Rn. Proposition
1.1 then follows by repeated application of Proposition 3.3.
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