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THE DIRAC OPERATOR AND THE

LIMIT-OF-DISCRETE-SERIES FOR THE UNIVERSAL

COVER OF SL2(R)

JACEK BRODZKI, GRAHAM NIBLO, ROGER PLYMEN AND NICK WRIGHT

Abstract. The unitary principal series of the universal cover of SL2(R)
admits a limit-of-discrete-series. We show how this representation leads
to an explicit K-cycle which generates K1 of the reduced C∗-algebra.

1. Introduction

Let G denote the universal cover of SL2(R). Then G is a connected Lie
group with Lie algebra sl2(R). Let A = C∗r (G) denote the reduced C∗-
algebra of G. It is known (see, for example [CEN]) that, in the sense of
K-theory of C∗-algebras, we have

K0A = 0, K1A = Z.(1)

In this article we relate this result to the representation theory of G.

The group G has the following properties:
– G is a 3-dimensional connected Lie group
– G has infinite centre isomorphic to Z
– the maximal compact subgroup of G is trivial
– G is non-linear, i.e. it is not a closed subgroup of GLn(R).

The fact that it is a non-linear group with infinite centre places it outside
the range of much classical representation theory, due to Harish-Chandra
and others. However, the Plancherel formula was established by Pukánszky
[P]. In the reduced dual of G, there is one very special representation, which
is in the unitary principal series of G and is the direct sum of two elements
in the discrete series. We will call this representation the limit-of-discrete-
series of G. This representation factors through the quotient group SL2(R),
and becomes the well-known limit-of-discrete-series for SL2(R).

The limit-of-discrete series for SL2(R) is the induced representation

π := Ind
SL2(R)
B χ(2)

where χ is the unique quadratic character

χ :

(
x y
0 1/x

)
7→
{

1 when x > 0
−1 when x < 0

of the standard Borel subgroup B of SL2(R). The representation π splits as
the direct sum of two irreducible representations:

π = π+ ⊕ π−
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The representations π+ and π− are not in the discrete series; but their
characters θ+, θ− are not identically zero on the elliptic set – they have this
feature in common with the discrete series of SL2(R).

The formal Fourier transform D̂ of the Dirac operator D breaks up as the
direct sum of multiplication operators on complex Hermitian line bundles.
The multiplication is by real-valued scalar functions. With one exception,
the scalar functions stay away from 0, i.e. they remain either positive or
negative, the corresponding Kasparov triples are degenerate, and they make
no contribution to K-theory.

We show in this article how the limit-of-discrete-series for G allows one
to construct a certain complex hermitian line bundle L on the real line
{q : q ∈ R} which realises a generator of KK1(C, C0(R)). We define a

D̂-invariant complex Hermitian line bundle L as follows.

Lq :=


C

(
f`

−f−`

)
for q ≤ 1/4, q = `(1− `)

C

(
f1/2
−f−1/2

)
for q ≥ 1/4

For q ≤ 1/4 the fibre Lq is spanned by a spinor made from the lowest
weight vector of the discrete series D(`,+) and the highest weight vector of
the discrete series D(`,−) with q = `(1 − `). For q ≥ 1/4 the fibre Lq is
spanned by a spinor made from two vectors of weight 1/2 and −1/2. Since
` = 1/2 when q = 1/4, these two line bundles can be glued together to form
a line bundle L over R. The C0-sections of L are spinor fields vanishing at
infinity.

On these spinor fields, the operator D̂ is multiplication by a function ωq
for which ωq → ±∞ as q → ∓∞. This implies that the unbounded Kasparov
triple [C0(R, L), 1, ω] represents a generator of KK1(C, C0(R)), and thence
a generator of K1(A).

In §2, we give the structure theorem for A via the compact-operator-
valued Fourier transform.

In §3, we describe in detail the construction of the triple [C0(R, L), 1, ω].
In §4, we give, for completeness, a self-contained proof of (1).

2. Reduced C∗-algebra

We begin with the Plancherel formula of Pukánszky [P] for the universal
cover of SL2(R).

Theorem 2.1. The following representations enter into the Plancherel for-
mula:

Principal series : {(Vq,τ , πq,τ ) : q ≥ 1/4, 0 ≤ τ ≤ 1}, Ω = q

Discrete series : (D`,+, ω`,+), (D`,−, ω`,−), ` ≥ 1/2, Ω = `(1−`)
where Ω is the Casimir operator. For every test function f on G, smooth
with compact support, we have
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f(e) =

∫ ∞
0

∫ 1

0
σ[< tanhπ(σ + iτ)]Θ(σ, τ)(f)dτdσ +

∫ ∞
1/2

(`− 1/2)Θ(`)(f)d`

where the Harish-Chandra characters are

Θ(σ, τ)(f) = trace

∫
G
πq,τ (g)f(g)dg

Θ(`)(f) = trace

∫
G

(ω`,+ ⊕ ω`,−)(g)f(g)dg

and σ =
√
q − 1/4.

This is a measure-theoretic statement. We need a more precise statement
in topology.

Note that Ω = 1/4 for each of the following representations;

π1/4,1/2, ω1/2,+, ω1/2,−.

In fact the representation π1/4,1/2 is reducible and

V1/4,1/2 = D1/2,+ ⊕D1/2,−, π1/4,1/2 = ω1/2,+ ⊕ ω1/2,−

see Eqn.(2.4) in [KM, p.40].
We will define the parameter space Z to be the union of the sets

{q ∈ R : q ≤ 1/4}

{(q, τ) ∈ R× R : q ≥ 1/4, 0 ≤ τ ≤ 1}
with identification of the point 1/4 in the first set with (1/4, 1/2) in the
second, and with identification of (q, 0) with (q, 1) for all q ≥ 1/4.

The G-Hilbert spaces Vq,τ form a continuous field of Hilbert-spaces over
q ≥ 1/4, 0 ≤ τ ≤ 1. We extend this to a continuous field V∗ of G-Hilbert-
spaces over Z by defining

Vq = D`,+ ⊕D`,−

where q = `(1− `) noting that

V1/4 = V1/4,1/2, Vq,0 = Vq,1 ∀q ≥ 1/4.

The Casimir operator on the G-modules Vq and Vq,τ is precisely the multi-
plication by the parameter q.

We have the following structure theorem.

Theorem 2.2. Let A denote the reduced C∗-algebra C∗r (G). The Fourier

transform f 7→ f̂ induces an isomorphism of A onto the C∗-algebra

Â := {F ∈ C0(Z,K(V∗)) : F (q)D`,+ ⊂ D`,+, F (q)D`,− ⊂ D`,− if q ≤ 1/4}.

Proof. The reduced C∗-algebra is a quotient of the full C∗-algebra C∗(G):

1→ I→ C∗(G)→ C∗r (G)→ 1.

The complementary series makes no contribution. The C∗-algebra A is a
quotient of the full C∗-algebra in [KM] and the primitive ideal space of A

contains every point in the support of Plancherel measure on Ĝ (the unitary
dual of G), by Theorem (2.1). �
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Note that the Jacobson topology on the primitive ideal spectrum of A
is exactly right: it has a double point at q = 1/4 ∈ Z, where the unitary
representation π1/4,1/2 is reducible.

We observe that the algebra Â is (strongly) Morita equivalent to the
algebra

B := {F ∈ C0(Z,M2(C)) : F (q) is diagonal if q ≤ 1/4}.

One way to see this is to note that Â ∼= B ⊗ K however it is instructive to
consider the explicit bimodules yielding the Morita equivalence.

We introduce the notation C2
+ and C2

− for the subspaces C⊕ 0 and 0⊕C
in C2 = C⊕ C. We now form the module E defined by

{F ∈ C0(Z, V∗⊗C2) : F (q) ∈ (D`,+⊗C2
+)⊕(D`,−⊗C2

−) if q = `(1−`) ≤ 1/4}.
This can be equipped with two (pointwise) inner products. Firstly we have
a B-valued inner product, which is to say a pointwise M2(C)-valued inner
product satisfying the required diagonality condition. For F = F1 ⊗ F2,
G = G1 ⊗G2 the inner product is defined to be

〈F,G〉B = 〈F1(z), G1(z)〉Vz F2(z)〈G2(z),−〉C2 .

Secondly we have an Â valued inner product, which pointwise takes values
in K(E). For F = F1 ⊗ F2, G = G1 ⊗G2 the inner product is defined to be

〈F,G〉
Â

= 〈F2(z), G2(z)〉C2 F1(z)〈G1(z),−〉Vz .
The Hilbert modules obtained by equipping E with these two inner products

effect a Morita equivalence between the algebras Â and B.
We remark that a field of operators on the field V∗ of Hilbert spaces can

naturally be regarded as an adjointable operator on E with the B-valued
inner product.

3. The K-cycle

We recall the parameter space Z from §2 and corresponding continuous
field of G-Hilbert-spaces over Z:

{Vq : q ≤ 1/4}
{Vq,τ : q ≥ 1/4, 0 ≤ τ ≤ 1}

Let g denote the Lie algebra sl2(R), let U(g) denote the universal en-
veloping algebra of g, and let C(g) denote the Clifford algebra of g with
respect to the negative definite quadratic form on g. Let X0, X1, X2 denote
an orthonormal basis in g. Note that the notation in [P, (1.1)] is lk = Xk.

Following the algebraic approach in [HP, Def. 3.1.2] the Dirac operator
is the element of the algebra U(g)⊗ C(g) given by

D = X0 ⊗ c(X0) +X1 ⊗ c(X1) +X2 ⊗ c(X2)

where c(Xk) denotes Clifford multiplication by Xk.
Let

σ0 =

(
1 0
0 −1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 i
−i 0

)
and set

c(Xk) = iσk, k = 0, 1, 2
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Then we have
c(Xk)

2 = −1

for all k = 0, 1, 2.
We have

D = i(X0σ0 +X1σ1 +X2σ2)

= i

(
X0 X1 + iX2

X1 − iX2 −X0

)
The operator D acts on 2-spinor fields in the following way: the elements

of the Lie algebra g give rise to right-invariant vector fields on G and in this
way Xj , j = 0, 1, 2 form differential operators on scalar fields. The matrix
then acts by differentiating the components of a spinor field.

Viewing a compactly supported 2-spinor field as a pair of scalar valued
functions on the group G, it is an element of Cc(G)⊕Cc(G) ⊆ A⊕A. In this
way the Dirac operator D gives rise to an unbounded adjointable operator
on A⊕ A viewed as a Hilbert module over A.

Let now π be a unitary representation, in the principal series or the
discrete series of G, on a Hilbert space Vπ. The infinitesimal generators
H0, H1, H2, which act on the Hilbert space Vπ, are determined by the fol-
lowing equation [P, p.98]:

exp(−itHk) = π(exp(tXk)) ∀t ∈ R, k = 0, 1, 2

On each of the Hilbert spaces Vq and Vq,τ we therefore have three self-
adjoint operators, namely H0, H1 and H2. These form a field of operators
on the field of Hilbert spaces V∗. The spectrum of H0 is discrete with
eigenvalues m = `, `+ 1, `+ 2, . . . and m = −`, `− 1,−`− 2, . . . in the case
that q < 1/4 and with eigenvalues m ∈ τ + Z for q ≥ 1/4. Each eigenvalue
has multiplicity 1 and we let fm be an orthogonal basis of eigenvectors of
H0 so that

H0fm = mfm.

Following [P, p.100], we define

H+ = H1 + iH2, H− = H1 − iH2

In addition, we have the following equations

H+fm = (q +m(m+ 1))1/2fm+1

H−fm = (q +m(m− 1))1/2fm−1

which hold for all m when q ≥ 1/4 and where the first equation holds for
all m 6= −`, the second for all m 6= ` when q < 1/4. The special cases of
H+f−` and H−f` are both zero.

By analogy with the Dirac operator D above, we construct a field of
self-adjoint operators

H =

(
H0 H1 + iH2

H1 − iH2 −H0

)
(3)

on the field of Hilbert spaces V∗ ⊕ V∗. Since the algebra Â consists of fields
of compact operators on V∗, the operator H can also be thought of as acting
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on Â ⊕ Â by composition. (One must additionally note that the operators
Hj , j = 0, 1, 2 respect the decomposition of Vq as D`,+ ⊕D`,− for q ≤ 1/4.)

Since the operator D acts on A⊕A and we have an isomorphism from A

to Â given by the Fourier transform (Theorem 2.2), we obtain an operator

D̂ on Â⊕ Â. We will show that

D̂ = −H.

To demonstrate this it suffices to show that the isomorphism A ∼= Â takes
the differential operator iXj to −Hj for each j.

For f a smooth compactly supported function on G the Fourier transform
of f is defined by

f̂(π) =

∫
f(g)π(g) dg.

SinceHj is the infinitesimal generator of the 1-parameter group exp(−itHj) =

π(exp(tXj)) we have Hj = i ddtπ(exp(tXj))|t=0. Hence

−Hj f̂(π) = −
∫
f(g)Hjπ(g) dg

= −
∫
f(g)i

d

dt
π(exp(tXj))|t=0π(g) dg

= −i d
dt

∫
f(g)π(exp(tXj)g) dg|t=0

= −i d
dt

∫
f(exp(−tXj)g

′)π(g′) dg′|t=0 by left invariance of dg

= −i
∫

d

dt
f(exp(−tXj)g

′)|t=0π(g′) dg′

= i

∫
Xj(f)π(g′) dg′

= iX̂j(f)(π)

since Xj is a right-invariant vector field. This establishes that the Fourier

transform takes iXj to −Hj and hence that D̂ = −H.
We will therefore study the operator H in detail. Recall that H is defined

on the field V∗⊕V∗, and a crucial observation at this point is the emergence
of two dimensional invariant subspaces for H at each point of the parameter
space Z.

Each such subspace Em is spanned by a pair of vectors

(
fm
0

)
and

(
0

fm−1

)
,

wherem is in the set τ+Z for q ≥ 1/4 andm = `+1, `+2, . . . or−`,−`−1, . . .
for q < 1/4. We have the following equations

H
(
fm
0

)
=

(
H0 H+

H− −H0

)(
fm
0

)
=

(
mfm

(q +m(m− 1))1/2fm−1

)
and

H
(

0
fm−1

)
=

(
H0 H+

H− −H0

)(
0

fm−1

)
=

(
(q +m(m− 1))1/2fm
−(m− 1)fm−1

)
.
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With respect to this basis, the operator H is given by the following symmetric
matrix (

m (q +m(m− 1))1/2

(q +m(m− 1))1/2 −(m− 1)

)
.

This symmetric matrix has the following eigenvalues

λ =
1

2
±
√

1/4 + q + 2m(m− 1).

In the case that q ≥ 1/4 the subspaces Em for m ∈ τ+Z span the whole of
Vq,τ . However, for q < 1/4 there are a further two 1-dimensional subspaces
spanned by the vectors (

f`
0

)
,

(
0
f−`

)
These subspaces are invariant since H−(f`) = 0 and H+(f−`) = 0.

Note that something very special occurs in the limit-of-discrete series
when q = 1/4 and τ = 1/2. Here, when m = 1/2 we have

q +m(m− 1) = 0

and so in this case the operator matrix

(
H0 H+

H− −H0

)
restricted to the 2-

dimensional subspace spanned by

(
f1/2

0

)
,

(
0

f−1/2

)
is the diagonal matrix(

1/2 0
0 1/2

)
.

For q < 1/4, we have the following eigenvector equations(
H0 H+

H− −H0

)(
fl
0

)
= l

(
fl
0

)
and (

H0 H+

H− −H0

)(
0
f−l

)
= l

(
0
f−l

)
.

With respect to the basis given by the vectors

(
fl
0

)
and

(
0
f−l

)
our operator

matrix has the diagonal form

(
l 0
0 l

)
, so we see that as q approaches 1/4

and consequently ` approaches 1/2 this matches up with the limit-of-discrete
series case of q = 1/4, τ = 1/2, justifying the terminology.

As noted above, the operator H can be thought of either as an operator on

Â⊕Â or an operator on V∗⊕V∗. Taking the latter view, the operator acts on
the space C0(Z, V∗⊕V∗) of continuous sections of V∗⊕V∗ vanishing at infinity,
which is a Hilbert module over C0(Z). Indeed there is an isomorphism of
Hilbert modules

(Â⊕ Â)⊗
Â
C0(Z, V∗) ∼= C0(Z, V∗ ⊕ V∗)

and viewing H as an operator on Â ⊕ Â, the corresponding operator on
C0(Z, V∗ ⊕ V∗) is given by H⊗ 1.
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The algebra Â is contained in C0(Z,K(V∗)) (or C0(Z,K) for short) and
can factorise the tensor product further as

(Â⊕ Â)⊗
Â
C0(Z,K)⊗C0(Z,K) C0(Z, V∗)

Hence at the level of KK-theory viewing H as an operator on sections of

V∗ ⊕ V∗ corresponds to the composition of the forgetful inclusion of Â into
C0(Z,K) with the Morita equivalence from C0(Z,K) to C0(Z) (which is
implemented by the module C0(Z, V∗)).

We now consider the restriction of the field of Hilbert spaces to the copy
of the real line inside Z given by the union

{q ∈ R : q ≤ 1/4} ∪ {(q, 1/2) ∈ R× R : q ≥ 1/4},

which we regard as parametrized by q. Correspondingly we restrict H to the
Hilbert spaces over this line. Passing from H viewed as an operator on an

Â-Hilbert module to H|R viewed as an operator on a C0(R)-Hilbert module
corresponds to the composition

Â ↪→ C0(Z,K) ∼
m.e.

C0(Z) � C0(R).

We will see in Section 4 that this composition induces an isomorphism at the
level ofKK-theory. In this section we will identify the class [C0(R, V∗|R), 1,H|R]
in KK1(C, C0(R)).

Remark 3.1. The half-line {q ∈ R : q ≥ 1/4} has the following signifi-
cance in representation theory. The corresponding unitary representations
(Vq,1/2, πq,1/2) all factor through SL2(R) and constitute the odd principal
series πq of SL2(R). In particular, the representation π1/4,1/2 is the limit-
of-discrete series for SL2(R). It is the direct sum of two irreducible repre-
sentations whose characters θ+ and θ− do not vanish on the elliptic set. In
this respect, they resemble representations in the discrete series. So the term
limit-of-discrete-series for π1/4,1/2 is surely apt.

We now attempt to glue together some one-dimensional eigenspaces to
form a complex hermitian line bundle L over R. Take q ≥ 1/4 and consider
the subspace E1/2. The restriction H|E1/2

is given by the matrix(
1/2

√
q − 1/4√

q − 1/4 1/2

)

from which we readily see that the vector

(
f1/2
−f−1/2

)
is an eigenvector of H

with eigenvalue 1/2 −
√
q − 1/4. Note that the eigenvalue tends to 1/2 as

q → 1/4+.

Now for q < 1/4 we see that

(
f`
−f−`

)
is an eigenvector of H with eigen-

value ` tending to 1/2 as q → 1/4−.
We can thus define a H-invariant complex Hermitian line bundle L as

follows.
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Define Lq :=


C

(
f`

−f−`

)
for q ≤ 1/4, q = `(1− `)

C

(
f1/2
−f−1/2

)
for q ≥ 1/4

On this line-bundle the field of operators H is simply multiplication by
the function

ω(q) :=

{
` = 1

2 +
√

1/4− q for q ≤ 1/4
1
2 −

√
q − 1/4 for q ≥ 1/4.

In particular we note that ω(q) tends to ±∞ as q → ∓∞. The field of
operators induces an operator on the Hilbert module C0(R, L) of C0-sections
of the bundle, and this operator is multiplication by ω. This means that
the unbounded Kasparov triple [C0(R, L), 1, ω] represents the generator of
KK1(C, C0(R)).

Theorem 3.2. The unbounded Kasparov triple [C0(R, L), 1, ω] represents
the generator of KK1(C, C0(R)).

Similarly we have a H-invariant line bundle M with

Mq :=


C

(
f`

f−`

)
for q ≤ 1/4, q = `(1− `)

C

(
f1/2
f−1/2

)
for q ≥ 1/4

on which the operator H is multiplication by the function

ε(q) :=

{
` = 1

2 +
√

1/4− q for q ≤ 1/4
1
2 +

√
q − 1/4 for q ≥ 1/4.

In this case we see that ε(q)→ +∞ as q → ±∞ from which we see that the
corresponding Kasparov triple [C0(R,M), 1, ε] in KK1(C, C0(R)) represents
the zero element of KK1.

We now examine how the remaining 2-dimensional subspaces Em match
up at q = 1/4. For q ≥ 1/4 we have m = 1/2+k where k ∈ Z and we exclude
the case k = 0 which we have already considered. Now for each k > 0 we
take the 2-dimensional bundle N (k) whose fibres are E1/2+k for q ≥ 1/4 and
which are E`+k for q ≤ 1/4. These agree at q = 1/4 since ` = 1/2 at this
point.

For k < 0 we take the 2-dimensional bundle N (k) whose fibres are E1/2+k

for q ≥ 1/4 and which are E−`+1+k for q ≤ 1/4. We note that when ` = 1/2
we obtain E−`+1+k = E1/2+k. Thus for each k 6= 0 we can view m as a
continuous function of q defined by
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m(q) :=


`+ k = 1

2 +
√

1/4− q + k for q ≤ 1/4, k = 1, 2, . . .

−`+ 1 + k = 1
2 −

√
1/4− q + k for q ≤ 1/4, k = −1,−2, . . .

1
2 + k for q ≥ 1/4, k ∈ Z \ {0}.

Recall that the eigenvalues of the restriction of H to Em are given by

λ± =
1

2
±
√

1/4 + q + 2m(m− 1).

Writing 2m(m− 1) as 2(m− 1/2)2 − 1/2 we see that

2m(q)(m(q)−1) :=


2(
√

1/4− q + k)2 − 1/2 for q ≤ 1/4, k = 1, 2, . . .

2(−
√

1/4− q + k)2 − 1/2 for q ≤ 1/4, k = −1,−2, . . .

2k2 − 1/2 for q ≥ 1/4, k ∈ Z \ {0}.

=


2(1/4− q + k2 + 2k

√
1/4− q)− 1/2 for q ≤ 1/4, k = 1, 2, . . .

2(1/4− q + k2 − 2k
√

1/4− q)− 1/2 for q ≤ 1/4, k = −1,−2, . . .

2k2 − 1/2 for q ≥ 1/4, k ∈ Z \ {0}.

=


2(−q + k2 + 2k

√
1/4− q) for q ≤ 1/4, k = 1, 2, . . .

2(−q + k2 − 2k
√

1/4− q) for q ≤ 1/4, k = −1,−2, . . .

2k2 − 1/2 for q ≥ 1/4, k ∈ Z \ {0}.

1/4+q+2m(m−1) =


1/4− q + 2(k2 + 2k

√
1/4− q) for q ≤ 1/4, k = 1, 2, . . .

1/4− q + 2(k2 − 2k
√

1/4− q) for q ≤ 1/4, k = −1,−2, . . .

q − 1/4 + 2k2 for q ≥ 1/4, k ∈ Z \ {0}.
In particular we see that the discriminant 1/4 + q + 2m(m− 1) is always

at least 2 so that the eigenvalues must always be distinct, indeed they are
respectively ≥ 1

2 +
√

2 and ≤ 1
2 −
√

2. Thus the bundles of positive and

negative eigenspaces within N (k) define H-invariant line bundles which we
denote N (k)±. Moreover in the positive case the eigenvalues tend to +∞ as
q → ±∞ and in the negative case eigenvalues tend to −∞ as q → ±∞.

This establishes the following result.

Theorem 3.3. Each individual line bundle thus gives a Kasparov triple
[C0(R, N (k)±), 1, λ±] (where we view the eigenvalue λ± as a function of q)
representing the zero element of KK1.

Finally, we have

Theorem 3.4. The Kasparov triple [C0(R, V∗|R), 1,H|R] generates KK1(C, C0(R))).

Proof. We have seen that the bundle E over R can be decomposed as the
direct sum of L,M and N (k)± for k ∈ Z \ {0} and that the operator H
respects this decomposition.

Now restricting H to an operator on sections of⊕
k∈Z\{0}

N (k)+

the operator acts by multiplication by λ+ = 1
2 +

√
1/4 + q + 2m(m− 1).

The above formulas for the discriminant show that λ+ tends to infinity as
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k → ±∞ and also as q → ±∞. Hence the corresponding bounded operator
H(1 + H2)−1/2 is a compact perturbation of the identity operator 1. The
corresponding bounded Kasparov triple is thus degenerate.

Similarly restricting H to an operator on sections of

M ⊕
⊕

k∈Z\{0}

N (k)−

the operator acts by multiplication by λ− = 1
2 −

√
1/4 + q + 2m(m− 1).

Since λ− tends to minus infinity as k → ±∞ and as q → ±∞ the corre-
sponding bounded operator H(1 +H2)−1/2 is a compact perturbation of −1,
and again the Kasparov triple is degenerate.

We conclude that neither of these restrictions contribute to the K-theory
and thus

[C0(R, V∗|R), 1,H] = [C0(R, L), 1, ω]

which is the generator of KK1(C, C0(R)). �

4. K-theory

Let

A = {z ∈ C; |z| ≤ 1}, B = [1, 2]

and let

Y = A ∪B.
The coordinate change

(q, τ) 7→ −(q + 3/4)−1e2πiτ , for q ≥ 1/4, 0 ≤ τ ≤ 1

q 7→ 2− (5/4− q), for q ≤ 1/4

respects the identifications in the construction of Z, and transforms the
locally compact parameter space Z into a dense subspace U of the compact
parameter space Y. Explicitly U is the union of the punctured disc with the
half-open interval [1, 2).

Lemma 4.1. The reduced C∗-algebra A is strongly Morita equivalent to the
C∗-algebra D of all 2× 2-matrix-valued functions on the compact Hausdorff
space Y which are diagonal on B, and vanish at 0 and 2:

D := {F ∈ C(Y,M2(C)) : F (y) is diagonal on B,F (0) = 0 = F (2)}

Proof. By Theorem 2.2 we have an isomorphism A ∼= Â given by the Fourier

transform and we have already seen that Â is Morita equivalent to B. The
algebra B is isomorphic to D via the above change of coordinates. �

We now compute the K-theory. Define a new C∗-algebra as follows:

C := {F ∈ C(Y,M2(C)) : F (y) is diagonal on B,F (2) = 0}.

The map

C→M2(C), F 7→ F (0)

then fits into an exact sequence of C∗-algebras

1→ D→ C→M2(C)→ 0.
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This yields the six-term exact sequence

(4)

K0(D) −−−−→ K0(C) −−−−→ Zx y
0 ←−−−− K1(C) ←−−−− K1(D)

Note that Y = A ∪B is a contractible space. The following homotopy is
well-adapted to the C∗-algebra C. Given z = x+ iy ∈ Y define ht as follows:

ht(x+ iy) =

{
x+ (1− 2t)iy 0 ≤ t ≤ 1/2
x+ (2− x)(2t− 1) 1/2 ≤ t ≤ 1

This is a homotopy equivalence from Y to the point {2}. Given a function
F ∈ C, the composition F (ht(x+ iy)) also lies in C since if x+ iy = x ∈ B
then ht(x+iy) also lies in B, and hence F (ht(x+iy)) is diagonal as required.

Thus F 7→ F ◦ ht induces a homotopy equivalence from C to the zero
C∗-algebra O:

C ∼h O

i.e. C is a contractible C∗-algebra, and hence the connecting maps in (4) are
isomorphisms.

Since K-theory is an invariant of strong Morita equivalence, we have the
following result.

Theorem 4.2. Let A denote the reduced C∗-algebra of the universal cover
of SL2(R). Then

K0(A) = 0, K1(A) = Z

In Section 3 we considered the composition

(5) Â ↪→ C0(Z,K) ∼
m.e.

C0(Z) � C0(R).

At the level of K-theory this agrees with the composition

D ↪→ C0(U ,M2(C)) ∼
m.e.

C0(U) � C0((0, 2)).

which includes into the composition

C ↪→ C0(Y \ {2},M2(C)) ∼
m.e.

C0(Y \ {2}) � C0([0, 2)).

It follows that the 6-term exact sequence (4) maps commutatively to the
6-term exact sequence

K0(C0((0, 2))) −−−−→ K0(C0([0, 2))) −−−−→ Zx y
0 ←−−−− K1(C0([0, 2))) ←−−−− K1(C0((0, 2)))

from which we conclude that the map from K∗(D) to K∗(C0((0, 2))) is an

isomorphism. Correspondingly K∗(Â)→ K∗(C0(R)) is an isomorphism.

In Section 3 we showed that (5) takes the Kasparov triple [Â⊕ Â, 1,H] to
a generator of KK1(C, C0(R)). We thus conclude the following result.

Theorem 4.3. Let A denote the reduced C∗-algebra of the universal cover of

SL2(R) and let Â ∼= A denote its Fourier transform. Then [Â⊕ Â, 1,H] is a

generator of KK1(C, Â) and hence [A⊕A, 1, D] is a generator of KK1(C,A).
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