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THE PRINCIPAL ANGLES AND THE GAP

LEO TASLAMAN

ABSTRACT. In this note we provide proofs for some known results
on the principal angles and the gap between two subspaces of Cn.
Both the principal angles and the gap are introduced with respect
to an arbitrary positive definite inner product. We show that the
principal angles between two subspaces U and V are unique and
prove that the largest one, θmax, satisfies

θmax = max
u∈U
‖u‖=1

min
v∈V
‖v‖=1

∡(u,v) and sinθmax = gap(U ,V )

when dimU = dimV .

Keywords: principal angles, canonical angles, gap, canonical corre-
lations.

1. CHARACTERIZATIONS OF THE SINGULAR VALUES

The following two results are needed for the next section.

Theorem 1.1. The singular values σ1 ≥σ2 ≥ ·· · ≥σp of a matrix A can

be characterized recursively as follows:

σi = max{ |x∗Ay| : ‖x‖2 = ‖y‖2 = 1,

x∗x j = y∗yj = 0, j = 1,2, . . ., i−1}

= |x∗i Axi|,

where xi and yi are maximizing vectors (in fact singular vectors).

Proof. We have |x∗Ay| ≤ ‖x‖2‖A‖2‖y‖2 = σ1 and x∗1 Ay1 = σ1 where x1
and y1 can be any left and right first singular vectors, respectively.
Hence the result is true for i = 1. Set B =

∑p

k=i
σkxk y∗

k
. For any vectors

x and y in the ith set above, we have |x∗Ay| = |x∗By| ≤ ‖x‖2‖B‖2‖y‖2 =

σi. Since x∗
i

Ayi = σi for any ith left and right singular vectors xi and
yi, the result follows. �
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Theorem 1.2. The smallest singular value of a p×p matrix A =UΣV∗,

is given by

σp = min
‖x‖2=1

max
‖y‖2=1

|x∗Ay|.

Proof. Let f denote the right hand side above. We have

f ≤ max
‖y‖2=1

|x∗p Ay| =σp,

for any pth left singular vector xp. For any x we can pick y such that
‖y‖2 = 1 and V∗y=U∗x. Hence

f ≥ min
‖x‖2=1

|(U∗x)∗ΣU∗x| = min
‖w‖2=1

|w∗
Σw| =σp.

�

2. THE PRINCIPAL ANGLES

For the remainder of this note, let 〈·, ·〉 denote an arbitrary positive
definite inner product on C

n and ‖·‖ the induced norm. Suppose, with-
out loss of generality, that the inner product is defined by a symmetric
positive definite matrix M, so 〈u,v〉 = u∗Mv, for any u and v.

We define the angle between two nonzero vectors u and v as

∡(u,v)= arccos
(
|〈u,v〉|
‖u‖‖v‖

)
,

and the angle between a nonzero vector u and a nonzero subspace V

as
∡(u,V )= min

v∈V
‖v‖=1

∡(u,v).

Now, consider two subspaces U ,V ⊆C
n. If p = dimU ≤ dimV = q, then

there are p principal angles (or canonical angles)

0 ≤ θ1(U ,V ) ≤ θ2(U ,V ) ≤ ·· · ≤ θp(U ,V ) ≤ π/2

between U and V . We shall with θmax(U ,V ) refer to θp(U ,V ). The
principal angles are defined recursively by

θi(U ,V ) = min{∡(u,v) : u ∈U , v ∈ V ,‖u‖= ‖v‖ = 1,

〈u, u j〉 = 〈v,v j〉 = 0, j = 1,2, . . ., i−1}

= ∡(u i,vi),

where u i and vi are minimizing vectors, known as principal vectors.
Note that u1, u2, . . . , up and v1,v2, . . . ,vp are M-orthonormal bases for
U and V respectively. The principal vectors are not unique but we
shall see that principal angles are. We note that

(1) θi(U ,V )= θi(V ,U )
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for any i.
The next result is due to Björck and Golub [1].

Theorem 2.1. Let U = [u1, u2, . . . , up] and V = [v1,v2, . . . ,vp]. If σ1 ≥

σ2 ≥ ·· · ≥σp are the singular values of U∗MV , then

θi(U ,V )= arccos(σi).

We will make use of the following fact in the proof.

Fact 2.2. Let f : X → R such that f [X ] is a closed interval of the real

line. For any decreasing function g : f [X ]→R it holds that

g

(
max
x∈X

f (x)
)
=min

x∈X
g( f (x)) and g

(
min
x∈X

f (x)
)
=max

x∈X
g( f (x)).

Proof of Theorem 2.1. Cosine is a decreasing function on [0,π/2]. Hence,
by using Fact 2.2, we see that taking cosine on both sides of the defini-
tion of θi(U ,V ) yields

cos(θi(U ,V )) = max{ |〈u,v〉| : u ∈U , v ∈ V ,‖u‖= ‖v‖ = 1,

〈u, u j〉 = 〈v,v j〉 = 0, j = 1,2, . . ., i−1}

= |〈u i,vi〉|.

By defining u =Ux, v =V y and u i =Uxi, vi =V yi we get

cos(θi(U ,V )) = max{ |x∗(U∗MV )y| : ‖x‖2 = ‖y‖2 = 1,

x∗xi = y∗yi = 0, j = 1,2, . . ., i−1}

= |x∗i (U∗MV )yi|.

The result now follows from Theorem 1.1. �

To see that the principal angles are unique, consider any two ma-
trices, U ′ and V ′, whose columns are M-orthonormal bases for U and
V , respectively. Then U ′ = UQ1 and V ′ = VQ2 where Q∗

1Q1 = I p and
Q∗

2Q2 = Iq. Thus U ′∗MV ′ =Q∗
1 (U∗MV )Q2 and the singular values are

identical to those of U∗MV . This shows that principal angles are inde-
pendent of choice of principal vectors, and the uniqueness follows from
the uniqueness of the singular values.

The next result is stated without proof in [2, p. 249].

Corollary 2.3. If p = q, then the largest principal angle is given by

θmax(U ,V )= max
u∈U
‖u‖=1

min
v∈V
‖v‖=1

∡(u,v).
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Proof. Using Theorem 1.2 we get

cos(θmax(U ,V )) = σp(U∗MV )= min
‖x‖2=1

max
‖y‖2=1

|x∗U∗MV y|

= min
u∈U
‖u‖=1

max
v∈V
‖v‖=1

|u∗Mv| = min
u∈U
‖u‖=1

max
v∈V
‖v‖=1

|〈u,v〉|.

Since arccos is a decreasing function on [0,1], Fact 2.2 implies that

θmax(U ,V ) = arccos



 min
u∈U
‖u‖=1

max
v∈V
‖v‖=1

|〈u,v〉|



= max
u∈U
‖u‖=1

arccos



max
v∈V
‖v‖=1

|〈u,v〉|





= max
u∈U
‖u‖=1

min
v∈V
‖v‖=1

arccos(|〈u,v〉|)= max
u∈U
‖u‖=1

min
v∈V
‖v‖=1

∡(u,v).

�

We will use the next lemma to relate the largest principal angle to
the gap. It is a special case of Theorem 2.2 in [2].

Lemma 2.4. Let the columns of V and V⊥ be M-orthonormal bases of

V and V⊥ respectively. If ‖u‖ = 1, then sin∡(u,V )= ‖V∗
⊥

Mu‖2.

Proof. Define [
V∗

V∗
⊥

]
Mu =

[
C

S

]

Since VV∗M and V⊥V∗
⊥

M are M-orthogonal projectors onto V and V⊥,
respectively, we have

C∗C+S∗S = u∗M(VV∗M+V⊥V∗
⊥ M)u = u∗Mu = 1.

Now, C∗C and S∗S are scalars and equals the squares of 2-norms of
V∗Mv and V∗

⊥
Mv, respectively. By Theorem 2.1, cos2

θ = C∗C, where
θ is the principal angle between span{u} and V . It follows that sinθ =

(S∗S)1/2. �

3. THE GAP

In this section we introduce the gap between subspaces in C
n and

relate it to the largest principal angle. Recall that all norms are with
respect to the M-inner product. The following definitions can be found
in [3, p. 7 and p. 197]:

dist(u,V )=min
v∈V

‖u−v‖,

δ(U ,V )=






0 if U = 0,

max
u∈U
‖u‖=1

dist(u,V ) otherwise,
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and

gap(U ,V )=max(δ(U ,V ),δ(V ,U )) .

Note that we in general have δ(U ,V ) 6= δ(V ,U ), so gap 6≡ δ. If dimU =

dimV , however, we will see that it always holds that gap(U ,V ) =
δ(U ,V ).

The next lemma can be found in [2, Theorem 2.3].

Lemma 3.1. If ‖u‖= 1, then

sin∡(u,V )=min
v∈V

‖u−v‖ = dist(u,V ).

Proof. Let V and V⊥ be as in Lemma 2.4. Write V∗Mu = û and V∗
⊥

Mu =

û⊥, and note that V∗MV x = x and V∗
⊥

MV x = 0. We have
[
V∗

V∗
⊥

]
M(u−V x)=

[
û− x

û⊥

]
.

Further,

‖u−V x‖ =

∥∥∥∥

[
V∗

V∗
⊥

]
M(u−V x)

∥∥∥∥
2
=

∥∥∥∥

[
û− x

û⊥

]∥∥∥∥
2

which is minimized for x = û, with minimum ‖û⊥‖2 = ‖V∗
⊥

Mu‖2. By
Lemma 2.4, ‖V∗

⊥
Mu‖2 = sin∡(u,V ). �

Now, if dimU = dimV > 0, then we have

max
u∈U
‖u‖=1

dist(u,V ) = max
u∈U
‖u‖=1

sin∡(u,V )

= sin max
u∈U
‖u‖=1

∡(u,V )

= sin max
u∈U
‖u‖=1

min
v∈V
‖v‖=1

∡(u,v)

= sinθmax(U ,V ),

where the first equality follows from Lemma 3.1; the second from the
fact that sine is an increasing function on [0,π/2]; the third from the
definition of the angle between a vector and a subspace; and the fourth
from Corollary 2.3. Since θmax(U ,V )= θmax(V ,U ), we have proved the
following theorem.

Theorem 3.2. If dimU = dimV , then

gap(U ,V )= δ(U ,V )= sinθmax(U ,V ).
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