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Abstract

The need to estimate structured covariance matrices arises in a variety of applica-
tions and the problem is widely studied in statistics. A new method is proposed for
regularizing the covariance structure of a given covariance matrix whose underlying
structure has been blurred by random noise, particularly when the dimension of
the covariance matrix is high. The regularization is made by choosing an optimal
structure from an available class of covariance structures in terms of minimizing the
discrepancy, defined via the entropy loss function, between the given matrix and
the class. A range of potential candidate structures comprising tridiagonal Toeplitz,
compound symmetry, AR(1), and banded Toeplitz is considered. It is shown that
for the first three structures local or global minimizers of the discrepancy can be
computed by one-dimensional optimization, while for the fourth structure Newton’s
method enables efficient computation of the global minimizer. Simulation studies
are conducted, showing that the proposed new approach provides a reliable way to
regularize covariance structures. The approach is also applied to real data analysis,
demonstrating the usefulness of the proposed approach in practice.

Keywords: Covariance estimation; Covariance structure; Entropy loss function;
Kullback-Leibler divergence; Regularization.

1. Introduction

The need to estimate structured covariance matrices arises in a variety of appli-
cation fields including signal processing (Pascal et al., 2008), networks (Vinciotti and
Hashem, 2013), and control problems (Lin and Jovanović, 2009) and the problem
is widely studied in statistics; see, e.g., Pourahmadi (1999) and Pan and Mackenzie
(2003). A conventional way, known as the “Burg technique”, is to find the maxi-
mum likelihood estimation for a covariance matrix that has a specific/regularized
structure using random samples drawn from a stochastic process (Burg et al., 1982).
However, this method has some drawbacks, including that (a) it is based on the pre-
sumption that the stochastic process is multivariate normal, (b) the structure of
the covariance must be prespecified, and (c) the sample covariance matrix must be
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available; moreover, it can be difficult to deduce the underlying covariance structure
from the sample covariance matrix, because of random noise or large dimension of
the matrix, for example.

To overcome these difficulties, in this paper we propose a new method for regu-
larizing the underlying structure of a given covariance matrix. Our method is based
on the entropy loss function (Dey and Srinivasan, 1985; James and Stein, 1961)

L(A,B) = tr(A−1B)− log(det(A−1B))−m, (1.1)

where A and B are m×m matrices and, to ensure that L(A,B) is nonnegative, we
assume that A and B are symmetric positive definite. The entropy loss function, also
known as the Kullback-Leibler divergence, is a well-accepted nonsymmetric measure
of the discrepancy between two probability distributions (Pan and Fang, 2002). It
is a special case of the Bregman divergence (Dhillon and Tropp, 2007) and has been
widely used in statistics (Pan and Fang, 2002). Recent work on using the entropy loss
function in multivariate spectral estimation and multivariate process control is that
of Ferrante et al. (2012) and Maboudou-Tchao and Agboto (2013), respectively. The
problem of interest here is, given a covariance matrix A whose underlying structure is
blurred due to random noise, particularly when the dimension m is high, to identify
the underlying structure of A from a class of candidate covariance structures. To
demonstrate our idea, we introduce the following notation. Let S be the set of all
positive definite covariance matrices with structure s. We define the discrepancy
between a given positive definite covariance matrix A and the set S by

D(A,S) = min
B∈S

L(A,B), (1.2)

where L(A,B) is the entropy loss function in (1.1). Our idea is that, among a
given class of k candidate covariance structures {s1, s2, . . . , sk}, the structure with
which A has the smallest discrepancy can be viewed as the most likely underlying
structure of A. We refer to the replacement of A by a matrix B achieving the
minimum in (1.2) as the process as regularizing A. It is worth pointing out that
the matrix A is not necessarily a sample covariance matrix. It can be any estimator
of a covariance matrix, obtained by statistical methods such as those based on
modified Cholesky decomposition methods (Pan and Mackenzie, 2003; Ye and Pan,
2006). Regularization of the given covariance matrix helps the understanding of
the underlying correlation/covariance process and simplifies complicated and high-
dimensional data problems.

In this paper we consider the following four candidate covariance structures that
are commonly used in practice, for example, in longitudinal and spatial studies.

(1) The order-1 moving average structure, MA(1), has a tridiagonal and Toeplitz
covariance matrix

B = σ2


1 c 0 · · · 0

c 1 c
. . .

...

0
. . . . . . . . . 0

...
. . . . . . 1 c

0 · · · 0 c 1

 , (1.3)

where σ2 > 0 and −1/(2 cos(π/(m+ 1))) < c < 1/(2 cos(π/(m+ 1))).
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(2) The covariance of compound symmetry (CS) structure assumes that the cor-
relation coefficients of any two observations are the same, i.e.,

B = σ2


1 c c · · · c

c 1 c
. . .

...

c
. . . . . . . . . c

...
. . . . . . 1 c

c · · · c c 1

 , (1.4)

where σ2 > 0 and −1/(m− 1) < c < 1.

(3) The covariance of autoregression of order 1, AR(1), has the property that the
correlation between any pair of observations decays exponentially towards zero
as the distance between two observations increases. It is of the form

B = σ2


1 c c2 · · · cm−1

c 1 c · · · cm−2

c2 c 1 · · · cm−3

...
. . . . . . . . .

...
cm−1 cm−2 · · · c 1

 , (1.5)

where σ2 > 0 and −1 < c < 1.

(4) More generally, banded Toeplitz covariance matrices have constant subdiago-
nal entries, i.e., constants at lag 1 (i.e., the covariance of the repeated measures
one unit of time apart), lag 2, . . . , and lag p:

B = σ2



1 c1 · · · cp 0 · · · 0

c1 1 c1
. . . . . . . . .

...
...

. . . . . . . . . . . . . . . 0

cp
. . . . . . . . . . . . . . . cp

0
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . 1 c1

0 · · · 0 cp · · · c1 1


, (1.6)

where σ2 > 0, c1, c2, . . . , cp are nonzero and all other off-diagonal elements are
zero.

The main task now is to calculate the discrepancy D(A,S) for each of the candi-
date covariance structures listed in (1.3)–(1.6) above, where the covariance matrix
A is given. Equivalently, it is to find for each covariance structure a positive definite
matrix B that minimizes the discrepancy L(A,B) over the set of matrices with that
structure. Accordingly, structure s in the candidate class {s1, ..., sk} that has the
smallest discrepancy is the most likely covariance structure, among the candidate
classes, for the matrix A.

The rest of this paper is organized as follows. In section 2, we formulate our
problem of interest into an optimization problem and explore some of its general
properties. We show that for S the set of MA(1), CS or Toeplitz covariance matrices,
the optimization problem we need to solve is a convex problem and has a unique
global minimum. We then show in section 3 that the problem of finding B with
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structure MA(1), CS or AR(1) that minimizes L(A,B) reduces to computing the
zeros of a nonlinear function in one variable. In section 4 we explain how Newton’s
method can be used to solve the problem for Toeplitz covariance structure. In sec-
tion 5 we carry out simulation studies, illustrating how our techniques of computing
the structured covariance matrix that minimizes the entropy loss function can be
used in regularizing the underlying covariance structure. We also apply the pro-
posed approach to two real data experiments. Some further remarks and discussion
are given in section 6.

2. Problem of interest and its properties

We start by formulating the problem of interest and exploring some of its prop-
erties. Define f : Rm×m

+ → R where Rm×m
+ is the set of all m×m symmetric positive

definite matrices and f(B) := L(A,B). Let Ω ⊂ Rm×m
+ be a set of structured

positive definite matrices. Our problem now is

min f(B) (2.7a)

subject to B ∈ Ω. (2.7b)

We denote by ∇Bf = (∂f/∂bij) the gradient of f , where bij is the (i, j) entry of B.
Ignoring the symmetry of A and B and using results from Magnus and Neudecker
(1999) we have

∇B tr(A−1B) = A−T = A−1,

∇B log det(B) = B−T = B−1,

and then
∇Bf = A−1 −B−1. (2.8)

Write b = vec(B) ∈ Rm2
where vec denotes the vector obtained by stacking the

columns of its matrix argument on top of each other from first to last. Taking f as
a function from Rm2

to R, the Hessian of f is then given by

∇2
bf :=

(
∂2f

∂bi∂bj

)
= B−T ⊗B−1 = B−1 ⊗B−1, (2.9)

(Magnus and Neudecker, 1999). Since B is positive definite, B−1 ⊗ B−1 is positive
definite, and so f(B) is a strictly convex function of B. The strict convexity of f(B)
in Rm×m

+ is also a standard result that follows directly from its definition in Boyd
and Vandenberghe (2004, Sec. 3). We nevertheless keep our brief derivation here for
further reference.

On the other hand, it is clear from their expressions that the sets Ω of MA(1)
(1.3), CS (1.4), and Toeplitz (1.6) are convex. Therefore when Ω is the set of positive
definite matrices having one of the three structures the problem (2.7) is convex and
so has a unique solution. When Ω is the set of AR(1) matrices, the problem is not
convex because Ω is not convex. We will show later that only a local minimum of
the problem can be expected to be found in this case.

We mention in passing that when Ω = Rm×m
+ , the minimum of f(B) in (2.7)

is obtained at ∇Bf = 0, i.e., B = A. Moreover, provided A is symmetric positive
definite, the entropy loss function L(A,B) at the boundary of the set of symmetric
positive definite matrices is +∞, that is, L(A,B)→ +∞ as det(B)→ 0.
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3. Two-parameter problems

We begin by considering the two-parameter matrices (1.3)–(1.5), for which the
problem reduces to computing the zeros of a nonlinear function of a single variable.

3.1. Tridiagonal Toeplitz matrices

Recall that the tridiagonal matrix (1.3)

B(c, σ) = σ2


1 c 0 · · · 0

c 1 c
. . .

...

0
. . . . . . . . . 0

...
. . . . . . 1 c

0 · · · 0 c 1

 ,
can be rewritten

B(c, σ) = σ2(I + c T1), (3.10)

where T1 is a symmetric matrix with the first superdiagonal and subdiagonal equal
to 1 and all other elements equal to 0. Note that the eigenvalues of B(c, σ) are
(Higham, 2002, Sec. 28.5)

λj = σ2(1 + 2csj), j = 1 : m,

where sj = cos(πj/(m + 1)). Assuming m ≥ 2, we have s1 > · · · ≥ 0 ≥ · · · > sm,
sj = −sm+1−j and hence B(c, σ) is positive definite if and only if λ1 > 0 and λm > 0,
which gives

− 1

2s1

< c <
1

2s1

. (3.11)

Given a positive definite covariance matrix A, the loss function is now

f(c, σ) := σ2tr(A−1)+cσ2tr(A−1T1)+log(det(A))−m log σ2−
m∑
j=1

log(1+2csj)−m.

(3.12)
It follows that

∇f :=


∂f

∂c

∂f

∂σ

 =

[
σ2tr(A−1T1)−

∑m
j=1

2sj
1 + 2csj

2σtr(A−1)− 2m/σ + 2cσtr(A−1T1)

]
, (3.13)

and

∇2f :=


∂2f

∂c2

∂2f

∂c∂σ
∂2f

∂c∂σ

∂2f

∂σ2

 =


m∑
j=1

(2sj)
2

(1 + 2csj)2
2σtr(A−1T1)

2σtr(A−1T1) 2tr(A−1) +
2m

σ2
+ 2ctr(A−1T1)

 .
(3.14)
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The stationary points (c, σ) following from ∇f = 0 in (3.13) satisfy the equations
σ2 =

m∑
j=1

2sj
1 + 2csj

/tr(A−1T1),

h(c) :=
m∑
j=1

2sj
1 + 2csj

− mtr(A−1T1)

tr(A−1) + ctr(A−1T1)
= 0.

(3.15)

Recalling (3.11), as c → −1/(2s1) we have 2s1/(1 + 2cs1) → +∞, so h(c) →
+∞, while as c → 1/(2s1) = −1/(2sm) we have 2sm/(1 + 2csm) → −∞ and so
h(c)→ −∞. Therefore there exists at least one zero of h(c) on [−1/(2s1), 1/(2s1)].
Since for every c satisfying h(c) = 0,

h′(c) = −
m∑
j=1

(2sj)
2

(1 + 2csj)2
+

m(tr(A−1T1))2

(tr(A−1) + ctr(A−1T1))2

= −
m∑
j=1

(2sj)
2

(1 + 2csj)2
+

1

m

(
m∑
j=1

2sj
1 + 2csj

)2

< 0,

where the last inequality is from the Cauchy–Schwarz inequality |xT e| ≤ ‖x‖2‖e‖2

with e = [1, 1 . . . , 1]T , there exists only one zero of h(c) on [−1/(2s1), 1/(2s1)] and
thus a unique point (c, σ2) satisfying (3.15).

It is clear that the (1, 1) element of the Hessian matrix ∇2f in (3.14) is positive
and it can be easily verified that for any (c, σ) satisfying (3.15), we have

det(∇2f(c, σ)) =
4m

σ2

m∑
j=1

(2sj)
2

(1 + 2csj)2
− 4σ2(tr(A−1T1))2

=
4

σ2

(
m

m∑
j=1

(2sj)
2

(1 + 2csj)2
− σ4(tr(A−1T1))2

)

=
4

σ2

m m∑
j=1

(2sj)
2

(1 + 2csj)2
−

(
m∑
j=1

2sj
1 + 2csj

)2


> 0,

where the last inequality is from the Cauchy–Schwarz inequality. Therefore the
Hessian matrix ∇2f is positive definite and so the stationary point is a minimum
point. Note that f(c, σ) is defined on the open set {(c, σ) : σ > 0 and (3.11) holds}
on which B(c, σ) is positive definite. As (c, σ) approaches the boundary of the set or
as σ →∞, we have f(c, σ)→ +∞. It follows immediately that the global minimum
of f(c, σ) is obtained at the unique stationary point. We summarize the discussion
above in the following theorem.

Theorem 3.1 Given a positive definite covariance matrix A, there exists a unique
tridiagonal positive definite matrix B(c, σ) of the form (3.10) that minimizes the
loss function f(c, σ) := L(A,B(c, σ)) given by (3.12). Furthermore, the minimum
is attained at (c, σ) satisfying (3.15).
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We note that by setting a = σ2 and b = σ2c the tridiagonal matrix (1.3) can be
cast into the equivalent matrix

B(a, b) =


a b . . . 0
b a . . . 0
...

. . . . . . b
0 . . . b a

 .
In this case, the matrix B(a, b) is a linear function in a and b and the function
f(B) is a convex function at (a, b), so that the uniqueness of the global minimum
with respect to (a, b) becomes straightforward. However, an explicit expression of
the stationary point in (a, b) is not available. In contrast, based on the (c, σ)-
parameterization the optimization problem for f(c, σ) reduces to finding the root
of a one-dimensional nonlinear function h(c) since the optimal value of σ2 has an
explicit solution. More importantly, the (c, σ)-parameterization form in (1.3) is a
meaningful representation in statistics, that is, σ2 is the variance of the response
variable and c is the correlation coefficient of any adjacent pair of observations.

3.2. Compound symmetry

The matrix in (1.4) can be rewritten as

B(c, σ) = σ2


1 c · · · c
c 1 · · · c
...

. . . . . .
...

c · · · c 1

 = σ2(I + c(eeT − I)), (3.16)

where e = [1, . . . , 1]T ∈ Rm. The eigenvalues of B(c, σ) are σ2(1 + (m − 1)c) and
σ2(1− c) of multiplicities 1 and m− 1, respectively, so B(c, σ) is a positive definite
matrix if and only if (Borsdorf et al., 2010, Lem. 2.1)

− 1

m− 1
< c < 1.

Given A, we define f(c, σ) := L(A,B(c, σ)), where L(A, ·) is the entropy loss function
in (1.1). We want to find an explicit solution to the corresponding optimization
problem

min
σ>0

−1/(m−1)<c<1

f(c, σ). (3.17)

First, it is clear that det(B(c, σ)) = σ2m(1 − c)m−1(1 + (m − 1)c). Denoting
t := tr(A−1(eeT − I)), we have

f(c, σ) := σ2tr(A−1) + cσ2t+ log(det(A))−m log(σ2)

− (m− 1) log(1− c)− log(1 + (m− 1)c)−m.

Second, we have the gradient of f

∇f :=


∂f

∂c

∂f

∂σ

 =

[
σ2t+

m− 1

1− c
− m− 1

1 + (m− 1)c
2σtr(A−1) + 2σct− 2m/σ

]
, (3.18)
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and the Hessian matrix

∇2f :=


∂2f

∂c2

∂2f

∂c∂σ
∂2f

∂c∂σ

∂2f

∂σ2

 =

 m− 1

(1− c)2
+

(m− 1)2

(1 + (m− 1)c)2
2σt

2σt 2(tr(A−1) + ct) +
2m

σ2

 .
(3.19)

Therefore, the stationary points (c, σ) of f(c, σ) must satisfy
h(c) := σ2t+

m− 1

1− c
− m− 1

1 + (m− 1)c
= 0,

m

σ2
= tr(A−1) + ct.

(3.20)

Next, it is clear that h(c) is continuous in the interval (−1/(m − 1), 1). Since
h(c)→ +∞ as c→ 1 and h(c)→ −∞ as c→ −1/(m− 1), there exists at least one
solution to h(c) = 0. The stationary points are obtained immediately by solving
h(c) = 0, which gives c = −t/((m− 1)tr(A−1) + (m− 2)t).

Finally, since

(∇2f)11 =
m− 1

(1− c)2
+

(m− 1)2

(1 + (m− 1)c)2
> 0

at the stationary points (c, σ) satisfying (3.20), and we also have

det(∇2f) =
4m

σ2

(
m− 1

(1− c)2
+

(m− 1)2

(1 + (m− 1)c)2

)
− 4σ2t2

=
4

σ2
(m− 1)

(
m− 1

1 + (m− 1)c
+

1

1− c

)2

> 0,

it follows that ∇2f is positive definite. Thus every stationary point is a minimum
point. Since f(c, σ) is defined on an open set such that B(c, σ) > 0 and as (c, σ)
approaches the boundary or as σ →∞, we have f(c, σ)→ +∞, the global minimum
of f(c, σ) is obtained at the unique stationary point.

We summarize the above discussion in the following theorem.

Theorem 3.2 Given a positive definite covariance matrix A ∈ Rm×m, define f(c, σ) :=
L(A,B(c, σ)) where B(c, σ) is a positive definite covariance matrix of compound
symmetry in (3.16). Then the global minimum of f(c, σ) over σ > 0 and c ∈
(−1/(m− 1), 1) is attained at

c = − t

(m− 1)tr(A−1) + (m− 2)t
,

m

σ2
= tr(A−1) + ct,

(3.21)

where t = tr(A−1(eeT − I)).
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3.3. AR(1)

We rewrite B in (1.5) as

B(c, σ) = σ2


1 c c2 · · · cm−1

c 1 c · · · cm−2

c2 c 1 · · · cm−3

...
. . . . . . . . .

...
cm−1 cm−2 · · · c 1

 = σ2

m−1∑
i=0

ciTi, (3.22)

where T0 = I and Ti is a symmetric matrix with ones on the ith superdiagonal and
subdiagonal and zeros elsewhere. It can be shown that the k × k leading principal
minor ofB(c, σ) is σ2k(1−c2)k−1, k = 2 : m (Horn and Johnson, 2013, Prob. 7.2.P12).
Therefore, B(c, σ) is a positive definite covariance matrix if and only if

−1 < c < 1. (3.23)

The entropy loss function is now

f(c, σ) := σ2

m−1∑
i=0

citr(A−1Ti) + log det(A)−m log σ2 − (m− 1) log(1− c2)−m.

We find that

∇f :=


∂f

∂c

∂f

∂σ

 =

[
σ2
∑m−1

i=1 ici−1tr(A−1Ti) +
2(m− 1)c

1− c2

2σ
∑m−1

i=0 citr(A−1Ti)− 2m/σ

]
. (3.24)

So the stationary points (c, σ) of f(c, σ) satisfy
m
∑m−1

i=1 ici−1tr(A−1Ti)∑m−1
i=0 citr(A−1Ti)

+
2(m− 1)c

1− c2
= 0,

m

σ2
=

m−1∑
i=0

citr(A−1Ti).

(3.25)

Since
∑m−1

i=0 citr(A−1Ti) = tr(A−1B)/σ2 > 0 and 1 − c2 6= 0 for c ∈ (−1, 1), by
rearranging the first equality in (3.25) we have

h(c) := m

m−1∑
i=1

ici−1tr(A−1Ti)−m
m−1∑
i=1

ici+1tr(A−1Ti)+2(m−1)
m−1∑
i=0

ci+1tr(A−1Ti) = 0.

Since h(c) is continuous in [−1, 1], h(−1) = −2(m − 1)tr(A−1B(−1, 1)) < 0 and
h(1) = 2(m− 1)eTA−1e > 0, where the first inequality is from the positive semidef-
initeness of B(−1, 1) as in (3.22), there exists at least one root of h(c) in (−1, 1).
Numerical experiments show that in some cases there exists more than one solution
to h(c) = 0. We then can only expect to find a local minimum in general.

We summarize the discussion above in the following theorem.

Theorem 3.3 Given a positive definite covariance matrix A ∈ Rm×m, define f(c, σ) :=
L(A,B(c, σ)) where B(c, σ) is a positive definite covariance matrix of the AR(1)
model as in (3.22). Then the local minima of f(c, σ) are attained at the points (c, σ)
satisfying (3.25).
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4. Toeplitz problems

Now we consider the problem for banded Toeplitz matrices, for which

B = σ2



1 c1 · · · cp · · · 0

c1 1 c1
. . . . . .

...
...

. . . . . . . . . . . . cp

cp
. . . . . . . . . . . .

...
...

. . . . . . . . . 1 c1

0 · · · cp · · · c1 1


. (4.26)

Define q(t) = 1+2
∑p

k=1 ck cos(kt). Then B is positive-definite if and only if q(t) ≥ 0,
q(t) 6≡ 0, for all t ∈ R (Parter, 1962, Remark II).

Now let x0 = σ2 and xi = σ2ci, i = 1 : p. The matrix B in (4.26) can be
rewritten as

B(x) = x0I +

p∑
i=1

xiTi,

where x = [x0, x1, . . . , xp]
T ∈ Rp+1 and Ti is a symmetric matrix with the ith

superdiagonal and subdiagonal elements equal to 1 and zeros elsewhere.
We define Ω ⊂ Rp+1 by

Ω :=
{
x ∈ Rp+1 : B(x) = x0I +

p∑
i=1

xiTi is positive definite
}
, (4.27)

and f(x) : Rp+1 → R,

f(x) := L(A,B(x)) = tr(A−1B(x))− log(det(A−1B(x)))−m. (4.28)

Since Ω is isomorphic to the set of all positive definite matrices of structure (4.26),
our problem of minimizing f(B) over positive definite B of structure (4.26) is equiv-
alent to

min f(x) in (4.28) (4.29a)

subject to x ∈ Ω in (4.27). (4.29b)

We note that this problem was mentioned in a recent work by Ning et al. (2012),
but no solution method was developed there.

Since f(B) := L(A,B) is a strictly convex function of B (see section 2) and
B(x) = x0I +

∑p
i=1 xiTi is an affine map of x, by the fact that composition with

an affine mapping preserves convexity (Boyd and Vandenberghe, 2004, Sec. 3.2.2),
f(x) := f(B(x)) is strictly convex in x. On the other hand, the set of all positive
definite Toeplitz matrices is a convex set and so is Ω. Therefore, (4.29) is a convex
optimization problem and so has a unique minimizer.

We now explore further the properties of the objective function. For notational
simplicity we define T0 = I. From (2.8) and (2.9) and that ∇xiB = Ti, by applying
the chain rule, we have the gradient of f

∇xif = tr(Ti(A
−1 −B−1)), i = 0 : p, (4.30)
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and the Hessian H = [hij] ∈ R(p+1)×(p+1) of f

hij = ∇2
xixj

f = tr(TiB
−1TjB

−1), i, j = 0 : p. (4.31)

Since f(x) is strictly convex in Ω and in general Newton’s method works very well
for strictly convex objective functions, we apply Newton’s method with backtracking
line search to problem (4.29). In the implementation, we choose an initial point x(0)

such that B(x(0)) is positive definite. To ensure that the iterates remain in Ω, in
the backtracking line search to choose the step size t, we first multiply the initial
guess t = 1 by a constant β ∈ (0, 1) until B(x+ t∆xnt) is positive definite and then
continue backtracking until a sufficient decrease condition is satisfied. We outline
the method in Algorithm 4.1.

Algorithm 4.1 (Newton’s method for solving problem (4.29)) Given a start-
ing point x ∈ Ω in (4.27) and tolerance ε, repeat:

1 Compute the Newton step and decrement:
evaluate the gradient g (4.30) and Hessian H (4.31) at x;
∆xnt: = −H−1g; λ2: = gTHg.

2 Stopping criterion:
quit if λ2/2 ≤ ε.

3 Backtracking line search: given parameters α ∈ (0, 0.5) and β ∈ (0, 1),
t: = 1;
while x+ t∆xnt /∈ Ω in (4.27),

t: = βt;
while f(x+ t∆xnt) > f(x) + αtgT∆xnt,

t: = βt.
4 Update: x = x+ t∆xnt.

The classical analysis of Newton’s method can also be used here to get a com-
plexity bound. Assume that f(x) has the minimum value p∗ and the absolute con-
vergence tolerance of the problem is set to ε = 10−10. Then a bound on the number
of Newton iterations required is 375(f(x(0))−p∗)+6 (Boyd and Vandenberghe, 2004,
(9.57)). Note that this is a pessimistic bound and in our numerical experiments in
the next section, for matrices of size m = 100 and 200 the number of iterations
needed is at most 17. For more details on the analysis of Newton’s method, we refer
the reader to section 9.6 in Boyd and Vandenberghe (2004).

5. Numerical Experiments

In this section, we illustrate numerically how the techniques discussed above
can be used in regularizing the underlying covariance structure. We first carry
out simulation studies and then apply our techniques to real data analysis. All
computations were performed with MATLAB 2012b. The root-finding problem in
section 3 is solved with MATLAB fzero and the Newton method in section 4 is
coded by authors. The Matlab codes for the proposed methods are provided in
the Inline Supplementary computer Code S1 which can be found online at http:

//dx.doi.org/10.1016/j.csda.2013.10.004.

11



5.1. Simulation studies

Recall that our idea is, given a covariance matrix and a class of possible candidate
covariance structures, to find for each structure a covariance matrix that minimizes
the entropy loss function. The structure of the minimizer that has the smallest
entropy loss function value among the class is considered to be the most likely
underlying covariance structure for the given covariance matrix. To examine the
idea, our simulation experiments were carried out as follows. Let m be the dimension
of the covariance matrices we test. We first generate an m× n data matrix R with
columns randomly drawn from the multivariate normal distribution N (µ,Σ) with
a common mean vector µ = σ2e ∈ Rm (recall that e is the vector of ones) and
a common covariance matrix Σ. We then compute the sample covariance matrix
A with the generated data R: A = n−1

∑n
i=1(ri − r̄)(ri − r̄)T , where ri is the

ith column of R and r̄ = n−1
∑n

i=1 ri is the sample mean. We test with the true
covariance matrix Σ of various dimensions m, being either unstructured or having
structures as discussed in the previous sections, where for each structure we consider
several different values for σ2 and c. The sample size is chosen as n = 1000. We
summarize the experimental results in Tables 1–3, which are for the experiments
with covariance matrix size m = 100, and Tables 4–6, which are for m = 200.
We choose c ∈ {0.2, 0.5, 0.75} and σ2 ∈ {2, 4, 8} for Σ having MA(1), CS, and
AR(1) structures. For Σ being a general Toeplitz matrix we use the above σ2 but
randomly assign the correlation coefficients. In Tables 1–6 each row stands for one
experiment and for each experiment we report the results averaged over 100 repeated
simulations. The first column gives the true underlying covariance structure and the
second column presents the discrepancy between the true covariance matrix Σ and
the sample covariance matrix A under the measure of entropy loss function. The
rest of the columns report the results from the computed matrix B with different
structures. Note that we do not include a row for tridiagonal Σ with c = 0.75
because there does not exist such a positive definite covariance matrix in this case.
The notation and abbreviations for the results reported in the tables are summarized

• Σ: true covariance matrix.

• A: sample covariance matrix.

• B: the computed covariance matrix that has a certain structure and minimizes
the entropy loss function L(A,B) in (1.1).

• LΣ,A, LA,B and LΣ,B: the entropy loss function L(Σ, A), L(A,B) and L(Σ, B),
respectively.

• Ldiff = L(B1, B2): the entropy loss function between two best estimators for
each structure.

12



Table 1: Simulation results with m = 100; σ2 = 2.

c = 0.20
B

MA(1) CS AR(1) Toep

Σ LΣ,A LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B Ldiff

MA(1) 5.22 5.40 0.55 9.74 4.88 5.58 0.73 5.29 0.64 0.11
CS 5.22 7.70 2.83 5.41 0.55 7.70 2.83 5.30 0.64 0.11
AR(1) 5.23 5.56 0.70 9.20 4.34 5.42 0.55 5.31 0.64 0.11

c = 0.5
B

MA(1) CS AR(1) Toep

Σ LΣ,A LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B Ldiff

MA(1) 5.23 5.42 0.55 290.45 285.33 186.02 180.93 5.37 0.70 0.16
CS 5.23 9.03 4.16 5.43 0.55 9.03 4.16 5.32 0.64 0.11
AR(1) 5.24 10.25 5.37 26.85 21.96 5.43 0.55 5.32 0.64 0.11

c = 0.75
B

MA(1) CS AR(1) Toep

Σ LΣ,A LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B Ldiff

CS 5.24 10.13 5.25 5.43 0.55 10.13 5.25 5.32 0.64 0.11
AR(1) 5.23 23.86 19.00 47.99 43.09 5.43 0.55 5.32 0.64 0.11

c not assigned
B

MA(1) CS AR(1) Toep

Σ LΣ,A LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B

UnStr 5.23 255.24 250.32 255.27 250.36 255.22 250.30 241.07 236.39
Toep 5.23 21.26 16.35 21.35 16.45 21.27 16.36 5.32 0.64

Table 2: Simulation results with m = 100; σ2 = 4.

c = 0.20
B

MA(1) CS AR(1) Toep

Σ LΣ,A LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B Ldiff

MA(1) 5.22 5.41 0.54 9.73 4.87 5.59 0.72 5.30 0.63 0.11
CS 5.23 7.70 2.83 5.41 0.55 7.70 2.83 5.30 0.63 0.11
AR(1) 5.25 5.58 0.70 9.22 4.33 5.43 0.55 5.32 0.63 0.11

c = 0.5
B

MA(1) CS AR(1) Toep

Σ LΣ,A LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B Ldiff

MA(1) 5.23 5.42 0.56 290.09 285.30 185.71 180.90 5.37 0.70 0.16
CS 5.24 9.05 4.16 5.43 0.55 9.05 4.16 5.32 0.64 0.11
AR(1) 5.24 10.26 5.37 26.82 21.95 5.43 0.55 5.32 0.63 0.11

c = 0.75
B

MA(1) CS AR(1) Toep

Σ LΣ,A LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B Ldiff

CS 5.23 10.12 5.24 5.42 0.55 10.12 5.24 5.32 0.63 0.11
AR(1) 5.22 23.82 19.00 47.87 43.08 5.41 0.56 5.30 0.64 0.11

c not assigned
B

MA(1) CS AR(1) Toep

Σ LΣ,A LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B

UnStr 5.23 272.78 267.82 272.68 267.72 272.78 267.82 256.90 252.14
Toep 5.24 23.05 18.17 22.48 17.60 23.03 18.15 5.32 0.63
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Table 3: Simulation results with m = 100; σ2 = 8.

c = 0.20
B

MA(1) CS AR(1) Toep

Σ LΣ,A LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B Ldiff

MA(1) 5.22 5.41 0.55 9.74 4.88 5.59 0.73 5.30 0.64 0.11
CS 5.22 7.69 2.83 5.41 0.55 7.69 2.83 5.30 0.63 0.11
AR(1) 5.23 5.57 0.70 9.19 4.33 5.42 0.55 5.31 0.63 0.11

c = 0.5
B

MA(1) CS AR(1) Toep

Σ LΣ,A LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B Ldiff

MA(1) 5.23 5.42 0.54 290.14 285.29 185.75 180.90 5.36 0.68 0.16
CS 5.23 9.04 4.16 5.42 0.55 9.04 4.16 5.31 0.64 0.11
AR(1) 5.23 10.24 5.37 26.81 21.96 5.42 0.55 5.31 0.64 0.11

c = 0.75
B

MA(1) CS AR(1) Toep

Σ LΣ,A LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B Ldiff

CS 5.24 10.12 5.25 5.43 0.55 10.12 5.25 5.32 0.64 0.11
AR(1) 5.22 23.86 19.00 47.94 43.08 5.41 0.55 5.30 0.64 0.11

c not assigned
B

MA(1) CS AR(1) Toep

Σ LΣ,A LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B

UnStr 5.22 266.86 261.89 266.91 261.94 266.86 261.89 252.49 247.76
Toep 5.23 18.63 13.76 18.92 14.04 18.64 13.77 5.31 0.64

Table 4: Simulation results with m = 200; σ2 = 2.

c = 0.20
B

MA(1) CS AR(1) Toep

Σ LΣ,A LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B Ldiff

MA(1) 21.61 23.29 4.67 32.08 13.46 23.65 5.04 23.04 4.82 0.25
CS 21.58 26.19 7.63 23.25 4.69 26.19 7.63 23.00 4.84 0.25
AR(1) 21.61 23.59 4.99 30.98 12.39 23.29 4.69 23.05 4.83 0.25

c = 0.5
B

MA(1) CS AR(1) Toep

Σ LΣ,A LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B Ldiff

MA(1) 21.59 23.29 4.68 728.71 709.60 500.37 481.32 23.41 5.19 0.60
CS 21.61 27.60 8.97 23.30 4.67 27.60 8.97 23.05 4.82 0.25
AR(1) 21.66 33.09 14.43 67.06 48.44 23.36 4.73 23.11 4.87 0.25

c = 0.75
B

MA(1) CS AR(1) Toep

Σ LΣ,A LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B Ldiff

CS 21.61 28.69 10.06 23.30 4.67 28.69 10.06 23.05 4.82 0.25
AR(1) 21.63 60.18 41.60 110.43 91.85 23.32 4.72 23.07 4.87 0.25

c not assigned
B

MA(1) CS AR(1) Toep

Σ LΣ,A LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B

UnStr 21.64 161.47 142.80 161.47 142.80 161.47 142.80 159.64 141.36
Toep 21.62 24.76 6.12 24.76 6.12 24.76 6.12 23.06 4.82
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Table 5: Simulation results with m = 200; σ2 = 4.

c = 0.20
B

MA(1) CS AR(1) Toep

Σ LΣ,A LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B Ldiff

MA(1) 21.62 23.33 4.71 32.12 13.49 23.69 5.07 23.08 4.86 0.25
CS 21.61 26.26 7.65 23.30 4.70 26.26 7.65 23.05 4.85 0.25
AR(1) 21.65 23.65 5.02 31.03 12.42 23.34 4.72 23.09 4.87 0.25

c = 0.5
B

MA(1) CS AR(1) Toep

Σ LΣ,A LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B Ldiff

MA(1) 21.59 23.27 4.67 728.26 709.52 499.97 481.25 23.39 5.17 0.59
CS 21.66 27.67 9.00 23.37 4.70 27.67 9.00 23.12 4.85 0.25
AR(1) 21.58 32.95 14.38 66.97 48.39 23.25 4.68 23.00 4.83 0.25

c = 0.75
B

MA(1) CS AR(1) Toep

Σ LΣ,A LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B Ldiff

CS 21.61 28.68 10.08 23.29 4.69 28.68 10.08 23.04 4.84 0.25
AR(1) 21.60 60.14 41.56 110.41 91.80 23.27 4.67 23.03 4.82 0.25

c not assigned
B

MA(1) CS AR(1) Toep

Σ LΣ,A LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B

UnStr 21.66 161.66 143.00 161.63 142.97 161.66 143.00 159.81 141.55
Toep 21.62 24.87 6.26 24.87 6.26 24.87 6.26 23.06 4.85

Table 6: Simulation results with m = 200; σ2 = 8.

c = 0.20
B

MA(1) CS AR(1) Toep

Σ LΣ,A LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B Ldiff

MA(1) 21.63 23.32 4.67 32.09 13.45 23.68 5.03 23.07 4.82 0.25
CS 21.61 26.25 7.63 23.31 4.68 26.25 7.63 23.07 4.83 0.24
AR(1) 21.64 23.64 5.02 31.03 12.42 23.33 4.71 23.09 4.86 0.24

c = 0.5
B

MA(1) CS AR(1) Toep

Σ LΣ,A LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B Ldiff

MA(1) 21.61 23.28 4.68 727.68 709.41 499.49 481.16 23.48 5.26 0.67
CS 21.63 27.62 8.99 23.32 4.69 27.62 8.99 23.07 4.84 0.25
AR(1) 21.62 32.98 14.39 67.00 48.41 23.28 4.69 23.03 4.84 0.25

c = 0.75
B

MA(1) CS AR(1) Toep

Σ LΣ,A LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B Ldiff

CS 21.59 28.66 10.05 23.27 4.66 28.66 10.05 23.02 4.81 0.25
AR(1) 21.64 60.21 41.59 110.52 91.85 23.32 4.70 23.08 4.85 0.25

c not assigned
B

MA(1) CS AR(1) Toep

Σ LΣ,A LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B LA,B LΣ,B

UnStr 21.61 162.09 143.50 162.09 143.50 162.09 143.50 160.36 142.14
Toep 21.58 24.79 6.22 24.78 6.20 24.79 6.22 23.02 4.83
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In Tables 1–6, we have the following observations.

1. When Σ is unstructured, for all the structures considered here the covariance
matrices B we found have discrepancies LΣ,B and LA,B around 50 times as
large as the discrepancy LΣ,A for m = 100 and around 8 times for m = 200.
This indicates that no regularization is needed for A.

2. When Σ is structured, the matrix B we found having the minimum LΣ,B has
the same structure as Σ. Moreover, we have LΣ,B < LΣ,A for all cases as
long as the estimated covariance matrix B has the same structure as the true
covariance matrix Σ. In other words, the regularized estimator B that has
the same structure as Σ is much better than the sample covariance matrix A
in terms of the entropy loss function. This shows that regularization of the
sample covariance matrix, or any other available estimators of the covariance
matrix, is necessary not only for the convenient use of known structures but
also for the accuracy of covariance estimation.

3. For Σ having one of the structures of MA(1), CS or AR(1), among different
minimizers B, there are two structures clearly winning out in the sense of
having smaller LA,B: the one having the same structure as Σ and the Toeplitz,
the latter always being the best. It is not surprising for the matrix B with
Toeplitz structure to win out because all MA(1), CS, and AR(1) are indeed
special Toeplitz structures. There is no doubt that minimizing among the
larger feasible set will give the smaller minimum. We also point out that with
the bandwidth p of the general Toeplitz ranging from 1 to m− 1, the smallest
minimum is always obtained when p = m− 1.
To see how much difference there is between the two best regularized estimators
– the one with the same structure as Σ and the one with general banded
Toeplitz structure – we measure the discrepancy between these two with the
entropy loss function: Ldiff = L(BT , BX), where BT denotes the estimator B
we find for the Toeplitz structure and BX denotes the estimator B with the
same structure as the underlying Σ. It turns out that Ldiff is around 2.5%
of both L(A,BT ) and L(A,BX) for m = 100 and around 1.1% for m = 200.
That means that the two best estimators BX and BT are very close in terms
of the entropy loss function.
Note that the observation made from the discrepancy LA,B is extremely im-
portant because in practice the true covariance is usually unknown and so
is LΣ,B. Thus, the discrepancy LA,B can be used to identify the correct co-
variance structure as long as the class of the candidate structures is broad
enough.

4. The observations above are common to all choices of the structure of Σ in the
class we considered, the various values of c and σ2 and the dimension m of the
covariance matrix. Therefore, the findings are reliable in this sense.

5.2. Real data analysis

We also did experiments with some real data. Kenward’s (1987) cattle data
was analyzed by various statistical methods for longitudinal data in the literature
(Pourahmadi, 1999; Pan and Mackenzie, 2003). In the experiment, 60 cattle were
assigned randomly to two treatment groups 1 and 2, each of which consists of 30
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cattle, and received a certain treatment. The cattle in each group were weighed 11
times over a nineteen-week period. The weighing times for all cattle were the same,
so that the cattle data is a balanced longitudinal data set. The aim of Kenward’s
study was to investigate treatment effects on intestinal parasites of the cattle. Our
experiments were carried out with the cattle data in a similar way as in section 5.1
and the results are reported in Table 7. We also show under the column “Time”
the time (in seconds) used to find the optimal matrix B for each structure. Ldiff

shows the discrepancy between the two best estimators measured by the entropy
loss function L(B1, B2).

Table 7: Results of experiments on Kenward’s cattle data.

MA(1) CS AR(1) Toep
LA,B Time LA,B Time LA,B Time LA,B Time Ldiff

Group 1 9.86 2.87e-03 8.55 2.74e-03 5.22 7.93e-03 4.75 4.45e-02 0.47
Group 2 8.05 1.81e-03 5.92 1.76e-03 3.15 4.59e-03 2.08 1.89e-02 1.07

Note that in this real data analysis the true covariance matrix Σ is unknown, so
LΣ,A and LΣ,B are not available, where A is the sample covariance matrix. Instead,
we use the discrepancy LA,B to identify the most likely covariance structure among
the possible candidate structures, MA(1), CS, AR(1) and general Toeplitz.

From Table 7, it is clear that the underlying covariance structures are very likely
to be Toeplitz for both groups, among the four possible candidate structures, as
their discrepancy LA,B has smaller values than others. We can also claim, more
specifically, that Group 1 tends to have an AR(1) covariance structure, due to the
very small value of Ldiff between the Toeplitz and AR(1). This agrees with the
finding by Pourahmadi (1999) and Pan and Mackenzie (2003).

6. Discussion

We have proposed a method to regularize the underlying covariance structure
with a given covariance matrix A and a class of candidate covariance structures,
based on minimizing the entropy loss function between the given covariance matrix
and the matrix that has a certain structure. Our simulation studies demonstrate
the reliability of the proposed method. Our simulation experiments were carried
out with the given matrix A being the sample covariance matrix. In principle, any
available estimated covariance matrix using a statistical method can be chosen as
the given matrix A. In general, the structure behind the matrix A is not obvious
due to noise in the matrix A, in particular, when the dimension m of the matrix A
is large. Our aim is to regularize the matrix A, so as to filter the noise in A and to
have a standard structure to characterize the covariance/correlation process of the
data studied.

Our proposed method can overcome the difficulties that are met by alternative
approaches and can produce a reliable estimator of the covariance matrix even if the
dimension of the matrix is as large as 200. For example, it is not easy to directly
calculate the maximum likelihood estimator of a covariance matrix that has a cer-
tain structure. In contrast, the proposed method does not require any distribution
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assumption of the data, and can provide a regularized covariance structure estimator
as long as an estimator of the covariance matrix is given.

A restriction of our studies here is that the class of candidate covariance struc-
tures we have considered comprises just four possible structures: MA(1), CS, AR(1),
and banded Toeplitz. In principle, the ideas and the proposed approach are appli-
cable to any structured covariance matrices. We are currently studying some other
covariance structures, including linearly structured covariance, factor analytic, and
Hankel structure, all of which are very useful in statistics. However, with more
complicated covariance structures more challenging work is inevitably involved in
finding the structured covariance matrix that minimizes the entropy loss function.
Note that for the three structures of MA(1), CS and AR(1) considered in section
3, the dimension m of the covariance matrix does not affect the cost of computing
the optimal covariance matrix B, because the optimization problem reduces to com-
puting the zeros of a nonlinear function of a single variable. For more complicated
covariance structures, the optimization problem is liable to have more variables and
the number of variables may increase with the dimension m of the covariance matrix,
making the solution of the optimization problem much more challenging.
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