
Curve Crossing for the Reflected Process

Doney, Ron and Maller, Ross

2006

MIMS EPrint: 2006.50

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


Curve Crossing for the Reflected Process

Ron Doney & Ross Maller

First version: 3 October 2005

Research Report No. 16, 2005, Probability and Statistics Group

School of Mathematics, The University of Manchester



Curve Crossing for the Reflected Process∗

Ron Doney † Ross Maller ‡

Abstract

Let Rn = max0≤j≤n Sj − Sn be a random walk Sn reflected in its
maximum. We give necessary and sufficient conditions for finiteness
of passage times of Rn above horizontal or certain curved (power law)
boundaries. Necessary and sufficient conditions are also given for the
finiteness of the expected passage time of Rn above linear and square
root boundaries.

2000 MSC Subject Classifications: primary: 60J15, 60F15, 60K05, 60G40
secondary: 60F05, 60G42

Keywords: Reflected process, rate of growth, renewal theorems, power law
boundaries.

∗This research was partially supported by ARC grant DP0210572
†Department of Mathematics, University of Manchester, Manchester M13 9PL, UK,

email: rad@maths.man.ac.uk
‡Centre for Mathematical Analysis, and School of Finance and Applied Statistics, Aus-

tralian National University, Canberra, ACT, email: Ross.Maller@anu.edu.au

1



1 Introduction and Preliminary Results

Let X, X1, X2, . . . , be i.i.d. rvs with cdf F (·) on R, not degenerate at 0, and

Sn = X1 + X2 + · · ·+ Xn, S0 = 0,

the corresponding random walk. Denote by

Rn = max
0≤j≤n

Sj − Sn, n = 0, 1, 2, · · · ,

the random walk reflected in its maximum. Of course Rn ≥ 0, n = 0, 1, 2, . . . .
The reflected process is of fundamental importance in the theory of random
walks and is also an object of interest, in itself, in many applied areas. In
Section 2 we give necessary and sufficient conditions for the almost sure
(a.s.) finiteness of passage times of Rn out of power law regions of the form
[0, rnκ], for r > 0, κ ≥ 0 (Theorem 2.1), and for the finiteness of expected
values of passage times of Rn out of linear (κ = 1) or parabolic (κ = 1/2)
regions (Theorem 2.2). To complete the present section, we introduce some
notation which will be useful throughout the paper, and state an introductory
Proposition 1.1, which gives some basic preliminary properties of Rn. The
section concludes with references to some recent interesting applications of
the reflected process.

Let

S∗n = max
0≤j≤n

Sj, n = 0, 1, 2, · · · , (1.1)

so that

Rn = S∗n − Sn = max
0≤j≤n

(Sj − Sn) = max
0≤j<n

(
−

n∑
i=j+1

Xi

)
∨ 0

=

(
− min

0≤j<n

n∑
i=j+1

Xi

)
∨ 0

D
=

(
− min

1≤j≤n
Sj

)
∨ 0 = − min

0≤j≤n
Sj. (1.2)

The equality in distribution can be seen by a time reversal of (X1, . . . , Xn).
The identity (1.2) (equality in distribution for each n = 1, 2, . . . , but not of
processes) is of course well known. Another useful representation is to write
Rn as the sum of its increments:

Rn =
n∑

i=1

∆i, (1.3)

2



where, as is easily checked,

∆i = Ri −Ri−1 = −Xi I(Xi ≤ Ri−1)−Ri−1 I(Xi > Ri−1), i = 1, 2, . . . .
(1.4)

When E|X| < ∞ we calculate, with Fi = σ(X1, X2, . . . , Xi) and F0 as the
trivial σ–field:

E(∆i | Fi−1) = −
∫

(−∞,Ri−1]

y dF (y)−Ri−1 F (Ri−1) = −EX +

∫ ∞
Ri−1

F (y) dy

(1.5)

(where F (y) = 1 − F (y)). If in addition EX ≤ 0, we have E(∆i | Fi−1) ≥
0 a.s., consequently Rn is a submartingale when E|X| < ∞ and EX ≤ 0.

The next proposition lists some of the basic properties (most already
known, in some form) of Rn. If F (0−) = 0 then Rn = 0 while if F (0) = 1
then Rn = −Sn, so we exclude these cases in the proposition. We will use

“rv” to mean “random variable”; “
D→” for convergence in distribution; “

P→”

for convergence in probability; and “
D
=” will denote equality in distribution.

Proposition 1.1. Suppose 0 < F (0−) ≤ F (0) < 1. Then

(a) There is no x > 0 such that lim
n→∞

P (Rn ≤ x) = 1;

(b) lim sup
n→∞

Rn = +∞ a.s.;

(c) Rn
P→∞ (n →∞) ⇐⇒ lim inf

n→∞
Sn = −∞ a.s.;

(d) P (Rn = 0 i.o.) < 1 =⇒ lim
n→∞

Sn = −∞ a.s.

=⇒ lim
n→∞

Rn = +∞ a.s. =⇒ P (Rn = 0 i.o.) = 0;

(e)
∑

n≥1 P (Rn ≤ x) <∞ for some (hence every) x ≥ 0

⇐⇒ lim
n→∞

Rn = +∞ a.s.;

(f) Rn is tight as n →∞ =⇒ lim
n→∞

Sn = +∞ a.s.

=⇒ Rn
D→ R for some rv R with P (0 < R < ∞) = 1.
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Remarks. (i) Part (a) of Proposition 1.1 shows that Rn
P→ 0 (n → ∞)

cannot occur. Part (f) shows that Rn is stochastically bounded if and only
if Sn drifts to +∞ a.s. The heuristic explanation is that max0≤j≤n Sj is then
close to Sn for large n, and cancellation results in a finite Rn. This situation
has been well studied in various applications (see, e.g., Bingham et al., 1987,
p. 388, Takács 1978), and we will mainly be concerned with the other cases,
when Sn oscillates or drifts to −∞ a.s., so that Rn continues to grow with n
(Parts (b)–(e) of Proposition 1.1). Our aim is to estimate its rate of growth
in various ways.

(ii) Analytic conditions for lim infn→∞ Sn = −∞ a.s. and limn→∞ Sn =
±∞ a.s. are in Kesten and Maller (1996). See also Proposition 2.1 below.

(iii) We remark that with the obvious modifications all our results apply
to the reflected process rn := Sn − min0≤j≤n Sj. For a financial application
of rn, see Glynn and Iglehart (1995). Hansen (2004) has some interesting
generalisations and an application to genetics of the maximal sequence R∗n :=
max1≤j≤n Rj. Rn is used extensively in modelling; see, e.g., Doney and Maller
(2005b), Iglehart (1972), Takács (1978). The first time the reflected process
upcrosses a fixed level gives the optimal time to exercise a “Russian” option
(Shepp and Shiryaev 1993, 1996, Asmussen et al. 2004). There are many
other applications of Rn, R∗n, and rn, etc., in Finance and elsewhere.

2 Passage Times above Power Law Bound-

aries

We can measure the rate of growth of Rn by seeing how quickly it leaves a
region. For constants κ > 0, r > 0, or κ = 0, r ≥ 0, define

τκ(r) = min{n ≥ 1 : Rn > rnκ}. (2.1)

(Here and throughout give the minimum of the empty set the value +∞.)
Simply write τ(r) for τ0(r). Let X+ = max(X, 0) and X− = X+ −X (and
similarly for X+

i and X−i ). Our main result is:

Theorem 2.1. (a) Suppose κ = 0. We have τ0(r) = τ(r) < ∞ a.s. for some,
hence all, r ≥ 0, if and only if F (0−) > 0, and if this is so, then in fact
E(eλτ(r)) < ∞ at least for small enough λ, for all r ≥ 0.

(b) Suppose κ > 0. We have τκ(r) < ∞ a.s. for all r > 0 if and only if
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(i) for κ > 1 :

E(X−)1/κ = ∞; (2.2)

(ii) for 0 < κ ≤ 1 :

E(X−)1/κ = ∞ or lim inf
n→∞

(
Sn

nκ

)
= −∞ a.s. (2.3)

Remarks. (i) If F (0−) = 0 (so that Xi ≥ 0 a.s.) then Rn = 0 for all
n = 1, 2, · · · , so τκ(r) = ∞ a.s. for all r > 0, and also Part (b) of Theorem
2.1 cannot occur. If F (0) = 1 (so that Xi ≤ 0 a.s.) then Rn = −Sn for all
n = 1, 2, · · · , and lim supn→∞Rn/n

κ = ∞ a.s. iff lim infn→∞ Sn/n
κ = −∞

a.s. When κ > 1 the latter is equivalent to E(X−)1/κ = ∞ by Theorem 1 of
Kesten and Maller (1998). Thus Part (b) (as well as Part (a)) of Theorem
2.1 remains true if F (0−) = 0 or F (0) = 1.

(ii) The results of Theorem 2.1 can also be expressed as conditions for
Rn = O(nκ) a.s., as n → ∞ (or sometimes for Rn = o(nκ) a.s., as can be
seen from the proof of the theorem).

(iii) Explicit criteria in terms of the distribution function F of the Xi

for lim infn→∞ Sn/n
κ = −∞ a.s. are known from Kesten and Maller (1998)

and Doney and Maller (2005a). Actually, it’s more convenient to deal with
lim supn→∞ Sn/n

κ = +∞ a.s. and then perform a sign reversal. The condi-
tions are listed in Proposition 2.1 below. (Parts (a) and (b) of the proposition
are due to Chow and Zhang (1986) and Erickson (1973), respectively.) To
state them, we need the integrals

A−(x) =

∫ x

0

F (−y)dy (x > 0) and J+ =

∫
[0,∞)

xdF (x)

A−(x)
. (2.4)

Note that 0 ≤ A−(x) ≤ EX−. We only need J+ when F (0−) > 0, in which
case we let A−(x)/x have its limiting value, F (0−), at 0. We also need the
function defined, for y ≥ 0, when EX− < ∞, as

W (y) =

∫ y

0

∫ −z

−∞
|x|F (dx)dz =

∫ y

0

∫ ∞
x

F (−z)dzdx +

∫ y

0

xF (−x)dx. (2.5)

Note that W (y) > 0 for all y > 0 if F is not concentrated on [0,∞), thus,

certainly if E(X−)
1
κ = ∞ for some κ > 0. When W (y) > 0 for all y > 0 and
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1/2 < κ < 1, define, for λ > 0,

Iκ(λ) :=

∫ ∞
1

exp

−λ

(
y

2κ−1
κ

W (y)

) κ
1−κ

 dy

y
≤ ∞. (2.6)

Proposition 2.1. Assume 0 < F (0−) ≤ F (0) < 1.
Then lim supn→∞ Sn/n

κ = ∞ a.s. if and only if:
(a) for κ > 1: ∫

[1,∞)

(
x

1
κ

1 + x
1
κ
−1
∫ x

0
F (−z)dz

)
F (dx) = ∞; (2.7)

(b) for κ = 1 or 1
2

< κ < 1 and E|X| = ∞:

J+ = ∞; (2.8)

(c) when 0 ≤ κ ≤ 1
2
:

J+ = ∞ or 0 ≤ EX ≤ E|X| < ∞; (2.9)

(d) when 1
2

< κ < 1, E|X| < ∞, and EX 6= 0:

EX > 0; (2.10)

(e) when 1
2

< κ < 1, E|X| < ∞, and EX = 0:

(i) E(X+)
1
κ = ∞, or (2.11)

(ii) E(X+)
1
κ < ∞ = E(X−)

1
κ and Iκ(λ) = ∞ for all λ > 0. (2.12)

Remarks. (i) If F (0−) = 0, then lim sup Sn/n
κ = lim sup |Sn|/nκ a.s.

and Theorem 1 of Kesten and Maller (1998) gives the required criterion. If
F (0) = 1, then lim sup Sn/n

κ = ∞ a.s cannot occur. Thus the assumption
0 < F (0−) ≤ F (0) < 1 in Proposition 2.1 is not restrictive.

(ii) In general, neither of the two conditions in (2.3) imply each other, as
can be seen from a perusal of Proposition 2.1.

Our final result considers the expected value of the passage time of Rn

above linear and square root boundaries. These are important practical cases.
The random walk precursor of Theorem 2.2 (a) is in Gundy and Siegmund
(1967).
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Theorem 2.2. (a) Suppose σ2 = EX2 < ∞ and EX = 0. Then
(i) Eτ1/2(σr) = ∞ for r ≥ 1;
(ii) Eτ1/2(σr) < ∞ for r < 1.

(b) Suppose E|X| < ∞ and EX < 0. Then
(i) Eτ1(r) = ∞ for r ≥ −EX;
(ii) Eτ1(r) < ∞ for r < −EX.

3 Lévy Processes

As might be expected, there is a counterpart of Theorem 2.1 relating to the
large time behaviour of a Lévy process, and also for the results of Proposition
1.1, with appropriate interpretations. With {Xt}t≥0 denoting such a process
(there should be no confusion with the X’s denoting the increments of the
random walk in the rest of the paper), let Rt := sup0≤s≤t Xs − Xt, t ≥ 0,
denote the process reflected in its maximum, and let τκ(r) be the first passage
time of Rt above the curve r(t + 1)κ for parameter κ ≥ 0. Then we have:
(a) τ0(r) < ∞ for some (hence all) r ≥ 0 if and only if X is not a subordinator;
(b) τκ(r) < ∞ for all r > 0 if and only if

(1) for κ > 1 : E(X−1 )1/κ = ∞;
(2) for 0 < κ ≤ 1 : E(X−1 )1/κ = ∞ or lim inft→∞Xt/t

κ = −∞ a.s.
We omit the proofs of these, which are not always trivial but follow method-
ology now well understood from, e.g., Doney (2004), Doney and Maller
(2004). In this respect the following representation can be deduced from
Doney (2004). Let {τn}n=1,2,··· be the times at which a jump of Xt of size Jn

with magnitude exceeding 1 occurs. Then

Rτn− = sup
0≤s<τn

Xs −Xτn− =
(
R(S)

n + ĩn
)+

, (3.1)

where R
(S)
n is the discrete time process S̃n := supτn−1≤s≤τn

Xs, reflected in its

maximum; that is, R
(S)
n = max1≤j≤n S̃j − S̃n; and ĩn is independent of R

(S)
n

and distributed as inf0≤s≤τ1 Xs. Furthermore, except for its first increment,
S̃n is a random walk, that is, S̃n − S̃n−1 are i.i.d. rvs, i = 2, 3, · · · .

The Lévy process version of Proposition 2.1 is in Doney and Maller
(2005a).
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Analogous to Parts (d) and (e) of Proposition 1.1, we can show the fol-
lowing:

(d′) there is a (random) t0 > 0 such that, for all t ≥ t0, Rt > 0 a.s.
⇐⇒ limt→∞Xt = −∞ a.s. ⇐⇒ limt→∞Rt = +∞ a.s.

(e′) we have that
∫∞

1
P (Rt ≤ x)dt < ∞ for some (hence every) x ≥ 0

⇐⇒ limt→∞Rt = +∞ a.s.
There are also results analogous to Theorem 2.2 which we hope to discuss

elsewhere.

4 Proofs

Proof of Proposition 1.1. Assume 0 < F (0−) ≤ F (0) < 1.
(a) Suppose there is an x0 > 0 such that limn→∞ P (Rn ≤ x0) = 1. Since

F (0−) > 0 there are ε > 0, δ > 0, such that P (X ≤ −ε) > δ. Choose
K > 1 so that Kε > x0. Suppose Xi ≤ −ε, n + 1 ≤ i ≤ n + K. Then for
n = 1, 2, . . . ,

Sn+K = Sn +
n+K∑

i=n+1

Xi ≤ Sn −Kε < Sn − x0 ≤ S∗n+K − x0,

so Rn+K > x0. Thus for n = 1, 2, . . . ,

P (Rn+K > x0) ≥ P (Xi ≤ ε, n + 1 ≤ i ≤ n + K) ≥ δK > 0,

so lim infn→∞ P (Rn > x0) > 0, giving a contradiction.
(b) By (a) we have lim supn→∞ P (Rn > x) > 0 for all x > 0 and this

implies the required result by the Hewitt-Savage 0-1 law.
(c) We have

Rn
P→∞ ⇐⇒ lim

n→∞
P (Rn ≤ x) = 0 ∀x > 0

⇐⇒ lim
n→∞

P

(
min

0≤j≤n
Sj ≥ −x

)
= 0 (by (1.2) )

⇐⇒ min
0≤j≤n

Sj
P→ −∞

⇐⇒ min
0≤j≤n

Sj → −∞ a.s.(since the sequence is monotone)

⇐⇒ lim inf
n→∞

Sn = −∞ a.s.
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(d) Let P (Rn = 0 i.o.) < 1 and suppose Sn does not drift to −∞ a.s.
Then lim supn→∞ Sn = +∞ a.s. and there are infinitely many ascending lad-
der times a.s., i.e., Sn > S∗n−1 i.o. a.s. Thus S∗n = Sn i.o. a.s., i.e., Rn =
0 i.o. a.s., a contradiction. Hence limn→∞ Sn = −∞ a.s. Conversely, sup-
pose limn→∞ Sn = −∞ a.s., and suppose lim infn→∞Rn < ∞ a.s., so there
is an a > 0 such that Rn ≤ a i.o. a.s. Then S∗n − Sn ≤ a i.o. a.s., so
Sn > S∗n − a i.o. a.s. But this is impossible when Sn drifts to −∞ a.s.

(e) Suppose
∑

n P (Rn ≤ x) < ∞ for some x ≥ 0. Then we have∑
n P (Rn = 0) < ∞, so by the Borel-Cantelli lemma, P (Rn = 0 i.o.) = 0.

Hence limn→∞Rn = +∞ a.s. and limn→∞ Sn = −∞ a.s., by Part (d). Con-
versely, suppose limn→∞ Sn = −∞ a.s. Then by Theorem 2.1 of Kesten and
Maller (1996) (interchanging + and − in their result, that is, applying their
result to the random walk S̃n =

∑n
i=1(−Xi)), for every x ≥ 0

∞ >
∑
n≥1

P

(
min

0≤j≤n
Sj ≥ −x

)
=
∑
n≥1

P (Rn ≤ x).

(f) Note that

Rn tight ⇐⇒ lim
x→∞

lim sup
n→∞

P (Rn > x) = 0

⇐⇒ lim
x→∞

lim sup
n→∞

P

(
min

0≤j≤n
Sj < −x

)
= 0(by (1.2) )

⇐⇒ lim
x→∞

P

(
min
j≥0

Sj < −x

)
= 0

⇐⇒ min
j≥0

Sj is a finite rv (> −∞ a.s.)

⇐⇒ lim
n→∞

Sn = +∞ a.s.

If these are true then clearly Rn
D→ R := −minj≥0 Sj, and P (R = 0) = 0

since X1 is not degenerate at 0.

Proof of Theorem 2.1. (a) Take an r ≥ 0. If F (0−) = 0 then Rn = 0 a.s.
and τ(r) = τ0(r) = ∞ a.s. Conversely, suppose F (0−) > 0. Clearly, the
reflected process crosses the barrier r ≥ 0 before −S does, and this latter
time has finite mean, because it is the time of the first visit to the positive
half-line of a random walk with positive drift. Thus, indeed, τ(r) < ∞ a.s.
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To see that E(eλτ(r)) < ∞ at least for small enough λ, write, for r ≥
0, n = 1, 2, . . . ,

{τ(r) > n} =

{
max
1≤j≤n

max
0≤k≤j−1

(
−

j∑
i=k+1

Xi

)
∨ 0 ≤ r

}
. (4.1)

Choose ε > 0, δ ∈ (0, 1), K ≥ 1, so that F (−ε−) ≥ δ and Kε > r. Then
F ((−r/K)−) ≥ F (−ε−) ≥ δ, so

P (SK < −r) ≥ PK(X1 < −r/K) = FK((−r/K)−) ≥ δK > 0. (4.2)

Consider the event {τ(r) > Kn}, for n = 1, 2, . . . , and note that the event
on the right hand side of (4.1), with n replaced by Kn, includes the event−

`K∑
i=(`−1)K+1

Xi ≤ r, 1 ≤ ` ≤ n

 . (4.3)

(Just take the terms corresponding to j = `K, k = (` − 1)K, 1 ≤ ` ≤ n,
from the maxima in (4.1), with n replaced by Kn). The sums in (4.3) are
i.i.d., each with the distribution of SK , so by (4.2)

P{τ(r) > Kn} ≤ P n(−SK ≤ r) ≤ (1− δK)n.

Thus E(eλτ(r)) < ∞ if λ < − log(1− δK).
(b) We first prove the forward direction for both parts.
(b) (i) Keep κ > 1, and suppose τκ(r) < ∞ a.s. for all r > 0. If

E(X−)1/κ < ∞, the Marcinkiewicz-Zygmund law (e.g., Chow and Teicher
1988, p. 125) gives

lim
n→∞

(∑n
i=1 X−i
nκ

)
= 0 a.s.

But if this is so then

Rn = max
0≤j≤n

Sj − Sn = max
0≤j<n

(
−

n∑
i=j+1

Xi

)
∨ 0

≤ max
0≤j<n

(
n∑

i=j+1

X−i

)
=

n∑
i=1

X−i = o(nκ) a.s.,
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giving a contradiction. Thus the forward direction of Part (b) (i) is proved.
(b) (ii) Keep 0 ≤ κ ≤ 1. Let Tn be the strict increasing ladder times of

Sn, i.e., T0 = 0 and

Tn = min{j ≥ 1 : STn−1+j > STn−1}, n = 1, 2, . . . (4.4)

If Tn−1 < ∞, define the depth of an excursion of Sn below the maximum as

Dn = max
Tn−1≤j<Tn

− j∑
i=Tn−1+1

Xi

 , n = 1, 2, . . . (4.5)

(In (4.5), and throughout, we make the convention that
∑b

i=a = 0 when
b < a.) The rv Dn measures the height of an excursion of Rn away from 0;
we have RTn = 0, n = 1, 2, and

max
Tn−1≤j<Tn

Rj = Dn, n = 1, 2, . . . (4.6)

(If two ladder times Tn−1, Tn occur at consecutive integers, so that RTn−1 =
RTn = 0, (4.5) gives Dn = 0, agreeing with (4.6), and formally registering
that the depth of the nonexistent excursion is 0.)

Lemma 4.1. Keep 0 < κ ≤ 1 and suppose limn→∞ Sn = +∞ a.s. Then
E(X−)1/κ < ∞ if and only if E(D

1/κ
1 ) < ∞.

Proof. Assume limn→∞ Sn = +∞ a.s. Then Tn < ∞ a.s. for all n and in fact
ET1 < ∞. Thus the Dn are well defined. Since Sj ≤ 0, 0 ≤ j < T1, we have

D1 = max
0≤j<T1

(−Sj) ≥ −S1 = S−1 = X−1 ,

and one direction of the lemma is obvious. Conversely,

D1 ≤ max
1≤j<T1

(
j∑

i=1

X−i

)
=

T1−1∑
i=1

X−i = F1, say.

Now for 0 < κ ≤ 1, E(X−)1/κ < ∞ and limn→∞ Sn = +∞ a.s. imply

ET
1/κ
1 < ∞ (Kesten and Maller, 1996, Theorem 2.1), so we can apply Theo-

rem I.5.2 of Gut (1988, p. 22) to get EF
1/κ
1 < ∞ and hence ED

1/κ
1 < ∞.
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Lemma 4.2. Keep κ > 0. If ED
1/κ
1 < ∞ and limn→∞ Sn = +∞ a.s. then

limn→∞Rn/n
κ = 0 a.s., and so P (τκ(r) = ∞) > 0 for all large r.

Proof. Again with Tn as the increasing ladder times of Sn,

max
j≥Tn

(
Rj

jκ

)
= max

m>n
max

Tm−1≤j<Tm

(
Rj

jκ

)
≤ max

m>n

(
maxTm−1≤j<Tm Rj

T κ
m−1

)
= max

m>n

(
Dm

T κ
m−1

)
. (4.7)

Since limn→∞ Sn = +∞ a.s., we have ET1 < ∞, and thus limm→∞ Tm/m =

ET1 a.s. The Dm are i.i.d., and with ED
1/κ
1 < ∞, by hypothesis, so we have

limm→∞(Dm/mκ) = 0 a.s. Thus the righthand side of (4.7) tends to 0 a.s. as
n →∞, giving limn→∞Rn/n

κ = 0 a.s.

We can now complete the proof of the forward direction of Part (b) (ii)
of Theorem 2.1. We have 0 < κ ≤ 1 and τκ(r) < ∞ for all r > 0, and must
prove that (2.3) holds.

If E(X−)1/κ = ∞ then (2.3) holds, so suppose E(X−)1/κ < ∞. Then
by Lemmas 4.1 and 4.2 we cannot have limn→∞ Sn = +∞ a.s., consequently
lim infn→∞ Sn = −∞ a.s. By (2.9) with κ = 0 (and interchanging + and −)
this means

J− :=

∫
[0,∞)

(
x

A+(x)

)
|dF (−x)| = ∞ or 0 ≤ −EX ≤ E|X| < ∞, (4.8)

where A+(x) =
∫ x

0
(1− F (y))dy for x > 0. Now suppose 0 < κ ≤ 1/2. Then

by (2.9) (interchanging +/−), we have

lim inf
n→∞

(
Sn

nκ

)
= −∞ a.s., (4.9)

so (2.3) holds.
Next consider 1/2 < κ ≤ 1. We still have (4.8). If E|X| = ∞ then

J− = ∞ by (4.8), and then (4.9) holds by (2.8) (interchanging + and −).
If κ = 1 we can finish here because E|X| < ∞ cannot occur. If it did, we
would have, a.s. as n →∞,

Rn

n
=

S∗n
n
− Sn

n
→ (EX)−.

12



Thus if EX = 0 then P (τ1(r) = ∞) > 0 for all r > 0 while if EX < 0 then
P (τ1(r) = ∞) > 0 for all r > |EX|. Either is a contradiction.

Finally, consider 1/2 < κ < 1 and E|X| < ∞. Then EX ≤ 0 by (4.8). If
EX < 0 then limn→∞ Sn/n = EX < 0 a.s., so (4.9) and hence (2.3) holds.
It remains to consider the case EX = 0.

The next lemma allows us to deal with this. To state it, recall the defini-
tions of the functions W (y) and the integral Iκ(λ) in (2.5) and (2.6), respec-
tively.

We also need the functions, for x > 0,

ν+(x) =

∫
[0,x]

ydF (y) and ν−(x) = −
∫

[−x,0]

ydF (y),

so that ν(x) = ν+(x)− ν−(x) = E(XI(|X| ≤ x)).

Lemma 4.3. Keep 1/2 < κ < 1. Suppose that E|X| < ∞, EX = 0,
E(X−)1/κ < ∞ = E(X+)1/κ, and, for some λ > 0, Iκ(λ) < ∞. Then

lim sup
n→∞

(
Rn

nκ

)
≤ 9 · 2κ(6λ2κ)1−κ a.s. (4.10)

Proof. Fix 1/2 < κ < 1, suppose E|X| < ∞, EX = 0, E(X−)1/κ < ∞ =
E(X+)1/κ, and, for some λ > 0, Iκ(λ) < ∞. We can write

Rn = max
0≤j≤n

(
−

n∑
i=j+1

Xi

)
= max

0≤j≤n

(
n∑

i=j+1

X−i −
n∑

i=j+1

X+
i

)
. (4.11)

Let D > 0 and note that
n∑

i=j+1

X+
i ≥ D

n∑
i=j+1

I(X+
i > D) +

n∑
i=j+1

X+
i I(X+

i ≤ D)

= (n− j)D −D
n∑

i=j+1

I(X+
i ≤ D) +

n∑
i=j+1

X+
i I(X+

i ≤ D).

Then some algebra (recall that EX− = EX+) shows that
n∑

i=j+1

X−i −
n∑

i=j+1

X+
i ≤

n∑
i=j+1

(X−i − EX−)−D
n∑

i=j+1

(I(X+
i ≤ D)− F (D))

−
n∑

i=j+1

(X+
i I(X+

i ≤ D)− ν+(D)) + n

∫ ∞
D

F (y) dy.

(4.12)

13



We will choose D as follows. Note that W (x) > 0 for all x > 0 (because
E(X+)1/κ = ∞) and limx→∞(W (x)/x) = 0. Given δ > 0, x > x0 :=
(δ/EX+)1/(1−κ), define D(x) = D(x, δ) by

D(x) = inf

{
y > 0 :

W (y)

y
≤ δ

x1−κ

}
.

Then 0 < D(x) < ∞ for x > x0, limx→∞D(x) = ∞, and D(x) satisfies

x1−κ W (D(x))

D(x)
= δ. (4.13)

Now take k ≥ 1 and 1 ≤ n ≤ 2k and let

An =
n∑

i=1

(X−i − EX−), (4.14)

Bnk = D(2k)
n∑

i=1

(
I(X+

i ≤ D(2k))− F (D(2k))
)
, (4.15)

Cnk =
n∑

i=1

(
X+

i I(X+
i ≤ D(2k))− ν+(D(2k))

)
. (4.16)

Then from (4.11) and (4.12)

Rn ≤ |An|+ max
1≤j≤n

|Aj|+ D(2k)

(
|Bnk|+ max

1≤j≤n
|Bjk|

)
+|Cnk|+ max

1≤j≤n
|Cjk|+ n

∫ ∞
D(2k)

F (y) dy,

so

max
1≤n≤2k

Rn ≤ 2 max
1≤n≤2k

|An|+ 2 D(2k) max
1≤n≤2k

|Bnk|

+2 max
1≤n≤2k

|Cnk|+ 2k

∫ ∞
D(2k)

F (y) dy. (4.17)

The last term on the righthand side of (4.17) is, by (4.13) and the definition
of W (x), not larger than δ2κk. We will show that the other terms on the
righthand side of (4.17) are o(2κk) a.s., as k →∞.

14



We need some properties of D(x). Differentiation using the implicit func-
tion theorem gives

D′(x) =
(1− κ)δ D2(x)

x2−κ
∫ D(x)

0
y F (y) dy

, x > x0. (4.18)

Hence D(·) is strictly increasing and so has a unique increasing inverse D←(x)
satisfying, for large x, x ≥ x1, say,

D←(x) =

(
δx

W (x)

)1/(1−κ)

. (4.19)

Our next step is to show that, under our assumption that Iκ(λ) < ∞, we
have

lim
x→∞

x1−2κ W (D(x)) = 0. (4.20)

To see this, write

Iκ(λ) =

∫ ∞
1

e−(yq/h(y)) dy/y,

where q = (2κ − 1)/(1 − κ) > 0 and h(x) = (W (x))κ/(1−κ) is an increasing
function. (In fact differentiation shows that W (x) is increasing and concave.)
Now Iκ(λ) < ∞ implies

∑
n≥1

(log 2)e−2(n+1)q/h(2n) ≤
∑
n≥1

∫ 2n+1

2n

e−yq/h(y)dy/y < ∞,

thus limn→∞ h(2n)/2(n+1)q = 0 and so limn→∞ h(2n)/2(n−1)q = 0. Given x > 0
choose n(x) so that 2n−1 ≤ x < 2n. Then

h(x)

xq
≤ h(2n)

2(n−1)q
→ 0, as x →∞,

thus

lim
x→∞

(W (x))κ/(1−κ)

x(2κ−1)/(1−κ)
= 0.

15



Substituting x = (D←(x))1−κ W (x)/δ from (4.19) gives

lim
x→∞

δ(2κ−1)/(1−κ) W (x)

(D←(x))2κ−1
= 0,

or, equivalently, (4.20) holds, as required.
Now consider first the Cnk term in (4.17). By (4.16), Cnk is, for each k

and n ≤ 2k, the sum of n i.i.d. mean 0 rvs with variance

Var(Cnk) = n Var(X+
i I(X+

i ≤ D(2k))) ≤ n U+(D(2k))

≤ 2k U+(D(2k)) ≤ 2k W (D(2k)) = o(22κk), (4.21)

where the last estimate follows from (4.20). The inequality |median(Y )| ≤√
2 Var Y is valid for any mean zero rv, so we have from (4.21)

max
1≤n≤2k

∣∣∣∣∣∣median

 2k∑
i=n

(
X+

i I(X+
i ≤ D(2k))− ν+(D(2k)

)∣∣∣∣∣∣ = o(2κk),

so by a version of Lévy’s inequality (e.g., Chow and Teicher 1988, p. 71), for
large enough k,

P

(
max

1≤n≤2k
|Cnk| > 2δ2κk

)
≤ 2 P

(
|C2kk| > δ2κk

)
. (4.22)

Also, the summands of Cnk are bounded by 2 D(2k). So by Bernstein’s
inequality (Chow and Teicher 1988, p. 111), the last probability is bounded
by

2 exp

(
−δ222κk

2(2k W (D(2k)) + 2 D(2k) δ2κk)

)
= 2 exp

(
−δ2κk

6 D(2k)

)
, (4.23)

where we used (4.13) to substitute for W (D(2k)). Adding over k we find that

∑
k≥1 e−δ2κk/6 D(2k) ≤ 2

∑
k≥1

∫ 2k+1

2k

e−δyk/6·2κ D(y) dy/y

= 2

∫ ∞
2

e−λyκ/(δκ/(1−κ)D(y)) dy/y,
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where in the last we chose δ so that δ = 6 · 2κλ/δκ/(1−κ), i.e., δ = (6λ2κ)1−κ.
Now change variable to get the last integral as∫ ∞

D(2)

e−λ(D←(z))κ/(δκ/(1−κ)z) dz

D′(D←(z)) D←(z)
. (4.24)

In view of (4.19) the exponent here is

−λzκ/(1−κ)

z (W (z))κ/(1−κ)
=
−λz(2κ−1)/(1−κ)

(W (z))κ/(1−κ)
,

as required in (2.6). Also, by (4.18) and (4.19),

D′(D←(z)) D←(z) =
(1− κ)δz2

(D←(z))1−κ
∫ z

0
y F (y) dy

=
(1− κ)z W (z)∫ z

0
y F (y) dy

≥ (1− κ)z

where the last follows because W (z) ≥
∫ z

0
y F (y) dy; see (2.5). As a result

of these two calculations the integral in (4.24) is bounded by a multiple of
Iκ(λ). Going back to (4.22) we thus have by the Borel-Cantelli lemma

lim sup
k→∞

(
max1≤n≤2k |Cnk|

2κk

)
≤ 2δ = 2(6λ2κ)1−κ a.s. (4.25)

Next we have to deal with the (B) term in (4.17). For each k ≥ 1 and
1 ≤ n ≤ 2k, Bnk/D(2k) is a sum of i.i.d. mean zero rvs bounded by 2
(see (4.15)), and we can calculate

Var(Bnk/D(2k)) =
n∑

i=1

F (D(2k)) F (D(2k))

≤ 2k F (D(2k)) ≤ 2k U+(D(2k))/D2(2k)

≤ 2k W (D(2k))/D2(2k) = δ2κk/D(2k),

using (4.13) for the last equality. Thus by a similar argument as for the (C)
term, involving Lévy’s and Bernstein’s inequalities,

P
(
max1≤n≤2k |Bnk| > 2δ2κδ

)
≤ 2 P

(
|B2kk|/D(2k) > δ2κk/D(2k)

)
≤ 2 exp

(
−δ222κk/D2(2k)

2(δ2κk/D(2k) + 2δ2κk/D(2k))

)
= 2 exp

(
−δ2κk

6 D(2k)

)
.
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This is the same bound as in (4.23) and the same argument leading to (4.25)
gives

lim sup
k→∞

(
max1≤n≤2k |Bnk|

2κk

)
≤ 2(6λ2κ)1−κ a.s. (4.26)

Finally, for the (A) term in (4.17), we simply use the Marcinkiewicz-
Zygmund law to get An = o(nκ) a.s., since E(X−)1/κ < ∞. So

lim
k→∞

(
max1≤n≤2k |An|

2κk

)
= 0 a.s. (4.27)

Putting (4.25)–(4.27) into (4.17) gives

lim sup
k→∞

(
max1≤n≤2k Rn

2κk

)
≤ 8(6λ2κ)1−κ + δ = 9(6λ2κ)1−κ a.s.

If m is large choose k(m) so that 2k−1 ≤ m < 2k. Then

Rm

mκ
≤ 2κ max1≤n≤2k Rn

2κm
≤ 2κ9(6λ2κ)1−κ + o(1) a.s.

which proves (4.10).

Corollary 4.1 (Corollary to Lemma 4.3). Keep 1/2 < κ < 1, E|X| < ∞,
EX = 0. Then lim supn→∞Rn/n

κ = ∞ a.s. if and only if E(X−)1/κ = ∞
or E(X−)1/κ < ∞ = E(X+)1/κ and Iκ(λ) = ∞ ∀λ > 0.

Proof. Keep 1/2 < κ < 1, E|X| < ∞, EX = 0. Suppose lim supn(Rn/n
κ) =

∞ a.s.. If E(X−)1/κ < ∞ and E(X+)1/κ < ∞, that is, E|X|1/κ < ∞,
we get limn→∞Rn/n

κ = 0 a.s. from the Marcinkiewicz-Zygmund law. If
E(X−)1/κ < ∞ = E(X+)1/κ, we have Iκ(λ) = ∞ ∀λ > 0 by Lemma 4.3.

Conversely, suppose E(X−)1/κ = ∞. Then by Theorem 2(f) of Kesten
and Maller (1998), we have lim supn→∞(−Sn/n

κ) = +∞ a.s., and since
Rn = max0≤j≤n Sj − Sn ≥ −Sn this gives lim supn→∞Rn/n

κ = +∞ a.s.
Alternatively, suppose E(X−)1/κ < ∞ = E(X+)1/κ and Iκ(λ) = ∞ ∀λ.
Then by Theorem 1 of Doney and Maller [7], lim supn→∞(−Sn/n

κ) = ∞ a.s.
so again lim supn→∞Rn/n

κ = +∞ a.s.

Finally we complete the proof of the forward direction in (2.3) by noting
that the conditions of the Corollary to Lemma 2.3 are equivalent to (4.9) by
Corollary 2 of [7] (interchanging +/−).
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For the converse part of Theorem 2.1(b), note first that, by its definition,
for r > 0, κ > 0, n = 1, 2, . . . ,

{τκ(r) > n} =

{
max
0≤k≤j

Sk − Sj ≤ rjκ, 1 ≤ j ≤ n

}
⊆ {−Xj ≤ rjκ, 1 ≤ j ≤ n} ,

the last following just by taking the term for k = j − 1 from the maximum.
So

P (τκ(r) > n) ≤
n∏

j=1

P (X1 > −rjκ) ≤ exp

(
−

n∑
j=1

P (X1 ≤ −rjκ)

)
.

Thus if
∑

n≥1 P (X1 ≤ −rjκ) = ∞, or, equivalently, E(X−)1/κ = ∞, then
P (τκ(r) < ∞) = 1.

Next,

lim sup
n→∞

(
Rn

nκ

)
= lim sup

n→∞

(
S∗n − Sn

nκ

)
≥ − lim inf

n→∞

(
Sn

nκ

)
,

so the second condition in (2.3) also implies P (τκ(r) < ∞) = 1 for r > 0.
This completes the proof of Theorem 2.1.

Proof of Theorem 2.2. (a) For the square root boundary, assume EX2 < ∞
and EX = 0.

(i) Introduce the function

φ(x) = 2

{∫ ∞
x

yF (y)dy − x

∫ ∞
x

F (y)dy

}
= 2

∫ ∞
0

yF (y + x)dy,

and define

Zn = R2
n − nσ2 +

n∑
1

φ(Ri−1), Z0 = 0.

Using (1.5), and similarly calculating

E(∆2
i | Fi−1) =

∫
(−∞,Ri−1]

y2 dF (y) + R2
i−1F (Ri−1)

= σ2 − 2

∫ ∞
Ri−1

yF (y) dy,
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we also have

Zn = R2
n −

n∑
1

E(∆2
i |Fi−1)− 2

n∑
1

Ri−1E(∆i|Fi−1).

From this it is easy to check that Z is a martingale. Now fix r > 0 and
m > 0 and write τ for τ1/2(σr) and τm = m ∧ τ . This is a stopping time, so
EZτm = 0, and thus we get

σ2Eτm = ER2
τm + E

τm∑
1

φ(Ri−1) ≥ ER2
τm + φ(0). (4.28)

Suppose now that Eτ < ∞. By monotone convergence, then, Eτm → Eτ as
m →∞, while

lim inf
m→∞

ER2
τm ≥ ER2

τ ≥ r2Eτ

by Fatou’s lemma. Thus we can let m →∞ in (4.28) to get σ2(1− r2)Eτ ≥
φ(0) > 0. This is impossible if r ≥ 1, so in this case we must have Eτ = ∞.

(ii) We now take 0 < r < 1, assume Eτ = ∞, and establish a contradic-
tion. Assume the truth of the following statement:
for any ε > 0 there is an mε such that

E
τm∑
1

φ(Ri−1) ≤ εEτm for all m ≥ mε. (4.29)

Note that Rτm = Rτm−1 + ∆τm ≤ σr
√

τm + ∆τm , and choose ε = σ2

2
(1− r2).

Then for any m ≥ mε we have, using EZτm = 0, and (4.29),

σ2Eτm = ER2
τm + E

τm∑
1

φ(Ri−1)

≤ σ2r2Eτm + E∆2
τm + 2σrE

(√
τm∆τm

)
+ εEτm

≤ σ2

2
(1 + r2)Eτm + E∆2

τm + 2σr
√

Eτm
√

E∆2
τm

=
(√

E∆2
τm + σr

√
Eτm

)2

+
σ2

2
(1− r2)Eτm.
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From this we see that the ratio E∆2
τm/Eτm is bounded below by the constant

σ2{
√

1
2
(1 + r2) − r}2 > 0 for m ≥ mε. The contradiction will follow by

showing that E∆2
τm/Eτm → 0 as m →∞.

To see this: take any δ > 0. We can choose M = M(ε, δ) so large that,
whenever m ≥ M ,

max
i≥1

E
(
∆2

i I(∆2
i > εEτm) | Fi−1

)
≤ δ, a.s. (4.30)

This is done as follows. Since EX2 < ∞, given δ > 0 we can choose y0(δ) so
large that ∫

|z|>y

z2 dF (z) + sup
z>y

z2 F (z) ≤ δ, ∀ y ≥ y0. (4.31)

Since we assumed Eτ = ∞, we have limm→∞Eτm = ∞. So we can choose
M(ε, δ) so large that

√
ε Eτm ≥ y0 when m ≥ M . Now for any a > 0, using

the representation (1.4),

I(∆2
i > a) = I(X2

i > a) I(Xi ≤ Ri−1) + I(R2
i−1 > a) I(Xi > Ri−1)

so

∆i I(∆2
i > a)

= −Xi I(X2
i > a) I(Xi ≤ Ri−1)−Ri−1 I(R2

i−1 > a) I(Xi > Ri−1),

hence

E(∆2
i I(∆2

i > a) | Fi−1)

=

∫
|y|>
√

a

y2 I(y ≤ Ri−1) dF (y) + R2
i−1 I(Ri−1 >

√
a) F (Ri−1)

≤
∫
|y|>
√

a

y2 dF (y) + sup
y>
√

a

y2 F (y). (4.32)

Substituting a = εEτm, we have
√

a ≥ y0 when m ≥ M , so (4.32) gives
(4.30) via (4.31), when m ≥ M . This proves (4.30). From this we deduce

E∆2
τm1{∆2

τm>δτm} ≤ E
τm∑
k=1

∆2
k1{∆2

k>δk}

≤ E
τm∑
k=1

E{∆2
k1{∆2

k>δk}|Fk−1}

≤ Mσ2 + δEτm ≤ 2δEτm

21



for sufficiently large m. We also have E∆2
τm1{∆2

τm≤δτm} ≤ δEτm. So to
complete the proof it suffices to prove (4.29).

Note first that φ(x)/2 ≤ σ2
+ := E(X+)2 for all x ≥ 0, and φ(x) ↓ 0 as

x →∞. So we can choose Kε < ∞ with φ(Kε) ≤ ε/3, and have the bound

n∑
1

φ(Ri−1) ≤
1

3
nε + 2σ2

+

n∑
1

1(Ri−1 ≤ Kε).

Define

N (ε) = max

(
n :

n∑
1

1(Ri−1 ≤ Kε) ≥
nε

6σ2
+

)
,

then it suffices to show that EN (ε) < ∞, since this gives

E
τm∑
1

φ(Ri−1) ≤
2ε

3
Eτm + EN (ε) ≤ εEτm for all large enough m.

To show that EN (ε) < ∞, introduce the r.v.’s An, Bn, n ≥ 1, given
recursively by:

A1 = min{n ≥ 1 : Rn > Kε}, B1 = min{n ≥ 1 : RA1+n ≤ Kε},

C1 = A1 + B1,

and, for i = 2, 3, · · · ,

Ai = min{n ≥ 1 : RCi−1+n > Kε}, Bi = min{n ≥ 1 : RCi−1+Ai+n ≤ Kε},

Ci = Ci−1 + Ai + Bi.

In view of (b) and (d) of Proposition 1.1, the Ai and Bi are finite, a.s. Then,
by construction

n∑
1

1(Ri−1 ≤ Kε) = Mn :=
Dn∑
1

Ai + (n− CDn), (4.33)
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where Dn = max{k : Ck ≤ n}. Now write ε̃ = εσ2/(4σ2
+), assume without

loss of generality that ε̃ < 1, and note that the maximum values of n−1Mn

occur when n = Ck + Ak+1 for some k ≥ 0, i.e. when CDn = n − Ak+1, at
which times Mn has value

∑k+1
i=1 Ai. So

N (ε) = max {n : Mn ≥ nε̃}

≤ max

{
Ck + Ak+1 :

k+1∑
i=1

Ai ≥ ε̃(Ck + Ak+1)

}

≤ 1

ε̃
max

{
k+1∑
i=1

Ai :
k+1∑
i=1

Ai ≥ ε̃(
k+1∑
i=1

Ai +
k∑

i=1

Bi)

}

=
1

ε̃
max

{
k+1∑
i=1

Ai :
k∑

i=1

(1− ε̃)Ai − ε̃Bi ≥ (ε̃− 1)Ak+1

}
.

Thus, writing Yi = ε̃Bi − (1− ε̃)Ai and k∗ = max{k :
∑k

1 Yi ≤ (1− ε̃)Ak+1},
we have for any c > 0

ε̃P{N (ε) ≥ mε̃} ≤ P{
k∗+1∑

1

Ai ≥ m}

≤ P{k∗ ≥ mc− 1}+ P{
mc∑
1

Ai ≥ m}. (4.34)

Now
∑mc

1 Ai ≤
∑mc

1 Ãi, where Ã1, Ã2, · · · are i.i.d. with the distribution
of the time that R, starting from Kε, exits [0, 2Kε]. Part (a) of Theorem

2.1 shows that EeλÃ1 < ∞ for some λ > 0, so using a standard exponential
bound and choosing c < 1/EÃ1, we see that the second term in (4.34) is
summable. On the other hand we have

Bk ≥ B̃k := min{n : RCk+A1+n ≤ RCk+A1} = min{n : Ŝn ≤ 0}, (4.35)

where Ŝn = SCk+A1+n − SCk+A1 , n ≥ 0, and the B̃n are an iid sequence with
infinite mean (since EX = 0). Thus Ỹi := ε̃B̃i−(1−ε̃)Ai are the i.i.d. steps of
a random walk that drifts to +∞ a.s. Then with A(y) := E((Y1∧y)∨ (−y)),
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write

∑
j≥1

P (k∗ ≥ j) =
∑
j≥1

P

(
for some k ≥ j,

k∑
i=1

Ỹi ≤ (1− ε̃)Ak+1

)

≤
∑
j≥1

∑
k≥j

∑
a≥1

P

(
k∑

i=1

Ỹi ≤ (1− ε̃)a

)
P (Ak+1 = a)

=
∑
a≥1

∑
k≥1

kP

(
k∑

i=1

Ỹi ≤ (1− ε̃)a

)
P (Ak+1 = a)

≤ c1 + c2

∑
a≥a0

(
1− ε̃)a

A((1− ε̃)a)

)2

P (Ak+1 = a)

≤ c1 + c3EA2
1 < ∞.

Here the ci and a0 are positive constants, A(y) is bounded away from 0 for
a ≥ a0, say (in fact limy→∞A(y) = ∞ since EỸ1 = +∞), and the inequality
in the fourth line follows from Theorem 2.2 of Kesten and Maller (1996).
Thus k∗ has finite mean, and the result follows from (4.34).

(b) For the linear case, assume E|X| < ∞ and EX < 0.
(i) We first show that Eτ1(r) < ∞ for r < −EX. This follows easily

from the strong law of large numbers for Sn: we have limn→∞ Sn/n = EX
a.s. and limn→∞maxi≤n Si := S∞ < ∞ a.s., so limn→∞Rn/n = −EX a.s.
Thus P (Rn > n(|EX|−ε) i.o.) = 1 for every ε > 0, giving Eτ1(|EX|−ε) < ∞
for every ε ∈ (0, |EX|).

(ii) It remains to show that Eτ1(r) = ∞ for all r ≥ −EX. This follows
immediately from the next lemma, which proves a little more.

Lemma 4.4. Let S be a random walk with steps X having E|X| < ∞ and
EX = −1, and for the corresponding reflected process Rn = max0≤i≤n Si−Sn,
R0 = 0, write

Ta = min(n ≥ 1 : Rn > n + a). (4.36)

Then ETa = ∞ for a ≥ 0.

Remark. Of course (4.36) for a = 0 implies (4.36) but it doesn’t seem
possible to prove it without considering the case a > 0.
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Proof of Lemma 4.4. First we show the result holds for sufficiently large a.
Note that Rn = Mn + n − S̃n, where S̃ is a zero-mean random walk and
Mn = max0≤i≤n Si ≤ M∞, with b := EM∞ < ∞. So, assuming ETa < ∞,

0 = ES̃Ta = EMTa + ETa − ERTa

≤ EM∞ + ETa − (a + ETa) = b− a.

This is a contradiction when a > b, so ETa = ∞ for a > b.
Next, observe that for x ∈ [0, a], E{Ta|R0 = x} ≥ ETa−x. So by consid-

ering the first step in S,

ETa = 1 +

∫ 0

−(a+1)

P{X ∈ dy}E{Ta+1|R0 = −y}+ P{X ≥ 0}ETa+1

≥
∫ 0

−(a+1)

P{X ∈ dy}ETa+1+y + P{X ≥ 0}ETa+1.

Now, excluding the degenerate case X = −1 a.s., there exists δ ∈ (0, 1) with
P{X ≥ −1 + δ} = c > 0, so since ETa is increasing in a,

ETa ≥
∫ 0

−1+δ

P{X ∈ dy}ETa+1+y + P{X ≥ 0}ETa+1

≥ P{X ∈ [−1 + δ, 0)}ETa+δ + P{X ≥ 0}ETa+1

≥ cETa+δ.

Thus if ET0 were finite, ETnδ would also be finite for n = 1, 2, · · · . This
proves the result.

With this, the proof of Theorem 2.2 is complete.

Acknowledgement. We are grateful to Chris Wetherell for very competent
Latex typing.
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