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K-THEORY AND LIMIT-OF-DISCRETE-SERIES FOR THE

UNIVERSAL COVER OF SL2(R)

JACEK BRODZKI, GRAHAM NIBLO, ROGER PLYMEN AND NICK WRIGHT

Abstract. The unitary principal series of the universal cover of SL2(R)
admits a limit-of-discrete-series. We show how this representation leads
to an explicit K-cycle which generates K1 of the reduced C∗-algebra.

1. Introduction

Let G denote the universal cover of SL2(R). Then G is a connected Lie
group with Lie algebra sl2(R). Let A = C∗r (G) denote the reduced C∗-
algebra of G. It is known (see, for example [CEN]) that, in the sense of
K-theory of C∗-algebras, we have

K0A = 0, K1A = Z.(1)

In this article we relate this result to the representation theory of G.

The group G has the following properties:
– G is a 3-dimensional connected Lie group
– G has infinite centre isomorphic to Z
– the maximal compact subgroup of G is trivial
– G is non-linear, i.e. it is not a closed subgroup of GLn(R).

The fact that it is a non-linear group with infinite centre places it outside
the range of much classical representation theory, due to Harish-Chandra
and others. However, the Plancherel formula was established by Pukánszky
[P]. In the reduced dual of G, there is one very special representation, which
is in the unitary principal series of G and is the direct sum of two elements
in the discrete series. We will call this representation the limit-of-discrete-
series of G. This representation factors through the quotient group SL2(R),
and becomes the well-known limit-of-discrete-series for SL2(R).

The limit-of-discrete series for SL2(R) is the induced representation

π := Ind
SL2(R)
B χ(2)

where χ is the unique quadratic character

χ :

(
x y
0 1/x

)
7→
{

1 when x > 0
−1 when x < 0

of the standard Borel subgroup B of SL2(R). The representation π splits as
the direct sum of two irreducible representations:

π = π+ ⊕ π−
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The representations π+ and π− are not in the discrete series; but their
characters θ+, θ− are not identically zero on the elliptic set – they have this
feature in common with the discrete series of SL2(R).

The formal Fourier transform D̂ of the Dirac operator D breaks up as the
direct sum of multiplication operators on complex Hermitian line bundles.
The multiplication is by real-valued scalar functions. With one exception,
the scalar functions stay away from 0, i.e. they remain either positive or
negative, the corresponding Kasparov triples are degenerate, and they make
no contribution to K-theory.

We show in this article how the limit-of-discrete-series for G allows one
to construct a certain complex hermitian line bundle L on the real line
{q : q ∈ R} which realises a generator of KK1(C, C0(R)). We define a

D̂-invariant complex Hermitian line bundle L as follows.

Lq :=


C

(
f`

−f−`

)
for q ≤ 1/4, q = `(1− `)

C

(
f1/2
−f−1/2

)
for q ≥ 1/4

For q ≤ 1/4 the fibre Lq is spanned by a spinor made from the lowest
weight vector of the discrete series D(`,+) and the highest weight vector of
the discrete series D(`,−) with q = `(1 − `). For q ≥ 1/4 the fibre Lq is
spanned by a spinor made from two vectors of weight 1/2 and −1/2. Since
` = 1/2 when q = 1/4, these two line bundles can be glued together to form
a line bundle L over R. The C0-sections of L are spinor fields vanishing at
infinity.

On these spinor fields, the operator D̂ is multiplication by a function ωq
for which ωq → ±∞ as q → ∓∞. This implies that the unbounded Kasparov
triple [C0(R, L), 1, ω] represents a generator of KK1(C, C0(R)), and thence
a generator of K1(A).

In §2, we give the structure theorem for A via the compact-operator-
valued Fourier transform.

In §3, we describe in detail the construction of the triple [C0(R, L), 1, ω].
In §4, we give, for completeness, a self-contained proof of (1).

2. Reduced C∗-algebra

We begin with the Plancherel formula of Pukánszky [P] for the universal
cover of SL2(R).

Theorem 2.1. The following representations enter into the Plancherel for-
mula:

Principal series : {(T (q, τ) : q ≥ 1/4, 0 ≤ τ ≤ 1}, Ω = q

Discrete series : D(`,+), D(`,−), ` ≥ 1/2, Ω = `(1− `)
where Ω is the Casimir operator. For every test function f on G, smooth
with compact support, we have
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f(e) =

∫ ∞
0

∫ 1

0
σ[< tanhπ(σ + iτ)]Θ(σ, τ)(f)dτdσ +

∫ ∞
1/2

(`− 1/2)Θ(`)(f)d`

where the Harish-Chandra characters are

Θ(σ, τ)(f) = trace

∫
G
T (σ, τ)(g)f(g)dg

Θ(`)(f) = trace

∫
G

(D(`,+)⊕D(`,−))(g)f(g)dg

and σ =
√
q − 1/4.

This is a measure-theoretic statement. We need a more precise statement
in topology.

Note that Ω = 1/4 at each of the following points;

T (1/4, 1/2), D(1/2,+), D(`,−).

We will define the parameter space Z to be the union of the sets

{q ∈ R : q ≤ 1/4}

{(q, τ) ∈ R× R : q ≥ 1/4, 0 ≤ τ ≤ 1}
with identification of the point 1/4 in the first set with (1/4, 1/2) in the
second, and with identification of (q, 0) with (q, 1) for all q ≥ 1/4.

Let E+ and E− be the two invariant subspaces of the reducible represen-
tation T (1/4, 1/2). We have the following structure theorem.

Theorem 2.2. Let A denote the reduced C∗-algebra C∗r (G). The Fourier

transform f 7→ f̂ induces an isomorphism of A onto the C∗-algebra

{F ∈ C0(Z,K) : F (q)E+ ⊂ E+, F (q)E− ⊂ E− if q ≤ 1/4}.

where K is the C∗-algebra of compact operators on the standard Hilbert space.

Proof. The reduced C∗-algebra is a quotient of the full C∗-algebra C∗(G):

1→ I→ C∗(G)→ C∗r (G)→ 1.

The complementary series makes no contribution. The C∗-algebra A is a
quotient of the full C∗-algebra in [KM] and the primitive ideal space of A

contains every point in the support of Plancherel measure on Ĝ (the unitary
dual of G), by Theorem (2.1). �

Note that the Jacobson topology on the primitive ideal spectrum of A is
exactly right: it has a double point at q = 1/4 ∈ Z, where the unitary repre-
sentation T (1/4, 1/2) is reducible. The two subspaces E+, E− are invariant
subspaces of the representation T (1/4, 1/2) by Eqn.(2.4) in [KM] and in fact
the representation T (1/4, 1/2) is the direct sum of two representations in the
discrete series:

T (1/4, 1/2) = D(1/2,+)⊕D(1/2,−)

see Eqn.(2.4) in [KM, p.40].
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3. The K-cycle

We recall the parameter space Z from §1. The unitary representation
theory of G presents us with a continuous field of Hilbert G-modules over
Z:

{Vq : q ≤ 1/4}

{Vq,τ : q ≥ 1/4, 0 ≤ τ ≤ 1}
subject to the conditions

V1/4 = V1/4,1/2, Vq,0 = Vq,1 ∀q ≥ 1/4/

The Casimir operator on the G-modules Vq and Vq,τ is precisely the multi-
plication by the parameter q. For q ≤ 1/4 we also introduce an additional
parameter ` ≥ 1/2 defined by the equation q = `(1− `).

Let g denote the Lie algebra sl2(R), let U(g) denote the universal en-
veloping algebra of g, and let C(g) denote the Clifford algebra of g with
respect to the negative definite quadratic form on g. Let X0, X1, X2 denote
an orthonormal basis in g. Note that the notation in [P, (1.1)] is lk = Xk.

Following the algebraic approach in [HP, Def. 3.1.2] the Dirac operator
is the element of the algebra U(g)⊗ C(g) given by

D = X0 ⊗ c(X0) +X1 ⊗ c(X1) +X2 ⊗ c(X2)

where c(Xk) denotes Clifford multiplication by Xk.
Let

σ0 =

(
1 0
0 −1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 i
−i 0

)
and set

c(Xk) = iσk, k = 0, 1, 2

Then we have

c(Xk)
2 = −1

for all k = 0, 1, 2.
We have

D = i(X0σ0 +X1σ1 +X2σ2)(3)

= i

(
X0 X1 + iX2

X1 − iX2 −X0

)
(4)

Let now π be a unitary representation, in the principal series or the
discrete series of G, on a Hilbert space Eπ. The self-adjoint operators
H0, H1, H2, which act on the Hilbert space Eπ, are determined by the fol-
lowing equation [P, p.98]:

exp(−itHk) = π(exp(tXk)) ∀t ∈ R, k = 0, 1, 2

On each of the Hilbert spaces Vq and Vq,τ we therefore have three self-
adjoint operators, namely H0, H1 and H2. These form a field of operators
on the field of Hilbert spaces Eπ. The spectrum of H0 is discrete with
eigenvalues m = `, `+ 1, `+ 2, . . . and m = −`, `− 1,−`− 2, . . . in the case
that q < 1/4 and with eigenvalues m ∈ τ + Z for q ≥ 1/4. Each eigenvalue
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has multiplicity 1 and we let fm be an orthogonal basis of eigenvectors of
H0 so that

H0fm = mfm.

Following [P, p.100], we define

H+ = H1 + iH2, H− = H1 − iH2

In addition, we have the following equations

H+fm = (q +m(m+ 1))1/2fm+1

H−fm = (q +m(m− 1))1/2fm−1

which hold for all m when q ≥ 1/4 and where the first equation holds for
all m 6= −`, the second for all m 6= ` when q < 1/4. The special cases of
H+f−` and H−f` are both zero.

We now construct a field of self-adjoint operators, which can be viewed
as the formal Fourier Transform of the Dirac operator D, see (3). It is an
operator of Dirac type and has the following form:

D̂ =

(
H0 H1 + iH2

H1 − iH2 −H0

)
(5)

A crucial observation at this point is the emergence of two dimensional

invariant subspaces for D̂. Each such subspace Em is spanned by a pair of

vectors

(
fm
0

)
and

(
0

fm−1

)
, where m is in the set τ + Z for q ≥ 1/4 and

m = ` + 1, ` + 2, . . . or −`,−` − 1, . . . for q < 1/4. We have the following
equations

D̂

(
fm
0

)
=

(
H0 H+

H− −H0

)(
fm
0

)
=

(
mfm

(q +m(m− 1))1/2fm−1

)
and

D̂

(
0

fm−1

)
=

(
H0 H+

H− −H0

)(
0

fm−1

)
=

(
(q +m(m− 1))1/2fm
−(m− 1)fm−1

)
.

With respect to this basis, the operator D̂ is given by the following sym-
metric matrix (

m (q +m(m− 1))1/2

(q +m(m− 1))1/2 −(m− 1)

)
.

This symmetric matrix has the following eigenvalues

λ =
1

2
±
√

1/4 + q + 2m(m− 1).

In the case that q ≥ 1/4 the subspaces Em for m ∈ τ+Z span the whole of
Vq,τ . However, for q < 1/4 there are a further two 1-dimensional subspaces
spanned by the vectors (

f`
0

)
,

(
0
f−`

)
These subspaces are invariant since H−(f`) = 0 and H+(f−`) = 0.

Note that something very special occurs in the limit-of-discrete series
when q = 1/4 and τ = 1/2. Here, when m = 1/2 we have
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q +m(m− 1) = 0

and so in this case the operator matrix

(
H0 H+

H− −H0

)
restricted to the 2-

dimensional subspace spanned by

(
f1/2

0

)
,

(
0

f−1/2

)
is the diagonal matrix(

1/2 0
0 1/2

)
.

For q < 1/4, we have the following eigenvector equations(
H0 H+

H− −H0

)(
fl
0

)
= l

(
fl
0

)
and (

H0 H+

H− −H0

)(
0
f−l

)
= l

(
0
f−l

)
.

With respect to the basis given by the vectors

(
fl
0

)
and

(
0
f−l

)
our operator

matrix has the diagonal form

(
l 0
0 l

)
, so we see that as q approaches 1/4

and consequently ` approaches 1/2 this matches up with the limit-of-discrete
series case of q = 1/4, τ = 1/2, justifying the terminology.

We now consider the restriction of the field of Hilbert spaces to the sub-
space of Z where for q ≥ 1/4 we have τ = 1/2. The q-parameter here
identifies the subspace with R. Correspondingly in the Fourier transform
picture we are restricting the field of compact-operator valued functions to
the line, which induces an isomorphism on K-theory.

Remark 3.1. The half-line {q ∈ R : q ≥ 1/4} has the following signifi-
cance in representation theory. The corresponding unitary representations
T (q, 1/2) all factor through SL2(R) and constitute the odd principal series πq
of SL2(R). In particular, the representation π1/4 is the limit-of-discrete se-
ries for SL2(R). It is the direct sum of two irreducible representations whose
characters θ+ and θ− do not vanish on the elliptic set. In this respect, they
resemble representations in the discrete series. So the term limit-of-discrete-
series for T (1/4, 1/2) is surely apt.

We now attempt to glue together some one-dimensional eigenspaces to
form a complex hermitian line bundle L over R. Take q ≥ 1/4 and consider

the subspace E1/2. The restriction D̂|E1/2
is given by the matrix(

1/2
√
q − 1/4√

q − 1/4 1/2

)
from which we readily see that the vector

(
f1/2
−f−1/2

)
is an eigenvector of D̂

with eigenvalue 1/2 −
√
q − 1/4. Note that the eigenvalue tends to 1/2 as

q → 1/4+.
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Now for q < 1/4 we see that

(
f`
−f−`

)
is an eigenvector of D̂ with eigen-

value ` tending to 1/2 as q → 1/4−.

We can thus define a D̂-invariant complex Hermitian line bundle L as
follows.

Define Lq :=


C

(
f`

−f−`

)
for q ≤ 1/4, q = `(1− `)

C

(
f1/2
−f−1/2

)
for q ≥ 1/4

On this line-bundle the field of operators D̂ is simply multiplication by
the function

ω(q) :=

{
` = 1

2 +
√

1/4− q for q ≤ 1/4
1
2 −

√
q − 1/4 for q ≥ 1/4.

In particular we note that ω(q) tends to ±∞ as q → ∓∞. The field of
operators induces an operator on the Hilbert module C0(R, L) of C0-sections
of the bundle, and this operator is multiplication by ω. This means that
the unbounded Kasparov triple [C0(R, L), 1, ω] represents the generator of
KK1(C, C0(R)).

Theorem 3.2. The unbounded Kasparov triple [C0(R, L), 1, ω] represents
the generator of KK1(C, C0(R)).

Similarly we have a D̂-invariant line bundle M with

Mq :=


C

(
f`

f−`

)
for q ≤ 1/4, q = `(1− `)

C

(
f1/2
f−1/2

)
for q ≥ 1/4

on which the operator D̂ is multiplication by the function

ε(q) :=

{
` = 1

2 +
√

1/4− q for q ≤ 1/4
1
2 +

√
q − 1/4 for q ≥ 1/4.

In this case we see that ε(q)→ +∞ as q → ±∞ from which we see that the
corresponding Kasparov triple [C0(R,M), 1, ε] in KK1(C, C0(R)) is homo-
topic to a degenerate element and so no contribution is made to KK1.

We now examine how the remaining 2-dimensional subspaces Em match
up at q = 1/4. For q ≥ 1/4 we have m = 1/2+k where k ∈ Z and we exclude
the case k = 0 which we have already considered. Now for each k > 0 we
take the 2-dimensional bundle N (k) whose fibres are E1/2+k for q ≥ 1/4 and
which are E`+k for q ≤ 1/4. These agree at q = 1/4 since ` = 1/2 at this
point.
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For k < 0 we take the 2-dimensional bundle N (k) whose fibres are E1/2+k

for q ≥ 1/4 and which are E−`+1+k for q ≤ 1/4. We note that when ` = 1/2
we obtain E−`+1+k = E1/2+k. Thus for each k 6= 0 we can view m as a
continuous function of q defined by

m(q) :=


`+ k = 1

2 +
√

1/4− q + k for q ≤ 1/4, k = 1, 2, . . .

−`+ 1 + k = 1
2 −

√
1/4− q + k for q ≤ 1/4, k = −1,−2, . . .

1
2 + k for q ≥ 1/4, k ∈ Z \ {0}.

Recall that the eigenvalues of the restriction of D̂ to Em are given by

λ± =
1

2
±
√

1/4 + q + 2m(m− 1).

Writing 2m(m− 1) as 2(m− 1/2)2 − 1/2 we see that

2m(q)(m(q)−1) :=


2(
√

1/4− q + k)2 − 1/2 for q ≤ 1/4, k = 1, 2, . . .

2(−
√

1/4− q + k)2 − 1/2 for q ≤ 1/4, k = −1,−2, . . .

2k2 − 1/2 for q ≥ 1/4, k ∈ Z \ {0}.

=


2(1/4− q + k2 + 2k

√
1/4− q)− 1/2 for q ≤ 1/4, k = 1, 2, . . .

2(1/4− q + k2 − 2k
√

1/4− q)− 1/2 for q ≤ 1/4, k = −1,−2, . . .

2k2 − 1/2 for q ≥ 1/4, k ∈ Z \ {0}.

=


2(−q + k2 + 2k

√
1/4− q) for q ≤ 1/4, k = 1, 2, . . .

2(−q + k2 − 2k
√

1/4− q) for q ≤ 1/4, k = −1,−2, . . .

2k2 − 1/2 for q ≥ 1/4, k ∈ Z \ {0}.

1/4+q+2m(m−1) =


1/4− q + 2(k2 + 2k

√
1/4− q) for q ≤ 1/4, k = 1, 2, . . .

1/4− q + 2(k2 − 2k
√

1/4− q) for q ≤ 1/4, k = −1,−2, . . .

q − 1/4 + 2k2 for q ≥ 1/4, k ∈ Z \ {0}.

In particular we see that the discriminant 1/4 + q + 2m(m− 1) is always
at least 2 so that the eigenvalues must always be distinct, indeed they are
respectively ≥ 1

2 +
√

2 and ≤ 1
2 −
√

2. Thus the bundles of positive and

negative eigenspaces within N (k) define D̂-invariant line bundles which we
denote N (k)±. Moreover in the positive case the eigenvalues tend to +∞ as
q → ±∞ and in the negative case eigenvalues tend to −∞ as q → ±∞.

This establishes the following result.

Theorem 3.3. Each individual line bundle thus gives a Kasparov triple
[C0(R, N (k)±), 1, λ±] (where we view the eigenvalue λ± as a function of q)
which is homotopic to a degenerate element.

Finally, we have

Theorem 3.4. The K-theory is concentrated in the complex hermitian line
bundle L constructed above.

Proof. In this context, KK1(C, C0(R)) is countably additive. �
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4. K-theory

Let

A = {z ∈ C; |z| ≤ 1}, B = [1, 2]

and let

Y = A ∪B.
The coordinate change

r = (q + 1/4)−1, s = 2− 1/2`

transforms, by a continuous injective map, the locally compact parameter
space Z into the compact parameter space Y.

Lemma 4.1. The reduced C∗-algebra A is strongly Morita equivalent to the
C∗-algebra B of all 2× 2-matrix-valued functions on the compact Hausdorff
space Y which are diagonal on B, and vanish at 0 and 2:

B := {F ∈ C(Y,M2(C)) : F (y) is diagonal on B,F (0) = 0 = F (2)}

The computation of the K-theory of A is done as follows. Define a new
C∗-algebra as follows:

C := {F ∈ C(Y,M2(C)) : F (y) is diagonal on B,F (2) = 0}

The map

C→M2(C), f 7→ f(0)

then fits into an exact sequence of C∗-algebras

1→ B→ C→M2(C)→ 0

This leads to the six-term exact sequence

K0(B) −−−−→ K0(C) −−−−→ Zx y
0 ←−−−− K1(C) ←−−−− K1(B)

Note that Y = A ∪B is a contractible space. The following homotopy is
well-adapted to the C∗-algebra C. Given z = x+ iy ∈ Y set ht as follows:

ht(x+ iy) =

{
x+ (1− 2t)iy 0 ≤ t ≤ 1/2
x+ (2− x)(2t− 1) 1/2 ≤ t ≤ 1

This is a homotopy equivalence from Y to the point {2}. Note that the
homotopy ht with 1/2 ≤ t ≤ 1 moves along the interval B towards the point
{2}.

This induces a homotopy equivalence from C to the zero C∗-algebra O:

C ∼h O

i.e. C is a contractible C∗-algebra.
This leads to the six-term exact sequence

K0(B) −−−−→ 0 −−−−→ Zx y
0 ←−−−− 0 ←−−−− K1(B)
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Since Kj is an invariant of strong Morita equivalence, we have the follow-
ing result.

Theorem 4.2. Let A denote the reduced C∗-algebra of the universal cover
of SL2(R). Then

K0(A) = 0, K1(A) = Z
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239-278.
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