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WORDS AND PRONILPOTENT SUBGROUPS
IN PROFINITE GROUPS

E. I. KHUKHRO AND P. SHUMYATSKY

Abstract. Let w be a multilinear commutator word, that is, a
commutator of weight n in n different group variables. It is proved
that if G is a profinite group in which all pronilpotent subgroups
generated by w-values are periodic, then the verbal subgroup w(G)
is locally finite.

1. Introduction

By a multilinear commutator word we mean a commutator of weight
n in n different group variables. The purpose of the present paper is
to prove the following theorem.

Theorem 1.1. Let w be a multilinear commutator word. Let G be
a profinite group in which all pronilpotent subgroups generated by w-
values are periodic. Then the verbal subgroup w(G) is locally finite.

Theorem 1.1 can be regarded as a generalization of the theorem on
local finiteness of periodic profinite groups, which corresponds to the
case of w = x1 being a group variable. That theorem was proved in
Zelmanov’s paper [26] on pro-p groups, while the reduction to pro-p
groups was obtained by Wilson [24] (using the classification of finite
simple groups). The proof of Theorem 1.1 also uses the classifica-
tion and Zelmanov’s theorem. If the hypothesis on all pronilpotent
subgroups generated by w-values being periodic is replaced by being
locally finite, then the proof of Theorem 1.1 becomes independent of
Zelmanov’s theorem; in this sense it is a generalization of Wilson’s
theorem.

The case of Theorem 1.1 where w = [x, y] was earlier proved in [6].
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Theorem 1.1 is related to the conjecture that if, for some group
word w, all w-values in a profinite group G have finite order, then the
verbal subgroup w(G) must be locally finite. This conjecture is a nat-
ural generalization of the aforementioned Zelmanov’s theorem on local
finiteness of periodic profinite groups. Note that in this conjecture
the orders of w-values are not assumed to be bounded. Also in Theo-
rem 1.1 the exponents of pronilpotent subgroups generated by w-values
are not assumed to be bounded, just like in the theorems of Wilson and
Zelmanov periodic profinite groups are not assumed to be of bounded
exponents. It is however, conjectured that a periodic profinite group
must in fact have bounded exponent.

There is a similar conjecture for finite groups, which of course must
involve bounds for the exponent: if a finite group G satisfies a law we =
1 for some group word w, then the exponent of the verbal subgroup
w(G) must be bounded in terms of w and e only. In relation to this
problem it was proved in [21] that if, for a multilinear commutator w,
all nilpotent subgroups in a finite group G satisfy the law we = 1, then
the exponent of the verbal subgroup w(G) is bounded in terms of w
and e only. A similar result was also proved in [5] for the case of w
being an Engel word and for some other cases.

The proof of Theorem 1.1 relies on several reductions, some of which
are firstly performed for finite groups. In order to state the corre-
sponding results we introduce some notation. As in [16] we introduce
the non-p-soluble length λp(G) of a finite group G as the number of
non-p-soluble factors in a shortest normal series each of whose factors
either is p-soluble or is a direct product of non-abelian simple groups
of order divisible by p. For p = 2 we naturally use the term nonsoluble
length and denote it by λ(G) = λ2(G). Bounding the non-p-soluble
length is an important tool in reductions to (pro-)p-soluble groups, for
example, implicitly in the Hall–Higman paper [11], or in the afore-
mentioned Wilson’s paper [24]. In this paper we obtain bounds for
non-p-soluble length using, in particular, our recent results in [16].

Throughout the paper, w is a multilinear commutator word of weight
n. For a (profinite) group G we denote by Gw the set of all values of
w on elements of G; then w(G) = 〈Gw〉 is the corresponding (closed)
verbal subgroup. If P is a subgroup of a (profinite) group G, we denote
by WG(P ) the (closed) subgroup of P generated by all elements of P
that are conjugate in G to w-values on elements of P , that is, WG(P ) =
〈P G

w ∩ P 〉. When it causes no confusion, we will write W (P ) in place
of WG(P ).
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Theorem 1.2. Let H be a normal subgroup of a finite group G, and
let P be a Sylow p-subgroup of H . Suppose that for some t ∈ G the
coset tWG(P ) is of exponent dividing pa. Then the non-p-soluble length
of H is bounded in terms of a and n only.

We also need bounds for the p-length of p-soluble subgroups.

Theorem 1.3. Let H be a normal p-soluble subgroup of a finite group
G, and let P be a Sylow p-subgroup of H . Suppose that for some t ∈ G
the coset tWG(P ) is of exponent dividing pa. Then the p-length of H
is bounded in terms of a and n.

The special cases of Theorems 1.2 and 1.3 for w = x1, whenWG(P ) =
P were proved in [24] for p 6= 2; in particular, Theorems 1.2 and 1.3
extend the results of Theorems 2* and 3* in [24] to the case of p = 2.

Apart from applications in the present paper, Theorem 1.3 has a
corollary giving an affirmative answer to a special case of Wilson’s
problem 9.68 in Kourovka Notebook [18] for a (finite exponent)-by-
nilpotent variety.

Corollary 1.4. Let V be a group variety that is a product of a variety
of finite exponent and a nilpotent variety. Then the p-length of finite
p-soluble groups whose Sylow p-subgroups belong to V is bounded. In
other words, if a Sylow p-subgroup P of a finite p-soluble group G is
such that (γc+1(P ))p

a
= 1, then the p-length of G is bounded in terms

of c and a only.

A result similar to Corollary 1.4 is also true for a nilpotent-by-(finite
exponent) variety — this case has been known in folklore as a conse-
quence of the Hall–Higman theorems.

We call pro-(finite soluble) groups, that is, inverse limits of finite sol-
uble groups, simply prosoluble groups for short; pro-p-soluble groups
are defined similarly. For a profinite group G we denote by π(G) the
set of prime divisors of the orders of elements of G (understood as hy-
pernatural, or Steiniz, numbers). If a profinite group G has π(G) = π,
then we say that G is a pro-π group. Recall that Sylow theorems
hold for p-Sylow subgroups of a profinite group (see, for example, [25,
Ch. 2]). When dealing with profinite groups we consider only continu-
ous homomorphisms and quotients by closed normal subgroups.

Theorem 1.2 has the following consequence for profinite groups.

Theorem 1.5. Let G be a profinite group, and P a p-Sylow subgroup
of G. Suppose that WG(P ) is locally finite. Then G has a finite series
of closed characteristic subgroups in which each factor either is pro-p-
soluble or is isomorphic to a Cartesian product of non-abelian finite
simple groups of order divisible by p.
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In view of Zelmanov’s theorem [26] we could write that WG(P ) is
periodic instead of locally finite; this remarks applies throughout the
paper.

Theorem 1.3 has the following consequence for profinite groups.

Theorem 1.6. Let p be a prime and let G be a pro-p-soluble group.
Suppose that WG(P ) is locally finite for a p-Sylow subgroup P of G.
Then G has a finite series of closed characteristic subgroups in which
each factor is either a pro-p group or a pro-p′ group.

If G is a finite soluble group, let h(G) denote the Fitting height of G.
Recall that this is the length of a shortest normal (or characteristic)
series of G all of whose factors are nilpotent. For a prosoluble group G
we define an analogue of Fitting height denoted by ph(G) as the length
of a shortest series of (closed) characteristic subgroups all of whose
factors are pronilpotent; if G has no finite series of this kind, then we
write ph(G) =∞. Of course, ph(G) <∞ if and only if G is an inverse
limit of finite soluble groups of bounded Fitting height.

Corollary 1.7. Let G be a prosoluble group such that π(G) is finite.
Suppose that WG(P ) is locally finite for any p-Sylow subgroup of G, for
any p ∈ π(G). Then ph(G) is finite.

2. Bounding non-p-soluble length of finite groups

Our purpose in this section is to prove Theorem 1.2. We begin
with quoting a special case of our recent result on non-p-soluble length
in [16]. The definitions of non-p-soluble length λp(G) and nonsoluble
length λ(G) = λ2(G) of a finite group G were given in the Introduction.

Lemma 2.1 (see [16, Theorem 1.4]). Suppose that a Sylow p-subgroup
of a finite group G is soluble of derived length d. Then the non-p-soluble
length λp(G) is bounded in terms of d.

(In fact, Theorem 1.4 in [16] gives a bound for λp(G) for finite groups
G whose Sylow p-subgroups belong to any given variety that is a prod-
uct of soluble varieties and varieties of finite exponent, but we need
only this special case here.)

By an almost simple group we mean a finite group with a unique min-
imal normal subgroup that is a non-abelian simple group. By Schreier’s
conjecture confirmed by the classification, the quotient by that minimal
normal subgroup is soluble. The following lemma is well known.

Lemma 2.2. Suppose that a finite group G has no nontrivial soluble
normal subgroups. Let M be the product of all minimal normal sub-
groups, and let M = S1×· · ·×Sm, where the Si are non-abelian simple
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groups. Then the kernel K =
⋂
NG(Si) of the permutational action of

G on the set {S1, . . . , Sm} embeds in a direct product of almost simple
groups.

Proof. Clearly, K/CK(Si) is an almost simple group for every i. We
have

⋂
CK(Si) = 1 because G has no nontrivial soluble normal sub-

groups. The result follows, since K/
⋂
CK(Si) embeds in the direct

product of the groups K/CK(Si). �

We now list three elementary lemmas that are used throughout the
paper.

Lemma 2.3. Let G be a (pro)finite group.
(a) If G1 6 G and P1 6 P , then WG1(P1) 6 WG(P ).
(b) If P is a p-Sylow subgroup of G and N is a (closed) normal

subgroup of G, then WG/N(PN/N) = WG(P )N/N .

Proof. (a) This obviously follows from the definition, as the generating
set for WG1(P1) is contained in that for WG(P ).

(b) Let the bar denote images in Ḡ = G/N . The inclusion WḠ(P̄ ) >
WG(P ) is obvious. An arbitrary generating element of WḠ(P̄ ) has
the form w(ā1, . . . )

ḡ ∈ P̄ for āi ∈ P̄ and ḡ ∈ Ḡ. Taking arbitrary
pre-images ai ∈ P and g ∈ G, we obtain a pre-image w(a1, . . . )

g ∈
PN . Since P is a p-Sylow subgroup of PN , there is h ∈ N such that
x = w(a1, . . . )

gh ∈ P , which means that x ∈ WG(P ) and obviously

x̄ = w(ā1, . . . )
ḡ. Hence, WḠ(P̄ ) 6 WG(P ). �

Lemma 2.4 ([1, Lemma 2.3]). Let G be a group, and w a multilinear
commutator word. Let N be a normal subgroup of G, and let M be
the subgroup generated by the values of w that belong to N . Then
[N,w(G)] 6M .

This lemma was proved in [1] for the case M = 1, to which the proof
immediately reduces by considering G/M .

Let δ1 = [x1, x2] and by induction δk+1 =
[δk(x1, . . . , x2k), δk(x2k+1, . . . , x2k+1)], so that δd is a multilinear
commutator word such that the law δd = 1 defines the variety of
soluble groups of derived length d. The next lemma is well-known (see
for example [20, Lemma 4.1]).

Lemma 2.5. Let G be a group and let w be a multilinear commutator
word of weight n. Then every δn-value is a w-value.

We now embark on proving Theorem 1.2, beginning with the follow-
ing key proposition.
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Proposition 2.6. Let w be a multilinear commutator. Let P be a Sylow
p-subgroup of a finite group G and suppose that G contains an element
t such that the coset tW (P ) is of exponent pe 6= 1. Assume further that
G has no nontrivial normal p-soluble subgroups. Then G possesses two
normal subgroups K1 and K2 such that their intersection K = K1∩K2

embeds in a direct product of almost simple groups, the image of tW (P )
in G/K1 is of exponent dividing pe−1, and W (P ) 6 K2. In particular,
if e = 1, then tW (P ) 6 K1 and therefore also W (P ) 6 K .

Proof. Let V be a minimal normal subgroup of G. Clearly, V = S1 ×
S2 × · · · × Sr, where S1, S2, . . . , Sr are isomorphic simple groups of
order divisible by p. Then Pi = P ∩ Si is a Sylow p-subgroup of Si for
i = 1, . . . , r. Acting on V by conjugation the group G permutes the
simple factors, so we obtain a representation of G by permutations of
the set {S1, S2, . . . , Sr}. Let KV be the kernel of this representation.

Suppose that W (P ) 66 KV ; we claim that then the image of tW (P )
in G/KV is of exponent dividing pe−1. If this is false, then there exists
u ∈ tW (P ) which has an orbit of length pe in the set {S1, S2, . . . , Sr}.
Without loss of generality we assume that this orbit is {S1, S2, . . . , Spe}.

Since W (P ) 66 KV , there is a conjugate g of an element of Pw such
that g 6∈ KV . Since KV is a normal subgroup, we can assume that
in fact g ∈ Pw and g 6∈ KV . Choose j such that Sj 6= Sgj and let
b ∈ Pj. By Lemma 2.4 the commutator [b, g] is a product of elements
of Pw ∩ V . Since [b, g] = b−1bg, where b ∈ Sj and bg ∈ Sgj 6= Sj,
we deduce that b can be written as a product of the Sj-projections of
elements of Pw∩V . Since b was an arbitrary element of Pj, we conclude
that Pj is generated by the Sj-projection of Pw ∩V . Since G permutes
S1, S2, . . . , Sr transitively, there is an element q ∈ G such that P1 = P q

j ,
so that P1 is generated by the S1-projection of P q

w ∩ V . Furthermore,
for each k = 2, . . . , r, using if necessary conjugations by lk ∈ Sk and
replacing P q

w by P qlk
w we can make sure that the Sk-projection of P qlk

w

is contained in Pk (keeping the S1-projection the same). Thus, after
changing notation, we obtain that P1 is generated by the S1-projection
of P q

w∩V for some q ∈ G such that P q
w∩V ⊆ P . The latter also means

that P q
w ∩ V ⊆ W (P ).

Set N1 = NS1(P1). The well-known Burnside theorem on normal p-
complements [9, Theorem 7.4.3] shows that P1 is not contained in the
center Z(N1). Since P1 is generated by the S1-projection of P q

w ∩ V ,
we can choose x ∈ P q

w ∩ V ⊆ W (P ) and an element h ∈ N1 such that
xh 6= x.

Now write x = x1 · · ·xr, where xi ∈ Pi. Of course, xh = xh1x2 · · ·xr.
Since ux ∈ tW (P ), we have (ux)p

e
= 1, in particular, the S1-projection
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of (ux)p
e

is trivial. A direct calculation shows that the S1-projection
of (ux)p

e
equals the product

x1x
up

e−1

2 · · ·xu2pe−1x
u
pe .

Therefore x1x
up

e−1

2 · · ·xu2pe−1x
u
pe = 1. Since the element xh belongs to

P qh
w ∩ V and to P , we have xh ∈ W (P ). Therefore we can apply

the same argument to the element xh in place of x, by which also

xh1x
up

e−1

2 · · ·xu2pe−1x
u
pe = 1. Hence we deduce that xh1 = x1. This is a

contradiction with the choice of h such that xh 6= x.
Thus, indeed, the image of tW (P ) in G/KV is of exponent dividing

pe−1 whenever W (P ) 66 KV . It remains to set K1 =
⋂
KV , where the

intersection is taken over all minimal normal subgroups V of G such
that W (P ) 66 KV , and K2 =

⋂
KU , where U runs over all minimal

normal subgroups U of G such that W (P ) 6 KU . Then K = K1 ∩K2

embeds in a direct product of almost simple groups by Lemma 2.2. �

Proof of Theorem 1.2. Recall that w is a multilinear commutator of
weight n, G is a finite group, H a normal subgroup of G, P a Sylow
p-subgroup of H, and for some t ∈ G the coset tWG(P ) is of exponent
dividing pa. We need to show that H has non-p-soluble length bounded
in terms of a and n. Clearly, we can assume without loss of generality
that G = H〈t〉, and then our task is equivalent to bounding the non-
p-soluble length of G.

By Lemma 2.5 every δn-value is a w-value, that is, Pw ⊇ Pδn . Since

P is a normal subgroup with cyclic quotient in a Sylow p-subgroup P̂ of
G = H〈t〉, straightforward induction on k also shows that Pδk ⊇ P̂δk+1

for all k. Let temporarily ŵ = δn+1. Then for the corresponding
subgroup we have

ŴG(P̂ ) = 〈P̂ G
δn+1
∩ P̂ 〉 = 〈P̂ G

δn+1
∩ P̂ ∩H〉

= 〈P̂ G
δn+1
∩ P 〉 6 〈P G

δn ∩ P 〉 6 〈P
G
w ∩ P 〉 = WG(P ),

and therefore also (tŴG(P̂ ))p
a

= 1. Hence we can change notation
and assume that w = δn+1 and P is a Sylow p-subgroup of G. Using
also Lemma 2.3, we can assume that G has no nontrivial normal p-
soluble subgroups. We now find ourselves under the hypotheses of
Proposition 2.6. By this proposition we obtain normal subgroups K1

and K2 such that the image of tW (P ) in G/K1 has exponent dividing
pa−1 and W (P ) 6 K2.

In the group G/K2, a Sylow p-subgroup is soluble of derived length
n + 1, and therefore the non-p-soluble length of G/K2 is bounded in
terms of n by Lemma 2.1. By Lemma 2.3 the group G/K1 satisfies
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the hypothesis of the theorem with a smaller value of exponent. By
induction on a we obtain that the non-p-soluble length of G/K1 is
bounded in terms of n and a. Note that the basis of this induction
is the case a = 0, when tW (P ) 6 K1 whence W (P ) 6 K1, so that a
Sylow p-subgroup is soluble of derived length n + 1, which is covered
by Lemma 2.1 as above. Since K1 ∩K2 embeds in a direct product of
almost simple groups and therefore has non-p-soluble length at most 1,
the result follows. �

3. Bounding p-length of finite p-soluble groups

Recall that a finite group is p-soluble if it has a normal series each
factor of which is either a p-group, or a p′-group; the minimal number
of p-factors in such a series is called the p-length of the group. We
use results on the connection between the p-length of a finite p-soluble
group and its derived length and exponent first obtained in the seminal
Hall–Higman paper [11] for odd primes and later extended to p = 2 by
others [13, 2, 4]. Moreover, we also use the results in representation
theory from these papers, which we state here for convenience.

Theorem 3.1 ([11, Theorem 2.1.1]). Let H be a p-soluble linear group
over a field of characteristic p, with no normal p-subgroup greater than
1. If a is an element of order pm in H , then the minimal polynomial
of a is (X − 1)r = 0, where r = pm, unless there is an integer m0, not
greater than m, such that pm0 − 1 is a power of a prime q, in which
case, if m0 is the least such integer, pm−m0(pm0 − 1) 6 r 6 pm.

As stated in the Corollary to this theorem in [11], if p is neither 2
nor a Fermat prime, then r = pm; if p is odd, then r > (p − 1)pm−1

always; and if p = 2, then r > 3 · 2m−2 always.
An element g of order pm for which the degree of the minimal poly-

nomial is strictly less than pm is called exceptional. Clearly, then p
must be either a Fermat prime or 2.

Theorem 3.2 ([11, Theorem 2.1.2]). Under the hypotheses of The-
orem 3.1, if a and b are exceptional elements of the same Sylow p-
subgroup of H of orders pm and pn, respectively, then [ap

m−1
, bp

n−1
] = 1.

For p = 2 the original paper [11] did not give any bounds for the
2-length of 2-soluble groups with Sylow 2-subgroup of exponent 2e.
First the bound 3e − 1 was obtained by Hoare [13], which was later
improved to 2e− 1 by Gross [10], and finally to the best-possible e by
Bryukhanova [3]. However, it is the representation theory technique of
Hoare [13] that we managed to use in the case of p = 2 in the proof of
Theorem 1.3.
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Theorem 3.3 ([13, Theorem 2]). Under the hypotheses of Theorem 3.1
for p = 2, if a and b are elements of the same Sylow 2-subgroup of H of
orders 2m and 2n, respectively, such that [a2m−1

, b2n−1
] 6= 1, then either

(a− 1)2m−1 6= 0 or (b− 1)2n−1(a− 1)2m−1 6= 0.

We say that a section L/M of a group G is contained in a section
N/S if N > L > M > S, and that L/M is contained in a normal
subgroup N if L 6 N . We say that a subgroup F of G covers a section
L/M if (F ∩L)M = L. The centralizer of a section L/M in a subgroup
H is defined as usual: CH(L/M) = {g ∈ H | [L, g] 6M}.
Proof of Theorem 1.3. Recall that w is a multilinear commutator word
of weight n, while Pw is the set of w-values on elements of a subgroup
P of a group G and WG(P ) = 〈P G

w ∩ P 〉. We have a normal p-soluble
subgroup H of a finite group G, and a Sylow p-subgroup P of H such
that for some t ∈ G the coset tWG(P ) is of exponent dividing pa. Our
aim is bounding the p-length of H in terms of a and n only. We can
obviously assume that G = H〈t〉 (by Lemma 2.3(a)); in particular,
then G is p-soluble, which we assume in what follows.

Lemma 3.4. If L/M is a chief p-factor of G contained in H and
H/CH(L/M) has p-length at least n + 1, then WG(P ) covers L/M ,
that is, (WG(P ) ∩ L)M = L.

Proof. By the theorems of Hall and Higman [11] for p 6= 2 and of
Bryukhanova [4] for p = 2, the image of P (n) in H/CH(L/M) is non-
trivial. Since w(P ) > P (n) by Lemma 2.5, it follows that the image
of w(P ) in H/M does not centralize L/M . Since L/M is a normal
subgroup of the image of P in G/M , by Lemma 2.4 there is a value v
of the word w on elements of P such that the image of v is nontrivial
in L/M . Since L/M is a chief factor of G, there are conjugates vgi

for some gi ∈ G whose images generate L/M . There are also elements
li ∈ L such that vgili ∈ P ∩ L, since P ∩ L is a Sylow p-subgroup of L.
By definition, then vgili ∈ WG(P ), and since vgiliM = vgiM , the result
follows. �

Let D be the set of all chief p-factors V of G such that H/CH(V )
has p-length at most n. We define the subgroup

D =
⋂
V ∈D

CH(V ).

Then H/D also has p-length at most n. It remains to prove that the
p-length of D is bounded. This is achieved by applying the following
proposition with K = D and U = WG(P )∩D. The required properties
hold by Lemma 3.4 and because every chief p-factor of G contained in
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D that belongs to D is central in D by construction. Thus, the proof
of Theorem 1.3 will be complete when we prove Proposition 3.5.

Proposition 3.5. Let K be a normal p-soluble subgroup of a finite p-
soluble group G. Suppose that K contains a p-subgroup U that covers
all chief p-factors of G contained in K that are not central in K and
that for some t ∈ G the coset tU has exponent dividing pe. Then the
p-length of K is at most e+ 1 if p is an odd prime that is not a Fermat
prime, at most 2e + 1 if p is a Fermat prime, and at most 3e + 1 if
p = 2.

In the proof of Proposition 3.5, for odd p we use Theorem 3.1 and
3.2 of Hall and Higman [11] as in the proof of Theorem 3* in Wilson’s
paper [24]. For p = 2 we apply similar but more complicated arguments
based on Theorem 3.3 of Hoare [13].

Proof. We use induction on e, where pe is the exponent of the coset
tU . The basis of induction is the case e = 0, which corresponds to
U = 1 = t. Then all chief p-factors of G contained in K are central in
K and therefore K has a normal p-complement, so that its p-length is
at most 1. We assume e > 0 in what follows.

Case of p odd. Let N be the normal closure in G of the subgroup
〈ape−1 | a ∈ tU〉, and let N1 be the normal closure in G of the subgroup

〈[ape−1
, bp

e−1
] | a, b ∈ tU〉.

Lemma 3.6. (a) The subgroup N1 acts trivially on each chief p-factor
L/M of G contained in K and covered by U .

(b) The subgroup N acts trivially on each chief p-factor L/M of G
contained in K and covered by U such that N1 ∩K 6M .

(c) The p-length of N ∩K is at most 2.
(d) If p is not a Fermat prime, then N acts trivially on each chief

p-factor L/M of G contained in K and covered by U and the p-length
of N ∩K is at most 1.

Proof. Let V = L/M be a chief p-factor of G contained in K and
covered by U , and let C = CG(L/M). Then G/C acts by conjugation
on V , which can be regarded as a faithful Fp(G/C)-module. Since this
is an irreducible module, G/C has no non-trivial normal p-subgroups.

Let h ∈ tU . If u ∈ U , then hu ∈ tU , and so hp
e

= (hu)p
e

= 1, which
implies

uh
pe−1 · · ·uh2uhu = 1.
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Since (U ∩ L)M = L, this means that the linear transformation of V
induced by h, which we denote by the same letter, satisfies (in charac-
teristic p)

0 = hp
e−1 + · · ·+ h2 + h+ 1 = (h− 1)p

e−1.

Then either hp
e−1

acts trivially on V , or the linear transformation in-
duced by h is exceptional. By Theorem 3.2, the pe−1th powers of ex-
ceptional elements of order pe commute. Therefore every commutator
[ap

e−1
, bp

e−1
] for a, b ∈ tU acts trivially on V , and then so does their

normal closure N1. This proves (a).
Now suppose in addition that N1 ∩ K 6 M . Let h ∈ tU and u ∈

U ∩ L, and let

y = uh
pe−1−1 · · ·uh2uhu,

so that (hu)p
e−1

= hp
e−1
y. Then [(hu)p

e−1
, hp

e−1
] ∈ N1. We also have

[(hu)p
e−1

, hp
e−1

] = [hp
e−1

y, hp
e−1

] = [y, hp
e−1

] ∈ K,

since y ∈ L 6 K. As a result, [(hu)p
e−1
, hp

e−1
] = [y, hp

e−1
] ∈ N1 ∩K 6

M , that is,

[uh
pe−1−1 · · ·uh2uhu, hpe−1

] ∈M.

Since L = (U ∩ L)M , this implies that the linear transformation of V
induced by every element h ∈ tU satisfies

0 = (hp
e−1−1 + · · ·+ h+ 1)(hp

e−1 − 1) = (h− 1)2pe−1−1.

On the other hand, if h induces an automorphism of order pe, then by
Theorem 3.1 its minimal polynomial has degree at least (p − 1)pe−1.
Since (p− 1)pe−1 > 2pe−1 − 1 for odd p, it follows that for any h ∈ tU
the elements hp

e−1
act trivially on V . Then their normal closure N also

acts trivially on V , so that (b) holds.
By part (a), N1 acts trivially on every chief p-factor of G contained

in K and covered by U . By hypothesis, K acts trivially on all other
chief p-factors of G contained in K. Therefore all chief p-factors of G
contained in N1∩K are central in N1∩K, which means that N1∩K has
a normal p-complement. By part (b), N acts trivially on every chief
p-factor of G contained in (N ∩ K)/(N1 ∩ K) and covered by U . By
hypothesis, K acts trivially on all other chief p-factors of G contained
in (N ∩K)/(N1 ∩K). Therefore all chief p-factors of G contained in
(N ∩ K)/(N1 ∩ K) are central in (N ∩ K)/(N1 ∩ K), which means
that (N ∩K)/(N1 ∩K) has a normal p-complement. As a result, the
p-length of N ∩K > N1 ∩K > 1 is at most 2.

If p is an odd prime that is not a Fermat prime, then no exceptional
elements appear, so that all elements ap

e−1
for a ∈ tU act trivially
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on V , and hence so does N . Then all chief p-factors of G contained in
N ∩K are central in N ∩K, which implies that N ∩K has a normal
p-complement and p-length 1. �

We now complete the proof of Proposition 3.5 for odd p. We define
N as in Lemma 3.6 and consider Ḡ = G/N denoting by the bar images
of elements and subgroups in Ḡ. Clearly, a chief p-factor L/M of G

is either trivial in Ḡ if L 6 N , or CḠ(L̄/M̄) = CG(L/M) if M > N .
Therefore Ū covers all chief p-factors of G contained in K̄ that are not
central in K̄. Thus, the hypotheses of Proposition 3.5 hold for the
images with t̄Ū of exponent dividing pe−1 by the construction of N .
By induction, the p-length of K̄ ∼= K/(K ∩N) is at most 2(e− 1) + 1
(or at most e if p is not a Fermat prime). By Lemma 3.6 the p-length
of K ∩N is at most 2 (respectively, 1), and the result follows.

Case p = 2. Recall that we assume e > 1. We need one more step
in the basis of induction, as some of the arguments below do not work
for e = 1. Thus, suppose that e = 1. Let V = L/M be any chief
2-factor of G contained in K and covered by U . Every element x̄ ∈
V is the image of an element x ∈ U ∩ L. For any u ∈ U we have
1 = (tu)2 = (tux)2 = (tu)2x[x, tu]x, and since x2 ∈ M this implies
[x, tu] ∈ M . Thus, tU 6 CG(V ). Hence the normal closure B of tU
in G has the property that all chief 2-factors of G contained in B ∩K
are central in B ∩K, whence B ∩K has a normal 2-complement and
2-length 1. All chief 2-factors of G contained in K/(B ∩ K) are not
covered by U 6 B ∩K and therefore are central in K by hypothesis.
Therefore K/(B ∩K) also has a normal 2-complement and 2-length 1.
As a result, the 2-length of K is at most 2, as required.

From now on we assume that e > 2. We define

T to be the normal closure in G of the subgroup 〈a2e−1 | a ∈ tU〉,
T1 to be the normal closure in G of the subgroup 〈[a2e−1

, b2e−2
] |

a, b ∈ tU〉, and

T2 to be the normal closure in G of the subgroup 〈[a2e−1
, b2e−1

] |
a, b ∈ tU〉.

Note that T > T1 > T2.

Lemma 3.7. (a) The subgroup T2 acts trivially on each chief 2-factor
L/M of G contained in K and covered by U .

(b) The subgroup T1 acts trivially on each chief 2-factor L/M of G
contained in K and covered by U such that T2 ∩K 6M .

(c) The subgroup T acts trivially on each chief 2-factor L/M of G
contained in K and covered by U such that T1 ∩K 6M .

(d) The 2-length of T ∩K is at most 3.
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Proof. Let V = L/M be a chief 2-factor of G contained in K and
covered by U and let C = CG(L/M). Then G/C acts by conjugation
on V , which can be regarded as a faithful F2(G/C)-module. Since this
is an irreducible module, G/C has no non-trivial normal 2-subgroups.

Let h and hu for u ∈ U be any elements of tU . Every element of
V = L/M is the image of an element x ∈ U ∩ L. Since hx ∈ tU , by
hypothesis,

1 = (hx)2e = h2exh
2e−1 · · ·xhx = xh

2e−1 · · ·xhx.

Since (U ∩ L)M = L, this implies that the linear transformation of
V = L/M induced by h, which is denoted by the same letter, satisfies
(in characteristic 2)

0 = h2e−1 + · · ·+ h+ 1 = (h− 1)2e−1.

For the same reasons,

0 = ((hu)− 1)2e−1,

and the more so,

0 = ((hu)− 1)2e−1(h− 1)2e−1

.

By Theorem 3.3 applied with a = h, b = hu, and n = m = e, then
[h2e−1

, (hu)2e−1
] acts trivially on V . Therefore so does the subgroup T2

and part (a) is proved.
Now suppose in addition that T2 ∩ K 6 M . The commutator

[(hux)2e−1
, h2e−1

] obviously belongs to T2. This commutator also be-

longs to K, since (hux)2e−1
= h2e−1

y, where y ∈ K, since u, x ∈ U 6 K,

and then [(hux)2e−1
, h2e−1

] = [h2e−1
y, h2e−1

] = [y, h2e−1
] ∈ K. Thus,

[(hux)2e−1
, h2e−1

] ∈ T2 ∩ K 6 M by our assumption. For the same

reasons, [(hu)2e−1
, h2e−1

] ∈ M . As a result, modulo M we have the
congruences

1 ≡ [(hux)2e−1

, h2e−1

]

= [(hu)2e−1

x(hu)2
e−1−1 · · ·xhux, h2e−1

]

≡ [x(hu)2
e−1−1 · · ·xhux, h2e−1

].

In terms of linear transformations this implies that

0 = ((hu)2e−1−1 + · · ·+hu+ 1)(h2e−1 − 1) = ((hu)− 1)2e−1−1(h− 1)2e−1

.

We have also seen above that

(h− 1)2e−1 = 0.
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We now apply Theorem 3.3 with a = h, b = hu, m = e, and n =
e − 1: then [h2e−1

, (hu)2e−2
] acts trivially on V . Therefore so does the

subgroup T1 and part (b) is proved.
Finally, suppose in addition that T1 ∩ K 6 M . We have

[(hx)2e−1
, h2e−2

] ∈ T1. We also have (hx)2e−1
= h2e−1

z for z ∈ K,

so that [(hx)2e−1
, h2e−2

] = [h2e−1
z, h2e−2

] = [z, h2e−2
] ∈ K. Hence,

[(hx)2e−1
, h2e−2

] ∈ T1 ∩ K 6 M . As a result, modulo M we have
the congruences

1 ≡ [(hx)2e−1

, h2e−2

]

= [h2e−1

xh
2e−1−1 · · ·xhx, h2e−2

]

≡ [xh
2e−1−1 · · ·xhx, h2e−2

].

In terms of linear transformations this implies that

0 = (h2e−1−1 + · · ·+ h+ 1)(h− 1)2e−2

= (h− 1)2e−1−1(h− 1)2e−2

= (h− 1)3·2e−2−1.

On the other hand, if h induces an automorphism of order 2e, then by
Theorem 3.1 its minimal polynomial has degree at least 3 · 2e−2. Hence
it follows that h2e−1

acts trivially on V , for every h ∈ tU . Therefore so
does T , and part (c) is proved.

By part (a), T2 acts trivially on every chief 2-factor of G contained
in K and covered by U . By hypothesis, K acts trivially on all other
chief 2-factors of G contained in K. Therefore all chief p-factors of
T2 ∩K are central in T2 ∩K, which means that T2 ∩K has a normal
2-complement. By part (b), T1 acts trivially on every chief 2-factor
of G contained in K/(T2 ∩ K) and covered by U . By hypothesis, K
acts trivially on all other chief 2-factor of G contained in K/(T2 ∩K).
Therefore all chief 2-factors of G contained in (T1 ∩ K)/(T2 ∩ K) are
central in (T1 ∩K)/(T2 ∩K), which means that (T1 ∩K)/(T2 ∩K) has
a normal 2-complement. By part (c), T acts trivially on every chief 2-
factor of G contained in K/(T1∩K) and covered by U . By hypothesis,
K acts trivially on all other chief 2-factors ofG contained inK/(T1∩K).
Therefore all chief 2-factors of G contained in (T ∩ K)/(T1 ∩ K) are
central in (T ∩K)/(T1 ∩K), which means that (T ∩K)/(T1 ∩K) has
a normal 2-complement. As a result, the 2-length of

T ∩K > T1 ∩K > T2 ∩K > 1

is at most 3. �

We now complete the proof of Proposition 3.5 for p = 2. We define
T as in Lemma 3.7. Consider Ḡ = G/T denoting also by the bar all
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images in Ḡ. Clearly, a chief 2-factor L/M of G is either trivial in Ḡ

if L 6 T , or CḠ(L̄/M̄) = CG(L/M) if M > T . Therefore Ū covers all
chief 2-factors of G contained in K̄ that are not central in K̄. Thus, the
hypotheses of Proposition 3.5 hold with t̄Ū of exponent dividing 2e−1

by the construction of T . By induction, the 2-length of K̄ ∼= K/(K∩T )
is at most 3(e−1) + 1. By Lemma 3.7 the 2-length of K ∩T is at most
3, and the result follows. �

The proof of Theorem 1.3 is now complete. �

Proof of Corollary 1.4. We have a p-soluble group G whose Sylow p-
subgroup P is such that (γc+1(P ))p

a
= 1; our aim is a bound for the

p-length of G in terms of c and a. If we set w = [x1, x2, . . . , xc+1], then
w(P ) = γc+1(P ). The subgroup WG(P ) 6 P is generated by conjugates
of w-values on elements of P . By hypothesis these conjugates are of
orders dividing pa. Since P/γc+1(P ) is nilpotent of class c, the group
WG(P )/γc+1(P ) has exponent dividing pac. Therefore the groupWG(P )
has exponent dividing pac+a. The result now follows from Theorem 1.3
applied with H = G and t = 1. �

4. Length results for profinite groups

In this section we derive Theorems 1.5 and 1.6 from their finite ana-
logues proved in §§ 2 and 3. This is done by standard arguments; we
find it convenient to refer to some lemmas in Wilson’s paper [24].

Lemma 4.1 ([24, Lemma 2]). Let X1, . . . ,Xm be classes of finite groups
closed with respect to normal subgroups and subdirect products, and let
X be the class of groups X having a series

1 = X0 6 X1 6 · · · 6 Xm = X

with Xi/Xi−1 ∈ Xi for each i. Then every pro-X group G has a series

1 = G0 6 G1 6 · · · 6 Gm = G

of closed characteristic subgroups such that Gi/Gi−1 is a pro-Xi group
for each i.

Lemma 4.2 ([24, Lemma 3]). Let Y be a class groups consisting of
non-abelian finite simple groups, and let X be the class of finite direct
products of Y-groups. Then a profinite group G is a pro-X group if and
only if it is isomorphic (as a topological group) to a Cartesian product
of Y-groups.

Recall that w is a multilinear commutator word of weight n, and
WG(P ) is the closed subgroup generated by all elements of P that are
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conjugate in G to w-values on elements of P . We often write W (P ) in
place of WG(P ). The next lemma is similar to [24, Lemma 1]

Lemma 4.3. Let G be a profinite group and suppose that for some
prime p the subgroup W (P ) of a p-Sylow subgroup P of G is a periodic
group. Then there is an open normal subgroup H of G and an element
t ∈ W (P ) such that the coset t(H ∩W (P )) has finite exponent.

Proof. Write Se = {g ∈ W (P ) | ge = 1} for each integer e > 1. Each
set Se is closed in the subgroup topology and W (P ) =

⋃∞
e=1 Se. It

follows from Baire’s category theorem (see for example [15, p. 200])
that some set Se has non-empty interior and therefore contains a coset
tS for some open subgroup S of W (P ). Since S is open, there is an
open subgroup H of G such that H ∩W (P ) 6 S; and clearly H can
be chosen to be normal in G. The result follows. �

Proof of Theorem 1.5. We have a profinite group G such that W (P ) is
locally finite for a p-Sylow subgroup P of G for some p ∈ π(G). We
need to show that G has a finite characteristic series in which each
factor either is pro-p-soluble or is isomorphic to a Cartesian product of
non-abelian finite simple groups of order divisible by p. By Lemma 4.3
there is an open normal subgroup H of G and an element t ∈ W (P )
such that the coset t(H∩W (P )) has finite exponent, which is of course
a p-power, say, pa. Consider any finite continuous homomorphic image
Ḡ of G denoting by bars the images of elements or subgroups. Then
P ∩H is a Sylow p-subgroup of H̄ and t̄WḠ(P ∩H) ⊆ tWG(P ) by
Lemma 2.3, so that also (t̄WḠ(P ∩H))p

a
= 1. Therefore Ḡ satisfies

the hypotheses of Theorem 1.2, by which the non-p-soluble length of
H̄ is bounded in terms of n (weight of w) and a. Hence Ḡ has a series

1 = H0 6 H1 6 · · · 6 Hm = Ḡ

of length m bounded in terms of a, n, and |G/H| such that Hi/Hi−1 is
p-soluble for i odd and is a direct product of non-abelian finite simple
groups of order divisible by p for i even. By Lemma 4.1 we obtain that
G has a series of closed characteristic subgroups

1 = G0 6 G1 6 · · · 6 Gm = G

of the same finite length m such that Gi/Gi−1 is pro-p-soluble for i odd
and is a projective limit of direct products of non-abelian finite simple
groups of order divisible by p for i even. The factors of the second
type are isomorphic to Cartesian products of non-abelian finite simple
groups of order divisible by p by Lemma 4.2. �
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Proof of Theorem 1.6. We have a pro-p-soluble group G such that
W (P ) is locally finite for a p-Sylow subgroup P of G. We need
to show that G has a finite series of closed characteristic subgroups
with factors either pro-p groups or pro-p′ groups. By Lemma 4.3
there is an open normal subgroup H of G and an element t ∈ W (P )
such that the coset t(H ∩W (P )) has finite p-power exponent pa, say.
Just as above in the proof of Theorem 1.5, in any finite continu-
ous homomorphic image Ḡ of G, the subgroup P ∩H is a Sylow p-
subgroup of H̄ and t̄WḠ(P ∩H) ⊆ tWG(P ) by Lemma 2.3, so that
also (t̄WḠ(P ∩H))p

a
= 1. Therefore Ḡ satisfies the hypotheses of The-

orem 1.3, by which H̄ has p-length bounded in terms of n and a. Hence
Ḡ has a series

1 = H0 6 H1 6 · · · 6 Hm = Ḡ

of length m bounded in terms of a, n, and |G/H| such that Hi/Hi−1

is a p′-group for i odd, and a p-group for i even. By Lemma 4.1 we
obtain that G has a series of closed characteristic subgroups

1 = G0 6 G1 6 · · · 6 Gm = G

of the same finite length m such that Gi/Gi−1 is pro-p′ group for i odd,
and a pro-p group for i even. �

Proof of Corollary 1.7. We have a prosoluble group G such that π(G)
is finite and W (P ) is locally finite for any p-Sylow subgroup P of G,
for any p ∈ π(G). We need to show that ph(G) is finite, that is, G
has a finite characteristic series with pronilpotent factors. Fix a prime
p ∈ π(G). By Theorem 1.6 the group G has a finite series of closed
characteristic subgroups in which each factor is either a pro-p group,
or a pro-p′ group. Each pro-p′ factor in this series has a smaller set
of prime divisors, so the result follows by an easy induction on the
cardinality of π(G), since the hypotheses are inherited by subgroups
and homomorphic images by Lemma 2.3. �

5. Main results

In what follows we use without special references Zelmanov’s theorem
[26] on local finiteness of periodic profinite groups. In particular, when
proving local finiteness of a subgroup, we can freely factor out any
periodic closed normal subgroup.

Recall that w is a multilinear commutator word of weight n, the set
of w-values on a subgroup P 6 G is denoted by Pw, the corresponding
verbal subgroup is w(P ), and WG(P ) (often denoted by W (P )) is the
closed subgroup generated by all elements of P that are conjugate in
G to elements of Pw. For brevity we denote by X the class of all
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profinite groups G in which all w-values have finite order and w(P ) is
periodic for any p-Sylow subgroup of G (for any prime p ∈ π(G)). We
denote by Y the class of all profinite groups G in which all w-values
have finite order and W (P ) is periodic for any p-Sylow subgroup of G
(for any prime p ∈ π(G)). Clearly, Y ⊆ X . Both classes X and Y
are closed with respect to subgroups and homomorphic images, which
is obvious for X , and follows from Lemma 2.3 for Y . This is the
main reason why we found it easier to work with these classes rather
than the smaller class of groups satisfying the hypotheses of the main
Theorem 1.1.

The (virtually) soluble case of Theorem 1.1 is covered by the follow-
ing theorem in [7], which is also used throughout what follows.

Theorem 5.1 ([7, Theorem 3]). Let w be a multilinear commutator
word. Let G be a virtually soluble profinite group in which all w-values
have finite order. Then w(G) is locally finite and has finite exponent.

We approach the proof of the main result in a series of lemmas.

Lemma 5.2. Let G ∈ X be a group having a closed normal abelian
subgroup M such that G/M is locally finite. Then G possesses a series
of closed normal subgroups 1 6 T 6 C 6 G such that T has finite
exponent, [M,C] 6 T , and G/C is virtually soluble.

Proof. First consider the case where w = δk. Choose arbitrarily
g1, . . . , g2k ∈ G. The subgroup M〈g1, . . . , g2k〉 is virtually abelian and
so, by Theorem 5.1, the verbal subgroup w(M〈g1, . . . , g2k〉) is locally
finite and has finite exponent. Denote by e(g1, . . . , g2k) the exponent
of M ∩ w(M〈g1, . . . , g2k〉). For each positive integer i we set

Si = {(g1, . . . , g2k) ∈ G× · · · ×G | e(g1, . . . , g2k) = i}.
The sets Si are closed in G× · · · ×G and they cover the whole group
G × · · · × G. By Baire’s category theorem there exists i such that Si
contains an open subset of G× · · ·×G. Therefore there exist elements
a1, . . . , a2k ∈ G, an open subgroup H 6 G, and a positive integer i
such that e(a1h1, . . . , a2kh2k) = i for any h1, . . . , h2k ∈ H. Let T be
the subgroup generated by all elements of M which have finite order
dividing i. Obviously T is a closed normal subgroup of G. Let C
be the full preimage of CG/T (M/T ), which is also a closed normal
subgroup of G. Since M is abelian, it follows that T has finite exponent
dividing i. Consider the quotient G/T . Thus, we assume that i =
1. In particular, we deduce that [M,w(a1h1, . . . , a2kh2k)] = 1 for any
h1, . . . , h2k ∈ H. In other words, w(a1h1, . . . , a2kh2k) ∈ C for any
h1, . . . , h2k ∈ H. Consider the quotient G/C. In the quotient we have
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w(a1h1, . . . , a2kh2k) = 1 for any h1, . . . , h2k ∈ H. By [1, Lemma 2.2] the
image of H in G/C is soluble. The proof is complete in the special case
of w = δk. The general case follows, since every δn-value is a w-value
by Lemma 2.5, so that our group in the class X corresponding to w is
also contained in the same kind of class corresponding to δn. �

Lemma 5.3. Let G ∈ X be a group having a closed normal abelian
subgroup M such that G/M is either a locally finite pro-p group or a
Cartesian product of isomorphic finite simple groups. Then w(G) is
locally finite.

Proof. In the case where w has weight 1 the lemma is obvious, so we
assume that w is of weight at least 2. Let T and C be as in Lemma 5.2.
Passing to the quotient G/T we can assume that T = 1.

Suppose first that G/M is a locally finite pro-p group. Then C is
pronilpotent and w(C) = w(P ), where P is the p-Sylow subgroup of
C. Hence, by the hypothesis, w(C) is locally finite and therefore we
can pass to the quotient G/w(C). Thus, without loss of generality
we assume that w(C) = 1. It follows that C is soluble. Taking into
account that G/C is virtually soluble, we deduce that so is G. Now
the lemma is immediate from Theorem 5.1.

We now assume that G/M is isomorphic to a Cartesian product of
isomorphic finite simple groups. Then C/Z(C) has finite exponent and
a result of Mann [17] tells us that the derived group of C has finite
exponent (and so is locally finite). The quotient G/C ′ is virtually
soluble, and so the result again follows from Theorem 5.1. �

The result of Mann [17] we just mentioned can be viewed as a gen-
eralization of Schur’s theorem on groups with finite quotient by the
centre. It is an open problem whether the derived subgroup of a profi-
nite group must be locally finite if the quotient of the group by the
centre is locally finite. But such a result is true in our special situa-
tion.

Lemma 5.4. Let G ∈X be a group such that G/Z(G) is locally finite.
Then G′ is locally finite.

Proof. In view of the result of Wilson [24, Theorem 1], the group G
has a finite series of closed normal subgroups

1 6 Z(G) = G0 6 G1 6 · · · 6 Gs = G

each of whose factors Gi+1/Gi is either a Cartesian product of iso-
morphic finite simple groups or a locally finite pro-p group. We use
induction on s, with obvious basis when s = 0. By induction the de-
rived group G′s−1 is locally finite. We can pass to the quotient G/G′s−1
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and assume that Gs−1 is abelian. Now Lemma 5.3 shows that w(G) is
locally finite. We pass to the quotient G/w(G) and assume that G is
soluble. Since soluble locally finite profinite groups have finite expo-
nent, we deduce that G/Z(G) has finite exponent. In view of Mann’s
result [17] the lemma follows. �

Lemma 5.5. Let G ∈ X be a group having a closed normal abelian
subgroup M such that G/M is locally finite. Then w(G) is locally finite.

Proof. Let T and C be as in Lemma 5.2. Without loss of generality
we can assume that T = 1. By Lemma 5.4 the derived group of C
is locally finite. Passing to the quotient G/C ′ we can assume that C
is abelian. Thus, G is virtually soluble and so the result follows from
Theorem 5.1. �

Lemma 5.6. Let G ∈ X be a group having a closed normal soluble
subgroup M such that G/M is locally finite. Then w(G) is locally finite.

Proof. We use induction on the derived length of M . By Lemma 5.5
the lemma holds if M is abelian. So we assume that M is non-abelian
and let N be the last nontrivial term of the derived series of M . By
induction the image of w(G) in G/N is locally finite. Again we use
Lemma 5.5 and conclude that w(w(G)) is locally finite. We can now
pass to the quotient G/w(w(G)) and assume that w(w(G)) = 1. In
this case G is soluble and the result follows from Theorem 5.1. �

Recall that for a prosoluble group G we denote by ph(G) the length
of a shortest series of (closed) characteristic subgroups all of whose
factors are pronilpotent, and if G has no finite series of this kind, then
we write ph(G) =∞.

Lemma 5.7. Let G ∈ X be a prosoluble group such that ph(G) is
finite. Then w(G) is locally finite.

Proof. Suppose first that G is pronilpotent. Then G =
∏
Pi is the

Cartesian product of its p-Sylow subgroups and w(G) is the Cartesian
product of the subgroups w(Pi). Since each w-value in G has finite or-
der, it follows that w(Pi) = 1 for all but finitely many Sylow subgroups
Pi. Therefore w(G) is the Cartesian product of finitely many locally
finite subgroups w(Pi). It follows that w(G) is locally finite.

Hence we can assume that ph(G) > 2 and use induction on ph(G).
Let

1 = G0 < G1 < · · · < Gh = G

be a series of closed normal subgroups of length h = ph(G) with
pronilpotent factors. By induction the image of w(G) in G/G1 is locally
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finite. Moreover, since G1 is pronilpotent, w(G1) is locally finite. We
pass to the quotient G/w(G1) and assume that w(G1) = 1. It follows
that G1 is soluble and w(G) is soluble-by-(locally finite). Lemma 5.6
now tells us that w(w(G)) is locally finite. We pass to the quotient
G/w(w(G)) and assume that w(w(G)) = 1. In this case G is soluble
and the result follows from Theorem 5.1. �

Lemma 5.8. Let G be a prosoluble group such that w(G) 6= 1. Then
there exist a finite set of primes π and a pro-π subgroup H 6 G such
that w(H) 6= 1.

Proof. Since w(G) 6= 1, there exists a normal open subgroup N in G
such that w(G/N) 6= 1. Set π = π(G/N) and choose a π-Hall subgroup
H in G. Then G = NH and therefore w(H) 6= 1. �

Given two words u = u(x1, . . . , xm) and v = v(x1, . . . , xn), we denote
by u◦v the word u(v(x11, . . . , x1n), . . . , v(xm1, . . . , xmn)). It is clear that
if u and v are multilinear commutators, then so is u ◦ v. Recall that Y
is the class of all profinite groups G in which all w-values have finite
order and W (P ) is periodic for any p-Sylow subgroup of G (for any
prime p ∈ π(G)).

Lemma 5.9. Let G ∈ Y be a non-soluble prosoluble group. Then G
contains a finite subgroup A such that w(A) 6= 1.

Proof. Set v = w◦w. Then v is a multilinear commutator word with the
properties that every v-value in G has finite order and v(P ) is locally
finite for every p-Sylow subgroup P 6 G. According to Lemma 5.8
there exist a finite set of primes π and a pro-π subgroup H in G such
that v(H) 6= 1. By Theorem 1.7, then ph(H) is finite, since G ∈ Y .
Now Lemma 5.7 tells us that w(H) is locally finite. It is clear that
v(H) 6 w(w(H)) and therefore w(w(H)) 6= 1. Thus, we can choose a
finite subgroup A 6 w(H) such that w(A) 6= 1. �

Let G be a finite group, on which a finite group A of coprime order
acts by automorphisms. It is well-known that if N is a normal A-
invariant subgroup of G, then CG/N(A) = CG(A)N/N (see for example
[9, Theorem 6.2.2]). (Henceforth we use the centralizer notation for
fixed-point subgroups.) A profinite version of this result can be stated
as follows.

Lemma 5.10. Let G be a profinite group on which a finite group A acts
by continuous automorphisms. Suppose that π(G)∩π(A) = ∅. If N is a
closed normal A-invariant subgroup of G, then CG/N(A) = CG(A)N/N .
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A proof of this fact can be found in [19] (see also Lemma 2 in [12]
for the case where |A| is a prime).

In his seminal work [22] Thompson proved that if G is a finite sol-
uble group on which a finite soluble group A of coprime order acts by
automorphisms, then the Fitting height h(G) is bounded in terms of
h(CG(A)) and the number of prime divisors of |A| counting multiplic-
ities. Further results in this direction were devoted to improving the
corresponding bounds, with best possible one obtained by Turull, see
his survey [23]. We need a profinite version of Thompson’s theorem for
the profinite analogue, which can be deduced by standard arguments
in the spirit of Lemma 4.1. The fact that the hypotheses are inherited
by quotients by closed normal subgroups follows from Lemma 5.10.
Therefore we omit the proof.

Proposition 5.11. Let G be a prosoluble group on which a finite
soluble group A acts by continuous automorphisms and suppose that
π(G) ∩ π(A) = ∅. If ph(CG(A)) is finite, then ph(G) is also finite.

The following proposition plays a key role in the proof of the main
theorem.

Proposition 5.12. Let G ∈ Y be a prosoluble group. Then ph(G) is
finite.

Proof. Suppose that ph(G) is infinite; then we will arrive at a con-
tradiction. For that we inductively construct an increasing chain of
normal closed subgroups 1 = R1 6 R2 6 · · · , a decreasing chain of
normal open subgroups G = H1 > H2 > · · · , and subgroups Ai > Ri,
i = 1, 2, . . . , such that

(1) there exist mutually disjoint sets of primes πi with the property
that Ai/Ri is a finite πi-group and w(Ai/Ri) 6= 1;

(2) [Ai, Aj] 6 Ri whenever j < i;
(3) ph(G/Ri) =∞ for every i;
(4) Ai ∩Hi+1 = Ri for every i.

Since ph(G) is infinite, Lemma 5.9 implies that G contains a finite
subgroup A1 such that w(A1) 6= 1. Let π1 = π(A1) and set R1 =
1. Next, choose a normal open subgroup H2 in G such that A1 ∩
H2 = 1. This completes the first step of our construction; clearly, then
properties (1)–(4) hold for i = 1.

We perform the second step for clarity, before formal inductive con-
struction. Since the set π1 is finite, it follows from Theorem 1.6 that
H1 has a finite series

H1 = N0 > N1 > · · · > Nl = 1
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of closed characteristic subgroups Ni in which each quotient Ni/Ni+1

is either a pro-π1 or a pro-π′1 group. By Corollary 1.7, ph(Ni/Ni+1) is
finite whenever the quotient Ni/Ni+1 is a pro-π1 group. Since ph(G) =
∞, we have ph(H2) = ∞. Therefore there exists a pro-π′1 quotient
Nk/Nk+1 such that ph(Nk/Nk+1) = ∞. Set R2 = Nk+1. We now pass
to the quotient G/R2.

The finite π1-group A1 acts by conjugation on the pro-π′1 group
Ni/R2. By Proposition 5.11, ph(CNi/R2(A1)) = ∞. Thus, by
Lemma 5.9 there exists a subgroup A2 containing R2 such that A2/R2 is
a finite subgroup of CNi/R2(A1) with the property that w(A2/R2) 6= 1.
Set π2 = π(A2/R2). We note that π1 ∩ π2 = ∅ and [A1, A2] 6 R2.
Since A2/R2 is finite, there is an open normal subgroup J of G
such that R2 6 J and A2 ∩ J = R2. We set H3 = J ∩ H2; then
A2 ∩H3 = R2 ∩H1 = R2, so property (4) holds for i = 2. Properties
(1)–(3) also hold for i = 2 by construction.

We now make the induction step. Suppose subgroups A1, . . . , An−1,
R1 6 · · · 6 Rn−1 and H1 > · · · > Hn−1 with properties (1)–(4) have
been found. For brevity we indicate with a bar the images of elements
or subgroups in G/Rn−1. Since R1 6 R2 6 · · · , by properties (1) and
(2) A1, . . . , An−1 are pairwise commuting finite subgroups of mutually
coprime orders. In particular, A = A1 · · ·An−1 is a finite π-group,
where π ⊆

⋃n−1
i=1 πi. Let J be a normal open subgroup of G containing

Rn−1 such that J ∩A = 1. Let Hn = Hn−1∩J . Since the set π is finite,
it follows from Theorem 1.6 that the subgroup Hn has a finite series
of closed characteristic subgroups {N i} in which each factor N i/N i+1

is either a pro-π or a pro-π′ group. By Corollary 1.7, ph(N i/N i+1) is
finite for each pro-π factor quotient N i/N i+1. Taking into account that
ph(G) =∞, we observe that also ph(Hn) =∞. Therefore there exists
a pro-π′ factor T = Nk/Nk+1 for some index k such that ph(T ) =∞.
Let S and R be the full pre-images of Nk and Nk−1, so that S/R is
isomorphic to T . The finite π-group A acts by conjugation on the pro-
π′ group S/R. By Proposition 5.11, ph(CT (A)) =∞. We therefore can
use Lemma 5.9 to find a subgroup An containing Rn such that An/Rn 6
CS/R(A) and An/Rn is a finite π′-group such that w(An/Rn) 6= 1. It
is easy to see that then properties (1)–(4) are satisfied for i = n. This
completes the induction step. Thus, we have constructed an increasing
chain of normal closed subgroups 1 = R1 6 R2 6 · · · , a decreasing
chain of normal open subgroups G = H1 > H2 > · · · > H, and
subgroups Ai > Ri, i = 1, 2, . . . , with the required properties.

We now set H =
⋂∞
n=1Hi; note that H contains

⋃∞
n=1Rn, since

Hi+1 > Ri for every i by property (4). Since H is closed, we can
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consider the quotient G/H, where we use bars to denote images of
subgroups. We see that Ai ∩H = Ri for every i, since Ai ∩Hi+1 = Ri

and Hi+1 > H > Ri. Hence Ai = Ai/Ri for all i. By properties (1)–
(4) it follows that the subgroups Ai pairwise commute, have pairwise
coprime orders, and w(Ai) 6= 1 for every i.

Therefore the abstract group generated by the subgroups Ai, i =
1, 2 . . . , is isomorphic to the direct product of the Ai. The closure
of this direct product in the profinite topology is isomorphic to the
Cartesian product of finite groups Ai of mutually coprime orders such
that w(Ai) 6= 1 for all i. Obviously this group contains a w-value of
infinite order. This yields a contradiction since all w-values in G have
finite order. The proof is now complete. �

We can now finish the proof of Theorem 1.1.

Proof of Theorem 1.1. We have a profinite group G in which all
pronilpotent subgroups generated by w-values are periodic; we need
to show that w(G) is locally finite. Obviously, G ∈ Y . Recall that
finite groups of odd order are soluble by the Feit–Thompson theorem
[8]. Combining this with Theorem 1.5 (applied with p = 2) we deduce
that G has a finite series of closed characteristic subgroups

G = G0 > G1 > · · · > Gs = 1

in which each factor either is prosoluble or is isomorphic to a Cartesian
product of non-abelian finite simple groups. There cannot be infinitely
many non-isomorphic non-abelian finite simple groups in a factor of the
second kind, since this would give a w-value of infinite order. Indeed, by
a result of Jones [14] any infinite family of finite simple groups generates
the variety of all groups; therefore the orders of w-values cannot be
bounded on such an infinite family. Thus, we can assume in addition
that each non-prosoluble factor is isomorphic to a Cartesian product
of isomorphic non-abelian finite simple groups. We use induction on s.

There is nothing to prove if s = 0. Let s > 1. By induction, w(G1) is
locally finite. Passing to the quotient G/w(G1) we can assume that G1

is soluble. If G/G1 is isomorphic to a Cartesian product of isomorphic
non-abelian finite simple groups, then G/G1 is locally finite and the
result follows from Lemma 5.6.

If G/G1 is prosoluble, then so is G, and then ph(G) is finite by
Proposition 5.12. In this case, w(G) is locally finite by Lemma 5.7, as
required.

�
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