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A functional limit theorem for random walk
conditioned to stay non-negative.�

A. Bryn-Jones and R. A. Doney, Manchester University

1. Introduction

There is an increasing use in modelling of processes derived from random walks
which are constrained to stay on a half-line; see [10] for a recent example of
this. However the phrase "random walk conditioned to stay non-negative" has at
least two di¤erent interpretations. In the �rst we consider the �rst n values of a
random walk conditioned on the event that all these values are non-negative; this
is a discrete version of a meander, and it has been known for a long time that if the
random walk is in the domain of attraction of a standard Normal law, a suitably
scaled version of this process converges weakly to Brownian meander. (See [8],
or [11].) The second interpretation involves conditioning on the event that the
random walk never goes negative, and so can be thought of as a discrete version of
the Bessel process. (Of course when the random walk oscillates, the conditioning
event has zero probability, and we have to construct the conditioned process by
the h-transform technique.) So a natural question, which we consider here, is
whether there is an analogous weak convergence result for this version, the limit
clearly being the Bessel process. Note that both the random walk meander and the
Brownian meander can be represented as sections of the unconditioned process,
which simpli�es the proofs. In our case this device is not available and we fall
back on the standard technique of establishing convergence of �nite-dimensional
distributions and tightness.
So let S = fSn : n � 0g denote a random walk on the integer lattice with

starting state zero, that is S0 = 0 and Sn =
Pn

i=1 �i where the �i are independent
and identically distributed integer valued random variables. Additionally assume
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that S is aperiodic and attracted to a standard Normal law, without centring,
and let an be the associated norming sequence. We de�ne a normed and linearly
interpolated version of S by

Xn (t) =
S[nt]
an

+ (nt� [nt])
�[nt]+1
an

; t � 0:

The weak convergence of the processXn = (Xn (t) ; t � 0) as n!1 to a standard
Brownian motion is Donsker�s Invariance Principle (see for example Theorem 10.1
of [5]). Let S� denote �S conditioned to stay non-negative� (in the sense of an
h-transform) and Rn = (Rn(t); t � 0) the corresponding linear interpolation of
the normed version of S�: The basic question we study here; is when does Rn
converge weakly as n!1 to R; the 3- dimensional Bessel process?
Actually, the fact that this happens in the special case that S is simple sym-

metric random walk has been known for a long time, and indeed the classic paper
on the Bessel process by Pitman [18] makes crucial use of this fact. On the other
hand it is not obvious that the convergence of Rn should hold under precisely
the same conditions as that of Xn; and in fact the results in [15] seem to suggest
that one might need to assume extra moment conditions. It turns out that this is
not the case, and our main result, Theorem 2.1 below, shows that X�

n converges
weakly to R exactly when S1 is in the domain of attraction of the standard Normal
law. In the �nal section we also extend these results to the case that the initial
value of S is non-zero.
Actually our method of proof leads to a local limit theorem for S�n; and we

formulate this as Theorem 2.2. Since S� is a h-transform of S killed when it enters
the negative half-line, which we denote by Ŝ; we could also formulate Theorem
2.2 as a local limit theorem for Ŝ: This in turn, by duality, gives the asymptotic
behaviour of the joint mass function in the bivariate renewal process of descending
ladder heights and times in S; in this form, which is stated as Proposition 1 below,
it extends earlier results in Keener [16] and Alili and Doney [1] and [2].

2. Conditioning S to Stay Nonnegative

Given a random walk S = fSn : n � 0g ; we denote S conditioned to stay non-
negative by S�n =

Pn
i=1 �

�
i : In our integer-valued, oscillating case this is an honest

Markov chain on Z+, the non-negative integers, with transition probabilities

Px (S
�
n = y) := P (S�n = y j S�0 = x) =

V (y)

V (x)
Px

�bSn = y
�
; x; y 2 Z+;
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where we have denoted by bS =
nbSn : n � 0o the walk S killed at time T�1 =

minfn : Sn < 0g and V is the renewal function for the strict descending ladder
height process of the walk S: ( See Bertoin and Doney [3]). The strict descend-
ing ladder variables for S are de�ned as follows: Let T�k denote the kth strict
descending ladder time, that is

T�k = min
n
n > T�k�1 : Sn < ST�k�1

o
for k � 1 where T�0 � 0: We let H�

k = �ST�k denote the kth descending ladder

height so that the ladder process, (T�; H�) =
�
(T�k ; H

�
k ) : k � 0

	
; is a bivariate

renewal process. The renewal function associated with H�
1 is de�ned for x � 0

by
V (x) =

X
k�0

P
�
H�
k � x

�
;

with the renewal mass function for the descending ladder time and height process
given by

v (n; x) =
X
k

P
�
T�k = n; H�

k = x
�
:

In a similar vein, the weak ascending ladder variables are denoted by (T+; H+) =��
T+k ; H

+
k

�
: k � 0

	
and are de�ned similarly, the kth weak ascending ladder time

being
T+k = min

n
n > T+k�1 : Sn � ST+k�1

o
for k � 1; again letting T+0 � 0 and H+

k = ST+k
: The renewal function associated

with H+
1 is denoted throughout by U (�) ; and we de�ne the renewal mass function

for the ascending ladder time and height process to be

u (n; x) =
X
k

P
�
T+k = n; H+

k = x
�
:

We can now formulate our main results.

Theorem 2.1. Let S be an integer valued, aperiodic random walk which starts
at 0 and is in the domain of attraction of a standard Normal law with norming
sequence an: Then the process Rn constructed from the conditioned random walk
S� by

Rn (t) =
S�[nt]
an

+ (nt� [nt])
��[nt]+1
an

; t � 0; (2.1)

converges weakly as n!1 to the 3-dimensional Bessel process R:

3



Remark 1. Let
Ax =

X
n�0

1fS�n�xg; x > 0;

denote the total time that S� spends below the level x: Then a simple consequence
of Theorem 2.1 is that as x!1

Ax
a�1(x)

d! A;

where a�1 is the inverse of a continuous interpolation of the norming sequence
a; and A is the total time spent by the Bessel process below 1: This answers a
question raised in [4].

The 3-dimensional Bessel process R is the di¤usion on the positive half line
with transition density

Px (Rt 2 dy) =
1p
t
r(
xp
t
;
yp
t
)dy; x > 0

where r(u; v) =

r
2

�

v

u
sinh (uv) exp

�
�u

2 + v2

2

�
;

and entrance law with density

P0 (Rt 2 dy) =
1p
t
r0(

yp
t
)dy

where r0(v) =

r
2

�
v2 exp

�
�v

2

2

�
:

Theorem 2.2. Under the assumptions of Theorem 2.1, uniformly in 0 � z �
Kan; for any K;

anP (S
�
n = z) = r0(

z

an
) + o(1) as n!1:

We prove our main technical lemma in section 3, deduce Theorem 2.2 and
Theorem 2.1 in section 4, and in the �nal section we use a discrete version of
Williams�path decomposition of the Bessel process to establish a version of The-
orem 2.1 for a sequence of random walks which have the same step distribution
but possibly di¤erent non-zero starting points:
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3. A Bivariate Renewal Theorem

Throughout this section we assume that S is an integer-valued aperiodic random
walk which starts at zero.

Proposition 1. Assume S is attracted to a standard normal law with norming
sequence an: Then we have

P (Ŝn = z) = u (n; z) v n�1U (z)P (Sn = z) (3.1)

uniformly as n!1 for 0 � z � Kan for any K > 0.

Remark 2. We can deduce from this that, uniformly in 0 � z � Kan

P (Sm � 0; m � n j Sn = z) � U (z)

n
:

This result was �rst proved in [16] under heavy assumptions on S for a restricted
range of values of z:
In preparation for the proof of Proposition 1 we state some known results con-

cerning the ladder variables. The �rst is a version of the Wiener-Hopf factorisation
taken from [1];

Lemma 1. Denote the �rst time at which the (weak, ascending) ladder height
process exceeds the level z by Nz = min fk : Hk > zg ; then for k; z 2 Z+

P (Tk = n; Hk = z) =
k

n
P (Hk�1 � Sn < Hk; Sn = z)

=
k

n
P (Nz = k; Sn = z) ;

and
nu (n; z) = E (Nz; Sn = z) : (3.2)

For the next result we write �n = P (Sn � 0) ; and de�ne sequences fbng and
fcng satisfying

log n =

1X
m=1

1

m
�m exp

�
�m
bn

�
and cn = a (bn) ; (3.3)

where a(�) is any continuous increasing function such that a(n) = an:(That the
de�nition of fbng is legitimate is shown in [12].) Then, specialising results in [12]
to the case � = 1=2 gives;
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Lemma 2. When S1 is attracted to a standard Normal law with norming se-
quence an; we have
(i) ��

T[kt]
bk

;
H[kt]

ck

�
; t � 0

�
d! f(Bt; t); t � 0g; (3.4)

(ii) for any � > 0;

P ((1� �) cm � Hm � (1 + �) cm j Tm = s)! 1 (3.5)

as m!1 uniformly for d � s
bm
� D where 0 < d < D <1 are constants.

Proof of Proposition 1 The equality in (3.1) is a consequence of duality, and
we also note that it su¢ ces to prove that the asymptotic relation holds uniformly
in the range

�an � z � Kan (3.6)

for any K > 1 > � > 0: This is because a slight extension of Theorem 7 in [1],
where it was assumed that V arS1 was �nite, proves the result in the situation
that z

an
! 0:

A consequence of the assumption that S1 is in the domain of attraction of the
Normal law is that both H1 and H�

1 are relatively stable, and hence, using for
example Theorem 8.8.1 of [6],

U (z) � c�1(z) =
z

l+ (z)
; V (z) � d�1(z) =

z

l� (z)
; (3.7)

as z !1; where l� are slowly varying functions, and c�1 and d�1 are inverses of
the norming sequences for Hn and H�

n respectively. Using this in the representa-
tion

nu (n; z) = E (Nz; Sn = z)

from (3.2) we can write the asymptotic relation in (3.1) asX
k

kP (Nz = k; Sn = z) � U (z)
X
k

P (Nz = k; Sn = z)

� z

l+ (z)

X
k

P (Nz = k; Sn = z) :

6



Given " > 0; we split these sums over the following ranges

A1 : k < m1 := [(1� ")
z

l+ (z)
];

A2 : m1 � k � m2 = [(1 + ")
z

l+ (z)
];

A3 : k > m2;

and de�ne for i = 1; 2; 3

�i =
l+ (z)

z

X
k2Ai

kP (Nz = k; Sn = z)

Pi =
X
k2Ai

P (Nz = k; Sn = z) ;

so that it su¢ ces to prove that

�1 + �2 + �3 � P1 + P2 + P3 = P (Sn = z):

Clearly
(1� ")P2 � �2 � (1 + ")P2

and since P1 � �1 and �3 � P3; the proof of the proposition lies in showing that
�3 and P1 are both of order o (P (Sn = z)) = o

�
1
an

�
: (Here, and later, we use the

standard bound
c � anP (Sn = z) � d for 0 � z � Kan; (3.8)

without further comment. We will also write c; d; :: for �nite positive constants
whose values may change from line to line.)
By summation by parts

�3 =
l+ (z)

z

X
k2A3

kP (Nz = k; Sn = z)

= m2
l+ (z)

z
P (Nz � m2; Sn = z) +

l+ (z)

z

X
k>m2

P (Nz � k; Sn = z)

: = �
(1)
3 + �

(2)
3 :
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Note that from the de�nition of m2

�
(1)
3 � cP (Nz � m2; Sn = z)

= cP (Hm2 � z; Sn = z)

= c
X
x�z

X
s�n

P (Tm2 = s; Hm2 = x)P (Sn�s = z � x)

� c
X
s�n

P (Tm2 = s; Hm2 � z)
1

an�s
:

Next take � 2 (0; 1) ; and write

an
X
s��n

P (Tm2 = s; Hm2 � z)
1

an�s
� an

an(1��)
P (Tm2 < n�)

=
an

an(1��)
P

�
Tm2

bm2

<
n�

bm2

�
:

The bounds on z in (3.6) and the fact that c�1(�) = b�1(a�1(�)) give

b(m2) v b((1 + ")c�1(z)) v (1 + ")2a�1(z)

and we conclude that for all su¢ ciently large n

cn � bm2 � dn; (3.9)

so that the last expression is asymptotically bounded by 1p
(1��)

G
�
�
c

�
; where we

have denoted by G the stable 1/2 distribution function. On the other hand, (3.9)
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allows us to use (3.5) of Lemma 2 to see that

an
X

�n<s�n
P (Tm2 = s; Hm2 � z)

1

an�s

=
X

n��s�n
P
�
Hm2

� z j Tm2 = s
�
P (Tm2 = s)

an
an�s

= o (1)
X

n��s�n
P (Tm2 = s)

an
an�s

= o (1)
X

n��s�n

�
1

bm2

g

�
s

bm2

�
+ o

�
1

bm2

��
an
an�s

� o (1)
1

n
an

X
n��s�n

1

an�s

� o (1)
1

n
an
n (1� �)

an(1��)
� o (1)

p
(1� �);

in which g denotes the density function for the stable 1=2 distribution and we
have used the local limit theorem and standard properties of regularly varying
functions. As we are able to choose � as small as we wish, an�

(1)
3 is o (1) ; and it

is left to demonstrate that an�
(2)
3 is also:

Note the following upper bound;

�
(2)
3 =

l+ (z)

z

X
k�m2

P (Nz > k; Sn = z)

� c
l+ (z)

z

X
s�n

X
k�m2

P (Tk = s; Hk � z)
1

an�s
dz

� c (�1 + �2) ;

where for some � > 0

�1 =
l+ (z)

z

X
s<n�

X
k�m2

P (Tk = s; Hk � z)
1

an�s
;

�2 =
l+ (z)

z

X
n��s�n

X
k�m2

P (Tk = s; Hk � z)
1

an�s
:

9



Denoting the renewal function for the increasing ladder times by �(�) ; we have

an�1 � l+ (z)

z

X
k�m2

P (Tk < n�; Hk � z)
an

an(1��)

� l+ (z)

z
�(n�)

an
an(1��)

:

Since the ladder times are in the domain of attraction of a stable 1/2 law with
norming sequence b, the asymptotic behaviour of the function �(�) is known (see
for example page 361 of [6]) to be given by

�(n) � cb�1n :

The argument that established (3.9) shows that z
l+(z)

is bounded above and below
by constant multiples of the sequence b�1n so

an�1 � c

b�1n
�(n�)

an
an(1��)

� c
b�1n�

b�1n
p
1� �

v c
p
�p

1� �
;

and this can be made arbitrarily small by choice of �:
Next we take an arbitrary  and write �2 as the sum of the terms

�
(1)
2 =

l+ (z)

z

X
n��s�n

X
m2�k�m2

P (Tk = s; Hk � z)
1

an�s

�
(2)
2 =

l+ (z)

z

X
n��s�n

X
k>m2

P (Tk = s; Hk � z)
1

an�s
:

Both these terms can bounded using similar arguments to the forgoing, but the
details are omitted; this completes the proof that an�3 ! 0:

The �nal step in the proof is to show that P1 is o
�
1
an

�
: The proof again relies

on splitting the sum into several parts and showing that each is o
�
1
an

�
:We start

by writing P1 = P
(1)
1 + P

(2)
1 , where

P
(1)
1 = P (Hm1 > z; Tm1 � n; Sn = z) ;

P
(2)
1 = P (Hm1 > z; Tm1 > n; Sn = z) :

10



The �rst of these terms is shown to be su¢ ciently small by splitting it into two
parts, the �rst being when the mth

1 ladder time is close to zero and the second
when it is bounded away from zero. Each part is then shown to be of the required
order by a similar method to that used to bound �1; the details of this are also
omitted. Letting �n = maxfk : Tk � ng denote the number of ladder epochs which
occur by time n; we have

P
(2)
1 = P (Sn = z; �n < m1) :

To bound this probability we again need to consider two separate cases depending
on the value of T�n. Thus for � 2 (0; 1) we �rst write

P (T�n < n(1� �); H�n � z; Sn = z; �n < m1) =X
w�z;k<m1

l<n(1��)

P (Tk = l; Hk = w; vn = k)P (Sn�l = z � w; max
j�n�l

Sj = 0 ): (3.10)

We can bound the �nal term in the above product byX
y<0

P

�
Sj � 0 for j �

(n� l)

2
; S (n�l)

2

= y

�
P
�
S (n�l)

2

= z � ! � y
�

� P

�
T�1 >

(n� l)

2

�
c

a (n�l)
2

;

and using this we see that the expression (3:10) is bounded above by a multiple
of

P
�
T�n<n(1��); H�n � z

�
P

�
T�1 >

n�

2

�
1

an�
2

v 1

an
p
�=2

P

�
T�1 >

n�

2

�
= o

�
1

an

�
as required. An obvious duality argument shows that

P (T�n � n (1� �) ; Sn 2 dz) = P (ln < n�; Sn 2 dz)

where ln = max fk : Sk � 0g : Taking � < 1
2
, ln is no less than the number of non

positive partial sums up until time [n
2
]; which we will denote by �n: The Arc Sine

Theorem (see for example Feller [14]; page 418) gives

P

�
�n <

n�

2

�
! 2

�
arcsin

p
�;

11



and this in turn allows us the bound

P (T�n � n (1� �) ; Sn = z) � anP
�
�n < n�; S[n2 ]

= y; Sn = z
�

� cP (�n < n�)! c
2

�
arcsin

p
2�:

Since this can be made arbitrarily small by choice of � , we have anP1 ! 0; and
the result is proved.
The proof of Theorem 2.2 also requires the following result:

Lemma 3. Uniformly in 0 � z � Kan and 0 � y � Kan for any K;

U(z)V (y)

n
= 2

z

an
� y
an
+ o(1) as n!1:

Proof First we show that the result holds uniformly in the range

"an � z; y � Kan; (3.11)

for any " > 0: To see this, recall from (3.7) that we have

U(x) v x

l+(x)
and V (x) v x

l�(x)
as x!1;

where l+ and l� are slowly varying, and from this it follows that the characteristic
functions  � of H� satisfy

1�  �(s) v �isl�(1=s) as s # 0:

From this and the Wiener-Hopf factorisation we get that, uniformly for y 2 [";K];

U(anz)V (any) v anz

l+(an)
� any

l�(an)

v zy

1�  (1=an)
;

where  (s) = E(eisS1): Since Sn=an converges in distribution to the standard
Normal law, a simple calculation gives

nf1�  (1=an)g !
1

2
;

12



and this proves the result when (3.11) holds. But for z � "an we have

U(z)V (y)

n
� U("an)V (Kan)

n
� 3K"2 for all large enough n;

and the result follows.
In the proof of Theorem 2.1 we need the following estimate for the transition

function Px(Ŝn = y):

Proposition 2. Suppose that xn and yn are integers such that
xn
an
! u > 0;

yn
an
! v > 0 as n!1:

Then
anPxn(Ŝn = yn)!

u

v
r(u; v): (3.12)

Proof Writing In = minr�n Sr and �n = minfr � n : Sr = Ing we have the
following identity;

Pxn

�bSn = yn

�
=

n�1X
m=0

xn^ynX
!=0

Pxn (In = !; �n = m;Sn = yn)

=
n�1X
m=0

xn^ynX
!=0

v (m;xn � !)u (n�m; yn � !) : (3.13)

(A proof of this, which is a bivariate version of a result originally due to Spitzer
[19], can be found in [2].) We show �rst that the tails in the m-summation in
(3.13) can be ignored, viz

lim
�#0
lim sup

n!1
an

X
(m^n�m)�n�

xn^ynX
!=0

v (m;xn � !)u (n�m; yn � !) = 0: (3.14)

To see this, use (3.8) to see that for � � 1=2

an
X
m�n�

1X
!=0

v (m;xn � !)u (n�m; yn � !)

= an
X
m�n�

Pxn (�n = m;Sn = yn) = anP (�n � n�; Sn = yn � xn)

� cP (�n � n�jSn = yn � xn)

= cP (�(Xn(�)) � �jXn(1) = (yn � xn) =an)

! cP (�( ~B)) � �):

13



Here ~B denotes a Brownian Bridge of unit length from 0 to v�u , which is known
(see [17]) to be the weak limit of Xn(�) conditioned on Xn(1) = (yn�xn)=an, and
�( ~B) the time at which its minimum value occurs. Clearly P (�( ~B)) � �) ! 0
as � # 0; and since a similar argument applies to the other term, (3.14) follows.
Next, arguments almost identical to those of Proposition 1 show that the function
v (�; �) has the asymptotic behaviour

n v (n; x) � V (x� 1)P (Sn = �x) ; (3.15)

as n!1; uniformly for all 1 � x � anK where K is any �nite positive constant.
Then applying Proposition 1 and (3.15) to (3:13), we see that (3.12) will follow
from

lim
�#0

lim
n!1

X
n�<m<n(1��)

xn^ynX
!=0

V (xn � ! � 1)
m

U (yn � !)

n�m

an
am

1

an�m

�

�
xn � !

am

�
�

�
yn � !

an�m

�
=
u

v
r(u; v):

Using Lemma 3 and then making the substitutions m = n� and ! = anw we see
that this in turn will follow from

2

Z u^v

0

Z 1

0

(u� w) (v � w)

�
3
2 (1� �)

3
2

�(
u� w

�
)�(

v � w

1� �
)d�dw =

u

v
r(u; v): (3.16)

However since
r(u; v)dv =

v

u
Pu(B1 2 dv; inf

s�1
Bs > 0)

(3.16) can be rewritten as

2

Z u^v

0

Z 1

0

g(u� w; �)g(v � w; 1� �)d�dwdv = Pu(B1 2 dv; inf
s�1

Bs > 0)

where B is a standard BM and g is its �rst passage density, and this is immediate
by decomposing the RHS according to the value of infs�1Bs and using Lévy�s
factorisation at the maximum.

4. Proofs

4.1. Proof of Theorem 2.2

Since P (S�n = z) = V (z)P (Ŝn = z) Theorem 2.2 follows from Proposition 1, the
Normal local limit theorem and the case y = z of Lemma 2.
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4.2. Proof of Theorem 2.1

The convergence of the �nite-dimensional distributions follows easily from The-
orem 2.2, Lemma 3 and Proposition 2, so we are left to prove tightness of the
sequence fRng. Since fRng is a linearly interpolated Markov Chain, according to
Theorem 8.4 of [5], tightness will follow if we can show that for each positive "
and K there exist a � > 1 and an integer n0 such that

P

�
max
i�Kn

S�i � �an

�
� "

�2
(4.1)

holds for all n � n0:
From the convergence of the marginal distribution of Rn to that of R and the

explicit form of the latter, we can clearly choose � so that for all large n

P
�
S�[Kn] � �an

�
� "

2�2
;

thus (4.1) will hold if we can also arrange that

P

�
max
i�Kn

S�i � �an; S
�
[Kn] < �an

�
� "

2�2
(4.2)

To see this we argue that

P

�
max
i�Kn

S�i � �an; S
�
[Kn] < �an

�
=

X
y<�an

P

�
max
i�Kn

Ŝi � �an; Ŝ[Kn] = y

�
V (y)

� P

�
max
i�Kn

bSi � �an; bS[Kn] < �an

�
V (�an)

= P

�
max
i�Kn

Si � �an; min
i�Kn

Si � 0
�
V (�an)

= P

�
max
i�Kn

Si � �an j T�1 > Kn

�
P
�
T�1 > Kn

�
V (�an) ;

and note that

P
�
T�1 > Kn

�
V (�an) v

�p
K
P
�
T�1 > n

�
V (�an)!

c�p
K
:
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On the other hand it is known from examples 1 and 3, Corollary 1 of [11] that

P

�
max
i�n

Si � �an j T�1 > n

�
! P

�
sup
t�1

B+
t � �

�
; (4.3)

where B+ =
�
B+
t : t � 0

	
denotes standard Brownian Meander. The distribution

of supt�1B
+
t is known explicitly (see [13]) and it is easy to check that the RHS of

(4.3) is exponentially small in �; so the bound (4:2) holds, and the sequence fRng
is tight:

5. Starting away from zero

In this section we consider brie�y the situation where we �condition to stay non-
negative�a sequence of random walks which each have the same step-distribution
but possibly di¤erent starting points. In order to avoid cumbersome formulae, in
this section we adopt the canonical notation and write Px for the measure of a
random walk with initial value x; and P �x for the measure of the corresponding
conditioned version. This is speci�ed by

P �x (A \ (Sn = y)) =
V (y)

V (x)
P̂x(A \ (Sn = y))

for any event A 2 Fn; where P̂x is the measure corresponding to S killed at time
T�1 = minfn : Sn < 0g: For our purposes the following facts about this measure
are useful.

Proposition 3. Write � = min(n : Sn = j) where j = infn�0fSng is the all time
minimum of S: Then
(i) under P �x the post-minimum process fSn+� � j; n � 0g is independent of

the pre-minimum process and has measure P �0 ;
(ii) the distribution of j under P �x is given by

P (j = y) =
v(x� y)

V (x)
; 0 � y � x; (5.1)

where v is the renewal mass function in the downgoing ladder height process.

This result is just a discrete-time version of a known result for Lévy processes
in [9], and since the proof is similar we omit it.

16



Remark 3. The cited result also contains a description of the pre-minimum
process which can be taken over into our discrete setting, but we don�t need
this.

Now given a norming sequence ak and a sequence of integer starting points ik
we de�ne

Rk (t) =
S[kt]
ak

+ (kt� [kt])
�[kt]+1
ak

; t � 0;

so that under P �ik we have Rk (0) =
ik
ak
:= zk:

Theorem 5.1. Suppose the assumptions of Theorem 2.1, hold and zk ! z � 0
as k !1: Then the process Rk under P �ikconverges weakly to the Bessel process
with initial value z:

Proof For z > 0 convergence of the �nite-dimensional distributions follows
from Proposition 2.2 and Lemma 2, so we need only establish tightness. But

P �ik

�
max
n�ck

Sn � �ak; S[ck] < �ak

�
� Pik

�
max
n�ck

Sn � �ak; min
n�ck

Sn � 0; S[ck] < �ak

�
V (�ak)

V (ik)

� Pik

�
max
n�ck

Sn � �ak;

�
V (�ak)

V (ik)
! Pz(sup

t�c
Bt � �)

�

z
:

Since Pz(supt�cBt � �) is exponentially small in �, the result follows as in the
proof of Theorem 2.1. In the case z = 0 this argument fails, and we need to use
Proposition 3. This implies that it su¢ ces to show that the pre-minimum process
vanishes in probability as k ! 1: The time at which Rk �rst takes its all-time
minimum value is k�1�; and applying the Markov property at time [k"]and using

17



(ii) of Theorem 5.1 gives

P �ik(� > k") =

ikX
x=0

X
y�x

P �ik(S[k"] = y; min
n�[k"]

Sn = x; min
n>[k"]

Sn � x)

=

ikX
x=0

X
y�x

~Pik(S[k"] = y; min
n�[k"]

Sn = x)
V (y)

V (ik)

V (y)� V (y � x)

V (y)

� 1

V (ik)

ikX
x=0

X
y�x

Pik(S[k"] = y; min
n�[k"]

Sn = x)V (x)

� Pik( min
n�[k"]

Sn � 0) = P0( min
n�[k"]

Sn � �akzk)! 0:

In this calculation we have used the fact that the renewal function V is subadditive,
and this also plays a rôle in showing that under P �ik

sup
t�k�1�

Rk(t) =
maxn�� Sn

ak

P! 0:

We see this by applying the Markov property at � k := minfn : Sn � �akg to get,
when zk < �;

P �ik(maxn��
Sn � �ak) =

ikX
x=0

X
y��ak

P �ik(S� = y;min
n��

Sn = x;min
n>�

Sn > x)

=

ikX
x=0

X
y��ak

P �ik(S� = y;min
n��

Sn = x)
V (y)� V (y � x)

V (y)
:

Using the fact that

V (y)� V (y � x)

V (y)
� V (x)

V (y)
� V (ik)

V (�ak)
! 0;

since ik=ak ! 0; gives
P �ik(maxn��

Sn � �ak)! 0; (5.2)

for each �xed � > 0; and the result follows.
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Remark 4. Although we have considered only the case of random walks taking
values on the integer lattice, it is not di¢ cult to extend our results to the non-
lattice case; for details see [7]. On the other hand, extending the results to random
walks in the domain of attraction of stable laws seems quite challenging, if only
because we have little explicit knowledge of �stable processes conditioned to stay
non-negative�.
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Abstract

In this paper we consider an aperiodic integer-valued random walk S and a
process S� which is an harmonic transform of S killed when it �rst enters the
negative half; informally S� is "S conditioned to stay non-negative". If S is in
the domain of attraction of the standard Normal law, without centring, a suit-
ably normed and linearly interpolated version of S converges weakly to standard
Brownian motion, and our main result is that under the same assumptions a cor-
responding statement holds for S�; the limit of course being the 3-dimensional
Bessel process. Since this process can be thought of as Brownian motion condi-
tioned to stay non-negative, in essence we our result shows that the interchange
of the two limit operations is valid.
We also establish some related results, including a local limit theorem for S�;

and a bivariate renewal theorem for the ladder time and height process, which
may be of independent interest.
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