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The purpose of this paper is to clear up a major mystery in metal detection and confirm that the engineering prediction of
H

T ¨ pMind
H

M q, for the sensitivity of measurements of the perturbed magnetic field to the presence of a general conducting object
placed in a low frequency background field, is correct. Explicitly, HT is the background field generated by the transmitter coil,
H

M is the background field generated by the receiving coil as if it were used as a transmitter and M
ind is a rank 2 polarisation

tensor, which describes the shape and material properties of the object. To show this, we apply a recently derived asymptotic
formula for the perturbed magnetic field due to the presence of a conducting object, which is expressed in terms of a new class
of rank 4 polarisation tensors (H. Ammari, J. Chen, Z. Chen, J. Garnier and D. Volkov Target detection and characterization from
electromagnetic induction data, Journal de Mathématiques Pures et Appliquées (2013) http://dx.doi.org/10.1016/j.matpur.2013.05.002).
At first sight this appears to contradict the engineering prediction, however, contrary to this, we show that at most 9 rather than 81

coefficients are required to describe the rank 4 tensor for a conducting object and a further 9 are required if the object is magnetic.
We then show that the rank 4 tensor does in fact reduce to a rank 2 tensor, thus providing a solid theoretical foundation for the
engineering prediction. Furthermore, by combining the reduced conductivity and permeability tensors, we obtain a symmetric rank
2 tensor, which describes a general conducting object in terms of just 6 complex independent coefficients. For objects with rotational
and mirror symmetries we show that the number of coefficients is still smaller. We include numerical examples to demonstrate that
the new polarisation tensors can be accurately computed by solving a vector valued transmission problem by hp–finite elements and
include evidence to confirm that the asymptotic formula describing the perturbed fields agrees with the numerically predictions.

Index Terms—Metal detectors, Land mine detection, Polarisation tensors, Eddy currents, hp-Finite elements

I. INTRODUCTION

THERE is considerable interest in being able to locate

and characterise conducting objects from measurements

of mutual impedance between a transmitting and a receiving

coil, where the coupling is inductive rather than due to the

propagation of radio waves. The most obvious examples are

in metal detection, where the goal is to identify and locate

a highly conducting object in a low conducting background

and applications include security screening, archaeological

searches, maintaining food safety as well as for land mine

clearance and the detection of unexploded ordnance (UXO).

There is also considerable interest in being able to produce

conductivity images from multiple magnetic induction mea-

surements, most notably in magnetic induction tomography for

medical applications [1], [2] and industrial applications [3],

[4]. Furthermore, eddy current sensing techniques are also

commonly used for the monitoring and defect detection in

steel structures such as oil pipe lines and containment vessels

as well as monitoring corrosion of steel reinforcement bars in

concrete structures such as bridges and buildings [5].

The detection of land mines presents a huge challenge,

the United Nations (UN) estimates that “there are more than

110 million active mines [...] scattered in 68 countries with

an equal number stockpiled around the world waiting to

be planted” and that “every month over 2,000 people are

killed or maimed by mine explosions. Most of the casual-

ties are civilians who are killed or injured after hostilities

Manuscript received 11th October 2013; revised **. Corresponding author:
P.D. Ledger (email: p.d.ledger@swansea.ac.uk).

have ended” [6]. Mine clearance is a slow procedure and is

extremely dangerous, the UN states that “currently accidents

occur at a rate of one every 1-2,000 mines destroyed” [6].

Although metal detectors offer a portable means of detection

current techniques are often not able to distinguish between

benign and dangerous targets and, therefore, there is great

interest in technological advancements that might increase the

speed at which mines could be detected and keep accidents to

a minimum.

By considering the time harmonic regime, and denoting

the electric field intensity vector by E and the corresponding

magnetic field intensity vector by H , the changes in conduc-

tivity in a isotropic background conducting medium have been

shown by Sommersalo, Isaacson and Cheney to be associated

with an Ea ¨Eb sensitivity and the corresponding permeability

changes associated with an Ha ¨ Hb sensitivity [7], where

a and b refer to two appropriate background solutions and

Ea ¨Eb “
ř3

i“1
Ea

iE
b
i denotes the non–hermitian form of the

dot product. For a free space background, Ammari, Vogelius

and Volkov [8] have obtained an asymptotic formula for the

perturbed field due to the presence of a small object, which can

be expressed in the form of a Ea ¨pT pǫcrqEbq sensitivity for an

object with relative complex permittivity perturbation ǫcr ´ 1

and an Ha ¨ pT pµrqHbq sensitivity for an object with relative

permeability perturbation µr ´1, where T pcq is a general rank

2 polarisation tensor parameterised by a contrast c, which

describes the shape and material properties of the inclusion

and simplifies to a multiple of the identity tensor for a

sphere. As we will shortly explain, although the perturbation in

complex permittivity does include the possibility of describing
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a conducting object in a non–conducting background this

result is only applicable to wave propagation (electromagnetic

scattering) problems. This is in contrast to experiences for

the metal detection problem where, for a single transmitter-

measurement arrangement, a sensitivity of the form

V ind « HM ¨ m “ HM ¨ pMindHT q, (1)

has been reported to be associated with conductivity pertur-

bations in a low (often assumed to be non–conducting) back-

ground [9]–[12]. In the above, HT p” Haq is the background

magnetic field generated by the transmitter coil evaluated at

the position of the target and HM p” Hbq is the background

field generated by the receiving coil, as if it were used as a

transmitter, evaluated at the position of the target. Furthermore,

m is the induced magnetic dipole moment and it has been

suggested that Mind is some complex (symmetric) rank 2

polarisation tensor, which has been predicted to describe the

shape and the material properties of the object in a similar

way to T pcq. Engineers have also felt comfortable with (1)

as it appears to reflect the well known Lorentz reciprocity

principal, which approximately states that the response of

a system is unchanged when the transmitter and measurer

are interchanged [13]. Furthermore, in the classical problem

of describing the eddy currents in a conducting (magnetic)

sphere placed in a uniform magnetic field (eg [14], [15]), this

allows us to describe the perturbed field outside the object,

and in this case, we can identity that the polarisation tensor

for a conducting (magnetic) sphere is a scalar multiple of the

identity tensor. An analytical solution also exists for a sphere

in the time–varying field that is generated by a coil [16], and

in this case we can also interpret the perturbed field outside the

object in terms of an induced magnetic dipole moment and,

notably, the same polarisation tensor. Experiments have been

carried out to measure the response from cylindrical, spherical

and ellipsoidal bodies [9], [10] and have examined how this

response is affected by the size, frequency and the object’s

material properties. But, apart from the case of a sphere, it

was not known whether such a relationship does in fact hold

in general.

The previous justification for (1), and the existence of such

a rank 2 polarisation tensor Mind, appears to stem from

the related problem of characterising the perturbation of far

field electric and magnetic fields, caused by the presence of

a (small) simply connected dielectric or magnetic object (at

low–frequencies). Early results by Kleinman [17], [18] related

the leading order term for the perturbed (scattered fields) to

equivalent dipole moments for the case when k Ñ 0 and

r Ñ 8, where r is the distance from the object to the

point of observation, k “ ω
?
ǫ0µ0 is the free space wave

number, ω is the angular frequency and µ0, ǫ0 are the free

space permeability and permittivity, respectively. Later it was

shown how the moments could be expressed in terms of the

dielectric and magnetic polarisation tensors multiplied by the

incident electric and magnetic fields, respectively, evaluated

at the position of the centre of the object. In this case,

the dielectric and magnetic polarisation tensors both take the

form of a general rank 2 symmetric polarisation tensor T pcq
that is parameterised by the contrast in relative permittivity

c “ ǫr :“ ǫ˚{ǫ0 and relative permeability c “ µr :“ µ˚{µ0,

respectively, where ˚ indicates the values of the object [19]–

[21]. It is known that the general polarisation tensor, for

a given contrast, can be computed numerically by solving

an auxiliary transmission problem and also has a known

analytical solution for spherical and ellipsoidal objects [21],

[22]. By taking appropriate limiting values of ǫr and µr, the

far field perturbation caused by the presence of a perfectly

conducting object can be described [20], [21]. Furthermore,

upon taking the dot product with an appropriate moment,

the results can be interpreted in terms of the aforementioned

E ¨ pT pǫrqEM q and HT ¨ pT pµrqHM q sensitivities for wave

propagation (electromagnetic scattering) rather than magnetic

induction.

The leading order terms that describe near and far field

perturbations in electromagnetic fields as k Ñ 0 have been

investigated by Baum [11], but these results omit the object

size and are expressed in terms of dipole moments rather

than polarisation tensors. In [23], motivated by results in

electromagnetic scattering, Baum instead expresses the results

in terms of rank 2 polarisation tensors multiplied by the

incident field at the centre of the object, but does not give

an explicit formula for their computation. He suggests that

the polarisation tensor associated with a conducting object is

frequency dependent and illustrates this by the known result

for a spherical object. In [20], [21] it is suggested that,

at low–frequencies, the perturbed far magnetic field caused

by the presence of conducting object can be expressed in

terms of a dielectric tensor T pǫcrq and a magnetic polarisation

T pµr), where ǫcr “ 1{ǫ0pǫ˚ ´ iσ˚{ωq and σ˚ is the object’s

conductivity. Given that these are supposed to be applicable

for the low frequency limit, one might expect these results

to be applicable to magnetic induction, but, using this pa-

rameterisation, would indicate that the far field perturbation

in the magnetic field, due to the presence of a conducting

object, would be associated with an electric dipole moment,

rather than the expected magnetic dipole moment, and hence

a ET ¨ pT pǫcrqEM q sensitivity rather than a HT ¨ pMindHM q
sensitivity.

The result of Ammari, Vogelius and Volkov [8] includes

the object’s size α and the leading order terms they obtain

rigorously describes the near field perturbation of the magnetic

field in a bounded domain when a small simply connected

conducting object is placed in a non–conducting background.

They obtain that the perturbed magnetic field can be expressed

in terms of T pǫcrq and T pµrq multiplied by the incident electric

and magnetic fields, respectively, evaluated at the position of

the centre of the object. However, their result is applicable to

the propagation of waves in electromagnetic scattering rather

than magnetic induction as they consider the case where α Ñ
0, for fixed k. Moreover, their result can be expressed in the

form of a ET ¨ pT pǫcrqEM q type sensitivity associated with ǫcr
different from unity.

The result of Ammari and Volkov [24] rigorously shows the

correct far field behaviour of the perturbed far field electric

field in terms of T pǫrq and T pµrq multiplied by the incident

electric and magnetic fields, respectively, evaluated at the

centre of the object as α Ñ 0 and r Ñ 8 for a simply
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connected object and the electromagnetic scattering problem.

We have also contributed to this topic by providing two rigor-

ous asymptotic formulae whose leading order terms describe

the perturbations of the electric and magnetic fields [25] in

terms of T pǫrq and T pµrq for dielectric or magnetic objects

as maxpα{r, kαq Ñ 0 and the second in terms of T pǫcrq
and T pµrq for dielectric, magnetic or conducting objects as

maxpα{r, αq Ñ 0. The former contains terms that dominate

at different distances and, by taking the limit as k Ñ 0, for

fixed r, the electrostatic and magnetostatic behaviour for a

small object can be recovered, on the other hand, fixing k

and taking the limit as r Ñ 8 recovers the electromagnetic

scattering behaviour of Ammari and Volkov [24]. The latter

is also applicable to the electromagnetic scattering (wave

propagation) with fixed k, is consistent with the results of

Ammari, Vogelius and Volkov [8] showing an ET ¨pT pǫcrqEM q
sensitivity associated with conductivity perturbations, and,

consequently, does not explain magnetic induction. We also

discuss in detail why the perturbed fields, in the case of a

conducting object for low–frequencies, can not be expressed

in terms of the general polarisation tensor parameterised by

ǫcr, which was previously advocated by [20], [21].

Ammari, Chen, Chen, Garnier and Volkov [26] have re-

cently obtained an asymptotic expansion, which, for the first

time, correctly describes the perturbed magnetic field as α Ñ 0

for a conducting (possibly magnetic and multiply connected)

object in the presence of a low–frequency background mag-

netic field, generated by a coil with an alternating current.

Rather than consider the limit as k Ñ 0 for the full time–

harmonic Maxwell system they instead consider the eddy

current model, where the displacement currents are neglected.

The leading order term they obtain is written in terms of two

new polarisation tensors, called the permeability and conduc-

tivity tensors, which have different ranks, and the background

magnetic field evaluated at the position of the centre of the

object. An algorithm for identifying conducting objects from

induction data based on a process of classification by matching

against a library of precomputed polarisation tensors has also

recently been proposed [27].

In this contribution, we explain how the results of Ammari

et al. [26] can be applied to understanding the mystery of

metal detection. We show that the sensitivity of the perturbed

magnetic field measurements to conductivity or permeability

changes does in fact reduce to the form HT ¨pMindHM q that

the engineering community is used to, where Mind is a rank

2 symmetric tensor. Moreover, when the object is spherical

the tensor is a scalar multiple of the identity tensor. Our

new contributions include considering, in detail, the properties

of the conductivity and permeability tensors introduced by

Ammari et al.. These studies enable us to show that, in

practice, each of the tensors can be represented by just 9

independent coefficients. We show that it is also possible

to express the perturbed field in terms of a reduced rank 2

conductivity tensor and introduce a symmetric rank 2 tensor,

which defines a general object in terms of just 6 independent

coefficients. For a simple object, with rotational or mirror

symmetries, we show that the number of independent coeffi-

cients is still fewer. These results have important consequences

for characterising conducting objects of different shapes. We

include a description of an efficient numerical approach for

accurately computing these new tensors, which is based on the

regularised eddy current formulation using hp-finite elements

presented in [28]. We also present simulations, which indicate

an excellent agreement between the asymptotic formula of

Ammari et al. using the numerically computed polarisation

tensors and the fields obtained from solving the full eddy

current problem, for a range of case studies.

The presentation of the paper proceeds as follows: In

Section II we describe the mathematical model and simplifying

assumptions made about the problem under consideration.

Then, in Section III, we apply the asymptotic formula of

Ammari et al. [26] to the metal detection problem and show

an alternative form where their their rank 4 conductivity and

rank 2 permeability tensors can be expressed as a single rank 4

tensor. In Section IV, we discuss the properties of the tensors,

which allow them to be represented by a smaller number of

independent coefficients and show that the perturbed magnetic

field can, alternatively, be expressed in terms of a single

symmetric rank 2 tensor. In Section V, we discuss how further

reductions in the number of independent coefficients can be

obtained if the object is rotationally symmetric or has mirror

symmetries and the additional simplifications for a sphere.

Then, in Section VI, we interpret how reciprocity can be

understood for the asymptotic formula of Ammari et al. and in

Section VII we describe how the independent coefficients of

the tensors can be recovered from practical measurement data.

In Section VIII, we describe an approach to the numerical

computation of the polarisation tensors based on hp–finite

elements, in Section IX, we present a series of numerical

results to validate this approach and finish with our concluding

remarks in X.

II. MATHEMATICAL MODEL

The relevant mathematical model is that of the eddy current

problem where the geometry, frequency and material param-

eters are such that the displacement currents in the Maxwell

system can be neglected. This is often justified on the basis

that
?
ǫ˚µ˚αω ! 1 or ǫ˚ω{σ˚ ! 1 where ω denotes the

angular frequency, α is a suitable length scale and ǫ˚, µ˚ and

σ˚ denote the permittivity, permeability and conductivity of

the object, respectively. A more rigorous justification of the

eddy current model appears in [29]. In [30] the effect of the

shape of the conductor on the validity of the eddy current

model is discussed. The depth of penetration of the magnetic

field in a conducting object is described by its skin depth,

s :“
b

2

ωµ0σ˚
, and, introducing a parameter ν :“ 2α2{s2, it is

possible to describe the mathematical model of interest, which

relates to when ν “ Op1q and µ˚{µ0 “ Op1q as α Ñ 0 [26].

This model is applicable to homogeneous isotropic materials,

which have a linear constitutive relationship between the

magnetic flux density and magnetic field and have a skin depth

of the same order as the object size. It then follows that σ˚

and µ˚ are then constants that describe non–ferrous metallic

conductors and appropriate magnetic materials.

Following Ammari et al. [26] we consider an object of the

form Bα “ z`αB, which means that the physical object can
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be expressed in terms of unit object B placed at the origin,

scaled by the object size α and translated by the vector z, and

introduce

µα “
"
µ˚ in Bα

µ0 in RzBα
σα “

"
σ˚ in Bα

0 in RzBα
, (2)

where the subscript on µα and σα is removed when consid-

ering the unit object case. We remark that the background

medium is assumed to be non–conducting, which is a reason-

able approximation to make for buried objects provided that

the contrast between the object and the surrounding soil is

sufficiently high. The time harmonic fields Eα and Hα that

result from a time varying current source, with volume current

density J0 and ∇ ¨ J0 “ 0 in R
3, and their interaction with

the object Bα, satisfy the eddy current equations

∇ ˆ Eα “ iωµαHα in R
3, (3)

∇ ˆ Hα “ σαEα ` J0 in R
3, (4)

Eαpxq “ Op|x|´1q,Hαpxq “ Op|x|´1q as |x| Ñ 8. (5)

On the other hand, the fields E0 and H0 that result from time

varying current source, in the absence of an object, satisfy

∇ ˆ E0 “ iωµ0H0 in R
3, (6)

∇ ˆ H0 “ J0 in R
3, (7)

E0pxq “ Op|x|´1q,H0pxq “ Op|x|´1q as |x| Ñ 8. (8)

The task is to describe the perturbation Hαpxq ´ H0pxq,

caused by the presence of the object Bα, in terms of a

polarisation tensor. This is made challenging due to the range

of important parameters controlling the problem namely, the

skin depth, s, the frequency, ω, the object size, α, and the

point of observation r :“ x´z, relative to the position of the

object.

III. THE PERTURBED MAGNETIC FIELD EXPRESSED IN

TERMS OF A POLARISATION TENSOR

For the mathematical model described above, Ammari et

al. [26] have derived an asymptotic formula that describes the

perturbed magnetic field at positions x away from z, due to

the presence of object Bα, as α Ñ 0: 1

pHα ´ H0qpxq “

´ iνα3

2

3ÿ

i“1

H0pzqi
ż

B

D2

xGpx, zqξ ˆ pθi ` êi ˆ ξqdξ`

α3

ˆ
1 ´ µ0

µ˚

˙ 3ÿ

i“1

H0pzqi

D2

xGpx, zq
ż

B

ˆ
êi ` 1

2
∇ ˆ θi

˙
dξ ` Rpxq, (9)

where Gpx, zq “ 1

4π|x´z| is the free space Laplace Green’s

function and |Rpxq| ď Cα4}H0}W 2,8pBαq such that Rpxq “
Opα4q is a small remainder term. Furthermore, êi is a unit

1Note that I3 on page 10 of [26] requires that ∇xGpx, αξ ` zqq ´
∇xGpx, zq ´ αD2

xGpx, zqξ “ Opα2q, but instead the correct choice is
∇xGpx, αξ ` zqq ´ ∇xGpx,zq ` αD2

xGpx,zqξ “ Opα2q, which adds
a minus sign to the first term of (9).

vector for the ith Cartesian coordinate direction, H0pzqi
denotes the ith element of H0pzq and θi, i “ 1, 2, 3, is the

solution to the transmission problem

∇ξ ˆ µ´1∇ξ ˆ θi´
iωσα2θi “ iωσα2êi ˆ ξ in B YBc, (10a)

∇ξ ¨ θi “ 0 in Bc, (10b)

rθi ˆ n̂s
Γ

“ 0 on Γ, (10c)”
µ´1∇ξ ˆ θi ˆ n̂

ı
Γ

“
´2

“
µ´1

‰
Γ
êi ˆ n̂ on Γ, (10d)

θipξq “ Op|ξ|´1q as |ξ| Ñ 8, (10e)

where ξ is measured from the centre of B. An alternative

form of this result is as follows

pHα´H0qpxqj “ D2

xGpx, zqℓmPℓmjiH0pzqi`
D2

xGpx, zqjℓNℓiH0pzqi ` Rpxqj , (11)

where Einstein summation convention is used and

Pℓmji :“ ´ iνα3

2
êj ¨

ˆ
êℓ ˆ

ż

B

ξmpθi ` êi ˆ ξqdξ
˙
,

Nℓi :“ α3

ˆ
1 ´ µ0

µ˚

˙ ż

B

ˆ
êℓ ¨ êi ` 1

2
êℓ ¨ ∇ ˆ θi

˙
dξ.

The rank 4 tensor P and the rank 2 tensor N are the

conductivity and permeability tensors of Ammari et al. [26],

respectively, where we have chosen to chosen to make the

ranks of the tensors explicit. Note that to simplify the notation,

and avoid confusion when manipulating the tensors, we use

ξm to denote the mth element of ξ rather than ξm. In general,

a rank 4 tensor is defined by 81 coefficients and a rank 2 tensor

by 9 coefficients, but, in the next section, we will explain that,

in practice, these tensors can be defined by a smaller number of

independent coefficients. A further alternative representation

can be obtained by extending N to the fourth order tensor

xxNkmji :“ δkjδmℓNℓi, (12)

where δkj is the Kronecker delta and we use a hat to indicate

when the rank of a tensor is extended by 1 and a check when

the rank is reduced by 1. It then follows, by introducing the

new total rank 4 tensor

Mℓmji :“ Pℓmji ` xxNℓmji,

that we can express (9) in the alternative compact form

pHα ´ H0qpxqj “D2

xGpx, zqℓmMℓmjiH0pzqi`
Rpxqj , (13)

which now only involves M.

IV. PROPERTIES OF THE TENSORS

In this section we explore the properties of P , N and

M, which will be fruitful for understanding the number of

independent coefficients that are required for representing

these tensors and, hence, characterising objects of different

types.
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A. Properties of the conductivity tensor P

Introducing β :“ ´ iνα3

2
, then we remark that the tensor P

can be written in the alternative form

Pℓmji “ βδtjεtℓs

ż

B

ξmpθsi ` εspqδpiξqqdξ

“ βεjℓs

ż

B

ξmpθsi ` εsiqξqqdξ

“ εjℓs qPmsi “ εjℓsCmsi, (14)

where θsi are the elements of the rank 2 tensor whose columns

are θi, εjℓs is the alternating tensor and C is a rank 3 tensor,

which is defined as

Cmsi : “ β

ż

B

ξmpθsi ` εspqδpiξqqdξ

“ ´ ikα3

2
ês ¨

ż

B

ξmpθi ` êi ˆ ξqdξ,

such that Cmsi “ 1

2
εsjℓPℓmji. Note that in the above, and in

the sequel, repeated indices in Cmsi do not imply summation.

Both ε and C are, strictly speaking, rank 3 tensor densities and

their product in (14) results in a normal rank 4 tensor. Another

interpretation is obtained by considering

Pℓmji “ εjℓsCmsi “ ´εℓjsCmsi “ ´Pjmℓi,

which means that Pℓmji is skew-symmetric with respect to

the indices ℓ and j. This means that, instead of the 81

coefficients normally required for a rank 4 tensor, only at most

27 independent coefficients are required for P . Moreover, in

Appendix A, we show that, for a general object, the tensor C

is skew symmetric in the first 2 indices so that Cmsi “ ´Csmi,

which means that it can be represented by just 9 independent

coefficients: C123 “ ´C213, C132 “ ´C312, C231 “ ´C321,

C121 “ ´C211, C212 “ ´C122, C131 “ ´C311, C232 “ ´C322,

C313 “ ´C133 and C323 “ ´C233. This means that the

number of independent coefficients for P reduces to at most

9. The skew symmetry of C also means that the remaining

independent coefficients can be arranged as a rank 2 tensor

qqPni :“
1

2
εnms

qPmsi “ 1

4
εnmsεsjlPℓmji

“1

2
εnmsCmsi “ β

2
ên ¨

ż

B

ξ ˆ pθi ` êi ˆ ξqdξ

“ : qCni, (15)

such that Cmsi “ εmsk
qCki.

We now take an alternative perspective and examine how

many coefficients of P influence the perturbed field pHα ´
H0qpxq. This can be understood by closer inspection of

the contraction between D2

xGpx, zqℓm and Pℓmji where,

explicitly,

D2

xGpx, zqℓm “ 1

4πr3
p3pr̂ b r̂qℓm ´ δlmq

“ 1

4πr3
p3r̂ℓr̂m ´ δlmq ,

r “ x ´ z, r “ |r| and r̂ “ r{r. Thus, provided the position

of observation is away from the object (ie x ‰ z), it is clear

that D2

xGpx, zq has the two important properties, namely that

D2

xGpx, zqℓm “ D2

xGpx, zqmℓ, (16a)

trpD2

xGpx, zqq “ D2

xGpx, zqℓℓ “ 0. (16b)

Although we could consider the impact of the symmetry of

D2

xGpx, zq on P , we instead immediately state the more

important result

D2

xGpx, zqℓmPℓmji “D2

xGpx, zqℓmεjℓsεmsk
qCki

“ ´ D2

xGpx, zqjk qCki, (17)

which follows from the representation of P in terms of qC
and the trace free nature of D2

xGpx, zq. This means that

the perturbed field for a conducting object can be described

in terms of a rank 2 tensor and is only influenced by its 9

independent coefficients.

In the case of a non–magnetic object, with µ˚ “ µ0,

we have a further reduction in the number of independent

coefficients. In Appendix B we show that, in this case, the

tensor qC is symmetric and, therefore, qC, C and P are just

defined by 6 independent coefficients.

B. Properties of the permeability tensor N

For a general object, 9 independent coefficients are required

to define a general N , and hence
xxN .

If the object is non conducting and magnetic so that σ˚ “ 0

and µ˚ ‰ µ0, then, provided that Bα is a simply connected

smooth object, the tensor N reduces to the symmetric general

polarisation tensor parameterised by a contrast µr :“ µ˚{µ0

in the object. This, in turn, also agrees with the first order

generalised polarisation tensor of Ammari and Kang [22] and

the aforementioned general polarisation tensor

pN qij “T pµrqij
“pµr ´ 1q|B|δij ` pµr ´ 1q2

ż

Γ

n̂ ¨ ∇φiξjdξ, (18)

where φi, i “ 1, 2, 3, satisfies the transmission problem

∇2φi “ 0 in B YBc, (19)

rφisΓ “ 0 on Γ, (20)

Bφi
Bn̂

ˇ̌
ˇ̌
`

´ µr

Bφi
Bn̂

ˇ̌
ˇ̌
´

“ Bξi
Bn̂ on Γ, (21)

φi Ñ 0 as |ξ| Ñ 8. (22)

As N is symmetric for a non–conducting object it is defined

by 6 independent coefficients for this case.

C. Properties of the total polarisation tensor M

The components Pℓmji and
xxNℓmji (as defined in (12)) of

Mℓmji satisfy the properties as described in Sections IV-A and

IV-B and form the disjoint skew-symmetric and symmetric

parts of the total tensor with respect to indices ℓ and j,

respectively. For a general object, we have shown that at most
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9 independent coefficients of P and
xxN , respectively, influence

the perturbed field. However, by using (17), we can also write

D2

xGpx, zqℓmMℓmji “D2

xGpx, zqjmp´ qCmi ` Nmiq

“D2

xGpx, zqjm}}Mmi, (23)

where
}}M :“ ´ qC ` N is a total reduced rank 2 tensor.

Furthermore, in Appendix B, we show that this new tensor is

symmetric and, therefore, has just 6 independent coefficients.

It then directly follows that

pHα ´ H0qpxqj “D2

xGpx, zqjm}}MmiH0pzqi
` Rpxqj . (24)

If the field H0pzq is taken to be that obtained from a dipole

positioned at s with (unit) magnetic moment v̂ then, by taking

the dot product of (24) with the (unit) moment û, we have

û ¨ pHα ´ H0qpxq “pD2

xGpx, zqûq ¨ p}}M
pD2

xGpz, sqv̂qq ` Rpxq. (25)

which, with HT pzq :“ D2

xGpz, sqû, HM pzq :“
D2

xGpx, zqv̂ and Mind :“ }}M, has the same form as the

engineering prediction in (1), a fact that we will return to in

Section VI.

V. SIMPLIFIED POLARISATION TENSORS FOR CLASSES OF

GEOMETRIES

The number of independent coefficients that are required

to define C and N (and hence qC, P ,
xxN , M and

||M ) for an

object with either a rotational or mirror symmetry (or multiple

symmetries, or both) are often fewer than those required to

define a general object. To explain this, we show how the

number of independent coefficients can be reduced for an

object which has a uniaxial symmetry and an object which has

both a uniaxial symmetry and additional mirror symmetries.

We then apply similar techniques to a range of simple objects

and consider the further simplification that results in the case

of a spherical object.

A. Polarisation tensors for objects with uniaxial symmetry

The number of independent coefficients for an object, which

has uniaxial symmetry, in a given direction, can either be

determined by a counting argument or by considering the

elements of the tensor that should remain invariant under

a rotation. Here we apply the latter and first consider the

conductivity tensor P , which can be expressed in terms of the

rank 3 tensor density C “
ř

Cmsiêm b ês b êi. We remark

that one could also express this in terms of the rank 2 tensor
qC, but instead we apply the former and use the skew symmetry

of C. Under the transformation by an orthogonal matrix R the

rank 3 tensor density becomes

C1
ijk “ |R|RiℓRjmRknCℓmn, (26)

where |R| denotes the determinate, which is always 1 for a

proper transformation. For example, for a rotation of angle ψ

about ê3 then

R “

¨
˝

cosψ sinψ 0

´ sinψ cosψ 0

0 0 1

˛
‚.

If an object has uniaxial symmetry in the ê3 coordinate

direction then this means that the tensor C should be invariant

under a ψ “ π{2 rotation about the ê3 axis : ê1 Ñ ê2
and ê2 Ñ ´ê1. Under this transformation C1 “ C and

applying (26) to C1 gives C2 “ C1 “ C. By considering a

general C it follows that it’s 7 independent coefficients are

C333, C311 “ C322, C131 “ C232, C113 “ C223, C312 “ ´C321,

C132 “ ´C231 and C123 “ ´C213. But, we also know that C is

skew symmetric with respect to the first two indices and this

reduces the number to just 3: C312 “ ´C321 “ ´C132 “ C231,

C123 “ ´C213 and C311 “ ´C131 “ C322 “ ´C232.

Secondly, we consider the permeability tensor N “ř
Nℓiêℓ b êi which transforms as

N
1
ij “ RiℓRjmNℓm. (27)

Then, by proceeding in a similar manner to above, for an

object with uniaxial symmetry in the ê3 direction we have

N11 “ N22, N12 “ ´N21 and N33.

Finally, we know that the total reduced tensor
}}M “ ´ qC`N

is symmetric, so that
}}M12 “ }}M21, but rotational symmetry

tell us N12 “ ´N21 and qC12 “ ´ qC21 “ C232 so that
}}M12 “ }}M21 “ ´C232 ` N12 “ C232 ´ N12 “ 0. Thus

}}M
is diagonal in this case with just 2 independent coefficients:
}}M11 “ }}M22 “ N11 ´ C231 and

}}M33 “ N33 ´ C123.

B. Polarisation tensors for objects with both uniaxial and

mirror symmetries

The number of independent coefficients that are required to

define C and N can also be reduced if the object has mirror

symmetries. For an object with a mirror symmetry associated

with the plane with unit normal vector n̂ then

Rij “ δij ´ 2n̂in̂j. (28)

The elements of the rank 3 tensor density C and the rank 2

tensor N remain invariant under a reflection provided that the

last index remains unchanged under the transformation. For

an object with mirror symmetries associated with planes with

normals ê1, ê2, ê3 this gives the 6 independent coefficients

C231, C321, C132, C312, C123 and C213 for a general C, which

reduces to 3 on consideration of the skew symmetry of C, and

gives the 3 independent coefficients N11, N22 and N33 for

N . The total tensor
}}M is then diagonal with 3 independent

coefficients:
}}M11 “ N11 ´ C231,

}}M22 “ N22 ´ C312 and
}}M33 “ N33 ´ C123. If an object also has mirror symmetries

associated with planes with normals ê1 ` ê2, ê1 ` ê3 and

ê2 ` ê3 then there is no further change in the independent

coefficients for C, N and
}}M. But, if in addition to the

aforementioned mirror symmetries, the object also has the
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uniaxial symmetry described in Section V-A then there are

just 2 independent coefficients for C: C123 “ ´C213 and

C312 “ ´C132 “ C231 “ ´C321; 2 for N : N11 “ N22

and N33; and 2 for
}}M:

}}M11 “ }}M22 “ N11 ´ C231 and
}}M33 “ N33 ´ C123. Such an object is a cube with a hole.

C. Examples of symmetries in polarisation tensors

By applying similar arguments to those described above,

the entries in Table I, which lists the independent coefficients

for some simple shapes, can be identified. The rotational

symmetries of an object about an angle π in a given co-

ordinate direction, which are equivalent to an appropriate

mirror symmetry, have been omitted. Note that the independent

coefficients that define a sphere and a cube are the same, as

are the cases of a cylinder and a cone when their axes are

aligned. Furthermore, for all the simple objects in Table I, we

observe that the rank 2 tensor
}}M “ ´ qC ` N is diagonal.

D. Polarisation tensor for a spherical geometry

The polarisation tensor for a spherical object, which has

been obtained by Ammari et al. [26], is a further simplification

of (24) where
}}Mℓi “ ´ qCℓi ` Nℓi “ p´C ` Nqδℓi is scalar

multiple of the identity tensor. Here, it can be shown that

N :“1

3
Npp,

C :“1

6
εmsiCmsi “ β

6
εmsi

ż

B

ξmpθsi ` εsiqξqqdξ

“β

6

ż

B

pεmsiξmθsi ` 2ξqξqqdξ

“ ´ β

ż

B

pξ1θ2 ¨ e3 ´ ξ21qdξ,

by noting that
ş
B
ξ21dξ “

ş
B
ξ22dξ “

ş
B
ξ23dξ for a sphere

and using integration by parts to show that
ş
B
ξ1θ3 ¨ e2dξ “

´
ş
B
ξ1θ2 ¨ e3dξ.

Using the analytical solution [14] for the eddy currents

generated in a conducting (magnetic) sphere of radius α with

conductivity σ˚, permeability µ˚ at angular frequency ω, when

placed in a uniform field H0, we can show that the form of

the perturbed field is identical to (24), if we set R “ 0 and
}}Mℓi “ p´C `Nqδℓi. It can also be identified, that

´C `N “ 2π¨
pp2µ˚ ` µ0qvI´1{2 ´ pµ0p1 ` v2q ` 2µ˚qI1{2q

pµ˚ ´ µ0qI´1{2 ` pµ0p1 ` v2q ´ µ˚qI1{2
,

(29)

where v “ ?
iσµ˚ωα, I1{2pvq “

b
2

πv
sinh v and I´1{2pvq “b

2

πv
cosh v. The overline indicates the complex conjugate,

which appears due to the eiωt time variation in [14] rather

than the e´iωt assumed here.

An analytical solution [16] is also available for case where

the same sphere is now illuminated by an incident field

generated by a circular coil of radius γ carrying an alternating

current I . For a coil centred at s the incident magnetic field

at position z can be described in terms of a magnetic dipole

in the form

H0pzq “ D2

xGpz, sqm, (30)

provided that the length of coil, L “ 2πγ, is small compared

to the distance from the coil to the object, |z´s|. In the above,

m is the magnetic dipole moment of the current source, which,

for a circular coil, has |m| “ Iπγ2 [31]. If the coil is chosen

to lie in the pê1, ê2q plane then m “ Iπγ2ê3 and

H0pzq “ Iπγ2D2

xGpz, sqê3. (31)

Furthermore, we can show that the leading order term for

pHα ´ H0qpxq that Wait [16] obtains is identical to that

described by (24).

VI. RECIPROCITY IMPLICATIONS

In the introduction we remarked how the engineering pre-

diction of V ind « HM ¨ pMindHT q for a conducting object,

where Mind is a symmetric rank 2 tensor, sits comfortably

with the basic idea of reciprocity that states that the response

of a system is unchanged when the transmitter and receiver

are interchanged. Let us now formalise this more precisely.

Recall the Lorentz reciprocity principal, which is usually

formulated for the time harmonic equations, in the form [13],

[32]

∇ ¨ pEa ˆ Hb ´ Eb ˆ Haq “ Ja
0 ¨ Eb ´ Jb

0 ¨ Ea, (32)

or, by integrating over R3 and using the far field behaviour of

the fields, as
ż

R3

Ja
0 ¨ Eb

dx “
ż

R3

Jb
0 ¨ Ea

dx. (33)

It follows from this result that the response is unchanged when

the transmitter and receiver are interchanged. Furthermore, if

the derivation is repeated for the eddy current model, the result

(33) is again obtained. Then, if we follow [32], and assume the

current sources a, b to have a small support and to be located

at s and t, respectively, then the first term in a Taylor series

of expansion of the fields Ea and Eb about the centre of the

current source is

Ebpsq ¨ pa « Eaptq ¨ pb, (34)

where pa is the electric dipole moment of the current source

a. It is important to note that this is only the first term in the

Taylor’s series expansion, including the next term leads to

Ebpsq ¨ pa ` 2∇
sEbpsq : Ra ` Bbpsq ¨ ma «

Eaptq ¨ pb ` 2∇sEaptq : Rb ` Baptq ¨ mb, (35)

where Ra is a quadrupole moment of the current source a,

ma the magnetic moment of the same current source [32]

and exact reciprocity is expected if all the terms in the Taylor

series expansion are considered.

For the eddy current problem described in this work and

coils located in free space that can be idealised as dipoles

with a magnetic moment, only, reciprocity implies that ma ¨
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TABLE I
NON-ZERO INDEPENDENT COEFFICIENTS THAT ARE REQUIRED TO REPRESENT C AND N FOR A RANGE OF SIMPLE OBJECTS.

Object Shape Rotational Mirror Independent Independent
Object Shape Symmetries Symmetries Coefficients in C Coefficients in N

Sphere

Isotropic
Infinite number

of planes
C123 “ ´C132 “ ´C213 “
C231 “ C312 “ ´C321

N11 “ N22 “ N33

Cube:
Aligned with axes

Uniaxial about
ê1, ê2, ê3

Planes with normals
ê1, ê2, ê3,

pê1 ` ê2q{
?
2,

pê1 ` ê3q{
?
2,

pê2 ` ê3q{
?
2

C123 “ ´C132 “ ´C213 “
C231 “ C312 “ ´C321

N11 “ N22 “ N33

Block:´
´w

2
,´ d

2
,´h

2

¯
ˆ´

w
2
, d
2
, h
2

¯

Aligned with axes

None

Planes with normals
ê1, ê2, ê3,

pde1 ` we2q{
?
d2 ` w2

pwe3 ` he1q{
?
w2 ` h2

phe2 ` de3q{
?
d2 ` h2

C123 “ ´C213
C321 “ ´C231
C132 “ ´C312

N11

N22

N33

Cone:
Axis aligned with ê1

Rotationally
invariant about

ê1

Planes with normals
ê2, ê3

any plane K base &
passing through the vertex

C123 “ ´C132 “ ´C213 “ C312
C231 “ ´C321

N11

N22 “ N33

Cylinder:
Axis aligned with ê1

Rotationally
invariant about

ê1

Planes with normals
ê1, ê2, ê3

any plane K base &
parallel to ê1

C123 “ ´C132 “ ´C213 “ C312
C231 “ ´C321

N11

N22 “ N33

Cube with hole:
Hole aligned with axis ê3

Uniaxial about
ê3

Planes with normals
ê1, ê2, ê3,

pê1 ` ê2q{
?
2,

pê1 ` ê3q{
?
2,

pê2 ` ê3q{
?
2

C123 “ ´C213
C132 “ ´C231 “ C321 “ ´C312

N11 “ N22

N33

Ellipsoid:
Major axis aligned with ê3

Rotationally
invariant about

ê3

Planes with normals
ê1, ê2, ê3

any plane parallel
to ê3

C123 “ ´C213
C132 “ ´C231 “ C321 “ ´C312

N11 “ N22

N33

Hb
αpsq « mb ¨ Ha

αptq i.e. the result is the same if s and t

and ma and mb are interchanged. Considering (13), we have

ma
jH

b
αpsqj “ma

jH
b
0psqj ` ma

jD
2

xGps, zqℓmMℓmjiH
b
0pzqi

` ma
jR

bpsqj ,
mb

jH
a
αptqj “mb

jH
a
0ptqj ` mb

jD
2

xGpt, zqℓmMℓmjiH
a
0pzqi

` mb
jR

aptqj .
In the case considered, Hb

0psq “ D2

xGps, tqmb and

Ha
0ptq “ D2

xGpt, sqma, thus, from the symmetry of

D2

xGps, tq, we have ma ¨ Hb
0psq “ mb ¨ Ha

0ptq. Indeed,

we can easily obtain that

ma
jH

b
αpsqj ´ mb

jH
a
αptqj “ ∆pma,mb, s, tq

` ma
jD

2

xGps, zqℓmMℓmjiD
2

xGpz, tqipmb
p

´ mb
jD

2

xGpt, zqℓmMℓmjiD
2

xGpz, sqipma
p, (36)

where ∆ :“ ma ¨ Rbpsq ´ mb ¨ Raptq and

|∆| ď|ma||Rbpsq| ` |mb||Raptq|
ďCα4

´
|ma|}Hb

0}W 2,8pBαq ` |mb|}Ha
0}W 2,8pBαq

¯
,

thus (36) is an asymptotic expansion for ma ¨ Hb
αpsq ´ mb ¨

Ha
αptq as α Ñ 0 with ∆ “ Opα4q. Reciprocity then implies

that

ma
jD

2

xGps, zqℓmMℓmjiD
2

xGpz, tqipmb
p

« mb
jD

2

xGpt, zqℓmMℓmjiD
2

xGpz, sqipma
p,

upto an error term ∆, or alternatively in terms of the symmetric

rank 2 tensor
}}M, by using (23), that

ma
jD

2

xGps, zqjm}}MmiD
2

xGpz, tqipmb
p

«mb
jD

2

xGpt, zqjm}}MmiD
2

xGpz, sqipma
p. (37)

In light of (33), if one constructs a suitable Jb
0, which has

non-zero support on the measurement coil and is such that the

resulting field Hb
0 can be idealised as a magnetic dipole, the

induced voltage, V ind, as a result of the perturbation caused

by the presence of a general conducting object, is

V ind «mb
jD

2

xGpt, zqjm}}MmiD
2

xGpz, sqipma
p

«Hb
0pzq ¨ p}}MHa

0pzqq. (38)
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which, with a “ M , b “ T and
}}M “ Mind, agrees with the

prediction in (1).

VII. DETERMINING
}}M FROM FIELD MEASUREMENTS

In the next section we describe a numerical approach for

computing θi, i “ 1, 2, 3, which can be used for the accurate

calculation of the polarisation tensors. However, there may

also be situations (e.g. as part of an inverse algorithm or an

experimental validation proceedure) where the independent

coefficients that define the polarisation tensors should be

determined from field measurements of pHα ´ H0qpxq.

For a conducting object we have found that a set of

9 independent coefficients are sufficient for describing the

tensor P . If the object is magnetic a further 9 independent

coefficients are needed for describing the tensor N . But, by

using (24), the perturbed field can be expressed in terms of

the symmetric rank 2 tensor
}}M, which has only 6 independent

coefficients. Let ui denote the ith unknown independent coef-

ficient of the tensor(s) and mi denote the ith measurement of

q̂
piq¨pHα´H0qpxpiqq, where it is important that the number of

measurements exceeds the number of independent coefficients

and that the measurements are taken at different distances xpiq

and for different orientations of q̂
piq

. Then, by expressing the

asymptotic expansion for q̂
piq ¨ pHα ´ H0qpxpiqq in terms of

the coefficients Aij of the jth independent coefficient uj a set

of over determined error equations can be built and solved by

applying standard least squares techniques.

VIII. hp-FINITE ELEMENT METHODOLOGY FOR THE

COMPUTATIONS OF M

The transmission problem (10) has similarities to the A

based formulation of eddy current problems e.g. [28]. We

therefore advocate that the regularised formulation previously

developed for eddy current problems on multiply connected

domains be adapted for the solution of (10). For this pur-

pose, we truncate the otherwise unbounded domain Bc at a

finite distance from the object and create the finite domain

Ω “ B̃c Y B and on the truncated boundary BΩ we impose

∇ξ ˆ θi ˆ n̂ “ 0.

A. Regularised formulation

Let ϑi “ θi. The transmission problem for ϑi on the finite

(computational) domain can then be written in the form

∇ξ ˆ µ̃´1

r ∇ξ ˆ ϑi`
iµ0ωσα

2ϑi “ ´iµ0ωσα
2êi ˆ ξ in B Y B̃c,

∇ξ ¨ ϑi “ 0 in B̃c,

rϑi ˆ n̂s
Γ

“ 0 on Γ,”
µ̃´1

r ∇ξ ˆ ϑi ˆ n̂
ı
Γ

“
´2

“
µ̃´1

r

‰
Γ
êi ˆ n̂ on Γ,

∇ξ ˆ ϑi ˆ n̂ “ 0 on BΩ,

where, in the above, µ̃r :“ µ{µ0 such that µ̃r “ µr “ µ˚{µ0

in B and µ̃r “ 1 in B̃c.

In a weak sense, the condition ∇ξ ¨ ϑi “ 0 is equivalent

to ϑi being orthogonal to all gradients (continuously extended

by zero onto Ω) [28]. This leads to the mixed problem: Find

ϑi P Hpcurl,Ωq and Φ P H1
0 pB̃cq such that

pµ̃´1

r ∇ξ ˆ ϑi,∇ξ ˆ vqΩ ` pκϑi,vqΩ ` p∇ξΦ,vqB̃c “

´ pκêi ˆ ξ,vqΩ ´ 2

ż

Γ

rµ̃´1

r sêi ˆ n̂ ¨ vdξ, (39a)

pϑi,∇ξΨqB̃c “ 0, (39b)

for all v P Hpcurl,Ωq and Ψ P H1pB̃cq where Φ is a

Lagrange multiplier used to enforce ∇ξ ¨ ϑi “ 0, in B̃c in

a weak sense. In the above

κ “
"

iµ0ωσα
2 in B

0 in B̃c
.

Following [28], [33]–[36] we introduce the perturbed problem:

Let τ ą 0 be a small perturbation parameter, then: find ϑτ
i P

Hpcurl,Ωq such that

pµ̃´1

r ∇ξ ˆ ϑτ
i ,∇ξ ˆ vqΩ ` pκ̃ϑτ

i ,vqΩ “

´ pκêi ˆ ξ,vqΩ ´ 2

ż

Γ

rµ̃´1

r sêi ˆ n̂ ¨ vdξ, (40)

for all v P Hpcurl,Ωq where

κ̃ “
"

iµ0ωσα
2 in B

τ in B̃c
.

The previous analysis in [33], [36] carries over to (40). For

simplicity, treating only the case of µ˚ “ µ0, there holds

}ϑi ´ ϑτ
i }Hpcurl,Ωq ď Cτ}κêi ˆ ξ}Hpcurl,Ωq˚ where the

constant C is independent of τ and ϑi is the solution to (39)

and Hpcurl,Ωq˚ denotes the dual space.

B. Discrete approximation

In this work we use the basis functions of Zaglmayr

and Schöberl [35], [36] and we recall that for a tetrahedral

triangulation consisting of vertices Vh, edges Eh, faces Fh

and cells Th their hierarchic Hpcurlq and H1pΩq conforming

finite element basis can be expressed in terms of the splitting

Vh,p :“V N0

h ‘
ÿ

EPEh

∇WE
p`1 ‘

ÿ

FPFh

∇WF
p`1 ‘

ÿ

FPFh

rV F
p ‘

ÿ

IPTh

∇W I
p`1 ‘

ÿ

IPTh

rV I
p Ă Hpcurl,Ωq,

and

Wh,p`1 :“Wh,1 ‘
ÿ

EPEh

WE
p`1 ‘

ÿ

FPFh

WF
p`1 `

ÿ

IPTh

W I
p`1

Ă H1pΩq.

In the above V N0

h and Wh,1 denotes the set of lowest order

Nédélec (edge element) basis functions and the standard lowest

order hat functions, respectively, the former being associated

with the edges of the element and the latter with the vertices of

the element. The extension to arbitrary high polynomial degree

order consists of the enrichment of the finite element space

through the addition of higher order edge, face and interior

based basis functions, WE
p`1, WF

p`1 and W I
p`1, respectively,
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for H1 and the addition of higher order edge, face and interior

functions for Hpcurlq, where, in this case, the higher order

edge and some of the higher order face and interior functions

are constructed from the gradients of their H1 conforming

counterparts.

Following [28], we can use the special construction of these

basis functions to skip the gradient functions in B̃c and define

a reduced Hpcurlq conforming space as

V red
h,p :“V N0

h ‘
ÿ

EPEB
h

∇WE
p`1 ‘

ÿ

FPFB
h

∇WF
p`1 ‘

ÿ

FPFh

rV F
p ‘

ÿ

IPT B
h

∇W I
p`1 ‘

ÿ

IPTh

rV I
p , (41)

where the superscript B on Eh, Fh and Th is used to denote

those edges, faces and cells associated with subdomain B. It

then follows that the approximate ungauged weak formulation

is: Find ϑi
hp P V red

h,p XHpcurl,Ωq such that

pµ̃´1

r ∇ξ ˆ ϑi
hp,∇ξ ˆ vhpqΩ ` pκϑi

hp,vhpqΩ “ ´

pκêi ˆ ξ,vhpqΩ ´ 2

ż

Γ

rµ̃´1

r sêi ˆ n̂ ¨ vhpdξ, (42)

@vhp P V red
h,p X Hpcurl,Ωq, where the solveability of (42) is

ensured by gauging the low–order gradients ∇Wh,1 Ă V N0

h

through the addition of an appropriate regularisation term [28].

The structure of the left hand side of (42) is analogous to

the gauged A–based formulation of eddy current problems

and, therefore, the preconditioning technique described in [28]

can be immediately applied to the complex symmetric linear

system that results from (42) and this then ensures a robust

solver that is capable of coping with the large contrasts in the

κ̃ associated with this problem.

For problems with curved geometry the approach described

in [37] is employed, which, for a tetrahedron T P Th, takes

the form

x|T “
4ÿ

v“1

λvxv `
ÿ

EPET
h

cE `
ÿ

FPFT
h

cF , (43)

where the superscript T on Eh and Fh is used to indicate the

edges and faces, respectively, associated with a tetrahedron

T P Th. The first term represents the standard affine mapping

where λv P Wh,1 are the standard lowest orderH1 conforming

hat functions, the second and third terms represents edge

and face corrections, respectively, which are only present

on curved boundary faces. The degree of the polynomial

correction is g and the coefficients of the edge and face

corrections, cE P WE
g`1 and cF P WF

g`1 respectively, are

determined by solving local L2 minimisation problems on

the edges and faces of those elements lying on the curved

boundary.

IX. NUMERICAL EXAMPLES

A. Polarisation tensor for a spherical object

For the case where Bα is a sphere of radius α “ 0.01m,

with fictional material parameters σ˚ “ 5.96 ˆ 107S m´1

and µ˚ “ µ0 and angular frequency 133.5rad s´1, so that

ν “ 1, we present results to indicate the agreement between
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Fig. 1. Polarisation tensor for a spherical object with α “ 0.01m, σ˚ “
5.96 ˆ 10

7S m´1, µ˚ “ µ0 and 133.5rad s´1 showing convergence of

}}}M ´ }}Mhp}2{}}}M}2 with p “ 0, 1, 2, 3, 4, 5 and g “ 2, 3, 4, 5, 6, 7 when
paq the domain is truncated at 10B and pbq the domain is truncated at 100B.

the numerically calculated polarisation tensor and its known

exact solution (which in this case reduces to a scalar multiple

of the identity tensor). To compute the numerical tensor, we

consider the unit sphere B and choose Ω to be a sphere which

is 10, and then 100, times the radius ofB. For these geometries

we generate (coarse) meshes of 880 and 2425 unstructured

tetrahedra, respectively, for discretising the two cases. These

and subsequent meshes were generated using the NETGEN

mesh generator [38]. In order to represent the curved geom-

etry of the sphere polynomial representations using degrees

g “ 2, 3, 4, 5, 6, 7 are considered. We use a regularisation

parameter, τ , that is 8 orders of magnitude smaller than

ωσµ0α
2. Then, by using elements of order p “ 0, 1, 2, 3, 4, 5,

the approximate solutions ϑi
hp, i “ 1, 2, 3, to (42) are

computed and, in each case, the error }}}M´ }}Mhp}2{}}}M}2 is

evaluated and plot against the number of degrees of freedom

(Ndof) in Fig. 1. Note that } ¨ }2 denotes the entry-wise norm

for a rank 2 tensor, }}}M}2 “ př
ℓm |}}Mℓm|2q1{2, and

}}Mhp

is the approximate polarisation tensor computed using ϑi
hp,

i “ 1, 2, 3. In each case, the lines represent the different

choices of g and the points on the line represent increasing

p. In this figure we see that, for truncation at 10B, the

error associated with the geometry dominates for low g, but
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Fig. 2. Polarisation tensor for a spherical object with α “ 0.01m, σ˚ “
5.96 ˆ 10

7S m´1, µ˚ “ 1.5µ0 and 133.5rad s´1 showing convergence of

}}}M ´ }}Mhp}2{}}}M}2 with p “ 0, 1, 2, 3, 4, 5 and g “ 2, 3, 4, 5, 6, 7 when
paq the domain is truncated at 10B and pbq the domain is truncated at 100B.

for g ě 4 no further reduction in error can be achieved

by increasing p alone. By truncating at 100B and repeating

the computations we now see that for g ě 6, exponential

convergence of the polarisation tensor down to relative errors

of 10´7 results by performing p–refinement.

The corresponding results for the same sized object with

fictional parameters as before, except µ˚ “ 1.5µ0, are shown

in Fig. 2. For low g and truncation at either 10B or 100B, the

geometry error dominates but, for sufficiently high g and high

p, the error can be reduced to less than 10´6 by increasing

the size of the domain to 100B. In particular, for g ě 6

and performing p–refinement, exponential convergence of the

polarisation tensor is achieved. In general we remark that

}}}M ´ }}Mhp}2{}}}M}2 is comprised of the geometry error,

which we can reduce by increasing g and/or performing h–

refinement, the discretisation error, which is overcome by p–

and/or h–refinement and the outer boundary condition error,

which is overcome by increasing the size of the computation

domain. Our strategy has the advantage that, in the case of

a smooth object, exponential convergence and high levels

of accuracy can be achieved by applying p–refinement on a

coarse mesh, once the geometry has been well resolved and

the far field boundary placed sufficiently far from the object.

B. Number of independent coefficients for objects of differ-

ent shapes and verification of reciprocity

For the objects shown in Table I we have numerically

verified that the number of independent coefficients predicted

by the theoretical arguments in Section V-A and V-B are

correct. We have also numerically verified that (37) holds for a

range of objects, dipole positions and moments upto the error

term ∆.

C. Objects in a uniform background field

For uniform H0 we compare pHα ´H0qpxq predicted by

(24), when hp–finite elements are used to numerically compute

the rank 2 polarisation tensor
}}Mhp « }}M, with the results

obtained by solving the full eddy current problem, using hp–

finite elements and the formulation in [28]. We undertake this

comparison for a series of different shaped objects taken from

Table I including when Bα is a sphere of radius 0.01m, a

0.0075m ˆ0.015m ˆ0.01m rectangular block, a cone with

height 0.01m and maximum radius 0.005m and, finally, a cube

of side length 0.01m with a 0.005m ˆ 0.005m ˆ 0.01m hole

removed.

In each case, we select the far field boundary to be located

at distance a 100 times the size of the object, for cases with

curved geometries we use g “ 4 and for approximating the

solution to (42), we use p “ 4 elements and meshes of 2425,

3433, 19 851 and 7377 unstructured tetrahedra for the cases

of a sphere, block, cone and the cube with hole, respectively.

We fix the material parameters as σ˚ “ 5.96 ˆ 107S m´1,

µ˚ “ 1.5µ0 and the angular frequency as 133.5rad s´1 for

all objects. The polarisation tensor
}}Mhp for each object is

computed by considering an appropriate unit–sized object B,

which, when an appropriate scaling is applied, results in the

physical object Bα. Then, by assuming a uniform incident field

H0pxq “ H0 “ ê3 we compare |pHα ´ H0qpxq|{|H0pxq|
when x “ r “ rêi P Bc

α and r ď 0.1m and i “ 1, 2, 3 in

turn.

The results of this investigation are shown in Fig. 3. For

all cases, the perturbed field predicted by the numerically

computed polarisation tensor is in excellent agreement with

that obtained by solving the full eddy current problem. In the

case of the block, cone and the cube with hole there are some

small differences between the perturbed field predicted by the

polarisation tensor and that from the full eddy current solution

close to the object, but these differences disappear for larger r.

Indeed this is to be expected as the asymptotic expansion (24)

is only valid when x away from z. Comparing the perturbed

field at a distance of 0.1m for the different objects we observe

that it’s magnitude varies indicating the possibility of being

able to determine some characteristics of the shape from the

perturbed field measurements. We remark that although higher

p (and g) could be used to compute the polarisation tensor (and

the solution to the full eddy current problem) more accurately,

the results would be indistinguishable on the chosen scale.

We have also verified that the results predicted by (11),

when hp–finite elements are used to numerically compute

the rank 4 polarisation tensor Mhp « M are identical to
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Fig. 3. Comparison of |pHα ´ H0qpxq|{|H0pxq| for uniform H0pxq “ H0 when x “ r “ rêi P Bc

α and r ď 0.1m for i “ 1, 2, 3, in turn, showing

the results obtained by using the numerically computed rank 2 polarisation tensor
}}Mhp and by solving the full eddy current problem when Bα is : paq a

sphere of radius 0.01m, pbq a 0.0075m ˆ0.015m ˆ0.01m rectangular block, pcq a cone with height 0.01m and maximum radius 0.005m and pdq a cube of
side length 0.01m with a 0.005m ˆ0.005m ˆ0.01m hole removed.

those predicted by (24), using the computed
}}Mhp « }}M. The

comparisons between pHα ´ H0qpxq predicted by (24) and

solving the full eddy current problem for other objects are

similar to those shown.

D. Objects in a rotational background field

In this section, we perform a similar comparison to that

undertaken in Section IX-C but now with H0pxq generated

by a coil carrying a current such that |J0| “ 1 ˆ 106 Am´2.

The coil is taken to be a torus of inner radius 0.005m and

outer radius 0.01m and has position 0.4ê3 m relative to the

centre of the object. The shape and material properties of

the different objects are as described in Section IX-C. We

undertake comparisons of |pHα ´ H0qpxq|{|H0pxq| when

x “ r “ x3ê3 P Bc
α (L1), x “ r “ x1ê1 ` x3ê3 P Bc

α

(L2) and x “ r “ x2ê2 ` x3ê3 P Bc
α (L3) for |x| ď 1m

using p “ 4 elements and g “ 4 when the geometry is

curved. The meshes for computing the solution to the full eddy

current problem consist of 36 012, 35 347, 49 086 and 53 743

unstructured tetrahedra for the cases of a sphere, block, cone

and the cube with hole, respectively, where the coil has also

been discretised in each case.

The results of this investigation are shown in Fig. 4. Note

that rather than focusing on the behaviour of the perturbed

field along coordinate axes close to the object, as was the case

in Fig. 3 for the uniform background field, we now include

comparisons in other directions and for larger distances from

the object in order to understand the perturbation of the field up

to and beyond the position of the coil. In particular, the results

show how the normalised field changes with distance along a

line directly above the object (L1) and along two diagonal

lines extending upwards from the object (L2 and L3). For

all objects considered, the agreement between the perturbed

field predicted by the asymptotic expansion and (24) using the

numerically computed
}}Mhp and those obtained by solving the

full eddy current problem is excellent. We have also verified

that the results obtained by (11) using the computed Mhp are

identical to those predicted by (24).

The small differences between the results predicted by (24)

and solving the full eddy current problem for large r are

attributed to the artificial truncation boundary used for solving

the full eddy current problem, which, for these examples, has

been placed at r “ 2m. These differences are not noticeable

in Fig. 3 as the results are shown for small r, significantly

further away from the artificial truncation boundary.
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Fig. 4. Comparison of |pHα ´ H0qpxq|{|H0pxq| for rotational H0 along the lines L1, L2, and L3, in turn, showing the results obtained by using the

numerically computed rank 2 polarisation tensor
}}Mhp and by solving the full eddy current problem when Bα is : paq a sphere of radius 0.01m, pbq a

0.0075m ˆ0.015m ˆ0.01m rectangular block, pcq a cone with height 0.01m and maximum radius 0.005m and pdq a cube of side length 0.01m with a
0.005m ˆ0.005m ˆ0.01m hole removed.

X. CONCLUSION

In this article we have explained how the recent results

of Ammari et al. [26] can be applied to understanding the

mystery of the metal detection problem. In doing so we

have provided a theoretical footing, which shows that the

HM ¨ pMindHT q type sensitivity that is commonly reported

in the literature [9]–[11] is correct, where Mind is a rank

2 tensor. To achieve this, we have shown that the rank 4

conductivity tensor, P obtained by Ammari et al. [26] can

be expressed in terms of the rank 3 tensor density C and this

in turn can be expressed in terms of rank 2 tensor qC. By using

properties of these tensors, we have shown that at most 9

independent coefficients are required for defining qC, and hence

P , for a conducting object. A further 9 are required for the rank

2 tensor N if the object is magnetic. Furthermore, we have

shown that the perturbed field for a general object is influenced

by a reduced rank 2 symmetric tensor
}}M :“ ´ qC`N with just

6 complex independent coefficients, so that Mind “ }}M. If the

object has rotational or mirror symmetries we have shown that

the number of independent coefficients can be reduced further.

We have included results to illustrate how the tensors can be

computed accurately by using the hp-finite element method.

These results indicate that, for smooth objects, exponential

convergence of the computed tensor can be achieved by per-

forming p–refinement on a coarse grid with accurate geometry

and a far field boundary placed sufficiently far from the

object. We have also used these the hp–finite element approach

to numerically verify the perturbed fields predicted by the

asymptotic formula for a range of objects and illuminations

and all show excellent agreement when compared with solving

the full eddy current problem.

APPENDIX A

SKEW SYMMETRY OF C

Lemma A.1. The rank 3 tensor density Cmsi is skew symmet-

ric with respect to the first indices and can be represented by

just 9 independent coefficients.

Proof. Starting from

ei ˆ ξ “ ´θi ` µ0

iν
∇ ˆ µ´1

˚ ∇ ˆ θi, (44)

where the subscript ξ on ∇ has been dropped for simplicity

of notation, it follows by application of the alternating tensor

that

ξm “ 1

2
εkpmêk ¨

´
´θp ` µ0

iν
∇ ˆ µ´1

˚ ∇ ˆ θp

¯
, (45)
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in B. It is useful to define χm :“ 1

2
εkpmêk ¨`

´θp ` 1

iν
∇ ˆ µ̃´1

r ∇ ˆ θp

˘
where µ̃r :“ µ{µ0 such that

µ̃r “ µr “ µ˚{µ0 in B and µ̃r “ 1 in Bc. Note also that

∇ ˆ ∇ ˆ θi “ 0 in Bc so that χm “ ´ 1

2
εkpmêk ¨ θp in Bc.

Taking this in to consideration then we can write

Cmsi “β
ż

B

χm∇χs ¨ pθi ` êi ˆ ξqdξ

“ ´ α3

2

ˆż

B

∇ ˆ pêsξmq ¨ µ̃´1

r ∇ ˆ θidξ`
ż

B

∇ ¨ pµ̃´1

r ∇ ˆ θi ˆ χm∇χsqdξ
˙

“ ´ α3

2

ˆż

B

êm ˆ ês ¨ µ̃´1

r ∇ ˆ θidξ´
ż

Γ

χm∇χs ¨ µ̃´1

r p∇ ˆ θi ˆ n̂
´q

ˇ̌
´
dξ

˙
.

By using the transmission conditions in (10), rχm∇χsˆn̂sΓ “
0 and the fact that the integrand in the last integral can

alternatively be written in terms of a tangential trace and a

twisted tangential trace, we obtain
ż

Γ

χm∇χs ¨ pµ̃´1

r ∇ ˆ θi ˆ n̂
´q

ˇ̌
´
dξ “

´
ż

Γ

χm∇χs ¨ ∇ ˆ θi ˆ n̂
`

ˇ̌
`
dξ`

2rµ̃´1

r sΓ
ż

Γ

χm∇χs ¨ êi ˆ n̂
´
dξ. (46)

First consider,

2rµ̃´1

r sΓ
ż

Γ

χm∇χs ¨ êi ˆ n̂
´
dξ

“ 2rµ̃´1

r sΓ
ż

B

∇ ¨ pχm∇χs ˆ êiqdξ

“ 2rµ̃´1

r sΓεksi
ż

B

∇ξm ¨ ∇ξkdξ “ 2rµ̃´1

r sΓ|B|εmsi, (47)

by the properties of χm in B. Secondly, noting that θp “
Op|ξ|´2q and ∇ ˆ θp “ Op|ξ|´3q as |ξ| Ñ 8 [26] it follows

that χm “ Op|ξ|´2q and ∇χm “ Op|ξ|´3q (since θp solves

a Laplace equation with appropriate decay conditions in an

unbounded domain exterior to a sufficiently large sphere that

encloses B in a similar way to Proposition 3.1 in [29]). Then,

we can apply integration by parts to
ż

Bc

χm∇χs ¨ ∇ ˆ ∇ ˆ θidξ “ 0

“
ż

Bc

∇χm ˆ ∇χs ¨ ∇ ˆ θidξ´
ż

Γ

χm∇χs ¨ ∇ ˆ θi ˆ n̂
`

ˇ̌
`
dξ, (48)

where the aforementioned decay conditions imply that the far

field integral drops out. By rearrangement and inserting (48)

and (47) into (46) we have
ż

Γ

χm∇χs ¨ p∇ ˆ θi ˆ n̂
´q

ˇ̌
´
dξ “

´
ż

Bc

∇χm ˆ ∇χs ¨ ∇ ˆ θidξ ` 2rµ̃´1

r sΓ|B|εmsi, (49)

so that

Cmsi “ ´α3

2

ˆż

B

êm ˆ ês ¨ µ´1

r ∇ ˆ θidξ

`
ż

Bc

∇χm ˆ ∇χs ¨ ∇ ˆ θidξ ´ 2rµ̃´1

r sΓ|B|εmsi

˙
. (50)

Thus Cmsi “ ´Csmi as required.

APPENDIX B

SYMMETRY OF
}}M

Lemma B.1. The tensor qC is complex symmetric if µ˚ “ µ

and the tensor
}}M “ ´ qC ` N is complex symmetric for a

general conducting magnetic object.

Proof. The proof of this result builds on a result stated in

a preprint of [26]. We begin by checking that qC is complex

symmetric, to do so we considerż

B

ξˆpθi ` êi ˆ ξqdξ¨êj “
ż

B

pθi`êiˆξq¨êj ˆξdξ, (51)

by properties of the scalar triple product. Thus, by using (10),ż

B

pθi ` êi ˆ ξq ¨ êj ˆ ξdξ “ µ0

νµ˚

ż

B

∇ ˆ ∇ ˆ θi ¨ êj ˆ ξdξ

“ 1

iν

ż

B

1

µ̃r

∇ ˆ ∇ ˆ θi ¨
ˆ

1

iνµ̃r

∇ ˆ ∇ ˆ θj ´ θj

˙
dξ,

(52)

where µ̃r is as defined in Appendix A. Performing integration

by partsż

B

1

µ̃r

∇ ˆ ∇ ˆ θi ¨ θjdξ “
ż

B

1

µ̃r

∇ ˆ θj ¨ ∇ ˆ θidξ´
ż

Γ

θj ¨ 1

µ̃r

∇ ˆ θi ˆ n̂
´

ˇ̌
ˇ̌
´

dξ. (53)

Next, using the transmission conditions on Γ in (10), thenż

B

pθi ` êi ˆ ξq ¨ êj ˆ ξdξ “

1

piνq2
ż

B

1

µ̃2
r

∇ ˆ ∇ ˆ θi ¨ ∇ ˆ ∇ ˆ θjdξ

´ 1

iν

ż

B

1

µ̃r

∇ ˆ θi ¨ ∇ ˆ θjdξ ` 1

iν

ż

Γ

θj ¨ ∇ ˆ θi ˆ n̂
´

ˇ̌
`
dξ

` 2rµ̃´1
r sΓ
iν

ż

Γ

êi ˆ n̂
´ ¨ θjdξ. (54)

Then, by performing integration by parts in Bc,ż

Bc

θj ¨ ∇ ˆ ∇ ˆ θidξ “ 0

“
ż

Bc

∇ ˆ θi ¨ ∇ ˆ θj `
ż

Γ

θj ¨ ∇ ˆ θi ˆ n̂
´

ˇ̌
`
dξ, (55)

which is valid given the decay conditions on θi and ∇ ˆ θi

as |ξ| Ñ 8. [26]. Using (55) in (54) and recalling (15) and

(51), then we have that

qCji “ ´ α3

4iν

ż

B

1

µ̃2
r

∇ ˆ ∇ ˆ θi ¨ ∇ ˆ ∇ ˆ θjdξ

` α3

4

ż

BYBc

1

µ̃r

∇ ˆ θi ¨ ∇ ˆ θjdξ

´ α3rµ̃´1
r sΓ
2

ż

Γ

êi ˆ n̂
´ ¨ θj

ˇ̌
´
dξ,
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which is symmetric when µ˚ “ µ0. We rewrite Nji in the

following form

Nji “ α3

ˆ
1 ´ µ0

µ˚

˙ ż

B

ˆ
êi ` 1

2
∇ ˆ θi

˙
dξ ¨ êj

“ α3rµ̃´1

r sΓ
ˆż

B

êi ¨ êjdξ ` 1

2

ż

Γ

êj ˆ n̂
´ ¨ θi

ˇ̌
´
dξ

˙
.

It then follows that
}}M “ ´ qC ` N can be written as

}}Mji “ α3

4iν

ż

B

1

µ̃2
r

∇ ˆ ∇ ˆ θi ¨ ∇ ˆ ∇ ˆ θjdξ

´ α3

4

ż

BYBc

1

µ̃r

∇ ˆ θi ¨ ∇ ˆ θjdξ

` α3rµ̃´1

r sΓ
ˆ
1

2

ż

Γ

êi ˆ n̂
´ ¨ θj

ˇ̌
´
dξ `

ż

B

êi ¨ êjdξ

1

2

ż

Γ

êj ˆ n̂
´ ¨ θi

ˇ̌
´
dξ

˙
, (56)

which is symmetric.
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