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A

An Algorithm for the Complete Solution of Quadratic Eigenvalue
Problems

SVEN HAMMARLING, Numerical Algorithms Group Ltd. and the University of Manchester
CHRISTOPHER J. MUNRO, Rutherford Appleton Laboratory
FRANÇOISE TISSEUR, The University of Manchester

We develop a new algorithm for the computation of all the eigenvalues and optionally the right and left eigen-
vectors of dense quadratic matrix polynomials. It incorporates scaling of the problem parameters prior to
the computation of eigenvalues, a choice of linearization with favorable conditioning and backward stability
properties, and a preprocessing step that reveals and deflates the zero and infinite eigenvalues contributed
by singular leading and trailing matrix coefficients. The algorithm is backward stable for quadratics that are
not too heavily damped. Numerical experiments show that our MATLAB implementation of the algorithm,
quadeig, outperforms the MATLAB function polyeig in terms of both stability and efficiency.

General Terms: Algorithms, Performance, Reliability

Additional Key Words and Phrases: Quadratic eigenvalue problem, deflation, linearization, companion form,
backward error, condition number, scaling, eigenvector

1. INTRODUCTION
Eigensolvers for quadratic eigenvalue problems (QEPs) Q(λ)x = 0, y∗Q(λ) = 0, where

Q(λ) = λ2A2 + λA1 +A0, Ai ∈ Cn×n

are often absent from the numerical linear algebra component of software libraries.
Users are therefore left to choose a 2n × 2n linearization L(λ) = A − λB of Q(λ), for
example

A− λB =

[
A0 0
0 I

]
− λ

[
−A1 −A2

I 0

]
, (1)

call an eigensolver for generalized eigenproblems, and finally recover the eigenvectors
of Q(λ) from those of the linearized problem L(λ)z = 0, w∗L(λ) = 0. However, in do-
ing so it is important to understand the influence of the linearization process on the
accuracy and stability of the computed solution. Indeed solving the QEP by applying
a backward stable algorithm (e.g., the QZ algorithm [Moler and Stewart 1973]) to a
linearization can be backward unstable for the QEP [Tisseur 2000]. Also, unless the
block structure of the linearization is respected (and it is not by standard techniques),
the conditioning of the solutions of the larger linear problem can be worse than that
for the original quadratic, since the class of admissible perturbations is larger. For ex-
ample, eigenvalues that are well conditioned for Q(λ) may be ill conditioned for L(λ)
[Higham et al. 2006], [Higham et al. 2008]. For these reasons, a numerical algorithm
for solving QEPs needs to be carefully designed.

QEPs arise in a wide variety of applications in science and engineering such as in the
dynamic analysis of mechanical systems, where the eigenvalues represent vibrational

Version of May 15, 2012.
The work of the second author was supported by a scholarship from the School of Mathematics at the
University of Manchester. The work of the third author was supported by Engineering and Physical Sciences
Research Council grant EP/I005293 and a Fellowship from the Leverhulme Trust.
Author’s addresses: Sven Hammarling, Numerical Algorithms Group Ltd., Oxford, UK and School of Math-
ematics, The University of Manchester, Manchester, M13 9PL, UK (sven@nag.co.uk); Christopher J. Munro,
Scientific Computing Department, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11
0QX, UK (christopher.munro@stfc.ac.uk); Françoise Tisseur, The University of Manchester, Manchester,
M13 9PL, UK (ftisseur@ma.man.ac.uk).



A:2 S. Hammarling et al.

frequencies. Many practical examples of QEPs can be found in the NLEVP collection
[Betcke et al. 2011] and the survey article by Tisseur and Meerbergen [2001]. In ap-
plications the leading coefficient A2 and/or the trailing coefficient A0 can be singular.
Regular quadratics (i.e., detQ(λ) 6≡ 0) with singular A0 and/or A2 have zero and/or
infinite eigenvalues. Theoretically, the QZ algorithm handles infinite eigenvalues well
[Watkins 2000]. However, experiments by Kågström and Kressner [2006] show that
if infinite eigenvalues are not extracted before starting the QZ steps then they may
never be detected due to the effect of rounding errors in floating point arithmetic. In
one quadratic eigenvalue problem occurring in the vibration analysis of rail tracks
under excitation arising from high speed trains [Hilliges et al. 2004], [Mackey et al.
2006a, p.18], the deflation of zero and infinite eigenvalues had a significant impact on
the quality of the remaining computed finite eigenvalues.

In this work we present an eigensolver for the complete solution of dense QEPs that
incorporates key recent developments on the numerical solution of polynomial eigen-
value problems, namely a scaling of the problem parameters prior to the computation
[Fan et al. 2004], [Gaubert and Sharify 2009], a choice of linearization with favorable
conditioning and backward stability properties [Higham et al. 2006], [Higham et al.
2007], [Higham et al. 2008], [Tisseur 2000], and a preprocessing step that reveals and
deflates the zero and infinite eigenvalues contributed by singular leading and trailing
matrix coefficients. The preprocessing step may also detect nonregularity, but that is
not guaranteed. Our algorithm takes advantage of the block structure of the chosen
linearization. We have implemented it as a MATLAB function called quadeig, which
can make use of functions from the NAG Toolbox for MATLAB [NAG]. Our eigensolver
can in principle be extended to matrix polynomials of degree higher than two but such
an extension is not straightforward and requires further analysis that is left to future
work.

The remaining sections cover the following topics. In Section 2 we discuss the influ-
ence of backward error and condition number on the choice of linearization and give
the motivation for our particular choice of linearization. In Section 3 we discuss scal-
ing of the QEP, concentrating particularly on eigenvalue parameter scaling, and make
some remarks on heavily damped problems. Section 4 looks at how to preprocess the
QEP in order to deflate zero and infinite eigenvalues, and how to take advantage of
the preprocessing in order to block triangularize our choice of linearization. Section 5
discusses the recovery of the left and right eigenvectors of the QEP from those of the
linearization. Section 6 presents numerical experiments, particularly using problems
from the NLEVP collection [Betcke et al. 2011], which demonstrate how our MATLAB
code quadeig outperforms polyeig on QEPs.

2. CHOICE OF LINEARIZATIONS
Formally, L(λ) = A − λB is a linearization of Q(λ) if there exist unimodular matrix
polynomials E(λ) and F (λ) (that is, detE(λ) and detF (λ) are nonzero constants) such
that

E(λ)L(λ)F (λ) =

[
Q(λ) 0

0 In

]
.

Hence det(A−λB) agrees with detQ(λ) up to a nonzero constant multiplier, so L and Q
have the same eigenvalues. Research on linearizations of matrix polynomials has been
very active in recent years, with achievements including generalization of the defi-
nition of linearization [Lancaster and Psarrakos 2005], [Lancaster 2008], derivation
of new (structured) linearizations [Amiraslani et al. 2009], [Antoniou and Vologian-
nidis 2004], [Antoniou and Vologiannidis 2006], [Higham et al. 2006], [Mackey et al.
2006b], [Mackey et al. 2006c] and analysis of the influence of the linearization process
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on the accuracy and stability of computed solutions [Higham et al. 2006], [Higham
et al. 2007], [Higham et al. 2008].

For a given quadratic Q, there are infinitely many linearizations (the pencil (1) is
just one example). These linearizations can have widely varying eigenvalue condition
numbers [Higham et al. 2006], and approximate eigenpairs of Q(λ) computed via lin-
earization can have widely varying backward errors [Higham et al. 2007]. In the fol-
lowing subsections we define the terms backward error and condition number more
precisely and focus on a particular linearization that our algorithm will employ.

2.1. Backward error and condition number
In order to define backward errors and condition numbers valid for all λ, including∞,
we rewrite Q(λ) and L(λ) in the homogeneous form

Q(α, β) = α2A2 + αβA1 + β2A0, L(α, β) = βA− αB.
and identify λ with any pair (α, β) 6= (0, 0) for which λ = α/β.

The normwise backward error of an approximate (right) eigenpair (x, α, β) ofQ(α, β),
is defined by

ηQ(x, α, β) = min{ ε : (Q(α, β) +∆Q(α, β))x = 0, ‖∆Ai‖2 ≤ ε‖Ai‖2, i = 0: 2 }, (2)
where ∆Q(α, β) = α2∆A2 + αβ∆A1 + β2∆A0. The backward error ηL(z, α, β) for an
approximate eigenpair (z, α, β) of the pencil L(α, β) = βA − αB is defined in a similar
way. Explicit expressions are given by [Higham et al. 2007]:

ηQ(x, α, β) =
‖Q(α, β)x‖2(∑2

i=0|α|i|β|2−i‖Ai‖2
)
‖x‖2

, ηL(z, α, β) =
‖L(α, β)z‖2(

|β|‖A‖2 + |α|‖B‖2
)
‖z‖2

. (3)

The definitions and explicit expressions for the backward error ηQ(y∗, α, β) and
ηL(w∗, α, β) of left approximate eigenpairs (y∗, α, β) and (w∗, α, β) of Q and L are anal-
ogous to those for right eigenpairs.

A normwise condition number κQ(α, β) of a simple eigenvalue (α, β) of Q can be
defined as

κQ(α, β) = max
‖∆A‖≤1

‖K(α, β)∆A‖2
‖[α, β]‖2

,

where K(α, β) : (Cn×n)3 → T(α,β)P1 is the differential of the map from (A0, A1, A2) to
(α, β) in projective space, and T(α,β)P1 denotes the tangent space at (α, β) to P1, the
projective space of lines through the origin in C2. Here ∆A = (∆A0, ∆A1, ∆A2) and
‖∆A‖ = ‖[ω−10 ∆A0, ω

−1
1 ∆A1, ω

−1
2 ∆A2]‖F with ωi = ‖Ai‖2. An extension of a result of

Dedieu and Tisseur [Dedieu and Tisseur 2003, Thm. 4.2] that treats the unweighted
Frobenius norm yields the explicit formula [Higham et al. 2006]

κQ(α, β) =

(
2∑
i=0

|α|2i|β|2(2−i)‖Ai‖22

)1/2

‖y‖2‖x‖2∣∣y∗(β̄DαQ− ᾱDβQ)|(α,β)x
∣∣ , (4)

where Dα ≡ ∂
∂α and Dβ ≡ ∂

∂β , and x, y are right and left eigenvectors of Q associated
with (α, β). The eigenvalue condition number κL(α, β) for the pencil L(α, β) = βA−αB
is defined in a similar way and an explicit formula is given by

κL(α, β) =
√
|β|2‖A‖22 + |α|2‖B‖22

‖w‖2‖z‖2∣∣w∗(β̄DαL − ᾱDβL)|(α,β)z
∣∣ , (5)

where z, w are right and left eigenvectors of L associated with (α, β). Note that the
denominators of the expressions (4) and (5) are nonzero for simple eigenvalues. Also,
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these expressions are independent of the choice of representative of (α, β) and of the
scaling of the eigenvectors. Let (α, β) and (α̃, β̃) be the original and perturbed simple
eigenvalues, normalized such that ‖(α, β)‖2 = 1 and [α, β][α̃, β̃]∗ = 1. Then the angle
between the original and perturbed eigenvalues satisfies [Higham et al. 2007]∣∣θ((α, β), (α̃, β̃)

)∣∣ ≤ κQ(α, β)‖∆A‖+ o(‖∆A‖). (6)

Backward error and conditioning are complementary concepts. The product of the
condition number (4) with one of the backward errors in (3) provides an approximate
upper bound on the angle between the original and computed eigenvalues. The eigen-
value condition numbers (4) and backward errors (3) are computed optionally by our
algorithm.

2.2. Companion linearizations
Companion linearizations are the most commonly used linearizations in practice. Sev-
eral forms exist. Perhaps the best known are the first and second companion lineariza-
tions of Q, given by

C1(λ) =

[
A1 A0

−I 0

]
− λ

[
−A2 0

0 −I

]
, C2(λ) =

[
A1 −I
A0 0

]
− λ

[
−A2 0

0 −I

]
. (7)

Note that C2(λ) is the block transpose of C1(λ). Other companion forms such as

C3(λ) =

[
A0 0
0 I

]
− λ

[
−A1 −A2

I 0

]
, C4(λ) =

[
A0 0
0 I

]
− λ

[
−A1 I
−A2 0

]
,

are obtained, for example, by taking the reversal of the first or second companion form
of the reversal of Q,

rev
(
Q(λ)

)
:= λ2A0 + λA1 +A2, (8)

or simply by swapping the block rows or block columns of the above linearizations.
Companion linearizations have a number of desirable properties:

(a) They are always linearizations even ifQ(λ) is nonregular. Moreover they are strong
linearizations, that is, they preserve the partial multiplicities of infinite eigenval-
ues [Lancaster and Psarrakos 2005].

(b) The left and right eigenvectors of Q(λ) are easily recovered from those of the com-
panion form ([Grammont et al. 2011], [Higham et al. 2007] and (9) for C2).

(c) If the quadratic is well scaled (i.e., ‖Ai‖2 ≈ 1, i = 0: 2), companion linearizations
have good conditioning and backward stability properties (see Section 3).

Amongst companion linearizations Ci(λ) = Ai−λBi we are looking for one for which:

(d) the Bi matrix is in block upper triangular form, thereby reducing the computa-
tional cost of the Hessenberg-triangular reduction step of the QZ algorithm,

(e) the linearization can easily be transformed to a block upper triangular form re-
vealing zero and infinite eigenvalues, if any.

The first and second companion linearizations in (7) satisfy desideratum (d) and we
will show in Section 4 that, in the presence of singular leading and trailing matrix coef-
ficients, desideratum (e) can easily be achieved for the second companion linearization.
Hence our eigensolver will use C2(λ).
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Concerning property (b), the second companion form C2(λ) in (7) has right eigenvec-
tors z and left eigenvectors w of the form

z =

[
z1
z2

]
=


[

αx
−βA0x

]
if α 6= 0,[

βx
αA2x+ βA1x

]
if β 6= 0,

w =

[
w1

w2

]
=

[
ᾱy
β̄y

]
, (9)

where x, y are right and left eigenvectors of Q(λ) with eigenvalue λ = α/β. The for-
mulae in (9) show that x can be recovered from the first n entries of z or by solving
A0x = z2 when A0 is nonsingular, whereas y can be recovered from either the n first
entries or the last n entries of w.

3. SCALINGS
Ideally, we would like the linearization C2 that we use to be as well conditioned as the
original quadratic Q and for it to lead, after recovering an approximate eigenpair of
Q from one of C2, to a backward error of the same order of magnitude as that for C2.
Following the methodology described in [Grammont et al. 2011], [Higham et al. 2007]
and [Higham et al. 2006] we find that, with w and z denoting approximate left and
right eigenvectors of C2(λ),

1√
2

1

‖p(α, β)‖2
≤ κC2

(α, β)

κQ(α, β)
≤ 23/2

max(1,maxi=0:2 ‖Ai‖2)2

‖p(α, β)‖2
, (10)

1√
2
≤ ηQ(z1, α, β)

ηC2
(z, α, β)

≤ 23/2
max(1,maxi=0:2 ‖Ai‖2)

‖p(α, β)‖1
‖z‖2
‖z1‖2

, (11)

1√
2
≤ ηQ(w∗k, α, β)

ηC2(w∗, α, β)
≤ 25/2

max(1,maxi=0:2 ‖Ai‖2)2

‖p(α, β)‖1
‖w‖2
‖wk‖2

, k = 1, 2, (12)

where
p(α, β) = [ |α|2‖A2‖2 |α||β|‖A1‖2 |β|2‖A0‖2 ]

T

and the eigenvalue (α, β) has been normalized so that |α|2 + |β|2 = 1. The bounds
(10)–(12) reveal that if ‖Ai‖2 ≈ 1, i = 0: 2 then

κQ(α, β) ≈ κC2
(α, β), ηQ(x, α, β) ≈ ηC2

(z, α, β), ηQ(y∗, α, β) ≈ ηC2
(w∗, α, β)

for all eigenvalues (α, β). Indeed, under that condition, ‖p(α, β)‖1 ≈ 1 and for an exact
right eigenvector z the ratio ‖z‖2/‖z1‖2 is bounded by about 2

√
2; this can be seen from

the first equation in (9) if |α| ≥ |β| and the second if |α| ≤ |β|. Also, for an exact left
eigenvector w, (9) shows that ‖w‖2/‖wk‖2 ∈ [1,

√
2] by taking k = 1 if |α| ≥ |β| and k = 2

if |α| ≤ |β|. We assume that these bounds also hold for the approximate eigenvectors.
When the coefficient matrices Ai, i = 0: 2 vary largely in norm, numerical exper-

iments in [Higham et al. 2007] and [Higham et al. 2006] show that κQ � κC2 and
ηQ � ηC2 can happen, affecting the quality of computed solutions (see for example the
beam problem in [Higham et al. 2008]). We now discuss scaling strategies to overcome
this issue.

3.1. Eigenvalue parameter scaling

An eigenvalue parameter scaling converts Q(λ) = λ2A2 + λA1 + A0 to Q̃(µ) = µ2Ã2 +

µÃ1 + Ã0, and is dependent on two nonzero scalar parameters γ and δ, where

λ = γµ, Q(λ)δ = µ2(γ2δA2) + µ(γδA1) + δA0 ≡ Q̃(µ). (13)
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It has the important property that

ηQ(x, α, β) = ηQ̃(x, α̃, β̃),

where µ = α̃/β̃, so this scaling has no effect on the backward error for the quadratic but
it does affect the backward error for the linearization. In general, κQ(α, β) 6= κQ(α̃, β̃)
but the eigenvalue parameter scaling leaves unchanged the λ eigenvalue condition
number

κQ(λ) = lim
ε→0

sup
{ |∆λ|
ε|λ|

:
(
Q(λ+∆λ) +∆Q(λ+∆λ)

)
(x+∆x) = 0,

‖∆Ai‖2 ≤ εωi, i = 0: 2
}

=
(|λ|2‖A2‖2 + |λ|‖A1‖2 + ‖A0‖2)‖x‖2‖y‖2

|λ||y∗(2λA1 +A2)x|
,

(see [Tisseur 2000], [Higham et al. 2006]).

3.1.1. Fan, Lin, and Van Dooren scaling. Fan et al. [2004] showed that when A0 and A2

are nonzero,

γ =
√
‖A0‖2/‖A2‖2 =: γ

FLV
, δ = 2/(‖A0‖2 + ‖A1‖2γ) =: δ

FLV
(14)

solves the problem of minimizing the maximum distance of the coefficient matrix
norms from 1:

min
γ,δ

max{‖Ã0‖2 − 1, ‖Ã1‖2 − 1, ‖Ã2‖2 − 1}.

With this choice of parameters, it is shown in [Higham et al. 2007] that

max
i=0:2

‖Ãi‖2 ≤ 2,
1

2
≤ ‖p(α̃, β̃)‖−12 ≤

√
3

2
min

{
1 + τQ,

1

|α̃β̃|

}
, (15)

where

τQ =
‖A1‖2

(‖A2‖2‖A0‖2)1/2
. (16)

— When τQ <∼ 1, which in the terminology of damped mechanical systems means that
the problem is not too heavily damped, then on using (15) the bounds (10)–(12) imply
that κC2

≈ κQ̃ for all eigenvalues, and ηQ̃ ≈ ηC2
for both left and right eigenpairs.

Hence if the eigenpairs of C2(λ) are computed with a small backward error (which
is the case if we use the QZ algorithm) then we can recover eigenpairs for Q(λ) with
a small backward error.

— When τQ >∼ 1, ‖p(α̃, β̃)‖−12 will still be of order 1 if |α̃||β̃| = |α̃|
√

1− |α̃|2 = O(1), which
is the case unless |µ| = |α̃|/|β̃| = |α̃|/

√
1− |α̃|2 is small or large.

3.1.2. Tropical scaling. Gaubert and Sharify [Gaubert and Sharify 2009] propose an
eigenvalue parameter scaling based on the tropical roots of the max–times scalar
quadratic polynomial (also called tropical polynomial)

qtrop(x) = max(‖A2‖2x2, ‖A1‖2x, ‖A0‖2), x ∈ [0,∞).

This polynomial has a double tropical root 1

γ+trop = γ−trop =
√
‖A0‖2/‖A2‖2 = γ

FLV

1At a tropical root, the maximum is attained by at least two monomials.
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when τQ ≤ 1 and two distinct tropical roots

γ+trop =
‖A1‖2
‖A2‖2

, γ−trop =
‖A0‖2
‖A1‖2

, (γ+trop > γ−trop)

when τQ > 1.
Gaubert and Sharify prove that when the tropical roots are well separated and

A2, A1 are well conditioned then the n largest eigenvalues in modulus are of the order
of γ+trop. Similarly, if γ+trop � γ−trop and A1, A0 are well conditioned then the n smallest
eigenvalues in modulus are of the order of γ−trop. They show experimentally that ifQ(λ)
is scaled as in (13) with

γ = γ+trop, δ =
(
qtrop(γ+trop)

)−1
, (17)

then the large eigenvalues in magnitude of Q̃(µ) are computed with a small backward
error by the QZ algorithm (via first companion linearization). Similarly, the choice of
parameters

γ = γ−trop, δ =
(
qtrop(γ−trop)

)−1 (18)

experimentally yields small backward errors for eigenvalues of small magnitude. This
behaviour is confirmed theoretically by our bounds (10)-(12). Indeed for the choices
(17) and (18) of parameters, max(1,maxi=0:2 ‖Ai‖2)2 = 1 and

‖p(α̃, β̃)‖1 = O(1) if
{
γ = γ+trop and |µ| ≥ 1, or equivalently, |λ| ≥ γ+trop,
γ = γ−trop and |µ| ≤ 1, or equivalently, |λ| ≤ γ−trop.

Hence, when τQ > 1, tropical scaling guarantees optimal backward errors and condi-
tioning for the eigenvalues of the scaled quadratic outside the unit circle when (17) is
used and for those in the unit circle when (18) is used.

3.2. Further remarks concerning heavily damped problems
The analysis in Section 3.1 implies that small backward errors cannot be guaranteed
for all eigenvalues when τQ >∼ 1. Hence we may want to transform the problem to an
equivalent one for which τQ ≈ 1. To that effect, we can

(i) use a homogeneous rotation[
c s
−s c

] [
α
β

]
=:

[
α̃
β̃

]
, c, s ∈ R, c2 + s2 = 1, (19)

and define a rotated quadratic Q̃(α̃, β̃) via

Q(α, β) =

2∑
j=0

(cα̃− sβ̃)j(sα̃+ cβ̃)2−jAj =

2∑
j=0

α̃j β̃2−jÃj =: Q̃(α̃, β̃) (20)

with
Ã2 = Q(c, s), Ã1 = −2csA2 + (c2 − s2)A1 + 2csA0, Ã0 = Q(−s, c).

It is not difficult to find c, s such that ‖Ã1‖2 <∼ (‖Ã2‖2‖Ã0‖2)1/2 (for instance c = s =

1/
√

2 usually achieves this inequality),
(ii) use a diagonal scaling or balancing of the type discussed in [Lemonnier and

Van Dooren 2006] and [Betcke 2008].

However, in both cases, examples exist for which after scaling back, ηQ � nu, so we do
not pursue this idea.
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3.3. Summary
Based on the analysis in Section 3.1 and remarks in Section 3.2, the default in our
implementation is to apply the Fan, Lin, and Van Dooren scaling (14) to the quadratic
Q(λ) prior to building the second companion linearization C2(λ) when τQ <∼ 1 and
not to scale otherwise. The tropical scaling (17), (18) is also implemented but left as
an option. We refer to Experiment 3 in Section 6 for numerical illustrations of these
eigenvalue parameter scalings.

4. DEFLATION OF 0 AND ∞ EIGENVALUES
The eigenvalues of a regular n × n quadratic Q(λ) are the zeros of the characteristic
polynomial detQ(λ) = detA2 λ

2n + lower order terms, so when A2 is nonsingular, Q(λ)
has 2n finite eigenvalues. When A2 is singular Q(λ) has d finite eigenvalues to which
we add 2n− d infinite eigenvalues, where d is the degree of detQ(λ). Note that λ is an
eigenvalue of Q if and only if 1/λ is an eigenvalue of the reversal of Q in (8), where 0
and∞ are regarded as reciprocals. If r0 = rank(A0) < n then Q has at least n− r0 zero
eigenvalues and if r2 = rank(A2) < n, Q has at least n− r2 infinite eigenvalues. As an
example, the quadratic

Q(λ) = λ2
[

0 1
0 0

]
+ λA1 +

[
0 0
1 0

]
with A1 such that detQ(λ) 6≡ 0 has at least one infinite eigenvalue and at least one zero
eigenvalue. If A1 =

[
0
0
1
1

]
then the remaining eigenvalues are∞ and −1.

Let us denote by

Nr(A) =
{
x ∈ Cn : Ax = 0

}
, Nl(A) =

{
y ∈ Cn : y∗A = 0

}
the right and left nullspaces, respectively of A ∈ Cn×n. Note that the right and left
eigenvectors of Q associated with the 0 and∞ eigenvalues generate the right and left
nullspace of A0 and A2, respectively.

Our algorithm checks the ranks of A0 and A2 and when one or both of them are
singular, it deflates the corresponding zero and infinite eigenvalues.

4.1. Rank and nullspace determination
A QR factorization with column pivoting can be used to determine the rank of an n×n
matrix A. This factorization has the form

Q∗AP =

[ k n−k

k R11 R12

n−k 0 0

]
, (21)

where Q is unitary, P is a permutation matrix, and R11 is upper triangular and non-
singular [Golub and Van Loan 1996, p. 248]. Then rank(A) = rank(R11) = k. For suf-
ficiently small ‖E‖2, it is shown in [Higham 1990, Thm. 5.2] that A + E has the QR
factorization with column pivoting

Q̄∗(A+ E)P =

[ k n−k

k R̄11 R̄12

n−k 0 R̄22

]
, (22)

with

‖R̄22‖2
‖A‖2

≤ ‖E‖2
‖A‖2

(1 + ‖R−111 R12‖2) +O

(
‖E‖2
‖A‖2

)2

, (23)



An Algorithm for the Complete Solution of QEPs A:9

and where ‖R−111 R12‖2 ≤
(
(n − k)(4k − 1)/3

)1/2. Although the latter bound is nearly
attainable, numerical experience shows that ‖R−111 R12‖2 is usually small. Hence ifA+E
is close to a rank k matrix then R̄22 will usually be small. Our algorithm sets R̄22 to zero
if ‖R̄22‖2 ≤ tol, where the tolerance tol can be specified by the user. By default, tol =
nu‖A‖2, where u is the unit roundoff. With the default tolerance we can overestimate
the rank but this does not affect the stability of our algorithm. Indeed we only use
QR factorizations with column pivoting to deflate zero and infinite eigenvalues. If the
rank is overestimated then we deflate fewer eigenvalues than we could have done. The
QZ algorithm then has to solve a generalized eigenproblem of larger dimension than
really necessary.

Although there are other more sophisticated methods for estimating the rank [Chan-
drasekaran and Ipsen 1994], QR with column pivoting performs well in our algorithm
in practice (see Section 6) and has the advantage of being available in LAPACK and as
a MATLAB built-in function.

Note that the last n− k columns of Q in (21) span the left null space of A. A basis for
the right nullspace of A is obtained by postmultiplying (21) by a sequence of House-
holder transformations H1, . . . ,Hk that reduce R12 to zero. This leads to a complete
orthogonal decomposition of A,

Q∗AZ =

[ k n−k

k T11 0
n−k 0 0

]
, (24)

where Z = PH1 · · ·Hk (see [Golub and Van Loan 1996, p. 250]). Then the last n − k
columns of Z span the right nullspace of A. The decomposition (24) will be needed in
the following sections.

4.2. Block triangularization of C2(λ)

Throughout this section we assume that r0 := rank(A0) ≤ rank(A2) =: r2 (if r0 > r2 we
work with rev(Q(λ)) instead of Q(λ)). Let

Q∗iAiPi =

[ ri n−ri

ri R
(i)
11 R

(i)
12

n−ri 0 0

]
=

[
R(i)

0

]
, i = 0, 2, (25)

be QR factorizations with column pivoting of A0 and A2. With the help of these fac-
torizations and another complete orthogonal decomposition when both A0 and A2 are
singular (i.e., r0, r2 < n), we show how to transform the second companion form

C2(λ) =

[
A1 −I
A0 0

]
− λ

[
−A2 0

0 −I

]
into block upper triangular form

QC2(λ)V =

[
A11 A12 A13

0 A22 A23

0 0 0n−r0

]
− λ

[
B11 B12 B13

0 0n−r2 B23

0 0 B33

]
, (26)

where the 2n × 2n matrices are partitioned conformably. Note that if A22 (or B33) is
singular then detQ(λ) = detC2(λ) ≡ 0 and henceQ(λ) is nonregular. When A22 and B33

are nonsingular, (26) reveals n − r0 zero eigenvalues and n − r2 infinite eigenvalues.
The remaining eigenvalues are those of the (r0 + r2)× (r0 + r2) pencil A11 − λB11.

We consider three cases.
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(i) r0 = r2 = n. In this case there are no zero and no infinite eigenvalues. However we
make use of the factorization of A2 in (25) to reduce the leading coefficient

[−A2

0
0
−I
]

of the linearization to upper triangular form, which is a necessary step in the QZ
algorithm. This is achieved with

Q =

[
Q∗2 0
0 In

]
, V =

[
P2 0
0 In

]
so that

QC2(λ)V =

[
Q∗2A1P2 −Q∗2
A0P2 0

]
− λ

[
−R(2) 0

0 −I

]
= A11 − λB11.

(ii) r0 < r2 = n. In this case there are at least n− r0 zero eigenvalues, which we deflate
with

Q =

[
Q∗2 0
0 Q∗0

]
, V =

[
P2 0
0 Q0

]
so that

QC2(λ)V =

[ n r0 n−r0

n X11 X12 X13

r0 X21 0 0
n−r0 0 0 0

]
− λ

−R(2) 0 0
0 −Ir0 0
0 0 −In−r0

 , (27)

where X11 = Q∗2A1P2, [X12 X13 ] = −Q∗2Q0 and X21 = R(0)P ∗0 P2. The pencil (27) is
in the form (26) with A11 =

[
X11

X21

X12

0

]
and B11 =

[−R(2)

0
0

−Ir0

]
of dimension (n+ r0)×

(n+ r0). Note that, as in case (i), B11 is upper triangular.
(iii) r0 ≤ r2 < n. There are at least n − r0 zero eigenvalues and at least n − r2 infinite

eigenvalues that we deflate as follows. With

Q̃ =

[
Q∗2 0
0 Q∗0

]
, Ṽ =

[
In 0
0 Q0

]
we obtain

Q̃C2(λ)Ṽ =


r2 n−r2 r0 n−r0

r2 X11 X12 X13 X14

n−r2 X21 X22 X23 X24

r0 X31 X32 0 0
n−r0 0 0 0 0

− λ
Y11 Y12 0 0

0 0 0 0
0 0 −Ir0 0
0 0 0 −In−r0

 , (28)

where
[
X11 X12

X21 X22

]
= Q∗2A1,

[
X13 X14

X23 X24

]
= −Q∗2Q0, [X31 X32 ] = R(0)P ∗0 , and

[Y11 Y12 ] = −R(2)P ∗2 . Let

[

r2 n−r2 r0

n−r2 X21 X22 X23 ] = Q3 [

n−r2 r0+r2

R3 0 ]Z3

be a complete orthogonal decomposition and let

Q =

 Ir2 0 0 0
0 0 Ir0 0
0 Q∗3 0 0
0 0 0 In−r0

 Q̃, V = Ṽ

[ n+r0 n−r0

Z∗3 0
0 In−r0

][ 0 In−r2 0
Ir2+r0 0 0

0 0 In−r0

]
.

Then easy calculations show that QC2(λ)V has the form (26) with A22 = R3.

When A0 or A2 have low rank, the block triangularization (26) of C2(λ) yields a sub-
stantial saving of work for the eigenvalues/eigenvectors computation as it reduces the
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size of the pencil to which the QZ algorithm is applied. In the worst case, that is when
A0 and A2 are both nonsingular, we only make use of one of the two QR factorizations
with column pivoting. The execution times provided in Section 6 indicate that this
extra cost is negligible compared with the overall cost.

5. LEFT AND RIGHT EIGENVECTORS
From (26) we have that

Λ(Q(λ)) = Λ(C2(λ)) = Λ(A11 − λB11) ∪ {∞, . . . ,∞}︸ ︷︷ ︸
n− r2 times

∪ {0, . . . , 0}︸ ︷︷ ︸
n− r0 times

,

where Λ(A) denotes the spectrum of A. Our implementation uses the QZ algorithm to
compute the Schur decomposition of A11 − λB11, and hence its eigenvalues.

The computation of the eigenvectors of Q(λ) depends on whether the eigenvectors
are right or left eigenvectors, whether they correspond to deflated eigenvalues or not
and whether the Fan, Lin and Van Dooren scaling is used or not, as we now explain.

5.1. Right eigenvectors
When A0 or A2 or both are singular, the vectors spanning their right nullspacesNr(A0)
and Nr(A2) are right eigenvectors associated with the 0 and ∞ eigenvalues of Q(λ).
These nullspaces can be obtained from (25) by zeroing R(i)

12 , i = 0, 2 with the help of rj
Householder reflectors to yield a complete orthogonal decomposition as in (24), that is,

Q∗jAjZj =

[ rj n−rj

rj T j11 0
n−rj 0 0

]
, j = 0, 2.

The last n−r0 columns of Z0 are eigenvectors ofQ with eigenvalue 0 and the last n−r2
columns of Z2 are eigenvectors of Q with eigenvalue∞.

For the right eigenvectors associated with the non-deflated eigenvalues note that if
z̃ ∈ Cr0+r2 is a right eigenvector of the pencil A11 − λB11, which is easily obtained once
the Schur decomposition of A11 − λB11 is available, then

z =

[
n z1
n z2

]
= V

[
z̃
0

]
is a right eigenvector of C2(λ), where V is as in Section 4.2. We also know that z must
have the form displayed in (9). To recover an approximate eigenvector x of Q from z we
proceed as follows.

— If the scaling (14) is used and τQ <∼ 1 with τQ as in (16) then x = z1 since the analysis
in Section 3.1.1 guarantees a small backward error for the eigenpair (z1, α, β).

— If A0 is singular then x = z1.
— Otherwise α 6= 0, and if β = 0 then x = z1. If β 6= 0, we use the QR factorization of
A0 in (25) to solve the linear system z2 = −βA0x2 for x2. Then x = z1 if ηQ(z1, α, β) ≤
ηQ(x2, α, β), otherwise x = x2.

5.2. Left eigenvectors
When A0 is singular, the last n− r0 columns of Q0 in (25) are eigenvectors of Q associ-
ated with the n− r0 deflated zero eigenvalues and when A2 is singular, the last n− r2
columns of Q2 in (25) are left eigenvectors of Q associated with the deflated n − r2
infinite eigenvalues.

For the left eigenvectors of Q corresponding to the nondeflated eigenvalues, we first
compute the left eigenvectors of C2(λ) corresponding to these eigenvalues. For this, we
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use the Schur decomposition of A11− λB11 to obtain the Schur decomposition of C2(λ),
from which the left eigenvectors are easily computed. In exact arithmetic if w is a left
eigenvector of C2 then it has the form displayed in (9), but in floating point arithmetic,
w1 and w2 are generally not parallel,

w =

[
w1

w2

]
=

[
ᾱy1
β̄y2

]
.

Then, to recover an approximate left eigenvector y of Q from w we proceed as follows.

— If the scaling (14) is used and τQ <∼ 1 then y = w1 if |λ| = |α/β| ≥ 1 and y = w2

if |λ| < 1, since with this choice for y, the analysis in Section 3 guarantees a small
backward error for the left eigenpair (y∗, α, β).

— Otherwise, we take as approximate left eigenvector of Q with eigenvalue λ = α/β
the vector wi 6= 0 with smallest backward error ηQ(w∗i , α, β).

5.3. Further remarks
As explained in the previous two sections, there are situations for which we have two
choices for the eigenvectors. For example, suppose that (x1, α, β) and (x2, α, β) are two
approximate right eigenpairs of a single eigenpair (x, α, β) of Q. Then we can try to
find a =

[
a1
a2

]
such that ηQ(a1x1 + a2x2, α, β) is minimized. In other words, we need to

solve the following problem:

min
a∈C2

‖Q(α, β)Xa‖2
‖Xa‖2

,

where X = [x1 x2]. For that we can take the GSVD of the pair of n × 2 matrices
(Q(α, β)X,X),

Q(α, β)X = UCY, X = V SY,

where U, V are unitary, Y is nonsingular and C = diag(c1, c2), S = diag(s1, s2) with
c1, c2, s1, s2 ≥ 0. Thus if we let a = Y −1b,

min
a∈C2

‖Q(α, β)Xa‖22
‖Xa‖22

= min
b∈C2

‖Cb‖22
‖Sb‖22

= min
b∈C2

b∗C∗Cb

b∗S∗Sb
,

which is the smallest eigenvalue of C∗C−λS∗S . So the minimum is achieved at b = ei,
where |ci/si| is minimal. Hence a = Y −1ei. In practice we found that this approach
does not decrease the backward error much. The matrix Y is often very close to being
singular, producing a new eigenvector with a larger backward error than that for x1
and x2. Therefore we did not implement this approach.

5.4. Algorithm
The main steps of our quadratic eigensolver are presented in Algorithm 1. They con-
sist of two preprocessing steps: an eigenvalue parameter scaling and a deflation of the
zero and infinite eigenvalues contributed by singular leading and trailing matrix coef-
ficients, as described in Sections 3 and 4. These preprocessing steps are followed by the
computation of the eigenvalues with the QZ algorithm. The eigenvector computation
described in Section 5 is optional, as are the computation of the eigenvalue condition
numbers and backward errors of approximate eigenpairs.

6. NUMERICAL EXPERIMENTS
We now describe a collection of numerical experiments designed to give insight into
quadeig, our MATLAB implementation of Algorithm 1, its performance in floating
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Algorithm 1: Quadratic Eigenvalue Solver—quadeig

Input: n× n matrices A2, A1, A0 defining the quadratic Q(λ).
Optional: parameter pscale such that

pscale =



0 : Fan, Lin and Van Dooren scaling if τQ < 10 and
no scaling otherwise (default).

1 : no eigenvalue parameter scaling
2 : Fan, Lin and Van Dooren scaling
3 : tropical scaling with smallest tropical root γ−trop
4 : tropical scaling with largest tropical root γ+trop

and a tolerance tol for rank decision (default: tol = numaxi(‖Ai‖).
Output: Eigenvalues,
right/left eigenvectors (optional), see Section 5,
eigenvalue condition numbers (optional),
backward errors of computed right/left eigenpairs (optional).

1 Apply eigenvalue parameter scaling pscale as described in Section 3.
2 Compute the block triangularization (26) of C2(λ) using tol (see Section 4).
3 Compute eigenvalues of Q(λ) using Schur decomposition of A11 − λB11.
4 Compute right/left eigenvectors of Q(λ) as described in Section 5 (optional).
5 Compute eigenvalue condition numbers (optional). Compute backward errors

of computed right/left eigenpairs (optional).

point arithmetic, and the implementation issues. Our computations were done in MAT-
LAB 7.13.0 (R2011b) under Windows XP (SP3) with a Pentium E6850, for which
u = 2−53 ≈ 1.1 × 10−16. When available, quadeig makes use of some functions from
the NAG Toolbox for MATLAB, namely f08bh2 to reduce the upper trapezoidal ma-
trix [R11 R12] in (21) to upper triangular form [R 0], and f08yk3 to compute some of
the left generalized eigenvectors of C2(λ) as well as their complex analogs. The use or
not of these LAPACK routines through the NAG Toolbox does not affect the numerical
stability of our implementation of Algorithm 1, just its efficiency.

In all computations involving ‖Ai‖2, i = 0: 2, (e.g., Fan, Lin and Van Dooren scaling,
tropical scaling, condition numbers, backward errors), the 2-norm is replaced by the
Frobenius norm ‖ · ‖F .

We compare the performance of quadeig to that of the MATLAB function polyeig,
which for quadratics, calls the QZ algorithm on the linearization (1). polyeig returns
eigenvalues, right eigenvectors and eigenvalue condition numbers, but does not return
left eigenvectors and backward errors of approximate eigenpairs.

Experiment 1. We ran quadeig with the default options (except for the calls to the
NAG Toolbox, which were switched off) on all the QEPs from the NLEVP collection
[Betcke et al. 2011] of size n < 1250 and tested its numerical stability. For each prob-
lem, Table I displays the largest backward error for the right eigenpairs returned by
polyeig and the largest backward errors for the right and left eigenpairs returned by
quadeig. We make the following observations.
— polyeig is unstable on several examples that are highlighted in bold in the table.

2f08bh corresponds to the LAPACK routine DTZRZF.
3f08yk corresponds to the LAPACK routine DTGEVC.
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— As predicted by the analysis in Section 3, quadeig, unlike polyeig, returns right and
left eigenpairs with backward errors close to the machine precision for quadratics
Q(λ) that are not too heavily damped (i.e., τQ <∼ 1).

— The improvements in the backward errors for the damped−beam, hospital,
power−plant, shaft and speaker−box problems are due to the Fan, Lin and Van
Dooren scaling. Note that for the latter problem, the stiffness matrix A0 has numer-
ical rank 106 < n = 107. The smallest eigenvalue is computed as 0.16 by polyeig
and as 0 by quadeig’s deflation process.

— For the railtrack problem, rank(A0) = rank(A2) = 67� 1005 and the improvement
in the backward errors of quadeig over polyeig is due to our deflation strategy.

— The cd−player problem is heavily damped with τQ = 9.3× 103 � 1 and, as a result,
quadeig uses no scaling. It computes eigenpairs with small backward errors. Note
that these results are not predicted by the upper bounds on the backward errors in
(11)–(12), which are large for some of the eigenpairs.
Experiment 2. Table II displays the execution time of polyeig and quadeig for the

computation of the eigenvalues Λ alone, and the eigenvalues/eigenvectors (Λ,X) for
some large QEPs in the NLEVP collection, some of which have singular leading and
trailing coefficient matrices so that deflation takes place in quadeig. For a fair com-
parison, we made use of the NAG Toolbox (see first paragraph of section 6) for the
execution times reported in Table II. We make the following comments.
— When no deflation occurs, and with the exception of the spring problem, the execu-

tion time for the computation of all the eigenvalues is about the same for quadeig
and polyeig. This shows that our preprocessing step which involves two QR fac-
torizations with column pivoting to check for possible deflation does not affect the
overall execution time.

— polyeig is twice slower than quadeig on the spring problem for the computation of
the eigenvalues. The output of the following MATLAB commands shows that the
QZ algorithm is slower on the linearization polyeig uses than on the linearization
C2(λ) used by quadeig. The reason for this is unclear.

n = 1000;
coeffs = nlevp(’spring’,n);
A0 = coeffs{1}; A1 = coeffs{2}; A2 = coeffs{3};
disp(’Linearization C2’)
A = [A1 -eye(n); A0 zeros(n)]; B = [-A2 zeros(n); zeros(n) -eye(n)];
tic, eig(A,B); toc
disp(’Linearization (1.1) as in polyeig’)
A = [A0 zeros(n); zeros(n) eye(n)]; B = [-A1 -A2; eye(n) zeros(n)];
tic, eig(A,B); toc

Linearization C2
Elapsed time is 92.997492 seconds.
Linearization (1.1) as in polyeig
Elapsed time is 182.523154 seconds.

— For the computation of all eigenpairs, Table II also shows that quadeig can be
faster than polyeig, in particular when the leading and trailing coefficient matrices
have low rank. For such problems, the deflation of the zero and infinite eigenvalues
speeds up the execution time by reducing the size of the problem to which the QZ
algorithm is applied. We note that, in contrast with quadeig, the eigenpairs com-
puted by polyeig are inaccurate for the damped−beam problem (see Experiment 1
and [Higham et al. 2008]).
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Table I. Largest backward errors of eigenpairs computed by polyeig and quadeig on quadratic
eigenvalue problems from the NLEVP collection.

polyeig quadeig

Problem n τQ ηmax
Q (x, α, β) ηmax

Q (x, α, β) ηmax
Q (y∗, α, β)

acoustic−wave−1d 10 2.1e-1 2.3e-15 6.5e-16 5.5e-16
acoustic−wave−2d 30 2.1e-1 5.6e-16 6.2e-16 6.4e-16

bicycle 2 4.2e-1 1.5e-15 6.1e-17 5.2e-17
bilby 5 4.2e+0 2.6e-16 6.0e-16 3.5e-16

cd−player 60 9.3e+3 1.7e-10 7.4e-16 1.8e-15
closed−loop 2 2.5e+0 1.8e-16 8.4e-16 1.5e-16
damped−beam 200 2.1e-4 3.3e-9 9.9e-16 8.7e-16

dirac 80 1.6e+0 4.1e-15 1.2e-15 1.6e-15
gen−hyper2 15 1.4e+0 6.1e-16 5.5e-16 4.9e-16

gen−tantipal2 16 1.5e+0 4.8e-16 4.7e-16 4.1e-16
gen−tpal2 16 1.9e+0 6.9e-16 6.1e-16 6.9e-16

intersection 10 4.9e-1 3.8e-17 4.7e-17 8.5e-17
hospital 24 6.6e-2 3.0e-13 6.2e-16 6.2e-16

metal−strip 9 7.8e+0 4.0e-14 6.4e-16 4.0e-16
mobile−manipulator 5 8.3e-2 1.2e-18 6.2e-17 6.4e-17

omnicam1 9 1.1e+0 1.7e-15 9.4e-17 3.0e-17
omnicam2 15 1.9e+0 4.8e-17 6.6e-17 2.3e-16

pdde−stability 225 4.4e+1 5.0e-14 1.5e-14 1.3e-14
power−plant 8 6.7e-1 1.3e-8 3.8e-16 4.9e-17

qep1 3 2.5e+0 2.2e-16 7.3e-17 6.2e-17
qep2 3 1.3e+0 9.6e-17 8.7e-17 8.7e-17
qep3 3 7.5e-1 9.4e-17 1.2e-16 5.1e-17
qep5 3 1.2e+0 4.4e-16 2.8e-16 2.0e-16

railtrack 1005 1.8e+1 2.0e-8 2.4e-15 9.6e-15
relative−pose−6pt 10 5.8e+0 1.1e-15 5.2e-16 2.9e-16

shaft 400 1.1e-6 8.5e-8 1.0e-15 9.6e-16
sign1 81 2.0e+0 2.3e-16 9.4e-16 9.6e-16
sign2 81 1.8e+0 5.8e-16 1.6e-15 1.0e-15

sleeper 10 3.5e+0 3.7e-15 3.5e-16 2.8e-16
speaker−box 107 2.1e-5 1.5e-11 2.2e-16 3.9e-16

spring 5 8.1e+0 5.6e-16 5.6e-16 4.9e-16
spring−dashpot 10 6.4e-3 1.0e-15 1.3e-16 1.2e-16

wing 3 1.8e-1 4.5e-15 3.6e-16 4.1e-16
wiresaw1 10 1.5e-2 9.2e-15 5.6e-16 5.6e-16
wiresaw2 10 7.3e-2 4.8e-14 9.8e-16 9.6e-16

Table II. Execution time in seconds for the computation of all eigenvalues Λ and all right
eigenpairs (Λ,X) of n× n quadratics in the NLEVP collection, where ri = rank(Ai),
i = 0, 2.

polyeig quadeig

Problem n r0 r2 Λ (Λ,X) Λ (Λ,X)

acoustic−wave−2D 870 118.0 202.8 114.1 190.8
damped−beam 1000 95.6 155.7 98.3 166.9

spring 1000 181.7 272.1 93.8 170.2
shaft 400 400 199 1.7 5.4 1.4 2.7

railtrack 1005 67 67 17.3 70.0 4.8 6.3
railtrack2 1410 705 705 128.8 306.2 79.2 113.5
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Experiment 3. To give insight into the influence of the parameter pscale of quadeig
we generated the following heavily damped problems.
(1) The random problem is a quadratic generated in MATLAB with the commands

n = 30; randn(’state’,31);
A0 = 1e1*randn(n); A1 = 1.e3*randn(n); A2 = 1e-1*randn(n);

(2) The modified hospital problem is the hospital problem from the NLEVP collec-
tion for which the damping matrix is multiplied by 103.

(3) The modified acoustic problem is the acoustic−wave−2D problem from the
NLEVP collection for which the damping matrix is multiplied by 102.

For each problem, we ran quadeig with pscale = 1 (no eigenvalue parameter scal-
ing), pscale = 2 (Fan, Lin and Van Dooren scaling, FLV), pscale = 3 (tropical scaling
with smallest root γ−trop) and pscale = 4 (tropical scaling with largest root γ+trop). The
backward errors for the right eigenpairs are shown on Figures 1–3.

The top plot on each figure shows that our eigensolver quadeig with no scaling can be
unstable for heavily damped problems. Note that no scaling is the default option when
τQ > 10. These plots also show that the Fan, Lin and Van Dooren scaling, quadeig does
not always produce eigenpairs with small backward errors when τQ � 1.

The bottom plot of each figure illustrates the tropical scaling. These plots confirm
the analysis of Section 3.1.2, which shows that quadeig with pscale = 3 (pscale = 4)
leads to small backward errors for eigenvalues λ such that |λ| <∼ γ

−
trop (|λ| >∼ γ

+
trop). The

plots also show that for problems with well conditioned coefficient matrices Ai (this is
the case for the random and modified hospital problems) and for which γ−trop � γ+trop,
the eigenvalues of Q(λ) split into two groups, those whose modulus are close to γ−trop
and those whose modulus are close to γ+trop (see [Gaubert and Sharify 2009, Thm. 2]).
For the modified acoustic problem, A1 is singular and the above result does not hold
as illustrated on Figure 3.

Based on these experiments and the analysis in Section 3.1.2, we recommend the
use of tropical scaling with γ−trop to users interested in the smaller eigenvalues in mag-
nitude, and the use of tropical scaling with γ+trop to users interested in the larger eigen-
values in magnitude.

7. CONCLUSIONS
We have described a new algorithm for the computation of all the eigenvalues and
optionally the right and left eigenvectors of dense quadratic matrix polynomials. Our
algorithm incorporates the scaling of Fan, Lin and Van Dooren for problems that are
not too heavily damped, a choice of linearization with favorable conditioning and back-
ward stability properties, and a preprocessing step that reveals and deflates the zero
and infinite eigenvalues contributed by singular leading and trailing matrix coeffi-
cients.

The algorithm is backward stable for quadratics that are not too heavily damped.
We note that QEPs in applications are often not heavily damped. For heavily damped
problems, our algorithm offers the option of using an eigenvalue parameter scaling
based on tropical roots, for which we can show that the smallest tropical root leads to
small backward errors for eigenvalues small in absolute value and the largest tropical
root leads to small backward errors for the largest eigenvalues in absolute value.

Numerical experiments show that our MATLAB implementation of the algo-
rithm, quadeig, outperforms the MATLAB function polyeig in terms of both stabil-
ity and efficiency. The MATLAB function quadeig is available from the web page
http://www.maths.manchester.ac.uk/ ftisseur/misc/ and a FORTRAN implemen-
tation is under development.
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Fig. 1. Backward errors of right eigenpairs computed by quadeig and different choices for the eigenvalue
parameter scaling pscale. For the random problem, τQ ≈ 103 and γ−trop ≈ 10−2, γ+trop ≈ 104.
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Fig. 2. Backward errors of right eigenpairs computed by quadeig and different choices for the eigenvalue
parameter scaling pscale. For the modified hospital problem, τQ ≈ 66 and γ−trop ≈ 0.8, γ+trop ≈ 3.7× 103.
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Fig. 3. Backward errors of right eigenpairs computed by quadeig and different choices for the eigenvalue
parameter scaling pscale. For the modified acoustic problem, τQ ≈ 20 and γ−trop ≈ 0.1, γ+trop ≈ 40.
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