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We explore the relevance of the idealized Jeffery–Hamel similarity solution to the
practical problem of flow in a diverging channel of finite (but large) streamwise
extent. Numerical results are presented for the two-dimensional flow in a wedge of
separation angle 2α, bounded by circular arcs at the inlet/outlet and for a net radial
outflow of fluid. In particular, we show that in a finite domain there is a sequence
of nested neutral curves in the (Re, α) plane, each corresponding to a midplane
symmetry-breaking (pitchfork) bifurcation, where Re is a Reynolds number based on
the radial mass flux. For small wedge angles we demonstrate that the first pitchfork
bifurcation in the finite domain occurs at a critical Reynolds number that is in
agreement with the only pitchfork bifurcation in the infinite-domain similarity solution,
but that the criticality of the bifurcation differs (in general). We explain this apparent
contradiction by demonstrating that, for α� 1, superposition of two (infinite-domain)
eigenmodes can be used to construct a leading-order finite-domain eigenmode. These
constructed modes accurately predict the multiple symmetry-breaking bifurcations of
the finite-domain flow without recourse to computation of the full field equations. Our
computational results also indicate that temporally stable, isolated, steady solutions
may exist. These states are finite-domain analogues of the steady waves recently
presented by Kerswell, Tutty, & Drazin (J. Fluid Mech., vol. 501, 2004, pp. 231–250)
for an infinite domain. Moreover, we demonstrate that there is non-uniqueness of
stable solutions in certain parameter regimes. Our numerical results tie together, in a
consistent framework, the disparate results in the existing literature.

Key words: bifurcation, general fluid mechanics

1. Introduction

The Jeffery–Hamel similarity solution is an exact solution to the Navier–Stokes
equations that describes the two-dimensional flow of an incompressible viscous
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FIGURE 1. Jeffery–Hamel flows, solutions of (1.2), for α = 0.1; the metric we choose here
is G′′(−1), which is related to the shear stress distribution at the ‘lower’ wall φ = −1. Here
Rec denotes the location of a subcritical symmetry-breaking bifurcation and Ref refers to
the location of the turning point in the symmetric solution branch. The inset figures are
sketches of the radial flow profile associated with each solution branch. The labels refer to the
classification of the different flows given by Fraenkel (1962).

fluid between two semi-infinite diverging planes. Jeffery–Hamel flows were first
documented almost a century ago (Jeffery 1915; Hamel 1916), since which time
the governing ordinary differential equation has been studied extensively.

In terms of polar coordinates, (r̂, θ), centred at the apex of an infinite wedge of
separation angle 2α, the Jeffery–Hamel form of the streamfunction ψ is

ψ(r̂, θ)= QG(φ). (1.1)

Here Q is a constant radial ‘volume’ flux and, following Fraenkel (1962), φ = θ/α ∈
[−1, 1] is a rescaled angle. The function G(φ) satisfies

G(iv) + 2αReG′G′′ + 4α2G′′ = 0, (1.2a)

where primes indicate differentiation with respect to φ, and Re = Q/ν is a Reynolds
number. The appropriate boundary conditions are

G(±1)=± 1
2 G′(±1)= 0, (1.2b)

describing no slip and no penetration at the wedge walls.
Although the system (1.2) is known to have an infinite number of solutions for any

value of the Reynolds number (Fraenkel 1962), we are most concerned with those
solutions that can be reached by continuous variation from the Stokes solution; as
shown in figure 1 for the representative case of α = 0.1.

These self-similar flows have been fully classified (Rosenhead 1940; Fraenkel 1962),
as has the bifurcation structure that connects them (Banks, Drazin & Zaturska 1988;
Goldshtik, Hussain & Shtern 1991). The most basic Jeffery–Hamel solution (II1) for
a net mass flux away from the wedge apex consists of a midplane symmetric outflow
across the entire channel. For a fixed channel angle, this pure outflow solution can



406 P. E. Haines, R. E. Hewitt and A. L. Hazel

only be found below a critical Reynolds number, Rec(α). Above this critical value the
solution develops a region of reverse flow at both of the wedge walls (II2). In addition,
there is also a subcritical pitchfork bifurcation at Rec and two solutions (IV1 and V1)
that break the symmetry about the midplane of the channel exist for Re < Rec(α). A
turning point is present at a larger Reynolds number Ref (α) but will play a limited
role herein. In the (Re, α) plane, the locus of points (Rec(α), α) form a boundary that
(following Fraenkel) we denote by B2. As α→ 0 it is known that Rec(α) ∼ 3π/α
(Fraenkel 1962; Akulenko & Kumakshev 2008).

The Jeffery–Hamel solutions describe a flow in an idealized, infinite, domain
rather than the practically relevant case of a system of finite streamwise extent.
A plausible, often implicit, assumption is that for ‘sufficiently long’ domains the
results of the ordinary-differential system (1.2) are relevant to the problem in a finite
domain. Various studies, both numerical and asymptotic, have attempted to relate
Jeffery–Hamel solutions to the study of flow structure and stability in expanding
channels of finite length. Banks et al. (1988) addressed the spatial stability of
symmetric Jeffery–Hamel flows by allowing for linearized perturbations of the form
rλg(φ), as first suggested by Dean (1934). Their work demonstrated that a loss of
stability to these ‘Dean modes’ occurs at the pitchfork bifurcation boundary B2. Banks
et al. (1988) computed the corresponding eigenmodes, but only for small or zero
Reynolds number. The work of Goldshtik et al. (1991) subsequently presented limited
results at Reynolds numbers for which the flow is fully nonlinear. Later, Dennis et al.
(1997) performed a numerical study of the steady flow in a wedge for ratios of
outlet to inlet radii between 7 and 25. They examined the effect of imposing a small
perturbation across either the inlet or the outlet in order to explore the relevance of
the Dean modes in a finite domain. Their attempt to recover these modes resulted
in limited success. They observed the loss of stability of the symmetric base flow to
antisymmetric perturbations but were unable to provide a critical Reynolds number,
specifying only that for α = π/18 the flow was stable to such perturbations for
Re= 50 and unstable for Re= 100.

Both Sobey & Drazin (1986) and Banks et al. (1988) identified the boundary B2

as the point at which the Jeffery–Hamel solution should cease to provide a good
description of the flow in an expanding channel. Several studies have investigated
the flow as the Reynolds number is increased beyond B2. Sobey & Drazin (1986)
performed numerical computations and experiments for a finite two-dimensional
(smoothly) expanding channel, but only for an expansion ratio (the outlet width
divided by the inlet width) of less than or equal to three. In these short domains
a supercritical pitchfork bifurcation was observed to exist both numerically and
experimentally. Although some critical values of the Reynolds number are given, it has
since been suggested that their numerical results, and in particular the critical values
obtained, may be inaccurate due to their use of an upwind differencing scheme (Sobey
& Mullin 1993). In the later numerical study of Dennis et al. (1997) symmetry-broken
solutions were located at Reynolds numbers significantly greater than Rec, reinforcing
the opinion emerging from the literature that the bifurcation is a supercritical pitchfork
for finite domains. However, their work did not compute the bifurcation directly and
no critical parameter values were provided.

Hamadiche, Scott & Jeandel (1994) presented the results of unsteady calculations
in a wedge of finite length, finding a neutral curve for temporal stability in good
agreement with B2 for small α. However, they observed time-periodic nonlinear states
for Reynolds numbers greater than the critical value perhaps indicating that they
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believed the loss of stability to arise via a Hopf bifurcation, although this is not stated
explicitly.

An important advance was made by Tutty (1996) in an investigation of finite-
domain flows at Reynolds numbers close to Rec. Tutty observed the existence of
a steady solution, which at large distances from the inlet appeared to be spatially
periodic (on a logarithmic scale) in the radial coordinate. For values of the Reynolds
number greater than Rec this spatially periodic solution was the one observed in his
numerical work, suggesting some form of instability of the symmetric Jeffery–Hamel
solution. For Reynolds numbers less than the critical value these ‘steady waves’ were
only observed when the inlet geometry incorporated a sudden step expansion. Tutty
(1996) interpreted the existence of the wave for Reynolds numbers less than Rec as
support for the claim that the flow becomes unstable subcritically. Kerswell, Tutty
& Drazin (2004) furthered the work of Tutty by enforcing the spatial periodicity in
the computational formulation. They found that the steady, spatially periodic solutions
first observed by Tutty arise from a heteroclinic bifurcation across the arms of the
subcritical Jeffery–Hamel pitchfork. They conjectured that such solutions may be
realized in an experiment since they appear to be spatially stable for parameter values
at which the symmetric Jeffery–Hamel solution is not.

In the extensive literature discussed above there are a number of clear discrepancies.
In particular, there are contradictions regarding the bifurcation sequence obtained as
the flow rate is increased, as highlighted by the supercritical pitchfork inferred by
Sobey & Drazin (1986) and Dennis et al. (1997), the supercritical Hopf bifurcation
observed by Hamadiche et al. (1994) and the symmetry-broken ‘spatial wave’ found
by Tutty (1996) and Kerswell et al. (2004). Whilst the available experimental
evidence (Sobey & Drazin 1986; Putkaradze & Vorobieff 2006) qualitatively supports
a supercritical pitchfork bifurcation, neither Sobey & Drazin nor Dennis et al. gave
values for the critical Reynolds number of this bifurcation. There is currently no study
that fully describes the loss of stability of the symmetric outflow in an expanding
channel or gives a comprehensive view of the solution structure. We address this by
performing two-dimensional computations in a wedge-shaped domain bounded by two
circular arcs. Our aim is to determine accurately the complete bifurcation structure
and provide well-resolved values for the associated critical Reynolds numbers over a
range of channel angles and domain sizes (§ 3). In § 4 we provide details of isolated
solution branches that remain disconnected from those described in § 3. We discuss the
relevance of these numerical results to experimental configurations in § 5.

After presenting the details of our numerical investigation, we return to the
similarity solution (§ 6) and discuss its relevance to the finite-domain flow. In
particular, we show that, for low wedge angles, the bifurcation in a finite domain
is dominated by the superposition of just two complex (radially oscillatory) Dean
eigenmodes. Consequently, the loss of symmetry of the radial outflow solution in a
finite domain can be predicted from the ordinary differential equation for the similarity
solution without recourse to the full two-dimensional Navier–Stokes equations.

2. Formulation of the finite-domain problem
To aid comparison with Jeffery–Hamel flows we choose the geometry to be a finite

section of a wedge bounded by an inlet and an outlet of constant radius as depicted
in figure 2. The numerical problem is formulated in terms of polar coordinates (r̂, θ)
centred on the (virtual) apex of the wedge with corresponding velocities (û, v̂) and
pressure p̂.
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FIGURE 2. The two-dimensional geometry. Two parallel walls separated by a fixed angle 2α
for which R̂i 6 r̂ 6 R̂o, where r̂ is the radial coordinate of a set of polar coordinates centred at
the (virtual) intersection of the two walls. The circular arcs at R̂i and R̂o are referred to as the
inlet and outlet boundaries respectively. After non-dimensionalization, the size of the domain
will be parameterized by the radius ratio η = R̂o/R̂i.

The finite-domain problem is non-dimensionalized in terms of the inlet ‘volume’
flux Q and the outlet radius R̂o. The relevant velocity scale is then U = Q/R̂o so the
dimensionless radial coordinate, velocity and pressure are

r = r̂

R̂o

, u= û
U
, p= R̂o

Uρν
p̂, (2.1)

where a hat indicates the corresponding dimensional variable. We also make use of a
rescaled angle φ = θ/α, such that u= u(r, φ) and p= p(r, φ).

The parameter space for the computational problem is spanned by

α, Re= Q

ν
, η = R̂o

R̂i

, (2.2)

which are the wedge half-angle, a Reynolds number and the outlet/inlet radius ratio.
We solve the resulting dimensionless form of the Navier–Stokes equations (in polar
form) using a finite-element method. The computational mesh is rectangular in the
coordinates r and φ and comprises (initially) Nr elements in the radial direction and
Nφ elements in the azimuthal direction. Where necessary the meshes undergo adaptive
refinement as part of the solution procedure, using the Z2 error estimator developed
by Zienkiewicz & Zhu (1992) with a flux based upon the rate of strain tensor. Initial
mesh nodes are spaced logarithmically in the radial direction in order to minimize
the error associated with resolving the inverse radius scaling of the Jeffery–Hamel
similarity solution, however the initial azimuthal spacing is generally uniform. To
better resolve rapid adjustments caused by the outlet boundary conditions, an outlet
region with smaller radial spacing between the nodes was incorporated into the initial
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mesh structure. A typical mesh resolution was of the order Nr = 60, Nφ = 30 prior to
any adaptation.

The finite-element library oomph-lib (Heil & Hazel 2006) was used to assemble
and solve the system of algebraic equations associated with a weak form of the
Navier–Stokes equations in plane polar coordinates on the finite domain, see Haines
(2010) for details.

2.1. Boundary conditions for the finite-domain numerical results

In our finite-element formulation, the implied, so-called natural, boundary condition
is for the flow to be ‘pseudo-traction free’ (PTF); and at the inlet/outlet of the finite
domain, this gives

−p+ ∂u

∂r
= 0,

∂v

∂r
= 0. (2.3a,b)

For the bulk of our finite-domain results in the following we impose the PTF
condition (2.3) at the outlet (as is common for open channel flow computations; see
Gresho & Sani 1998, pp. 475–482) together with a Dirichlet constraint at the inlet.
In any given experimental configuration it is unlikely that much control would be
available regarding the exact nature of the profile at the inlet to the diverging channel.
We therefore choose to introduce the following ad-hoc quadratic inlet condition:

u= 3
4αr

(
1− φ2

)
, v = 0 on r = η−1, (2.4)

on the grounds that this is a simple profile that lacks any special features. The factor
of 3

4 in (2.4) is required to impose a volume flux of unity. In the subsequent text we
shall refer to this inlet condition as ‘quadratic’.

We have repeated the results presented herein for several other plausible inlet/outlet
conditions. The behaviour that we describe in the following section is generic in that it
is relatively insensitive to the details of the boundary conditions, unless the conditions
are specifically (artificially) chosen to reproduce the Jeffery–Hamel similarity solution.
Moreover, the differences induced by changes in generic boundary conditions become
less significant for smaller channel angles. We return to a discussion of variations in
the boundary conditions in § 5 and our concluding § 7.

2.2. Validation of the numerical scheme

As a simple validation test we imposed the symmetric Jeffery–Hamel solution across
both the inlet and the outlet of the domain as a Dirichlet condition:

u= G′(φ)
αr

, v = 0 on r = η−1, 1, (2.5)

which led to good agreement with the similarity solution across the entire domain
for all Reynolds numbers and channel angles considered. For example, for Re = 40,
α = 0.2 and η = 100 the error in the radial velocity scaled by r was found to be
everywhere less than 2 × 10−3 for a fixed coarse mesh of 32 by 16 elements. As
expected for the chosen finite elements (Q2P−1 see Gresho & Sani 1998, p. 554)
numerical error was found to decrease quadratically under uniform mesh refinement.
Additional validation was performed by a detailed comparison of perturbations with
the spatial (Dean) eigenmodes of the similarity solution, see § 6.2.
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FIGURE 3. Numerically calculated loci of pitchfork bifurcations in the (Re, α) plane for a
radius ratio of η = 100, a quadratic inlet condition and a PTF outlet (solid lines). Each curve
is associated with a temporally neutral, two-dimensional eigenmode that breaks the midplane
symmetry of the flow and the numbering is for later reference. The dashed line indicates the
location of the (infinite-domain) similarity solution pitchfork bifurcation, namely the set of
critical values Rec(α) corresponding to boundary B2.

3. The bifurcation structure in a finite domain
In this section, all results are presented for the Dirichlet inlet boundary condition

(2.4) and the PTF outlet boundary condition (2.3). For these conditions, the
computational task is to locate pitchfork bifurcations, limit points and Hopf
bifurcations in the α–Re parameter plane (at a fixed radius ratio η). These critical
points are obtained by forming the appropriate extended system, which ensures that
the solution lies exactly at the bifurcation point, see for example Salinger et al. (2002).
Once a critical point has been located, its locus in the α–Re parameter plane can
be determined by arc-length continuation of the extended system. In the following
discussion we address each bifurcation type individually to construct a full picture of
the solution structure across the parameter plane at fixed radius ratio η. We concentrate
on the specific case of η = 100, as a representative ‘large’ domain that could be
plausibly realized experimentally, however results at this value are also qualitatively
typical of those found over a broad range of radius ratios.

3.1. The loci of symmetry-breaking pitchfork bifurcations
Figure 3 shows the pitchfork bifurcations found for η = 100 and 0 6 Re 6 60. The
loci of pitchfork bifurcations form a series of nested neutral curves in the (Re, α)
plane. We conjecture that an infinite number of neutral curves can be found in
the combined limit of α � 1, Re � 1 and η � 1. However, for the range of
parameter values we have considered (0 6 Re 6 100) only six are present. At these
boundaries the symmetric outflow state becomes unstable to midplane symmetry-
breaking bifurcations.

In figure 4 we show streamlines for the critical eigenfunctions of the pitchfork
bifurcations associated with the lower branches of the outer four neutral curves
shown in figure 3. The eigenfunctions shown are for α = 0.1 and are associated
with the continuation of the curves shown in figure 3 to somewhat larger Reynolds
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FIGURE 4. Streamlines of the temporally neutral, finite-domain, symmetry-breaking,
eigenfunctions associated with the lower branch of the outer four neutral curves given in
figure 3, with a wedge angle of α = 0.1 and radius ratio of η = 100. The contour spacing is
uniform. (a) Neutral curve 1, Re = 94.7; (b) neutral curve 2, Re = 96.0; (c) neutral curve 3,
Re= 97.9; (d) neutral curve 4, Re= 100.4.

numbers. It can be seen that each successive neutral curve introduces one additional
recirculation zone into the eigenfunction. The number of recirculation zones for a
given eigenfunction being one less than the number of the associated neutral curve.

For a fixed value of α, below the ‘nose’ of each neutral curve, we find that the
pitchfork bifurcations shown in figure 3 are ‘right facing’, in the sense that the
resulting symmetry-broken flows exist for Re> R̂ec(α) in all cases. Here we introduce
the hat notation, R̂ec, to distinguish critical Reynolds numbers of the finite domain
from that associated with the Jeffery–Hamel pitchfork bifurcation. Streamlines of the
finite-amplitude state after bifurcation from the fourth neutral curve can be seen in
figure 5.

Figure 3 demonstrates that the lower branch of pitchfork bifurcations in a finite
domain are in good quantitative agreement with the boundary B2 predicted by the
infinite-domain similarity solution. That the similarity solution successfully predicts
the critical Reynolds number of the finite-domain bifurcation is surprising, given that
the finite-domain bifurcation is supercritical whereas the similarity solution bifurcation
is subcritical at these points.

3.2. The loci of limit points and Hopf bifurcations
Using the same radius ratio (η = 100) and boundary conditions as for figure 3, we
determine the location of limit points associated with the symmetry-broken states and
Hopf bifurcations that arise from the primary symmetric-outflow solutions. Figure 6
shows these results for the two outermost neutral curves, and we anticipate similar
qualitative behaviour for each successive neutral curve. Clearly the first bifurcation
is of the most practical relevance and we have made no attempt to obtain yet more
boundaries at higher Reynolds numbers. An alternative representation of the behaviour
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FIGURE 5. Streamlines of the symmetry-broken flow arising from the pitchfork bifurcation
associated with the lower branch of the fourth neutral curve given in figure 3 at α = 0.1 and
η = 100. The bifurcated state is shown for Re= 120, but the bifurcation is at Re= 100.4. The
contour spacing is 0.05, however the contours near ψ = ±0.5 have been adjusted slightly in
order to visualize two closed recirculation regions in this nonlinear flow state.
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FIGURE 6. The location of pitchfork, limit-point and Hopf bifurcations in the (Re, α) plane.
Only the outer two pitchfork bifurcation curves are shown (solid lines) along with the limit
points of bifurcated (symmetry-broken) solutions (dashed lines) and the Hopf bifurcations
associated with the base state (dotted lines). Here C− denotes a coalescence point, Q denotes
a quartic point and BT denotes a Bogdanov–Takens point. Results are for η = 100, with a
quadratic inlet profile and a PTF outlet.

shown in figure 6 is presented in figure 7, which shows schematic bifurcation diagrams
(corresponding to the outermost neutral curve) that illustrate the solution structures that
would be observed at different fixed values of α as Re increases.

The Hopf bifurcations terminate with Bogdanov–Takens bifurcation points
(Kuznetsov 1998), at which the period tends to infinity and they reconnect with
the appropriate loci of pitchfork bifurcations. The first Hopf bifurcation is supercritical,
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FIGURE 7. A schematic diagram of the bifurcated states associated only with the outermost
neutral curve shown in figure 6. Bifurcated states are shown here with a notional metric that
reflects the degree of midplane asymmetry of the flow as the ordinate and with the Reynolds
number as the control parameter (at fixed α and η), increasing from left to right. Solid lines
indicate temporally stable solutions whilst dashed lines indicate solutions that are temporally
unstable to at least one mode, as determined by two-dimensional eigenvalue calculations. The
four schematic views are shown in order of decreasing α. Their relation to figure 6 is as
follows: (a) above C−; (b) between Q and C−; (c) between BT and Q; (d) beneath BT .

as inferred from a related initial-value problem, and it is worth noting that at values
of α that lie above the Bogdanov–Takens point, the upper branch of the neutral
curve restabilizes the symmetric base state, which then remains stable until the Hopf
bifurcation is encountered at larger values of Re (figure 7c).

The limit points connect to the pitchfork bifurcations at quartic points, where the
criticality of the pitchfork changes, revealing the manner in which the pitchfork
bifurcations cease to exist as the wedge angle is widened. For small values of
α, the upper/lower branches of a particular neutral curve are right-facing pitchfork
bifurcations for increasing Re (figure 7c and d). As α increases beyond values at
which a limit point exists for Re < R̂ec the first bifurcation changes to become left-
facing via a quartic point, leading to hysteresis, albeit over a very small parameter
range (figure 7b). As α is increased further the two pitchfork bifurcations coalesce
at a C− coalescence point (Cliffe, Spence & Tavener 2000, p. 48) and disappear
as the associated bifurcated states detach from the base symmetric solution branch
(figure 7a).

In general, therefore, the flow states at larger values of wedge-angle are more
complicated, with non-uniqueness, either in the form of the coexistence of stable
symmetric and asymmetric states or the coexistence of stable steady and periodic
asymmetric states.

4. Isolated steady solution branches
In the previous section, we explored the solution structure using continuation

methods, which only give information about connected solutions. In this section, we
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describe alternative states that are isolated from those described above. As in § 3 all
results are presented for the Dirichlet inlet boundary condition (2.4) and the PTF outlet
boundary condition (2.3).

At a separation angle of α = 0.1 the first pitchfork bifurcation occurs at R̂ec ≈ 94.72.
Unsteady computations at this channel angle are entirely in line with the (temporal)
eigenvalues obtained for the global problem, showing that the symmetric base flow
branch is stable to sufficiently small perturbations for Re < R̂ec. For Re > R̂ec the
symmetric solution is indeed found to be unstable. However, although the bifurcation
at R̂ec is supercritical, with (locally) stable symmetry-broken states present for
Re > R̂ec, these were not always the states that were achieved in the large time limit.
Our numerical results indicate that the eventual state of the unsteady system depends
sensitively on the initial conditions in this parameter regime; only some computations
converged to the symmetry-broken state that arises from the pitchfork bifurcation at
R̂ec.

By performing unsteady computations for the particular values α = 0.1 and η = 100
we were able to identify two new distinct steady solutions for Re 6 120. These states
are first located (approximately) via an initial-value calculation evolved to relatively
large times. This approximate solution is then used as the initial guess for the iterative
solution of the steady equations, the resulting steady solution is then continued to
other values of Re at fixed α and η. In both cases the new solutions were found to
remain disconnected from the bifurcation structure described in the previous section.

In order to distinguish between the various symmetry-broken flows we introduce a
global measure of flow asymmetry, S = S− + S+, where S± are integrals along the
bounding planes:

S± =
∫ 1

η−1

∂u

∂φ

∣∣∣∣
φ=±1

dr. (4.1)

The two isolated (steady) solution branches are shown in figure 8 which depicts one
half of the bifurcation diagram, the full picture being obtained by a reflection in the
line S = 0. Both solution branches consist of a stable and an unstable part connected
by a limit point at the minimum value of the Reynolds number for which they exist.
We denote the first isolated solution branch by B1 and the second new branch by B2.

Inset into figure 8 are depictions of the streamlines associated with temporally
stable solutions on each of the two new branches, B1 and B2. Solutions on these
isolated branches are characterized by regions of strong jet-like outflow adjacent to
one wall, with the jet alternating from wall to wall as it develops down the channel.
For example, for Re = 120, a B2 temporally stable state has outflow concentrated
adjacent to φ = −1 for 0.1 < r < 0.3 and adjacent to φ = 1 for 0.5 < r < 0.8. These
regions are connected by a zone of rapid adjustment in which the jet switches from
one side of the wedge to the other. These qualitative features are common to all of
the disconnected solutions discussed here and the adjustment zones become (radially)
smaller as the Reynolds number is increased. The relationship between these solutions
and those of Kerswell et al. (2004) is discussed in § 4.2.

4.1. Limit-point boundaries for the isolated branches
In the parameter regime spanned by figure 8 there is non-uniqueness of temporally
stable solution branches, with up to six potential solutions (three solutions and their
reflections in the midplane); and the precise solution achieved in any given initial-
value computation depends upon the initial conditions for the flow. The number of
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FIGURE 8. Isolated solution branches B1 (solid) and B2 (dotted) for the finite-domain
problem subject to the quadratic inlet condition and a PTF outlet; the metric S is defined by
(4.1). The symmetry-broken solution branch that arises from the first finite-domain pitchfork
is shown as the dashed line. The solutions shown are for a wedge angle α = 0.1 and radius
ratio η = 100. The inset figures depict streamlines for the stable (lower) branch of B1 at
Re= 100 and Re= 120 and for the stable (upper) branch of B2 at Re= 120.

available steady solutions depends upon the location of the limit point of the solution
B1 (and obviously B2) as a function of the channel divergence angle α.

Given a solution on the isolated branch B1 we can determine the minimum
Reynolds number for its existence (at fixed α and η) by forming the extended system
associated with the limit point. The locus of this limit point in the α–Re plane can
then be determined via arc-length continuation in these two parameters at fixed radius
ratio η. By this procedure we obtain the critical boundary of figure 9(a), which shows
the variation of the Reynolds number at which the limit point of isolated solutions
exists for varying channel angle α. As the channel divergence increases, a global lower
bound of Re≈ 40 is found for the existence of the isolated solution B1 when η = 100.
Computation of the solution B1 at a fixed angle of α = 0.28 and η = 100 indicates
that, on decreasing α the solution first appears as an isola, as shown in figure 9(b).

4.2. The relationship to the steady waves of Kerswell et al. (2004)
The solutions on the temporally stable portion of branch B2 possess a spatially wave-
like radial structure. Similar solutions with regions of wall-adjacent outflow connected
by regions of rapid adjustment have been discussed before by Tutty (1996) and
Kerswell et al. (2004). Tutty computed solutions in both symmetric and asymmetric
expanding channels with extremely large radius ratios and observed the existence of a
spatial wave, periodic along the channel in his (logarithmically spaced) computational
coordinate. Concentrating on parameter values near B2 he was able to observe the
wave for values of the Reynolds number both greater than, and slightly less than Rec
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FIGURE 9. (a) The locus of limit points for the isolated solution branch B1 (solid line) with
η = 100. The dashed line indicates the ‘first’ locus of pitchfork bifurcations for the symmetric
outflow solution, that is, neutral curve 1 in figure 3. No attempt was made to continue the
second limit point past Re= 50. (b) The metric S, (4.1), for the isolated branch B1 at a larger
divergence angle of α = 0.28 (solid line). The dashed line shows the same metric for the
symmetry-broken states that arise from the pitchfork bifurcation of neutral curve 1.

(the location of the pitchfork bifurcation in the Jeffery–Hamel similarity solution). For
Re < Rec the existence of the spatial wave was dependent upon the inlet geometry,
relying on the existence of a sudden expansion step of order one

Motivated by the results of Tutty, Kerswell et al. (2004) obtained solutions to the
steady Navier–Stokes equations using the computational coordinates,

X = ω log
(

r

r1

)
, Y = φ, (4.2)

where ω represents a wavenumber and r1 is a constant phase shift. They employed
periodic boundary conditions with respect to variations in the X coordinate, and
allowed ω to vary in order to locate solutions satisfying the symmetry condition,
ψ (X + π,−Y) = −ψ (X,Y), over the range 0 6 X 6 2π. In this manner the spatial
wave solution observed by Tutty was obtained directly for infinite domains. This
solution was found to persist beneath B2 where it was observed to reconnect with
the similarity solution via a heteroclinic orbit across the arms of the Jeffery–Hamel
pitchfork bifurcation.

Although the structures observed here are not exactly periodic we conjecture that
they are the finite-domain realization of the logarithmically spaced waveform of
Kerswell et al. (2004). Tutty (1996), in contrast, was able to observe an almost
exactly periodic waveform in a finite domain, however the radius ratio required was
orders of magnitude larger than considered herein. Figure 10 shows solutions for
Re= 200.408, α = 0.05003 and for radius ratios η = 100 and η = 1000. Increasing the
radius ratio of our domain to η = 1000 did allow us to recover solutions with a larger
number of adjustment regions, as illustrated in figure 10. Nevertheless, in any physical
experimental investigation it seems highly unlikely that such extremely large radius
ratios could be realized effectively.

For the parameter values used to produce figure 10, Kerswell et al. (2004) found a
periodic solution with a wavenumber of ω = 4.1691. In figure 11 we present a part
of the solution of figure 10(b) but using the coordinates (4.2) with ω = 4.1691. There
is good qualitative agreement between figures 11 and 8(b) of Kerswell et al. (2004),
supporting our conjecture that the steady nonlinear wave solutions of Kerswell et al.
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FIGURE 10. Streamlines for flow in the finite domain for Re = 200.408 and a wedge angle
of α = 0.05003. The boundary conditions are a quadratic inlet profile and a PTF outlet. The
contour spacing is 0.07. The radius ratio in each case is (a) η = 100 and (b) η = 1000.
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FIGURE 11. Streamlines of the solution for Re = 200.408, α = 0.05003 and η = 1000. The
solution is shown in the computational coordinates (4.2) used by Kerswell et al. (2004) and
using the same scaling factor, ω = 4.1691. A single wavelength (near to the outlet) is shown
for comparison with figure 8(b) of Kerswell et al. (2004). The boundary conditions are a
quadratic inlet and a PTF outlet.

(2004) persist for finite (but in some sense ‘large’) domains, but become disconnected
in the bifurcation structure.

5. The physical relevance of our numerical results
In the previous sections, we have presented a comprehensive picture of the solution

structure for flow in a diverging channel for a specific choice of boundary conditions.
For these results to be of practical relevance we require that: (i) the solutions
are stable; (ii) the domain is experimentally realizable; and (iii) there is no strong
sensitivity to inlet/outlet constraints.

The first (outermost) of the nested neutral curves shown in figure 3, is of
most physical significance because the underlying symmetric base state will already
be unstable when encountering the subsequent curves. For this reason we have
concentrated on the bifurcation structure associated with this first instability in
figures 6–9. Eigenvalue computations (and unsteady computations) have demonstrated
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α Jeffery–Hamel Quadratic Plug flow

0.1 94.18 94.72 94.86
0.4 23.27 23.77 23.90
0.7 12.85 13.72 13.98

TABLE 1. The variation of the critical Reynolds number of the first symmetry-breaking
bifurcation in a finite domain with radius ratio η = 100 and inlet boundary conditions given
by (2.4) ‘Quadratic’, (5.1) ‘Jeffery–Hamel’ and (5.2) ‘Plug flow’. The outlet boundary
condition is PTF in each case.

that the first bifurcation is supercritical and that the nonlinear symmetry-broken
state that develops is stable. We therefore anticipate that this is a state that will be
observable in an experiment provided that three-dimensional effects are not important.

However, the unsteady computations described in § 4 have demonstrated non-
uniqueness in possible stable states, with the system evolving to either the
aforementioned bifurcated solution or an isolated spatial-wave solution. Although we
do not attempt to give a complete description of the basin of attraction of these
states we note that the isolated steady states were readily obtained in our initial-
value computations. We anticipate that both types of steady state will coexist in a
corresponding experimental configuration; under the shared assumption that they are
not unstable to three-dimensional modes. The critical boundaries beyond which this
multiplicity in stable solutions exists are shown in figure 9(a) and present obvious
quantities for experimental measurement. Herein we have chosen a radius ratio of
η = 100 as a value that is sufficiently large to allow the coexistence of the spatial-wave
(isolated) states and the supercritically bifurcated states, but still remains a plausible
geometry for a laboratory configuration.

Finally, we recognize that in an experimental configuration one has limited control
of the inlet/outlet conditions. To examine the influence of these choices we have
examined other inlet profiles; namely, the Jeffery–Hamel similarity solution

u(r = η−1, φ)= η
α

G′(φ), v(r = η−1, φ)= 0, (5.1)

and another alternative

u(r = η−1, φ)= λη
2α

(
cosh λ− cosh λφ
λ cosh λ− sinh λ

)
, v(r = η−1, φ)= 0, (5.2)

which, for large values of λ, is a ‘plug flow’ of u ≈ η (2α)−1 across the bulk of the
range, with two thin regions near φ = ±1 in which the profile adjusts to the no-slip
condition. We choose λ= 10 in this example.

The choices (2.4), (5.1) and (5.2) give three very different inlet profiles, yet for
η = 100 their influence on the finite-domain base flow is rather minimal; adjusting the
inlet condition slightly alters the distance from the inlet at which an approximately
self-similar flow first develops. A sensitive global measure of the symmetric outflow
state is the location of the first symmetry-breaking bifurcation, and in table 1 we
show the variation of this quantity for all three choices of inlet condition. We observe
that the (large) variations in the inlet profile leads to a variation of less than 1 %
in the critical Reynolds number when α = 0.1 and η = 100. The influence of the
inlet profile is stronger for wider expansion angles: the change in critical Reynolds
number is approximately 8 % at α = 0.7. Hence, we should expect good agreement
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with experimental data overall, but particularly robust agreement for small channel
divergence angles. The solution structure is even less sensitive to outflow conditions.

We should note that it is possible to change the finite-domain solution significantly
by choosing very specialized inlet constraints. For example, if we apply pseudo-
traction conditions that are consistent with the infinite-domain Jeffery–Hamel solution
at both the inlet and the outlet (see Haines 2010; also Hewitt & Hazel 2007 for details
of an equivalent formulation appropriate to rotating-disc flow) then this solution is also
a solution of the finite-domain problem. In this case Jeffery–Hamel flow, including
its subcritical bifurcation at Rec, is accurately resolved in a finite domain by our
numerical scheme. Nevertheless, for general choices of inlet/outlet constraints, we find
a supercritical pitchfork bifurcation at the loss of midplane symmetry, which we view
as the generic and experimentally relevant behaviour.

We have also investigated a related geometry in which long parallel inlet/outlet
channels are included, in order to somewhat decouple the bulk of the domain from
the choice of inlet/outlet conditions. We recover the same qualitative behaviour that is
described herein, again with particularly good quantitative agreement at low divergence
angles.

The experimental study of Putkaradze & Vorobieff (2006) examined the flow in
a wedge (typically) of semi-angle 0.28 radians and radius ratio approximately equal
to 29. They confirmed that the pure outflow solution is stable and, furthermore, that
it is always obtained for Re < Rec. For Re > Rec they report both symmetric and
(as predicted herein) symmetry-broken stable solutions; however they also report an
accompanying hysteresis (which we do not find in our numerical results). Recently Yu,
Shao & Lin (2010) have presented numerical computations designed to replicate the
global experimental configuration of Putkaradze & Vorobieff (2006). They suggest that
the apparent hysteresis might actually be a transient behaviour that is slow relative to
the observation time of the experiment. Further experimental work is clearly warranted
to investigate these effects and to examine the predicted coexistence of states.

6. The relevance of the Jeffery–Hamel similarity solution to finite domains
From our investigation of the finite-domain computational problem we conclude that,

apart from a specialized case designed to reproduce the similarity-solution behaviour
as mentioned above, the choice of inlet/outlet conditions has a limited impact on the
solution. Furthermore, there is good agreement between the type II1 or II2 self-similar
solution and the symmetric finite-domain solution over the bulk of the domain.

Perhaps the most surprising feature is that the finite-domain midplane-symmetric
flow has a sequence of pitchfork bifurcations and that, in the limit of Re� 1 and
α � 1, these bifurcations approach the single critical value obtained from the self-
similar solution. The agreement is surprising because the predicted criticality of these
bifurcations is incorrect, as is the number of such bifurcations. In this section we
explain this apparent discrepancy by means of a discussion of the spatial eigenmodes
of the Jeffery–Hamel states and, in doing so, demonstrate how the self-similar solution
is relevant to finite-domain flows.

6.1. Spatial stability of Jeffery–Hamel states
Following Dean (1934) we consider the effect of a perturbation to the dimensional
streamfunction of the form,

ψ = Q(G(φ)+ εr̂λg̃(φ)). (6.1)
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FIGURE 12. The real part of the dominant spatial eigenvalues of the Jeffery–Hamel solution
for α = 0.1. The eigenvalues passing through 0 and 2 at Rec = 93.8851 are indicated by
a vertical line. An eigenvalue corresponding to a symmetric eigenvector can also be seen
approaching λ= 0 as Re→ Ref = 108.8864, as defined in figure 1.

On linearizing for small ε we obtain the following quartic eigenproblem for λ,

αRe((λ− 2)G′g̃′′ − 2G′′g̃′ − λG′′′g̃)+ α3Reλ2(λ− 2)G′g̃

= g̃(iv) + α2((λ− 2)2+λ2)g̃′′ + α4λ2 (λ− 2)2 g̃, (6.2a)

together with the boundary conditions,

g̃(±1)= 0, g̃′(±1)= 0, (6.2b)

specifying no-slip and impermeability at the wedge walls.
We have solved (6.2) using a standard Runge–Kutta method. In order to ensure

that no eigenvalues are overlooked, initial approximate values for all eigenvalues λ
are found using a standard global method (QZ) applied to a second-order accurate
discretized version of the eigenproblem. Figure 12 shows the real part of λ = λr + iλi

at the representative value of α = 0.1. At the pitchfork bifurcation, Re = Rec there
are eigenvalues of zero and two. Banks et al. (1988) were able to show that the
eigenvector corresponding to both these eigenvalues is g̃ = G′(φ). It can also be seen
in figure 12 that eigenvalues for which 0 < λr < 2 are found only for Re > Rec, as
conjectured by Banks et al. (1988). The eigenvectors associated with the λ = 0, 2
eigenvalues (at Re = Rec) have an opposite symmetry to the base flow. We shall refer
to such eigenvectors as antisymmetric, whilst those sharing the symmetry of the base
flow will be termed symmetric.

Banks et al. (1988) further conjectured the existence of eigenvalues λ= 0 and λ= 2
at the turning point boundary, denoted B3 by Fraenkel (1962). However, although
an eigenvalue (corresponding to a symmetric eigenvector) is visible in figure 12
approaching zero as the Reynolds number approaches the turning point, we have
not observed an eigenvector with λ= 2 there.

Figure 12 can be compared with figure 13 of Goldshtik et al. (1991) which gives
results for α = 0.0873. The qualitative behaviour is in broad agreement. However
Goldshtik et al. do not appear to have correctly captured the behaviour of the first of
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the two eigenmodes,

g̃= cos(αφ)G′(φ) and g̃= sin(αφ)G′(φ), (6.3)

shown by Drazin (1995) to exist for Re= Rec and λ=−1. A small complex conjugate
region nearby is also missing.

Figure 12 shows eigenvalues with both negative and positive real parts for Reynolds
numbers less than Rec. However, the existence of eigenmodes that grow towards r̂ = 0
and r̂ = ∞ does not necessarily indicate spatial instability. In fact, for Re = 0 two
infinite families of eigenvectors are known to exist corresponding to eigenvalues of
either sign (Banks et al. 1988); the spectrum is symmetric about λ = 1 when Re = 0.
These two families contain both symmetric and antisymmetric eigenvectors and Banks
et al. (1988) suggest that each family represents a complete set of eigenfunctions.
Thus in order to determine the evolution of a perturbation uniquely in either the
‘downstream’ or ‘upstream’ direction it must be the case that only one of the two
infinite families of eigenfunctions is appropriate “so that the perturbation may be
independently specified for −α 6 θ 6 α at (two distinct values of r̂)” (Banks et al.
1988).

The concept of spatial stability is not entirely straightforward in this context. One
would normally appeal to a discussion of the group velocity of the disturbance to
decide whether a disturbance can propagate energy in the direction in which spatial
growth can be achieved. However, in the context of Dean modes, the inclusion of
the unsteady terms breaks the self-similar separation. One may view the problem in
another way when considering spatial stability with respect to growth in either the
downstream (to large r̂) or upstream (to small r̂) directions. Having chosen a direction
(either upstream or downstream) we shall refer to the (countably infinite family of)
eigenmodes that influence the response in that direction as the set of ‘relevant modes’,
whilst those that have no bearing are ‘irrelevant modes’.

In the absence of unsteadiness we identify the relevant and irrelevant modes in each
case in such a way that the flow is necessarily (spatially) stable for Re = 0. Thus the
relevant modes when considering downstream propagation are those for which λr < 0
at Re = 0 whilst the relevant modes for upstream propagation are those for which
λr > 2 at Re = 0. Continuous variation of the Reynolds number then indicates that the
flow will remain spatially stable to linear perturbations in both directions until such
time as one of the eigenvalues crosses the imaginary axis. That is, until a mode that
is relevant to the discussion of either up or downstream stability ceases to decay and
begins to grow in the direction under consideration. In the context of the finite-domain
(elliptic) problem it is a simple matter to check this interpretation.

6.2. Realization of Dean modes in a finite domain
Dennis et al. (1997) attempted to observe the role of Dean eigenmodes by imposing
either a symmetric or an antisymmetric perturbation at a boundary of a finite
computational domain. However, their attempt to recover the Dean modes resulted
in limited success owing to computational restrictions and small domain sizes.

Given a finite domain we begin by imposing the similarity solution plus a small
perturbation (ũ, ṽ) as a Dirichlet condition at one end of our domain, that is

u(r, φ)= G′

αr
+ A

α
rλ−1g̃′(φ), v(r, φ)=−A λrλ−1g̃(φ), (6.4)

at either r = η−1 or r = 1. Here g̃(φ) is a Dean eigenmode that satisfies (6.2), and
G(φ) is the Jeffery–Hamel outflow state. At the other end of the domain, a traction
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FIGURE 13. Radial slices (at constant φ) showing the spatial development of perturbations
applied at either the inlet or outlet of a finite domain for which the underlying base flow is
of self-similar form. The perturbation is applied at only one end of the domain, whilst at
the other we impose a pseudo-traction consistent with the similarity solution. The error from
the similarity solution is shown on a log scale (individual points) together with the predicted
decay rate provided by the spatial stability analysis of the similarity solution (dashed line).
(a) Re = 60, λ = −2.97 antisymmetric mode imposed at the inlet. (b) Re = 93.8, λ = −0.20
antisymmetric mode imposed at the inlet. (c) Re= 94, λ= 0.32 antisymmetric mode imposed
at the inlet. (d) Re = 94, λ = 1.75 antisymmetric mode imposed at the outlet. In all cases
α = 0.1, η = 100 and the radial slices are at φ =−0.5.

condition consistent with the similarity solution is imposed, see Haines (2010). The
amplitude coefficient A is chosen so that the (relative) peak deviation from the self-
similar flow remains below 5 % across the computational domain. Once a solution has
been found, we subtract the self-similar base flow solution from the resulting velocity
field to define a two-dimensional perturbation to the radial velocity:

ũ(r, φ)= u(r, φ)− G′(φ)
αr

. (6.5)

In figure 13 we present rũ(r, φ = −0.5) and overlay the predicted algebraic
(spatial) decay of the corresponding Dean eigenmodes, as determined from the spatial
eigenvalue analysis. In all four cases we recover very good agreement.

The results shown in figure 13(a) are for an antisymmetric perturbation to the
inlet at a Reynolds number (Re = 60) that is significantly below the critical value
(Rec = 93.8851); this shows a clear decay from the inlet at the predicted rate until
the finite-domain perturbation reaches the numerical error of the spatial discretization,
or order 10−4 in this test case. In contrast figure 13(b,c) show the behaviour of
antisymmetric perturbations for values of the Reynolds number that bracket the critical
value. As the Reynolds number increases through Rec the critical eigenmode begins to
grow away from the inlet rather than decay.
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Finally, figure 13(d) shows a perturbation imposed at the outlet, which again decays
in agreement with the predicted value of λ = 1.75. In this case, a numerical error
is also observed to decay away from the inlet. The decay rate of this error is in
accordance with the least stable symmetric mode, λ = −0.99. In all cases considered
the azimuthal dependence of the finite-domain perturbation and that of the appropriate
Dean mode were also found to be in good agreement.

The eigenmodes considered in figure 13 are all imposed at boundaries where they
are considered to be relevant when considering growth into the interior of the domain.
If a ‘downstream relevant’ eigenmode was imposed at the outlet, then it was observed
to decay ‘upstream’ in agreement with a decomposition in terms of ‘upstream relevant’
modes, with the decay rate rapidly becoming that of the least stable relevant mode.
The same behaviour was observed when imposing ‘upstream relevant’ modes at the
inlet. This excellent agreement between the spatial stability analysis of the similarity
solution and the two-dimensional, nonlinear, finite-domain computations gives us
confidence that not only is our numerical scheme robust and accurate, but that our
interpretation of ‘spatial instability’ is in quantitative agreement with the finite-domain
problem.

As shown in figure 12, there is another critical Reynolds number at which a spatially
unstable ‘downstream’ (real) Dean mode combines with an ‘upstream’ (real) mode to
give a complex conjugate pair. At this point the interpretation becomes more difficult
and this complex Dean mode is better viewed as being in some sense ‘global’. As we
show below, it is this mode that will allow us to connect the finite-domain numerical
results with the (infinite-domain) similarity solution.

6.3. The connection to two-dimensional eigenmodes in the α� 1 limit

A key point to note arises from the results of figure 12. We know from the work
of Banks et al. (1988) that at Re = Rec, λ = 0 and λ = 2 are both eigenvalues, with
the same associated eigenfunction g̃ = G′(φ). Similarly, in the α� 1 limit, there is a
‘Drazin’ mode with λ=−1 and g̃≈ G′(φ).

An asymptotic investigation of the Dean eigenvalue problem (outlined in Appendix)
for α � 1 reveals that, the λ = 0, 2 eigenvalues vary rapidly, combining to produce
a complex conjugate pair when Re − Rec = O(α). Once the pair becomes complex,
then λi increases steadily over this same (small) Re− Rec = O(α) regime, however the
eigenmode g̃ does not vary significantly, remaining g̃ = G′(φ) to leading order. As a
consequence of these scalings, it is possible to find a (spatially) unstable eigenmode
with λ complex within a small O(α) region of the critical boundary B2 when α� 1.

These simple observations are sufficient to allow us to construct a leading-order
approximation to the two-dimensional eigenmode of the finite domain as a linear sum
of a small number of Dean modes appropriate to an infinite domain. Furthermore,
this approximation in terms of Dean modes explains why there is a sequence of
bifurcations in the finite domain (rather than just one), and why their criticality differs
from the infinite-domain Jeffery–Hamel prediction even though they seem to occur at
the predicted critical Reynolds number.

For the purposes of explaining this decomposition, the simplest case to consider
is that of a finite-domain flow with Dirichlet conditions applied at both the inlet
and outlet. At both boundaries we prescribe the appropriate Jeffery–Hamel solution,
therefore a finite-domain solution exists that is a type-II similarity solution everywhere
in the channel. In finite domains, the imposition of boundary conditions at particular
values of r leads to the complex Dean modes being of much greater significance than
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the real Dean modes, however we know from the scalings presented in Appendix that
such modes exist within an asymptotically small region around the boundary B2.

For a Jeffery–Hamel base flow solution, the nth Dean mode, with eigenvalue
λn = λnr + iλni and eigenfunction g̃n(φ) = g̃nr(φ) + ig̃ni(φ), leads to velocity fields
of the form:

ũn = |An|
α

rλnr−1{cos(λni log(r)+ χn)g̃
′
nr(φ)− sin(λni log(r)+ χn)g̃

′
ni(φ)}, (6.6a)

ṽn = |Anλn|rλnr−1 {− cos(λni log(r)+ χn + βn)g̃nr(φ)

+ sin(λni log(r)+ χn + βn)g̃ni(φ)} , (6.6b)

where An = |An|eiχn is a complex amplitude and βn = arg λn. Here we choose to index
the modes such that n= 1, 2, 3, . . . correspond to the modes with λ(n+1)r > λnr > 0 and
n=−1,−2,−3, . . . correspond to λ(n−1)r < λnr < 0.

For α � 1 and Re − Rec = O(α) the modes that prove of most interest are the
complex conjugate pair for which 0 < λ1r < 2 and the antisymmetric Drazin mode
with λ−2 ≈−1. The first of these modes has a leading order velocity field in the form

ũ1 = |A1|
α

rλ1r−1 cos(λ1i log(r)+ χ1)G
′′(φ), (6.7a)

ṽ1 =−|A1λ1|rλ1r−1 cos(λ1i log(r)+ χ1 + β1)G
′(φ). (6.7b)

For a choice of χ1 = π/2 this radially oscillatory mode will satisfy the Dirichlet
condition of ũ= 0 at the outlet, r = 1.

In figure 14 we show the radial dependence of the neutral finite-domain two-
dimensional eigenfunctions (at constant φ) on the first four neutral curves for α = 0.1
and η = 100. It is clear that, away from the inlet region, the bulk of the two-
dimensional finite-domain eigenfunction is in agreement with this radially oscillating
Dean mode. The distinction between successive neutral curves is the number of half
periods of the complex (radially oscillatory) Dean mode that can ‘fit’ into the chosen
domain size η−1 < r < 1. An additional bifurcation is obtained each time that λ1i

has increased enough for an extra half period of the (complex) similarity solution
eigenmode to be accommodated in the finite domain. In the small α limit, λ1i

increases over the same short, Re − Rec = O(α), range of Reynolds numbers and
so the succession of neutral curves must cluster together as α→ 0.

Simple geometric constraints mean that increasing the radius ratio leads to a
decrease in the value of λ1i required to fit a given number of half periods of
the Dean mode into the domain. As η increases, the critical Reynolds number
of each bifurcation is observed to decrease accordingly; the limiting Reynolds
number for η� 1 being that at which the complex conjugate eigenmode is formed.
The finite-domain bifurcations must, therefore, always occur at Reynolds numbers
distinct from (above) Rec, but the separation is O(α) as α→ 0. This single-mode
explanation does not provide the complete picture because this one complex Dean
mode cannot simultaneously satisfy the finite-domain boundary condition at the inlet,
but nonetheless it is an excellent predictor of the bulk response.

To satisfy ũ = ṽ = 0 at the inlet we must also introduce a contribution from the
(downstream relevant) Drazin mode,

ũ−2 = A−2

α
rλ−2−1G′′(φ) ṽ−2 =−λ−2A−2rλ−2−1G′(φ) (6.8)

at leading order. For this downstream decaying mode to cancel the influence of the
complex conjugate mode at the inlet, leading to both ũ and ṽ vanishing there, requires
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FIGURE 14. Radial slices (at φ = −0.5) of the finite-domain critical eigenfunction for an
exactly self similar base flow (data points). The critical eigenfunction, scaled by r1−λ1r , is
overlaid with predictions based upon a single Dean mode with complex eigenvalue λ1 (dashed
line) and the α � 1 two-mode prediction that includes λ−2 (solid line). Note that the two-
mode prediction is indistinguishable from the full numerical solution. The results shown
are for α = 0.1, η = 100 and the appropriate Jeffery–Hamel flow imposed as a Dirichlet
condition at both the inlet and the outlet. (a) Neutral curve 1, Re= 94.27 (b); neutral curve 2,
Re= 94.70; (c) neutral curve 3, Re= 95.45 (d); neutral curve 4, Re= 96.54.

the following condition on its amplitude:

|A1|
α
η1−λ1r cos

(
−λ1i log(η)+ π

2

)
=−A−2

α
η1−λ−2, (6.9a)

−|A1λ1|η1−λ1r cos
(
−λ1i log(η)+ π

2
+ β1

)
= λ−2A−2η

1−λ−2, (6.9b)

which reduces to

λ−2 sin(λ1i log(η))= |λ1| sin(λ1i log(η)− arg λ1). (6.10)

This condition determines the critical Reynolds number implicitly, since the values
of the Dean exponents λ1,−2 are functions of Re. At points where (6.10) is satisfied
a temporally neutral two-dimensional eigenfunction may be constructed (to leading
order in an expansion in terms of α) from the two Dean modes discussed above.
The eigenfunction obtained by combining these two modes is shown in figure 14
as a solid line. In each case, to the graphical accuracy shown, the prediction is
indistinguishable from the finite-domain critical eigenfunction (the data points) over
the entire domain.

A prediction for the location of finite-domain bifurcations can be obtained by
solving the Dean eigenvalue problem and identifying Reynolds numbers for which
λ1 and λ−2 satisfy (6.10). For α = 0.1 table 2 gives predictions, obtained from (6.10),
for the first six critical Reynolds numbers together with the values determined from
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FIGURE 15. Azimuthal comparison (at r ≈ 0.1) of the similarity solution eigenfunction
(points) with the two Dean mode prediction (solid line). (a) Neutral curve 1, Re = 94.27;
(b) neutral curve 6, Re = 99.82. Results are otherwise for the same boundary conditions and
parameter values as in figure 14.

Neutral curve 1 2 3 4 5 6
Finite domain R̂ec 94.27 94.70 95.45 96.54 97.99 99.82
Predicted value 94.27 94.70 95.45 96.55 98.02 99.87

TABLE 2. Critical Reynolds numbers for the first six finite-domain pitchfork bifurcations
together with the predicted values at which (6.10) is satisfied. The critical Reynolds
numbers are for the finite-domain problem with the similarity solution imposed as a
Dirichlet condition at both the inlet and the outlet for α = 0.1 and η = 100.

our numerical scheme. It is clear that the prediction for R̂ec at α = 0.1 becomes
slightly less accurate for the higher modes, as indexed by the number of the neutral
curve; however, for a fixed choice of neutral curve the agreement will be improved
by considering lower values of α. Figure 15 shows the azimuthal agreement between
the finite-domain critical eigenfunction and the two mode prediction at r ≈ 0.1 and
α = 0.1. The agreement is significantly better for the first neutral curve than for the
sixth at this value of wedge angle.

These observations hold only for a specific choice of boundary conditions that
allow the base flow at bifurcation to be exactly Jeffery–Hamel (for the Dean modes
to be obtained). However, the behaviour observed when the boundary conditions are
perturbed remains qualitatively similar. For example, the effect of imposing a quadratic
inlet condition is to create a base flow that is not quite self-similar in a small
neighbourhood local to r = η−1. In fact, this leads to less than a 1% difference in the
observed critical Reynolds number when α = 0.1 and η = 100 and the response in the
bulk of the flow remains largely as described above.

7. Discussion
In this work we have described the solution structure for the flow in a wedge-

shaped domain of finite radius ratio. The flow is governed by three parameters: the
divergence angle α, the radius ratio η and the Reynolds number Re. A detailed
examination of the numerical solutions at finite η has revealed the critical values
of α and Re at which the symmetric outflow state becomes unstable to midplane
symmetry-breaking global modes. Numerical continuation techniques have been used
to determine additional critical boundaries at which the steady flow becomes unstable
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to temporally periodic modes (Hopf bifurcations) and at which solutions cease to exist
(limit points). Figure 6 shows these critical points as functions of α and Re at η = 100,
chosen to be a representative radius ratio for our results. Additional computations
have been performed for η ∈ [50, 1000] with little qualitative changes observed to the
general picture of figure 6. We choose to present the details of η = 100 because it
is a finite, but still in some sense a ‘large’ domain, which can be compared with the
infinite-domain solution and also realized in a laboratory setting.

The symmetric flow in a wedge of finite radial extent has been shown to become
unstable at parameter values only a little beyond the boundary B2, predicted by the
infinite-domain (Jeffery–Hamel) similarity solution. This result is in agreement with
Sobey & Drazin (1986) and Banks et al. (1988) who stated that the symmetric
Jeffery–Hamel solution should not be used to predict the flow in a channel for
Re > Rec. The relatively good agreement on the location of the bifurcation between
similarity solution and finite domain is in stark contrast to the failure of the
(subcritical) similarity solution bifurcation to predict the criticality of the finite-domain
bifurcation. Our results strongly reinforce the assertion of both Sobey & Drazin (1986)
and Dennis et al. (1997) that a supercritical pitchfork bifurcation represents the generic
mechanism for the loss of stability of the symmetric flow in a two-dimensional
smoothly expanding channel. These results are also in line with the literature for
two-dimensional expansions in general (Cliffe & Greenfield 1982; Fearn, Mullin &
Cliffe 1990). A supercritical pitchfork bifurcation has been found for a wide range
of channel angles, and radius ratios and for a variety of distinct boundary conditions
imposed at both the inlet and the outlet. The value of the critical Reynolds number for
the finite-domain flow, R̂ec, is found to be relatively insensitive to the precise choice of
inlet/outlet boundary conditions and is particularly robust in the limit α→ 0.

Thus, the similarity solution provides a good estimate of the critical Reynolds
number for loss of midplane symmetry at small wedge angles, but fails to predict
the criticality of this bifurcation and does not explain the existence of a sequence
of bifurcations observed in the finite domain. In order to understand these unusual
features of the problem, we have considered a closely related finite-domain problem
where the inlet/outlet conditions are chosen such that the base flow is exactly self-
similar, but for which the two-dimensional instability must vanish at the inlet and the
outlet. By considering the spatial stability of the similarity solution we demonstrate
that, for α� 1, a global two-dimensional (temporal) eigenmode of the finite-domain
flow can be constructed from the superposition of Dean eigenmodes of the infinite-
domain problem. This construction is made particularly simple by the asymptotic
properties of the Dean modes for α � 1, namely the existence of multiple distinct
modes with the same φ dependence; one of which is oscillatory in the radial
coordinate. In the limit of α � 1, complex (radially oscillatory) Dean modes occur
within O(α) of the critical point Rec. Therefore, the agreement between the critical
Reynolds number predicted by the infinite-domain model and the corresponding finite-
domain value is highly misleading; it is entirely a consequence of this asymptotic
property. At bifurcation the radial behaviour of the symmetry-breaking eigenmode in
a finite domain is a superposition of Dean modes rather than a single mode (as found
in the infinite domain). The dominant contribution is from the same eigenmode as
was responsible for the infinite-domain bifurcation. However, the variation at leading
order of the associated eigenvalue over an O(α) range in the Reynolds number ensures
that the radial behaviour of the eigenmode at the two bifurcation points is entirely
distinct. Given this entirely different radial (oscillatory) behaviour, it is not surprising
that the nonlinear interaction is different, leading to a supercritical bifurcation in the
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finite case. These same asymptotic scalings are also responsible for the presence of
a sequence of discrete nested neutral curves for α � 1 and η� 1. We have shown
that the construction of global temporally unstable eigenmodes from the combination
of two dominant (infinite-domain) Dean modes allows the accurate prediction of the
finite-domain response.

As part of our investigation into the spatial stability of the similarity solutions
we have provided numerical evidence for the conjecture first given by Banks et al.
(1988) that the Dean modes provide two complete sets of eigenfunctions and that,
when considering the evolution of a perturbation with respect to either increasing
or decreasing radius, only one of these families is required. This interpretation of
the Jeffery–Hamel spatial stability problem has been shown to accurately predict the
behaviour of small perturbations imposed at either the inlet or the outlet of a finite
domain of moderate radius ratio (η = 100).

Increasing the radius ratio results in a decrease in R̂ec, the critical value for the first
finite-domain bifurcation. This decrease is largest for values of α near to the ‘nose’ of
neutral curve 1. For smaller values of α the effect is much less pronounced. However
we note that, although Rec and R̂ec appear to share the same limiting behaviour as
α→ 0, for a fixed value of α the finite-domain bifurcation is always at a Reynolds
number slightly greater than Rec. This difference in critical Reynolds numbers remains
finite in the limit η→∞ when α = O(1).

For small channel angles and sufficiently large radius ratio (η = 100, α < 0.29) we
have observed multiple stable flows in some Reynolds number ranges. We believe that
this non-uniqueness of stable states explains the apparently contradictory observations
that the evolution of the system is towards a flow on the symmetry-broken arm of a
pitchfork bifurcation (Sobey & Drazin 1986; Dennis et al. 1997) and a steady wave
that is periodic on a logarithmic scale in r (Tutty 1996; Kerswell et al. 2004). We
observed a wave-like solution only for Reynolds numbers greater than a critical (α,η-
dependent) value associated with a limit point of isolated states. Our results strongly
suggest that, for a small channel angle and sufficiently large radius ratio, these isolated
states are finite-domain analogues of the solutions described by Kerswell et al. (2004);
although in this case they do not arise by the same heteroclinic mechanism. These
solutions are easy to obtain in the initial-value computations at sufficiently large
Reynolds number, and we expect them to be visible in an experimental configuration
of large enough radius ratio.

Although we have computed stable periodic orbits we have not been able to do so
for the parameter values (α = 0.1, 0.3) cited by Hamadiche et al. (1994). We do not
believe that stable periodic orbits exist at such small values of α but can offer no
explanation for this discrepancy.

Appendix. Dean modes in the limit α � 1
In the limit of small wedge angles the Jeffery–Hamel solution undergoes a

subcritical symmetry-breaking bifurcation at the boundary B2. At this critical
boundary, the base flow is

Gc(φ;α)= Gc0(φ)+ α2Gc1(φ)+ · · · , (A 1a)

and the B2 boundary is then defined by the critical Reynolds number

Rec(α)= 3π
α
+ αRc1 + · · · , (A 1b)
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where Rc1 ≈−3.626. If we now perturb about this critical boundary via

Re= Rec(α)+ αR̄, (A 2a)

for some perturbation step R̄, then the underlying Jeffery–Hamel base flow is described
by the expansion

G(φ)= Gc(φ;α)+ α2Ḡ(φ)+ · · · , (A 2b)

and spatial Dean eigenmodes, which satisfy (6.2), exist in the form

g̃(φ)= G′c(φ;α)+ α2ḡ(φ)+ · · · , (A 2c)

with eigenvalues

λ= λ0 + α2λ1 + · · · . (A 2d)

The important point regarding the description (A 2) is that the eigenproblem for ḡ
determines the leading-order form of the eigenvalue, λ0. The result of these scalings is
that λ0 = 0, 2 when R̄ = 0, however in general the eigenvalues vary at O(1) whilst the
eigenfunctions remain G′c(φ;α) to leading order. Full details of the numerical problem
in this inner Re− Rec = O(α) region can be found in Haines (2010).

In addition to the eigenmodes captured by the above expansion there are also the
‘Drazin modes’ (6.3) which have λ = −1 at Re = Rec. In the limit of small wedge
angle, α � 1, the symmetry-breaking Drazin mode is also g̃ = G′c(φ;α) to leading
order. Unusually, this provides several discrete modes, with different radial dependence
(via λ) but, to leading order, the same eigenfunction.
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