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Abstract We revisit a problem originally considered by Stewartson in 1961: the incompressible,
high-Reynolds-number flow past a quarter-infinite plate, with a leading edge that is perpendicular to, and
a side edge that is parallel to, an undisturbed oncoming freestream. Particular emphasis is placed on the key
region close to the side edge, where the flow is (superficially) three-dimensional, although the use of similarity
variables reduces the dimensionality of the problem down to two. As noted by Stewartson, this problem has
several intriguing features; it includes singularities and is also of a mixed parabolic type, with edge conditions
influencing the solution in both directions across the flow domain. These features serve to greatly complicate
the (numerical) solution process (the problem is of course also highly non-linear), and computation was clearly
infeasible in 1961. In the present paper, a detailed computational study is presented, answering many of the
questions that arose from the 1961 study. We present detailed numerical results together with asymptotic
analyses of the key locations in the flow.

Keywords Boundary-layer · Mixed-parabolic · Quarter plate

1 Introduction

Although the application of asymptotic techniques to high-Reynolds-number flows can be traced back many
years, for example to [4] (and arguably even back to [1]), it was not until the development of more formal (and
rigorous) asymptotic techniques (including that of matched asymptotic expansions) that the full power of such
techniques was realised. Stewartson was at the vanguard of the use of formal asymptotic methods, which for
the triple-deck problem resolved the nature of high-Reynolds-number flow in the vicinity of the trailing edge
of a flat plate; see for example [6,13] and [7]. These asymptotic methods were further developed for, and gave
an enlightened view of, flow separation (see [15] for a review of early work in this area), flow instabilities
and even early-stage transition (e.g. [3]). The methods were also made popular to a more general applied
mathematics (and engineering) readership, through the publication of a number of excellent texts, including
[17].

In one of Stewartson’s early works on high-Reynolds-number flows ([12], hereafter referred to as S61),
he studied the high-Reynolds-number flow past a quarter-infinite plate, i.e. a plate with both a leading and a
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side edge. Ahead of this plate, the flow is perpendicular to the leading edge, but parallel to the side edge (The
genesis for this study can be found in the work of [5].).

At locations on the plate, but sufficiently far from the side edge, the flow is expected to be effectively
Blasius-like. However, the region of real interest in this problem is where side-edge effects become important:
this is the problem first considered in S61 and is revisited in the present paper. Given the relative immature
development of asymptotic analysis in the early 1960s (especially matched asymptotic analysis), the discussion
presented in S61 is a tour de force, as exemplified by the presence of logarithmically small terms, which are
properly taken account of.

In S61, it was shown that the problem in the key side-edge region could be reduced to two dimensions
through the use of similarity variables. It should be emphasised these transformations are somewhat different
from what a naïve guess would suggest, and involve the presence of the aforementioned logarithmic terms.
The key result from S61 was the derivation of two highly non-linear, third-order, parabolic partial differential
equations. However, changes in the sign of a key term lead to changes in the directionality of the parabolic
system, in turn leading to the bidirectional influence of far-field boundary conditions both on and off the plate.
The sign of this crucial term (denoted by κ in S61 and defined later herein) indicates the direction of disturbance
propagation in the flow domain, a feature that is discussed in S61, page 8. This bidirectionality, together with
discontinuous boundary conditions, serves to make this a very challenging system to compute, even by today’s
standards. Obviously, in 1961, computational hardware and techniques were very much in their infancy, and
Stewartson could only speculate as to some of the characteristics of the solution of this system. We will clarify
some of the speculative comments in the light of our numerical and asymptotic investigations.

The layout of the paper is as follows: in Sect. 2, we present a formulation of the problem, where we
endeavour to be faithful to the notation of S61. In Sect. 3, we discuss the numerical problem (based on a direct-
solver algorithm), together with a selection of numerical results. In Sect. 4, a number of asymptotic results are
presented, which give added insight into (and confidence in) our numerical results. Section 5 presents a final
discussion.

2 Formulation

We consider a steady, viscous, incompressible, three-dimensional flow, and so our starting point is the appro-
priate form of the Navier–Stokes equations, together with continuity, namely
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Here, the velocity components (u, v, w) are in the Cartesian (x, y, z) directions, respectively, the pressure
is p, ρ denotes the constant density, and ν the kinematic viscosity of the fluid. The quarter plate lies in the
domain y = 0, x > 0, z > 0, on which no slip (u = v = w = 0) is enforced, otherwise symmetry in u and w
and antisymmetry in v apply across y = 0. The undisturbed velocity vector is U (1, 0, 0), where U denotes the
velocity scale in the freestream (and indeed will serve to non-dimensionalise velocities throughout) see Fig. 1.

Outside any boundary/shear layers, the flow must be potential, and so the velocity vector can be written

(u, v, w) = (U, 0, 0) + ∇�, (2)

where � is harmonic, ∇� → 0 at locations remote from the plate, and

∂�

∂y

∣∣∣∣
y=0+

=
{

δ∗U (ν/xU )
1
2 , x > 0, z > 0

0 , otherwise
, (3)

where δ∗ ≈ 0.860 (the displacement thickness from the Blasius solution).
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Fig. 1 A schematic representation of the flow geometry; a Cartesian coordinate system (x, y, z) with velocity field (u, v, w) is
centred at the corner of the plate. The plate exists on y = 0, with the leading edge at x = 0 and side edge at z = 0; the (uniform)
freestream flow is aligned with the side edge with uniform speed U

Following [5] and S61, the solution for � can be written in the form

�(x, y, z) = − δ∗
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) 1
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In S61, the regimes z/x � 1 and |z/x | � 1 were considered. The former case corresponds to the regime
where the flow is predominantly Blasius-like and was fully considered in S61. The analysis of S61 also men-
tions the region in the immediate vicinity of the leading edge; this was a problem later considered and solved
by [2] for the two-dimensional case and is a region governed by the full Navier–Stokes equations.

Here, we focus our attention on the key region near the side edge. Following S61, we write ξ = z/x , and
then if this quantity is small and as y → 0, from (4)
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It is the occurrence of the logarithmic terms above that serves to somewhat complicate the overall picture
in the boundary layer, especially in the crossflow (z) direction. A plausible, but naïve suggestion would be to
introduce two inner similarity variables based on

η = y

(
U

2νx

) 1
2

, θ = z

(
U

2νx

) 1
2

, (6)

but the latter variable is correctly dismissed in S61, basically on the grounds of being unable to satisfy the con-
tinuity equation in any meaningful way. Whilst the η similarity variable defined above is entirely appropriate,
S61 determined that the appropriate crossflow similarity variable is not θ but rather

ζ = 2π

δ∗

(
U

νx

) 1
2 z

log(U x/ν)
. (7)

This represents a crossflow scale somewhat longer than that represented by the θ scale defined in (6)
above, due to the occurrence of the logarithmic term in the denominator (note that the high-Reynolds-number
assumption implies that U x/ν � 1).

We continue to follow the path described in S61, by the introduction of the following two variables X, Z ,
which enables the continuity equation to be automatically satisfied:
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Substituting (8) into (1) and taking the leading-order terms (which incidentally involves discarding inverse
powers of log U x

ν
) yields the following two key equations:
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The boundary conditions on X and Z are:

Z = X = ∂ X

∂η
= ∂ Z

∂η
= 0 on η = 0, ζ > 0, (9c)

corresponding to the no-slip and impermeability conditions, together with

Z = X = ∂2 X

∂η2 = ∂2 Z

∂η2 = 0 on η = 0, ζ < 0, (9d)

since the flow is symmetrical about η = 0 off the plate. Note that the leading-order (dimensional) pressure
term is O(

ρνU
x log2(U x

ν
)), and is independent of the transverse boundary-layer coordinate η.

It is clear that as η → ∞, the freestream conditions must apply (u → U , and w → ∂�
∂z as given in (5b)),

i.e. in this limit

∂ X

∂η
→ 1,

∂ Z

∂η
→ 1. (10)

Let us now consider the limit ζ → ∞ (i.e. close to the plate surface, distant from the side edge). It was
shown in S61 that in this limit, the response is a Blasius flow (with a crossflow component)

∂ X

∂η
→ ∂ F

∂η
,

∂ Z

∂η
→ ∂L

∂η
, (11)

where F(η) is described by the Blasius equation, namely

F
′′′ + F F

′′ = 0 , F(0) = F ′(0) = 0 , F ′(∞) = 1 , (12)

whilst L(η) is described by

L
′′′ + F L

′′ + F
′
L

′ = 1 , L(0) = L ′(0) = 0 , L ′(∞) = 1. (13)

In the far-field, in the off-plate direction, the work of S61 suggested that freestream conditions should be
attained, namely (10). However, it is our assertion here (discussed below) that there are at least two solutions
to the problem, only one of which fully attains freestream conditions in this limit.

2.1 The features predicted by Stewartson

The analysis of S61 introduced the quantity

κ(ζ, η) = −
(

ζ
∂ X

∂η
+ 2

∂ Z

∂η

)
, (14)

and noted that (9) depends crucially on the sign of κ . If κ > 0 at some location ζ = ζ ∗ for all values of η,
then the parabolic nature of (9) is sufficient for us to conclude that the solution at ζ ∗ can only be influenced
by the state of the system for ζ < ζ ∗, that is, the propagation of disturbances is in the direction of increasing
ζ . Conversely, if κ < 0 at some location ζ = ζ ∗ for all values of η, then the solution at that point is only
influenced by ζ > ζ ∗, that is, the propagation of disturbances is in the direction of decreasing ζ . If there are
locations ζ = ζ ∗ for which κ changes sign at least once at some η location, then the diffusion in η present
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in (9) is sufficient to ensure that the solution at this location will depend on the state of the system in both
directions.

In the far-field (on the plate), i.e. ζ → ∞
S61 did solve for F(η) and L(η), via (12) and (13), numerically. Clearly, κ(ζ > 0, η = 0) = 0, and

the ‘first’ point of interest on decreasing ζ is therefore where κη(ζ, η = 0) = 0, which occurs at ζ = ζ0 ≡
−2L ′′(0)/F ′′(0). S61 gives a value of ζ0 ≈ 5.02; in fact, a more accurate value found herein is ζ0 ≈ 5.18. The
implication in S61 was that κ < 0 over some range of η for ζ < ζ0; however, we shall see in our work that this
is not true. The results we present later indicate that the solution is rather more complex in the neighbourhood
of ζ = ζ0 than one would infer from S61.

In the far-field (off the plate), i.e. ζ → −∞
S61 assumed that in the far-field off the plate (that is, as ζ → −∞), the flow approaches the freestream

values. However, our computational results (to be presented later) indicate that there are two possibilities. As
ζ → −∞, one can seek a more general solution of the form X ∼ η, Z ∼ Z̃(η), where

Z̃
′′′ + η Z̃

′′ + Z̃
′ = 1 , (15)

subject to Z̃
′ → 1 as η → ∞, and Z̃(0) = Z̃

′′
(0) = 0. This admits a solution of the form

Z̃
′
(η) = 1 − λe− 1

2 η2
, (16)

for any real constant λ, which must be determined as part of the global solution. Our numerical results indicate
that there is a solution with λ = 0 as suggested in S61; however, there is also an alternative state with λ �= 0.
As we shall see, the solution with λ = 0 has a discontinuity in ζ derivatives at a critical location (ζ = ζ̄0) off
the plate, whilst the λ �= 0 state does not. For the solution with λ �= 0, it is only the leading-order velocity
component (u) that approaches its freestream value; as ζ → −∞ there is a displacement effect on the crossflow
(w) velocity component connected to (16).

At the side edge, i.e. ζ = 0

Along the side edge of the plate, S61 discussed the three possibilities of κ(ζ = 0, η) being positive for all
η, negative for all η or having a change in sign at a finite value of η. In S61 (page 9), it was suggested that the
last of these three possibilities was the most likely. However, S61 notes that if κ < 0, then Xηη, Zηη would be
smooth for ζ > 0, whilst Xη, Zη would have singularities with exponent 1

2 . Our numerical results will show
that there is no such sign change in κ along ζ = 0. We suggest an asymptotic structure around ζ = 0 later in
this paper.

3 Numerical techniques and results

We begin our numerical investigation with a somewhat simplistic homotopy approach. In (9), we will add
the arbitrary terms ε ∂3 X

∂ζ 2∂η
and ε ∂3 Z

∂ζ 2∂η
to the X and Z equations, respectively, where ε is a constant. This

approach has the significant advantage of making the problem fully elliptic throughout the entire domain;
given that we expect the original parabolic system to be bidirectional, in at least some part of the flow domain,
this does not seem like an unreasonable approach. As we shall show, this method proves to be surprisingly
effective and provides a crucial starting point that will allow us to piece together the global solution structure
via a combination of asymptotic methods and further numerical studies. However, as we shall see, there are a
number of subtle features in the flow that will require significantly more effort to clarify.

Our aim is to perform the obvious homotopy continuation, reducing from ε = 1 towards ε = 0. Some
caution is required with this approach as there is an implicit assumption that solutions achieved in the limit of
ε → 0 remain solutions of the ε ≡ 0 parabolic system. In order to address this issue, we will subsequently
compare our numerical results with asymptotic descriptions of (9) in a number of key regions of the flow
domain. Furthermore, we also use the ε � 1 results as an initial guess to the original (ε ≡ 0) system (9); in
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regions where the parabolic system is unidirectional, it is straightforward to solve (9) via a standard Crank–
Nicolson method (using one of the ε � 1 solutions at a finite ζ location as a starting profile) as an independent
check and interpretation of our results.

It is perhaps worth noting at this point that all local methods of solving this problem failed. In particular,
attempts at sweeping through the computational domain (with ε = 0) using windward differencing of the ζ
derivatives at fixed ζ locations proved to be entirely unsuccessful. The complexity of the flow structure and
subtleties of the parabolic system necessitate a global solution approach, which solves for all variables at all
points in the flow as a fully coupled system.

Our numerical scheme (for finite values of ε) solves for the global flow field by applying second-order
finite differencing over a uniformly distributed mesh of nodal points in the ζ −η plane. Typical computational
parameters extend up to 4001 nodes in ζ and 121 nodes in η, over a domain (ζ, η) ∈ [−3, 6] × [0, 6]. We
employ Newton iteration to solve the global system by a sparse matrix solver and the SuperLU library; all
the results presented are independent of the computational mesh to the graphical accuracy of the figures. It is
extremely challenging to solve this system owing to the large number of degrees of freedom, critical points
in the flow and the discontinuity in the boundary conditions at the plate’s edge (together with the inherent
non-linearity).

3.1 The λ = 0 solution

We begin with the off-plate conditions proposed in S61, namely freestream conditions with λ = 0 in (16). As
we have already discussed, of key importance to the global solution is the sign of κ through the two-dimen-
sional flow domain. The sign of κ appears to change first in the neighbourhood of η = 0; hence, in Fig. 2
we show the distributions of κ(ζ < 0, η = 0) and κη(ζ > 0, η = 0) over a range of values of the homotopy
parameter ε ≤ 1.6 × 10−3.

From Fig. 2, at the values of ε shown, the bulk of the solution between ζ = 0 (the side edge of the plate)
and ζ = ζ1 ≈ 4.8 is largely independent of ε. There is still some variation off the plate (ζ < 0) at these values
of ε; typically smaller values of ε are required before such variations are reduced. We also note that there are
some much smaller-scale variations in the region ζ1 � ζ � ζ0 (as shown by the enlarged view presented in
Fig. 2b).

Of particular interest is the behaviour near ζ = ζ0, where ζ0 = −2L ′′(0)/F ′′(0) ≈ 5.18. As ε is decreased
we observe that, counter to the assumptions made in S61, κη(ζ, η = 0) does not change sign at ζ0, rather it
appears to approach zero, but then immediately recovers, only changing sign at a secondary location (denoted
in Fig. 2(b) by ζ = ζ1 ≈ 4.8) that is slightly closer to the side edge of the plate.

The same qualitative behaviour is observed off the plate, with the distribution of −κ(ζ, η = 0) showing
a marked minimum near zero (at ζ ≈ −0.95), before increasing again, and eventually changing sign at a
secondary location ζ = −2.

In Fig. 3, we show the all-important contours that delineate the ζ − η flow domain into regions of κ < 0
and κ > 0. When ε = 0, there is only diffusion in the η coordinate and, as discussed previously, κ > 0 leads
to the propagation of disturbances to the right, whilst κ < 0 leads to propagation of disturbances to the left.
The far-field conditions on the ‘right’ (ζ � 1) and on the ‘left’ (−ζ � 1) both influence the global solution
owing to the signs of κ in those regions. On the plate (ζ > 0), there is a single region in which κ is positive.
This ‘reverse’ region exists between the side edge at ζ = 0 and a critical location ζ = ζ1. These results are
not in line with the discussion of S61, as they indicate that (i) there is no zero of κ at a finite η at the side-edge
ζ = 0 and (ii) the κ > 0 region does not extend to ζ = ζ0 ≈ 5.18, rather it terminates at ζ = ζ1 ≈ 4.8.

From Figs. 2 and 3, we have some confidence in the global solution and the direction of the propagation of
disturbances in the parabolic system. However, it is apparent that, local to some critical spanwise positions, the
solution is more sensitive to the homotopy parameter than at other positions (this is perhaps not unexpected).
This local variation is highlighting subtleties associated with the underlying parabolic system, as we will
demonstrate below at several critical ζ locations, beginning at ζ = ζ0.

3.1.1 Short-scale eigenmodes near ζ = ζ0

For sufficiently large values of ζ , the solution for X and Z is ζ -independent and simply a Blasius streamwise
profile and an associated crossflow induced by the finite span of the plate:

X (ζ, η) = F(η) , Z(ζ, η) = L(η) , for ζ > ζ0; (17)
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Fig. 2 a The on-plate distribution of −κη(ζ > 0, η = 0) and the off-plate distribution of −κ(ζ < 0, η = 0). A change in sign
of either quantity indicates a reversal in the direction of disturbance propagation in the parabolic system (9b). The solutions are
obtained with finite ε = 1.6 × 10−3, 8 × 10−4, 4 × 10−4, 2 × 10−4, 1 × 10−4; the arrow indicates decreasing ε. Also shown (as
the dotted line) is the predicted far-field behaviour on the plate −κη = ζ F ′′(0) + 2L ′′(0). b The on-plate distribution in a small
region near ζ = ζ0

here F and L are easily determined from (12) and (13). Therefore, on the plate when ε = 0

κη(ζ > ζ0, η = 0) = ζ F ′′(0) + 2L ′′(0) , (18)

which has a zero when ζ is

ζ0 ≡ −2L ′′(0)/F ′′(0) ≈ 5.18. (19)

In S61, the assumption was that ζ = ζ0 is associated with the beginning of a κ > 0 region near the plate
surface; however, the solution structure is somewhat more complicated.

The solution (17) solves (9) for all ζ > 0; however, it only plays a role in the global solution for ζ > ζ0,
as is clearly demonstrated in the results of Fig. 2. The obvious question is how this simple solution connects
to the global solution as ε → 0. As noted in S61, there are some striking similarities with the flow adjacent
to an impulsively started semi-infinite flat plate; see [11,14] and also [8]. When ε ≡ 0 in the problem herein,
for ζ > ζ0 there is a simple ζ -independent solution, whilst for ζ < ζ0 there is a response that should clearly
be ζ dependent. In the case of an impulsively started semi-infinite flat plate [11], a similar variable (τ ) exists,
which describes the transition between a τ -dependent Blasius flow (near the leading edge) and a τ -independent
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Fig. 3 The delineation of the ζ–η flow domain into regions of κ > 0 and κ < 0 for the λ = 0 state. Note that the plate exists
along η = 0, ζ > 0. In regions of κ < 0, disturbances propagate to the left, whilst for κ > 0, disturbances propagate to the right.
The figure shows the boundaries for the λ = 0 solution

Rayleigh layer (sufficiently far downstream). The transition cannot be described in terms of a series expansion,
leaving either a discontinuity in derivatives or an essential singularity as the mechanism of reconciling the
two regions at some critical point. It is the presence of an essential singularity that is speculatively suggested
to exist both in S61 and in [11]. To shed some light on this issue for the present problem, it is instructive to
formulate a linearised perturbation problem.

The far-field solution (17) can, in principle, be parabolically marched towards the side edge of the plate
(in the direction of decreasing ζ ) and suggests a linearised perturbation analysis of the form:

X (ζ, η) = F(η) + δ f (η) E(ζ ) , (20a)

Z(ζ, η) = L(η) + δl(η) E(ζ ) , (20b)

where δ � 1 and

E(ζ ) = exp

⎧⎪⎨
⎪⎩

∞∫
ζ

σ (ζ̄ ) dζ̄

⎫⎪⎬
⎪⎭ . (20c)

This results in a local eigenproblem for the growth rate σ , parameterised by the location ζ , governed by

f ′′′ + σ
[
(ζ f + 2l)F ′′ − (ζ F ′ + 2L ′) f ′] = − f F ′′ − f ′′F , (21a)

l ′′′ + σ
[
(ζ f + 2l)L ′′ − (ζ F ′ + 2L ′)l ′

] = −l ′′F − L ′′ f − F ′l ′ − f ′L ′. (21b)

This ‘parallel flow’ analysis is obviously ad hoc in general but becomes rigorous for increasingly short-scale
modes where |σ | � 1, which are the topic of interest here.

Solution of (21) for ζ > ζ0 shows that there are two eigenvalues with positive real part for 5.21 � ζ � 5.25
(a complex conjugate pair). The conjugate pair become real for ζ0 < ζ � 5.21, with the smaller value remain-
ing O(1) whilst the larger value tends to infinity as ζ → ζ0, as shown in Fig. 4. For ζ < ζ0 only the lower
eigenvalue persists and is joined by (infinitely) many other eigenvalues that arise ‘from infinity’; because the
underlying solution (17) is irrelevant in terms of the global solution for ζ < ζ0, we do not present these results.

An asymptotic description of this short-scale eigenmode is presented later in Sect. 4.1, in the limit of
σ → ∞. However, for the present, we simply note that, for ζ = ζ0 + �ζ , with 0 < �ζ � 1, a linearised
perturbation to the baseflow solution {F, L} develops in the form

exp

⎧⎨
⎩

3σ0

(ζ − ζ0)
1
3

⎫⎬
⎭ , (22)



Stewartson’s quarter-infinite plate problem 125

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 5.18  5.19  5.2  5.21  5.22  5.23  5.24  5.25  5.26

Fig. 4 The development of �{σ} as ζ → ζ+
0 , showing the singular (real) eigenvalue at the critical point ζ0; the value of ζ0 is

shown by the vertical line

for some constant σ0. This short-scale eigenmode provides a mechanism for disruption of the ζ -independent
solution X = F, Z = L , beyond the critical point ζ0 into the region ζ < ζ0.

3.1.2 Parabolic marching for ζ1 < ζ < ζ0

The above discussion of the short-scale mode that can be found at ζ = ζ0 suggests that we examine the
following perturbed parabolic problem. We solve for X (ζ, η) and Z(ζ, η) by starting the computation at some
chosen ζ = ζi > ζ0 with an initial solution

X (ζi , η) = F(η) + δ f (η) , (23a)

Z(ζi , η) = L(η) + δ l(η) , (23b)

where f and l correspond to the short-scale eigenmode of (21), as evaluated at ζ = ζi . We choose to normalise
the eigenmode such that f (η → ∞) → 1.

Using these initial conditions, we then march (using a Crank–Nicolson scheme) in the direction of decreas-
ing ζ . Clearly, if δ ≡ 0, then the computation should terminate at ζ = ζ0, at which point S61 assumed κ would
change sign local to the boundary η = 0, with the solution for ζ < ζ0 only being determined by a global solution
method. However, the short-scale eigenmodes present at ζ = ζ0 lead to an alternative solution being realised,
which can in fact be fully determined by parabolic marching, at least until a secondary location ζ = ζ1 < ζ0
is encountered.

The numerical solution for κη evaluated at the plate is shown in Fig. 5 for a computation started at
ζ = ζi = 5.2 and δ = 10−8; the exact choice of ζi has very little influence for δ sufficiently small. Very small
steps in ζ(≈ 10−4) are required in the Crank–Nicolson computations to resolve the very rapid growth near
ζ = ζ0. In the same figure, we also show the finite-ε numerical results obtained from the global solver.

In practice, a sensible approach is to compute using the Crank–Nicolson scheme described above wherever
it is possible to do so and then impose the resulting profile as a Dirichlet condition in the global solver at
ζ = ζ1 (where ζ1 is determined as part of the parabolic scheme).

As ζ → ζ1 the ε ≡ 0 solution determined by the Crank–Nicolson scheme again suggests a singular ζ
derivative at the point where κη(ζ = ζ1, η = 0) = 0, as can be observed in Fig. 5. This feature is associated
with a rapid but very small (≈ 10−2) change in the second derivative of X and Z at the plate and is not
observed in the global solution even for ε = 10−4. Some care in the interpretation of the structure of the
system is required at ζ = ζ1, and we will return to this region for further discussion in Sect. 4.3 below.
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Fig. 5 The solid line represents the ε ≡ 0 Crank–Nicolson results, whilst the dashed lines are the global solver results for
ε = 1.6 × 10−3, 8 × 10−4, 4 × 10−4, 2 × 10−4, 1 × 10−4; ε decreases in the direction of the arrow shown. The dotted line is the
solution predicted for ζ > ζ0
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Fig. 6 A comparison between the ε = 10−4 global solution (solid) and the corresponding ε ≡ 0 data (dashed) obtained from
parabolic marching for −2 < ζ ≤ ζ̄i = 2 × 10−2

3.1.3 Parabolic marching off the plate, ζ < 0

Immediately off the side edge of the plate, the direction of propagation of disturbances is entirely in the direc-
tion of decreasing ζ , as shown in Fig. 3. Hence, if we take a cross section of the global solution at some point
ζ = ζ̄i (where ζ̄i is small and negative), we can then again perform a parabolic marching procedure in the
direction away from the plate as a check on the consistency of the homotopy approach.

The results of Fig. 6 clearly show that the ε = 10−4 global solution and this parabolic marching process
(with ε = 0) are in agreement. The rapid variation with ζ beyond ζ ≈ −0.8 is a property of the parabolic
system and is clearly replicated in the ε = 0 results.

The behaviour observed off the plate is analogous (qualitatively) to that already described in the neigh-
bourhood of ζ = ζ+

0 . Computation of local eigenmodes in the off-plate region similarly demonstrates that a
short-scale eigenmode is found as κ becomes smaller. This short-scale mode is again indicative of a singular
ζ gradient and extreme sensitivity to upstream conditions.
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Fig. 7 The influence of small eigenmode perturbations to the ε = 0 solution during parabolic marching (right to left) in the
off-plate region. The perturbation is applied at ζ ∗ = −0.7. For the two distributions indicated by the arrows, the difference in
the two values of κ(ζ ∗, η = 0) is 2.22 × 10−7, clearly demonstrating a sensitivity to the upstream solution in this region

It is relatively straightforward to describe the singularity at ζ = ζ0 because we know precisely what the
underlying base flow solution is, via the ordinary differential equations for F and L . However, in this off-plate
region, the situation is rather more complicated because we can only determine the underlying solution glob-
ally, depending as it does on the bidirectional nature of the flow. Nevertheless, we can demonstrate a sensitivity
of the solution in this off-plate region in a manner analogous to that of Sect. 3.1.2.

We propose that a global solution exists with κ(ζ = ζ̄0, η = 0) = 0, where ζ̄0 is a critical point away
from the plate (ζ̄0 ≈ −0.95). In Fig. 7, we demonstrate the sensitive nature of the parabolic system in the
neighbourhood of ζ = ζ̄0. To obtain this figure, we take a cross section of a finite ε solution (X∗, Z∗) at some
ζ = ζ ∗(= −0.7) and compute the corresponding largest local eigenvalue σ ∗ and eigenmode ( f ∗, l∗). We then
march the parabolic system (9), in the direction of decreasing ζ , starting from the initial conditions

(X (ζ ∗, η), Z(ζ ∗, η)) = (X∗(η), Z∗(η)) + δ( f ∗(η), l∗(η)) , (24)

for a range of amplitudes δ, with the eigenfunction normalised such that l∗(∞) = 1. A suitable addition of
this eigenmode, which ultimately feeds into an asymptotically short-scale mode of the linearised problem at
ζ̄0, allows the parabolic marching to proceed ever closer to the singular point ζ = ζ̄0 where κ = 0. Two
distinct behaviours emerge near ζ̄0; in one, κ(η = 0) reaches a minimum value, close to zero, but then sharply
recovers (the behaviour observed in Fig. 6), whereas in the other, κ(η = 0) approaches zero. This behaviour
is associated with a singularity of the parabolic system where κ(η = 0) = 0, at which point eigenmodes exist
that can be associated with non-uniqueness of the global solution, as we shall discuss below.

3.2 The λ �= 0 solution

The description of the previous section suggests that non-uniqueness may be present in the solutions of (9).
By imposing λ = 0, we have thus far constructed a global solution, but this solution appears to include a
discontinuity of ζ derivatives at the point ζ = ζ̄0. This discontinuity, although consistent with the λ = 0
freestream conditions favoured by S61, is not a necessary feature if we allow λ �= 0.

We first consider the influence of varying λ. At general values of λ > 0, a flow field can be computed at
finite values of ε, but typically these do not yield a continuous solution in the limit of ε → 0. An illustration
of this is given in Fig. 8, which shows the variation of Zη(ζ, η = 0), for the particular (arbitrary) choice
λ = 0.2. As can be observed, as ε decreases a region develops off the plate where the ad hoc diffusive terms
(as introduced for the homotopy approach) remain dominant for all ε. We speculate that, for general values of
λ, solutions of the ε = 0 system would necessarily possess a discontinuity in X and Z (rather than just in the
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Fig. 8 An example of how arbitrary values of λ do not result in continuous solutions to the parabolic problem as ε → 0. Here,
we show Zη(ζ < 0, η = 0) for an ad hoc choice of λ = 0.2. The data are obtained with ε = 0.0016, 0.0008, 0.0004, 0.0002,
decreasing in the direction of the arrow shown

ζ derivatives as found in the λ = 0 case). However, there is a critical value of λ ≈ 0.51 for which a solution
with a smooth variation of X and Z can be obtained.

In Fig. 9 we show both the λ ≈ 0.51 and the λ = 0 solutions, which combine at ζ = ζ̄0; both solutions
are identical in the region ζ > ζ̄0. In the same figure, we also show a ε = 10−4, λ = 0, global solution for
reference; as was found to also occur near ζ0 (i.e. on the plate, Fig. 5), the finite ε obviously acts to smooth
the discontinuity in ζ derivatives at the critical point ζ̄0.

The λ �= 0 solution has benign behaviour near ζ̄0. The non-uniqueness that arises from the critical point
ζ = ζ̄0 closely mirrors that obtained near ζ = ζ0 (on the plate). The difference here is that both solutions can
play a role in the global solution, whereas the solution (17) (in ζ < ζ0) does not play a role in the global flow
(noting that this solution cannot satisfy the edge condition at ζ = 0); this is a theme taken up in Sect. 4.6.

For λ �= 0, the contours of κ = 0 in the ζ -η domain are more complicated. In Fig. 10, we repeat Fig. 3,
but for the λ ≈ 0.51 state, showing that the previous contour at ζ = −2 is now a curved boundary that must
be determined numerically, and indeed globally.

4 Asymptotic results

In this section, we investigate in detail the behaviour of the flow in the vicinity of the critical locations suggested
above, namely close to ζ = ζ0, ζ = ζ1, ζ = 0, ζ = ζ̄0 and ζ = −2. The purpose of these analyses is to
confirm the features observed in the numerical results. In the asymptotic descriptions below, it is convenient
to introduce a new quantity

G(ζ, η) = ζ X + 2Z , (25)

where (9a) may be written

Xηηη + Xηη(2X − Gζ ) + Xηζ Gη = 0, (26)

whilst a combination of (9a) and (9b) yields

Gηηη − Gηη(Gζ − 2X) + GηGηζ − ζ X2
η = 2 , (27)

with G(η = 0,∀ζ ) = Gη(η = 0, ζ > 0) = Gηη(η = 0, ζ < 0) = 0 and Gη → ζ + 2 as η → ∞. Note that
in terms of this new variable, κ ≡ −Gη.

We now consider each of the critical ζ locations in turn, in the direction of ζ decreasing.
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Fig. 9 The solution is non-unique in the region ζ < ζ̄0, with the two alternative states connecting to the same solution in the
domain ζ > ζ̄0. The non-uniqueness arises at the critical point ζ̄0 ≈ −0.95 where κ(ζ = ζ̄0, η = 0) = 0

4.1 The asymptotics of the short-scale eigenmodes at ζ = ζ+
0

For ζ = ζ0 + �ζ , with 0 < �ζ � 1, as discussed earlier and illustrated in Fig. 4, we find a local eigenvalue
|σ(ζ )| � 1. The outer solution to the linear eigenproblem is straightforward

f = F ′(η) , l = L ′(η) , (28)

which clearly does not satisfy the plate conditions f ′(η = 0) = 0 and l ′(η = 0) = 0. There is therefore an
inner layer, which asymptotic balancing predicts to be given by

η = Yσ
− 1

4 , (29a)

where Y = O(1), and

F = F ′′(0)
Y 2

2
σ

− 1
2 − F ′′(0)2 Y 5

5! σ
− 5

4 + · · · , (29b)

G = Y 3

3
σ

− 3
4 + F ′′(0)Y 2

{
1

2
�ζ σ

− 1
2 − ζ0 F ′′(0)

Y 3

5! σ
− 5

4

}
+ · · · , (29c)
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Fig. 10 The delineation of the ζ–η flow domain into regions of κ > 0 and κ < 0 for the λ �= 0 solution. Note that the plate exists
along η = 0, ζ > 0. In regions of κ < 0, disturbances propagate to the left, whilst for κ > 0, disturbances propagate to the right

f = f0(Y ) σ
− 1

4 + f1(Y ) σ
− 3

4 + · · · , (29d)

g = Y 2 σ
− 1

2 + g1(Y ) σ−1 + · · · . (29e)

Here, G = ζ F + 2L as defined above, and g = ζ f + 2l is the corresponding perturbation quantity.
We then find that the leading-order term for the perturbation in the inner layer satisfies

f0
′′′ − Y 2 f0

′ = −Y 2 F ′′(0) , (30)

subject to f0(0) = f0
′(0) = 0 and f0

′(∞) = F ′′(0). Although this provides the inner layer solution, it only
requires that the eigenvalue is large and does not determine the functional relationship σ = σ(ζ ). Nevertheless,
solution of (30) shows good agreement with the rescaled numerical solution of (21) as σ → ∞; a comparison
is shown in Fig. 11.

The leading-order form for the eigenvalue must be obtained at higher order, although we do not pursue the
problem further here. It is sufficient to note that the O(�ζ) term is balanced at next order if we assume

σ = σ0�ζ
− 4

3 + · · · , (31)

where σ0 is a constant to be determined at higher order.

4.2 The critical point ζ = ζ−
0

At this point κη(ζ = ζ0, η = 0) = 0, which implies Gηη(ζ0, 0) = ζ0 F
′′
(0) + 2L

′′
(0) = 0. The outer flow in

this region remains (at leading order) the far-field Blasius (with crossflow) together with an O
(
(ζ0 − ζ )

3
4
)

perturbation:

X = F(η) + (ζ0 − ζ )
3
4 A0 F ′(η) + · · · , (32a)

G = [ζ0 F(η) + 2L(η)] + (ζ0 − ζ )
3
4 A0[ζ0 F ′(η) + 2L ′(η)] + · · · . (32b)

Here, the amplitude A0 is a constant that will be determined at higher order when the non-linear influence
of the perturbation is felt. We have deliberately chosen the 3/4 power above to balance non-linearity and the
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Fig. 11 A comparison between the asymptotic prediction for the behaviour of the outer (a) and inner (b) regions of the domi-
nant eigenmode as ζ → ζ+

0 .ζ decreases in the direction of the arrow shown. Dashed lines show the leading-order asymptotic
prediction and solid lines are the numerical results

first appearance of ‘non-parallelism’ in the subsequent corrections. Indeed, as expected, there are a number
of similarities between this asymptotic description and the analysis of the short-scale eigenmode described
above.

Clearly, the corrections in the outer flow do not satisfy the no-slip conditions Xη = 0 on η = 0, and an
inner structure is therefore required. The inner layer is defined by the coordinate η̂ = η/(ζ0 − ζ )1/4 = O(1),
wherein the solution develops in the form

X = 1
2 (ζ0 − ζ )

1
2 F ′′(0)η̂2 + (ζ0 − ζ )X̂(η̂) + · · · , (33a)

G = 1
3 (ζ0 − ζ )

3
4 η̂3 + (ζ0 − ζ )

5
4 Ĝ(η̂) + · · · . (33b)

Note here that the leading-order terms are simply the Taylor expansions of the outer flow. This leads to the
following system determining the correction terms X̂ and Ĝ:

X̂ η̂η̂η̂ + F ′′(0)
(

5
4 Ĝ − 1

4 η̂Ĝ η̂

)
+ η̂2

(
1
4 η̂ X̂ η̂η̂ − 3

4 X̂ η̂

)
= 0, (34)

Ĝ η̂η̂η̂ + 2η̂
(

5
4 Ĝ − 1

4 η̂Ĝ η̂

)
+ η̂2

(
1
4 η̂Ĝ η̂η̂ − Ĝ η̂

)
= ζ0 F

′′2(0)η̂2. (35)
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Fig. 12 The asymptotic description for ζ → ζ−
0 predicts that Gηη(η = 0)/(X (η = 0) − F(0)) → 2. Here, we show this

comparison with the solutions of (9); the critical point ζ = ζ0 is shown as the vertical (dashed) line

The appropriate solution for Ĝ is

Ĝ(η̂) = A0η̂
2 + 1

60ζ0 F
′′2(0)η̂5 , (36)

This leads to an inhomogeneous problem for X̂ (which does not appear to have an analytic solution). With-
out determination of the amplitude A0 or X̂ , we can nonetheless perform a comparison with the numerical
results. Given the above structure, the prediction is that

Gηη(ζ, η = 0)/(X (ζ, η → ∞) − F(η → ∞)) → 2, as ζ → ζ−
0 , (37)

which is the comparison shown in Fig. 12, which appears to agree well with this result.

4.3 The critical point ζ = ζ1

In Sect. 4.1, we demonstrated that an asymptotically short-scale eigenmode exists as ζ → ζ+
0 when perturbing

about the solution X (ζ, η) = F(η), Z(ζ, η) = L(η). This mode exists because ζ0 is a singular point for which
κη(ζ = ζ0, η) has a zero at η = 0. The same analysis can equally be applied to ζ = ζ+

1 with minimal changes.
For example, we replace the underlying base flow F(η), L(η) with X B(η) = X (ζ+

1 , η), Z B(η) = Z(ζ+
1 , η)

and seek perturbations in the form

(X, Z) = (X B(η), Z B(η)) + δ(x(η), z(η))E(ζ ) , (38)

in the notation of (20).
The resulting ‘parallel’ flow eigenvalue problem for σ is then analogous to (21), with (F, L , f, l) replaced

by (X B, Z B, x, z). If, in addition, we include the homotopy parameter ε into the linearised problem, then it
becomes a quadratic eigenvalue problem:

x ′′′ + εσ 2x ′ + σ
[
(ζ x + 2z)X ′′

B − (
ζ X ′

B + 2Z ′
B

)
x ′] = −x X ′′

B − x ′′X B , (39a)

z′′′ + εσ 2z′ + σ
[
(ζ x + 2z)Z ′′

B − (
ζ X ′

B + 2Z ′
B

)
z′] = −z′′X B − Z ′′

B x − X ′
B z′ − x ′Z ′

B , (39b)

with x = x ′ = z = z′ = 0 on η = 0 and x ′ = z′ = 0 as η → ∞. In this system, we have neglected derivatives
of the base flow and eigenmode (with respect to ζ ) in the usual manner, recognising that the system is only
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Fig. 13 A local ‘parallel’ eigenvalue analysis local to the critical point ζ1. The abscissa is taken to be −κη(ζ, η = 0), as the
critical point ζ1 is defined such that −κη(ζ, η = 0) = 0; −κη(ζ, η = 0) > 0 corresponds to ζ > ζ1. The spectrum of modes
is computed from the quadratic eigenvalue problem (including the homotopy parameter ε in both the base flow solution and the
eigenmode). We show results for ε = 5 × 10−5 (squares), 10−6 (triangles). The filled circles denote the spectrum of modes for
the ε ≡ 0 solution as determined from a Crank–Nicolson scheme as outlined in Sect. 3.1.2

formally accurate in the short-scale |σ | � 1 limit. For the purposes of the numerical procedure, it is convenient
to write the eigenproblem as

x ′′′ + x X ′′
B + x ′′X B = σ

[(
ζ X ′

B + 2Z ′
B

)
x ′ − ε x̂ ′ − (ζ x + 2z) X ′′

B

]
, (40a)

z′′′ + z′′X B + Z ′′
B x + X ′

B z′ + x ′Z ′
B = σ

[(
ζ X ′

B + 2Z ′
B

)
z′ − ε ẑ′ − (ζ x + 2z)Z ′′

B

]
(40b)

x̂ = σ x , (40c)

ẑ = σ z , (40d)

which is clearly a linear eigenvalue problem, but obtained at the expense of augmenting the system with
the extra unknowns x̂, ẑ (which is standard practice used in solving polynomial eigenvalue problems). We
discretise (40) by a second-order accurate scheme before evaluating the eigenvalue set {σ } via a QZ algorithm.

In Fig. 13, we show the development of the real part of the eigenvalue σ , for X B, Z B determined numer-
ically by our global solver for a range of values of ε. The corresponding ε ≡ 0 eigenvalue is also shown,
using the base flow determined from Crank–Nicolson marching, as described in Sect. 3.1.2. In this figure,
we show −κη(ζ, η = 0) as the abscissa, with ζ → ζ+

1 corresponding to −κη(ζ, η = 0) → 0+. Our results
show that, as expected, a short-scale eigenmode exists at ζ = ζ1, where κη(η = 0) vanishes. However, these
results demonstrate why some caution is required in the homotopy continuation, and why it is difficult to
resolve the fine structure near ζ1 in the global numerical scheme (see Fig. 5). Even at ε = 5 × 10−5 (the data
points shown as squares), the short-scale mode is clearly not present. At ε = 10−6 (the data points shown
as triangles), we resolve more of the spectrum of modes of the true ε ≡ 0 solution (the data points shown
as filled circles, as determined from Crank–Nicolson marching). However, for ε ≡ 0 the short-scale mode
(as −κη → 0+) is purely real, whereas for ε = 10−6, the corresponding mode is quite different, since it
becomes a complex conjugate pair when −κη(ζ, η = 0) ≈ 0.005. This contamination of the short-scale spec-
trum of modes by the homotopy parameter makes accurate resolution of the correct behaviour very challenging
in the global numerical solution even at small ε and can lead in some cases to spurious (oscillatory) behaviour
in the neighbourhood of points where κ changes sign.

Let us now turn to consider an asymptotic description in the neighbourhood of ζ = ζ+
1 , where the first

sign change occurs in κη(η = 0). A plausible (double) asymptotic structure occurs, which for η = O(1) has
expansions

X = X0(η) + (ζ − ζ1)
1
2 A+

1 X ′
0(η) + · · · , (41)

G = G0(η) + (ζ − ζ1)
1
2 A+

1 G ′
0(η) + · · · (42)
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(where A+
1 is a constant), whilst for η̂ = η/(ζ − ζ1)

1
4 = O(1):

X = 1
2 (ζ − ζ1)

1
2 X ′′

0(0)η̂2 + (ζ − ζ1)
3
4 X̂(η̂) + · · · , (43)

G = 1
3 (ζ − ζ1)

3
4 η̂3 + (ζ − ζ1)A+

1 η̂2 + · · · . (44)

This suggests that κ(η = 0) = O((ζ − ζ1)
1
2 as ζ → ζ+

1 , which is in line with the Crank–Nicolson
(marching) results in this limit; the structure as ζ → ζ−

1 is similar, but with (ζ −ζ1) terms replaced by (ζ1 −ζ )

and the constant A+
1 replaced by another constant A−

1 .

4.4 The side-edge ζ = 0+

Guided by the numerical results presented in Sect. 3, we first consider the nature of the flow on the plate,
adjacent to the edge as ζ → 0+. A ‘meaningful’ balance of terms suggests that in this region, we must have

X = ζ
1
2 X̂0(η̂) + ζ

3
4 X̂1(η̂) + · · · , G = ζ

3
4 Ĝ0(η̂) + ζ Ĝ1(η̂) + · · · , (45a)

where η̂ = η/ζ
1
4 .

Taking the leading terms (in powers of ζ ), we find

X̂0η̂η̂η̂ − 3
4 X̂0η̂η̂Ĝ0 + 1

4 X̂0η̂Ĝ0η̂ = 0, (45b)

Ĝ0η̂η̂η̂ + 1
2 Ĝ2

0η̂
− 3

4 Ĝ0η̂η̂Ĝ0 = 2. (45c)

There is an exact solution of the second equation, namely Ĝ0 = 1
3 η̂3 (on the other hand, the solution for

X̂0 is non-trivial). Further progress can be made with the O(ζ ) term in the G expansion, which is governed
by the equation

Ĝ1η̂η̂η̂ − 2η̂Ĝ1 + 5
4 η̂2Ĝ1η̂ − 1

4 η̂2Ĝ1η̂η̂ = 0. (46)

Usefully, this too has a trivial solution, namely

Ĝ1 = Bη̂2, (47)

where B is a constant. The primary conclusion is therefore that κη(η = 0, ζ → 0+) and Gηη(η = 0, ζ → 0+)

are both O

(
ζ

1
2

)
, which is in line, qualitatively, with our global numerical solution.

In the outer region where η = O(1), (partly guided by our numerical results, partly from the information
gleaned so far from the η̂ = O(1) region), we expect

X = X0(η) + ζ
1
2 B X

′
0(η) + · · · , (48a)

G = G0(η) + ζ
1
2 BG

′
0(η) + · · · , (48b)

where of course we have that G
′′
0(0) = 0. We should emphasise (again) that there is no evidence of a sign

change in κ(ζ = 0, η), as η varies, in contrast to the speculation in S61.
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Fig. 14 Analysis as ζ → 0−; the variation of Ĝ η̂η̂η̂(η̂ → ∞) with Ĝ η̂(η̂ = 0); the circle marks the second (non-trivial) solution

4.5 The side-edge ζ = 0−

Let us now turn to a consideration of the limit ζ → 0−. This too must have a singular structure, given (from
our numerical results) that there must be a discontinuity in Xηη(η = 0) at ζ = 0. We develop an inner solution
similar to that employed in the ζ → 0+ region (but note the key change in scaling of G):

X = (−ζ )
1
2 X̂(η̂) + · · · , G = (−ζ )

3
4 Ĝ(η̂) + · · · , (49)

where η̂ = η/(−ζ )
1
4 . Again, taking the leading terms (in powers of ζ ), we find

X̂ η̂η̂η̂ + 3
4 X̂ η̂η̂Ĝ + 1

4 X̂ η̂Ĝ η̂ = 0, (50)

Ĝ η̂η̂η̂ − 1
2 Ĝ2

η̂
+ 3

4 Ĝ η̂η̂Ĝ = 2. (51)

The boundary conditions appropriate in this region are that

X̂(0) = X̂ η̂η̂(0) = Ĝ(0) = Ĝ η̂η̂(0) = 0, (52)

together with Ĝ ∼ 1
3 η̂3, X̂ η̂ ∼ γ̄0η̂ as η̂ → ∞, where γ̄0 is a constant associated with the outer flow.

Again, the equation for Ĝ(η̂) does have an exact solution, namely Ĝ = 1
3 η̂3, but it does not appear to play

a role in this limit. Instead, we can find an alternative solution to the system (50)–(52) with Ĝ η̂(0) �= 0 and

a standard matching process connects it to an outer (η = O(1)) flow (i.e. we have Ĝ η̂η̂η̂(∞) = 2). Figure 14

shows the variation of Ĝ η̂η̂η̂(η̂ → ∞) with Ĝ η̂(η̂ = 0), and from this, it is clear that in addition to the trivial

solution, a second (non-trivial) solution can be found with Ĝ η̂(η̂ = 0) ≈ 2.296. It would appear that this
non-trivial solution is the relevant one in this region.

The outer solution develops in the form (akin to (48a) and (48b)):

X = X0(η) + (−ζ )
1
4 C X

′
0(η) + · · · , (53)

G = G0(η) + (−ζ )
1
4 CG

′
0(η) + · · · , (54)

where C is a constant, X0(η) ∼ 1
2 γ̄0η

2, G0(η) ∼ 1
3η3 as η → 0.

These scalings suggest that Gη/(ζ → 0−, η = 0) = −κ(ζ → 0−, η = 0) ∼ 2.296(−ζ )
1
2 on approaching

the side edge from the off-plate direction; Fig. 15 shows good evidence of this as we decrease the homotopy
parameter ε.
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Fig. 15 The asymptotic description for ζ → 0− predicts that Gη ∼ 2.296(−ζ )
1
2 when evaluated at η = 0. Here, we show

this comparison for ε = 32 × 10−4, 16 × 10−4, 8 × 10−4, 4 × 10−4, 2 × 10−4, 10−4, 5 × 10−5, 10−5, with ε decreasing in the
direction of the arrow shown; the asymptotic prediction is shown as the dashed line

4.6 The critical point ζ = ζ̄−
0

The zone close to ζ̄0 is clearly significant, since it appears to be the region where non-uniqueness stems from.
Our numerical results suggest that ζ̄0 ≈ −0.95, and we expect that for ζ = ζ̄+

0 , G ∼ μ0η
3 and X ∼ μ1η as

η → 0 for constants μ0,1.
We proceed by defining the following quantities close to ζ = ζ̄−

0 :

G = (ζ̄0 − ζ )
3
4 Ĝ(η̂), (55)

X = (ζ̄0 − ζ )
1
4 X̂(η̂), (56)

η̂ = η/(ζ̄0 − ζ )
1
4 . (57)

Therefore, to leading order, we obtain

X̂ η̂η̂η̂ + 3
4 Ĝ X̂ η̂η̂ = 0, (58)

Ĝ η̂η̂η̂ + 3
4 ĜĜ η̂η̂ − 1

2 Ĝ2
η̂

= 2 + ζ̄0 X̂2
η̂
, (59)

subject to

X̂(0) = X̂ η̂η̂(0) = Ĝ(0) = Ĝ η̂η̂(0) = 0, (60)

X̂ ∼ μ1η̂, Ĝ ∼ μ0η̂
3, as η̂ → ∞, (61)

where it is easy to show that μ0 = (
2 + ζ̄0μ

2
1

)
/6.

The only appropriate solution for X̂ appears to be the trivial one, i.e. X̂ = μ1η̂. If we then write Ĝ =
(3μ0)

1
4 G∗, η̂ = (3μ0)

− 1
4 η∗, then the resulting system is again (51). However, in this case, it appears that both

the trivial and non-trivial solutions for G∗ are relevant here, and so this is important confirmation of the non-
uniqueness observed in our full numerical solutions. It is our assertion that the trivial solution

(
G∗ = 1

3η∗3
)

corresponds to the λ ≈ 0.51 solution, with smooth behaviour in the vicinity of ζ = ζ̄0, whilst the non-trivial
solution corresponds to λ = 0, which leads to a discontinuity in ζ derivatives, as observed in Fig. 9.
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Fig. 16 The distribution of κ along η = 0 for the λ = 0 solution over the range ζ ∈ [−2.1, ζ̄0]. The (as ζ → −2+) asymptotic
prediction of Sect. 4.7, κ(ζ, η = 0) ∼ 0.28972(ζ + 2), is shown as the dashed line. Note that κ ≡ −Gη and are insensitive to ε
for ε � 1

4.7 Off the plate: ζ → −2(λ = 0)

In the case of λ ≈ 0.51, the solution in this region appears to be entirely smooth, and as a result the asymp-
totic structure is relatively benign. The picture for the λ = 0 solution is more subtle though; in the limit of
ζ → −2+, the solution develops in the form

X = η + (ζ + 2)X̃(η) + · · · , (62)

G = (ζ + 2)G̃(η) + · · · . (63)

Although this is consistent with S61, the system governing X̃(η) and G̃(η) differs from that stated in S61
which we believe to be in error; instead, the problem is more akin to that in the neighbourhood of a stagnation
point flow and as such is non-linear (S61 proposed a linear form), specifically

X̃ηηη + 2η X̃ηη − X̃ηηG̃ + X̃ηG̃η = 0, (64)

G̃ηηη − G̃G̃ηη + 2ηG̃ηη + G̃2
η + 4X̃η − 1 = 0, (65)

subject to X̃(0) = X̃ηη(0) = G̃(0) = G̃ηη(0) = 0, together with G̃η(η → ∞) → 1, X̃η(η → ∞) → 0.
The appropriate solution of (64) appears to be X̃ ≡ 0, which is consistent with our numerical results, which

show little evidence of singular behaviour in Xη(η = 0) in this region. The reduced equation (65) then admits
a continuous spectrum of solutions in the range −1 < G̃η(0) < 1, which take the form (as η → ∞):

G̃ → η + C0 + C1

η
+ · · · ; (66)

however, a detailed investigation into this system reveals that for G̃η(η = 0) ≈ 0.28972, G̃η → 1 exponen-
tially; it appears that it is this solution that is appropriate in the global problem. In Fig. 16, we show a comparison
between the asymptotic prediction and the global solution for the λ = 0 state in the range ζ ∈ [−2.1, ζ̄0],
indicating excellent agreement. The conclusion, therefore, is that there is a discontinuity in κζ at ζ = −2 in
this case.

5 Discussion

In this work, we have revisited the quarter-infinite plate problem first introduced by S61 and [5]. The governing
equations for the flow in a near-edge region are diffusive in the coordinate normal to the plate but parabolic in
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the crossflow direction. The system, although parabolic, is bidirectional with both of the boundary conditions
far onto the plate and far off the plate corresponding to ‘inflow’ boundaries.

The numerical task of solving for the full flow field remains a challenging one today, and it is hardly
surprising that the system remained unsolved in 1961. Because of the uncertainty of the location of the critical
locations a priori, we did not resort to non-uniform meshing and hence were solving for up to two million
degrees of freedom to accurately resolve the many important areas of the flow, including the discontinuity at
the plate edge and the other critical points. This large data set necessitates the use of sparse solvers to restrict
the memory footprint during the linear solver phase. The authors also performed a number of computational
experiments with the ‘original’, ε ≡ 0, system (9). A range of different differencing schemes were investigated
to treat the bidirectional nature of the flow on and off the plate. However, a key problem is that the regions
of bidirectionality must be determined as part of the solution and methods that employed simple windward
differencing were not effective. Our conclusion is that the discontinuities of ζ derivatives, coupled with the
bidirectional nature of the parabolicity, combine to make even global solution of the ε ≡ 0 system highly
challenging and perhaps even unfeasible. Moreover, local solution methods applied to the ε ≡ 0 system were
entirely without merit.

Our decision to investigate the ε → 0 limit was, in large part, motivated by the lack of effectiveness of all
other methods that were employed. Whilst this homotopy method proves to be surprisingly effective, it is not
an approach that can be used blindly. We have made a significant effort to make comparisons with asymptotic
descriptions of critical regions and also to validate the global (ε → 0) solution with (ε ≡ 0) purely parabolic
marching approaches in regimes where the direction of information propagation is unidirectional. The choice
of how to make the system elliptic is entirely arbitrary; for the majority of our investigation, we included the
extra terms (εXηζζ , εZηζζ ) into the (X, Z ) equations (9). However, for additional validation, we have also
considered (εXζ ζ , εZζ ζ ), which results in precisely the same behaviour as ε → 0.

In the absence of any numerical results, S61 was forced to speculate regarding the features of the flow. We
have shown in this work that the true features of the global flow field are in fact somewhat more complicated
than one might infer from S61. In particular, we have shown:

(1) The condition imposed by S61 as ζ → −∞ is one of two possibilities. In our notation here, S61’s far-field
flow corresponds to λ = 0, but another possibility exists with λ �= 0. Although the λ = 0 state can be
found (in agreement with the far-field off-plate flow assumed in S61), Zζ appears to have a discontinuity
at a critical off-plate location ζ = ζ̄0; the more benign λ ≈ 0.51 state we present herein may be viewed
as more plausible in this sense.

(2) S61 suggested that the most likely scenario is that κ (indicating the direction of disturbance propagation
in the ζ coordinate) has a sign change at some η on the side-edge ζ = 0. However, this is not the case;
the solution is again more complicated with the region in which κ changes sign terminating precisely at
the edge of the plate, ζ = 0, η = 0.

(3) The bidirectional region on the plate exists in the finite range ζ ∈ [0, ζ1]. The (natural) assumption made
in S61 was that this region extended all the way to ζ = ζ0 > ζ1, which is not quite the case. The critical
location ζ0 is associated instead with a discontinuity in Xζ and Zζ , but no local sign change in κ .

S61’s interest in this problem was perhaps driven in part by his work [11,14] on the impulsively started
semi-infinite flat plate. At a finite time after the impulsive motion has begun, the flow immediately behind
the leading edge is a spatially varying Blasius solution, but the flow far from the edge is a parallel Rayleigh
layer. Stewartson’s contention was that the spatially developing Blasius solution (with its non-zero stream-
wise derivatives) can only connect to the Rayleigh layer solution (for which all streamwise derivatives are
zero) if they are separated by an essential singularity. Stewartson proposed that this singularity exists at a
distance Ut from the leading edge, where U is the plate speed and t the time since the plate was placed in
motion. Similar features exist in this problem, as has been noted both in S61 and herein. In our asymptotic
descriptions, we have allowed for discontinuous ζ gradients;1 however, we cannot rule out that essential sin-
gularities have some role to play in smoothing such discontinuities over sufficiently small ζ scales. It should
be noted that instances of discontinuous derivatives have been found in the past in boundary-layer flows, for
example in marginal separation [9,16]. Interestingly, Ruban and Vonatsos [10] recently presented (unsteady)
boundary-layer results that go further than merely discontinuous derivatives, presenting evidence of discon-
tinuous solutions. Nevertheless, S61 suggests (somewhat speculatively) that an essential singularity exists at

1 We note that the discussion on page 9 of S61 also implies discontinuous derivatives at ζ = −2, although the governing
equations presented in that discussion are actually in error.
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Fig. 17 Contours of a Xη(ζ, η) (corresponding to the streamwise velocity) and b Zη(ζ, η) (corresponding to the crossflow
velocity) for the λ ≈ 0.51 solution. In b, the λ = 0 solution corresponds to the dashed lines (rather than the solid lines) for
ζ < ζ̄0 ≈ −0.95. Contours are (a) 0.1, 0.2, . . . , 0.9 and (b) −0.6, −0.5, . . . , 0.9, increasing in the direction of the arrow. These
contours are insensitive to the value of ε for ε � 1

ζ = ζ0, and our local short-scale eigenmode analysis also indicates a singular behaviour for linearised per-
turbations as ζ → ζ+

0 , as described by (22). Our results also indicate that this same short-scale eigenmode
provides the crucial mechanism for perturbing the X = F, Z = L solution (in a singular fashion, as described
in Sect. 4.2). However, a note of caution should be added, in that any numerical discretisation scheme that
relies on the existence of a Taylor series will inevitably struggle if an essential singularity is indeed present.

Finally, in Fig. 17, we try to provide a more physical view of the full flow field for (a) the streamwise veloc-
ity Xη and (b) the crossflow velocity Zη; note that these quantities correspond to u and w via the rescaling of
(8), which depends upon the local Reynolds number. In Fig. 17a, we show the contours of constant streamwise
velocity for the λ ≈ 0.51 solution; there is very little difference in u between the two possible solutions and
therefore we choose to present only one of them. In Fig. 17b, we show the corresponding contours of constant
crossflow, w, velocity for both λ ≈ 0.51 and λ = 0. For the λ = 0 state, the contours are the dashed lines for
ζ < ζ̄0; the two states are the same for ζ < ζ̄0.

The non-uniqueness observed for values of ζ < ζ̄0 is an unusual feature but is supported by the asymptotic
analysis of Sect. 4.6 and (importantly) is associated with a singular point in the parabolic system. Although
the streamwise velocity (Xη) shows little quantitative change between the two states in this regime, there is a
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significant difference in the crossflow velocity (Zη). In the case of λ ≈ 0.51, the crossflow develops smoothly
in the neighbourhood of ζ = ζ0 (and also close to ζ = −2); indeed, it is only weakly dependent on ζ for
ζ < ζ̄0. In the case of λ = 0, in addition to the apparent discontinuity in Zζ at ζ = ζ̄0, a further discontinuity
in the ζ derivative occurs at ζ = −2 (as suggested in S61). One might justifiably view (based on physical
intuition alone) the occurrence of these two discontinuities in ζ gradients (in the off-plate flow) as being the
less likely of the two solutions.
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