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Four existing integral models of unsteady turbulent plumes are revisited. We
demonstrate that none of these published models is ideal for general descriptions
of unsteady behaviour and put forward a modified model. We show that the most
recent (top-hat) plume model (Scase et al. J. Fluid Mech., vol. 563, 2006, p. 443),
and the earlier (Gaussian) plume models (Delichatsios J. Fluid Mech., vol. 93, 1979,
p. 241; Yu Trans. ASME, vol. 112, 1990, p.186), are all ill-posed. This ill-posedness
arises from the downstream growth of short-scale waves, which have an unbounded
downstream growth rate. We show that both the top-hat and the Gaussian (Yu) models
can be regularized, rendering them well-posed, by the inclusion of a velocity diffusion
term. The effect of including this diffusive mechanism is to include a vertical structure
in the model that can be interpreted as representing the vertical extent of an eddy. The
effects of this additional mechanism are small for steady applications, and cases where
the plume forcing can be considered to follow a power law (both of which have been
studied extensively). However, the inclusion of diffusion is shown to be crucial to the
general initial-value problem for unsteady models.

Key words: plumes/thermals

1. Introduction
Models of steady turbulent plumes are well-known; more recently however the

analogous flows driven by unsteady source conditions have received some attention.
There are many applications that would benefit from an improved understanding
of such flows including, but not limited to, volcanic eruption modelling, industrial
accident planning, oil fire modelling and sea-ice evolution modelling; see for example
Holland (2011) and the recent review articles by Kaye (2008) and Hunt & van den
Bremer (2010).

The recent model due to Scase et al. (2006b) (herein referred to as SCDH)
developed the ideas of the classical Morton, Taylor & Turner (1956) model to allow
for fully unsteady source conditions at the base of a top-hat plume. Subsequent work
has sought to verify the model via laboratory experiments (e.g. Scase, Caulfield &
Dalziel 2008) and large-scale numerical simulations (e.g. Scase, Aspden & Caulfield
2009). Previous authors, in modelling fire plumes, have developed similar models that
predate that of SCDH, but under the assumption of a Gaussian distribution of the
plume properties over the radius of the plume. These models have also received some
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experimental validation. The application of these earlier models has been primarily
restricted to cases where the source buoyancy flux follows a power law in time, for
which similarity solutions can be found.

Given the wide range of applications for unsteady turbulent plume models, and the
number of integral models available, the present authors have returned to the origins of
these different models to consider which are most appropriate. In particular the top-hat
model of SCDH, and the Gaussian models of Delichatsios (1979), Yu (1990), and
Vul’fson & Borodin (2001) are discussed herein.

A ‘steady plume’ is only steady in the sense that its ensemble average is steady.
Any real plume, be it existing in nature or the laboratory, will be subject to small
perturbations in the source conditions due to the plume’s turbulent nature. We
therefore begin our assessment of the unsteady models by linearizing about steady
solutions and describing the response to (asymptotically) small fluctuations in the
source conditions.

By considering the evolution of such small harmonic fluctuations we will show that
the three unsteady models of Delichatsios (1979) and Yu (1990), and SCDH are all ill-
posed. The model of Vul’fson & Borodin (2001) only remains well-posed by enforcing
an extremely strong assumption, namely that the plume remains conical at all times,
which must render the value of this model for general applications questionable. The
ill-posedness of these models arises through the development of high-frequency/short-
wavelength fluctuations that grow asymptotically rapidly with downstream distance.
These short-wave modes arise as a consequence of the artificial modelling of each
(infinitesimally thin) plume cross-section as being divorced from the neighbouring
cross-sections, thereby allowing asymptotically small vertical length scales to develop.
To counter this, we propose that the models require an additional physical effect,
which communicates information vertically, and we put forward a velocity diffusion as
the most likely mechanism to achieve these aims.

We suggest that the vertical structure of eddies comprising the plume is significant
in preventing the formation of arbitrarily small length scales. Motivated by the
structure of the eddies in the plume we include a diffusion term in the momentum
flux equation, and the precise form of the term is found by appealing to Prandtl’s
mixing length theory. We demonstrate that the addition of this term to the classical
model (Morton et al. 1956) has only a small effect on the steady solutions, but is
nonetheless sufficient to remove the ill-posedness in a subset of the existing unsteady
models.

The ill-posed nature of these model equations has remained undiscovered for some
time, in large part due to previous authors restricting attention to numerical solutions
of ordinary differential equations that arise from similarity reductions of the full model
equations. Where the initial-value problem has been addressed, it has been through
first-order schemes with low resolution. Unfortunately the inherent numerical diffusion
in these numerical approaches concealed the ill-posedness of the model, and led to
results being presented that were necessarily unconverged.

By considering a single-mode harmonic perturbation to the models discussed above,
we will demonstrate their ill-posedness analytically and subsequently verify these
results using a numerical scheme for the equivalent linearized system. We then
proceed to introduce an improved and well-posed model and describe a second-order-
accurate numerical scheme for tackling the resulting nonlinear initial-value problem.
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FIGURE 1. Schematic illustration of a typical plume.

1.1. Notation
Figure 1 is a schematic diagram of a plume and introduces the notation used

throughout the present treatment. The top-hat plume radius and vertical velocity are
denoted respectively by b(z, t) and w(z, t). The density of the plume fluid is denoted
ρ(z, t). ‘Top-hat’ indicates that there is no radial dependence on these quantities
and the variables may be regarded as radially averaged quantities from an ensemble
average of plume realizations. Gravity acts in the direction of decreasing z and the
density of the ambient fluid is taken to be a constant, ρ∞. We define a mass flux, πQ,
momentum flux, πM, and buoyancy flux, πF, in the following manner:

Q= ρ b2w, M = ρ b2w2, F = g (ρ∞ − ρ) b2w. (1.1)

In the Boussinesq limit as ρ→ ρ∞ and g→∞, keeping g′ = g(ρ∞ − ρ)/ρ fixed, we
may write

Q= ρ∞b2w, M = ρ∞b2w2, F = ρ∞g′b2w, (1.2)

and

b= Q√
ρ∞M

, w= M

Q
, g′ = F

Q
. (1.3)

For convenience we define the vector Q = (Q,M,F)T and similarly for QB and q (to
be defined later).

1.2. Layout of the paper
The format of this paper is as follows. In § 2 we return to the unsteady ‘top-hat
plume model’ of SCDH and show that this model system is susceptible to high-
frequency/short-wave linear instabilities and as such is an ill-posed problem. In this
same section we propose the inclusion of a diffusion term that eliminates the high-
frequency instability, leading to a well-posed and reproducible numerical initial-value
problem. Section 3 presents numerical results for this new model, showing that it
is stable to linear harmonic disturbances, and describes the nonlinear evolution of
the top-hat plumes. In § 4 we review Gaussian plume models of Delichatsios (1979)
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and Yu (1990) and show that the ill-posedness of the simpler top-hat model can be
found in these cases too. In § 5 we revisit similarity solutions of unsteady plume
models investigated by previous authors and their empirical validations. We see that
the differences between all the models, both with and without diffusion, are small, and
of the order of the experimental error.

2. Unsteady top-hat plume models
We begin our discussion by considering the temporal development of the ‘top-hat’

plumes described by SCDH, their equation 2.16. The plume is governed by the system

∂

∂t

(
Q2

M

)
+ ∂Q

∂z
= 2αρ1/2

∞ M1/2, (2.1a)

∂Q

∂t
+ ∂M

∂z
= QF

M
, (2.1b)

∂

∂t

(
QF

M

)
+ ∂F

∂z
= 0. (2.1c)

In this system α is the plume entrainment coefficient, which is assumed constant. For
a detailed derivation of these equations we refer the reader to SCDH.

We will demonstrate below that there is an inherent difficulty associated with
the model equations (2.1); the initial-value problem is ill-posed. This ill-posedness
manifests itself as a short-wavelength/high-frequency instability with an unbounded
growth rate, in the manner of the problems reviewed by Jospeh & Saut (1990).
Although we begin with a discussion of the top-hat model, such features are not
exclusive to this choice of plume model.

2.1. Difficulties associated with unsteady top-hat models
A general approach is to consider the response of the unsteady plume model (2.1) to
infinitesimal perturbations of the source conditions and then address their temporal and
spatial development ‘downstream’. A (well-known) steady basic state QB(z), due to
Morton et al. (1956), exists with

QB(z)= 3
5

(
9
20

)1/3(
2αρ1/2

∞
)4/3

F1/3
0 z5/3, (2.2a)

MB(z)=
(

9
20

)2/3(
2αρ1/2

∞
)2/3

F2/3
0 z4/3, (2.2b)

FB(z)= F0. (2.2c)

We may write QB =
(
cQ z5/3, cM z4/3,F0

)T
defining the dimensional constants cQ and cM

(as above) and further we write the steady velocity field as wB =MB/QB = cw z−1/3 for
a dimensional constant cw = cM/cQ. We perturb this solution via

Q= QB(z) [1+ δ q(z, t)] , M =MB(z) [1+ δm(z, t)] ,
F = FB(z) [1+ δ f (z, t)] ,

}
(2.3)

where δ� 1 is a disturbance amplitude and we can define q= (q,m, f )T.
Rather than examining the linear initial-value problem for q(z, t) we Fourier

decompose and consider a single harmonic of frequency ω, such that q(z, t) =
q̂(z) exp(iωt). It proves convenient to make the change of variables ζ = (zω/wB)

1/2,
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τ = ωt, where ζ and τ are dimensionless. Given this transformation, the downstream
evolution of the perturbation is governed by

iω

2 −1 0
1 0 0
1 −1 1

 q̂+ 2
3ζ

dq̂
dζ
+ 1

3ζ 2

 5 − 5
2 0

−4 8 −4
0 0 0

 q̂= 0. (2.4)

For definiteness we shall assume that the perturbation is forced solely via the
buoyancy flux at the source, that is f (0, τ ) = exp{iτ } (i.e. f̂ (0) = 1), whilst the mass
flux and momentum flux perturbations at the source remain zero. The downstream
evolution can be combined into a single higher-order equation for the buoyancy flux:

d3 f̂

dζ 3
+ 11+ 9iζ 2

2ζ
d2 f̂

dζ 2
− 2(27ζ 4 − 8)− 153iζ 2

8ζ 2

df̂

dζ
− 3

87ζ 2 + 2i(9ζ 2 − 20)
ζ

f̂ = 0. (2.5)

Rotating and stretching coordinates in the Argand plane via Λ =
(15/8)1/2 exp{−iπ/4}ζ , and defining f̂? = f̂ exp{−2Λ2/5}, we can rewrite (2.5) as

d3 f̂?
dΛ3
+ 11

2Λ
d2 f̂?
dΛ2
+ Λ

2 + 2
Λ2

df̂?
dΛ
+ 2f̂?
Λ
= 0. (2.6)

Equation (2.6) admits solutions in terms of the special Struve-H function, H , and
the Bessel function of the first kind, J (Abramowitz & Stegun 1965). Applying the
condition f̂ (0)= 1, we obtain

f̂ = 3
8

e2Λ2/5

{(
2π2

Λ13

)1/4

0

(
3
4

)[(
3+ 4Λ2

)
H 1/4 (Λ)− 6ΛH 5/4 (Λ)

]
+ c

Λ5/4
J

7/4
(Λ)− 4

Λ2

}
(2.7)

for arbitrary constant c, where 0 is the usual gamma function. Substituting back to
find q̂, and m̂ together with the conditions that both remain bounded as ζ → 0 yields
that c≡ 0 and therefore the solutions to (2.4) are given by

q = 3
32

e2Λ2/5+iτ

{
1
Λ2

(
2π2

Λ13

)1/4

0

(
3
4

)[
(16Λ4 + 2Λ2 − 15)H1/4(Λ)

− 2Λ
(
22Λ2 − 15

)
H5/4(Λ)

]− 4(4Λ2 − 5)
Λ4

}
, (2.8a)

m = 1
16

e2Λ2/5+iτ

{
3(5+ 2Λ2)

Λ2

(
2π2

Λ13

)1/4

0

(
3
4

)[
(3+ 4Λ2)H1/4(Λ)

− 6ΛH5/4(Λ)
]− 4(15+ 16Λ2)

Λ4

}
, (2.8b)

f = 3
8

e2Λ2/5+iτ

{(
2π2

Λ13

)1/4

0

(
3
4

)[(
3+ 4Λ2

)
H1/4(Λ)

− 6ΛH5/4(Λ)
]− 4

Λ2

}
. (2.8c)
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FIGURE 2. The downstream development of a linear harmonic perturbation to the otherwise
steady plume flow. The image shows the perturbation f scaled according to the leading-order
far-downstream asymptotic form versus ζ . The horizontal dashed lines show the limiting
extent (2/5)23/8151/80(3/4).

For large values of ζ , and hence Λ, we may make use of the asymptotic form

Ha(Λ)∼
√

2
πΛ

sin
(
Λ− aπ

2
− π

4

)
+ 1√
π0
(
a+ 1

2

)(Λ
2

)a−1

+ O(Λ−3/2), (2.9)

noting that a>−1/2 in (2.8), to show that

f ∼ 2× 23/8 × 151/8

5
0

(
3
4

)
e
√

15 ζ/4

ζ 7/4

× exp
{

i
4

[
4τ +√15 ζ − 3ζ 2 − 7π

4

]}[
1+ O

(
1
ζ

)]
. (2.10)

The development of the downstream disturbance is illustrated in figure 2. The
real part of the perturbation is shown, normalized by the growth terms in (2.10),
ζ−7/4 exp{√15 ζ/4}. The dotted lines indicate the absolute value of f , and the
dashed lines show the asymptotic limiting extent of the normalized perturbation,
(2/5)23/8151/80(3/4). We have verified that the analytical solution derived above and
the numerical solution of the linearized system (2.4) are in agreement.

It follows that the perturbation is a wave propagating downstream with the plume, as
can be seen from the dominant contribution to the exponential term:

exp
{

i
4
[4τ − 3ζ 2]

}
= exp

{
iω
[

t − 3
4

z

wB(z)

]}
= exp

{
iω
[

t − 3
4cw

z4/3

]}
. (2.11)

The phase speed of the wave represented by (2.11) is therefore also cw z−1/3, which is
the vertical velocity of the plume.

The amplitude of the wave grows as ζ−7/4 exp{√15 ζ/4} for large ζ . It can be
seen therefore that the solutions grow in magnitude and ultimately the asymptotic
assumption that q, m, f ∼ O(1) fails. We observe that, in the far field, the exponential
downstream growth of the wave is exp{O(ω1/2z2/3)}, and the wavelength of the
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perturbation is

λ= 2π
ω

cw z−1/3. (2.12)

A similar short-scale high-frequency wave has recently been described for pulsatile jets
by Hewitt & Duck (2011).

This growth of downstream perturbations is not simply indicating a linear instability
of the steady base flow, it demonstrates that the unsteady evolution of (2.1) is
fundamentally an ill-posed problem. This is because there is no finite dominant
frequency and any arbitrarily large downstream growth rate can be achieved
by choosing a suitably small-scale/high-frequency perturbation. The coefficient of
exponential downstream growth is proportional to ω1/2 and corresponds to waves
with a wavelength proportional to ω−1. Increasing the spatio-temporal resolution of
any numerical scheme resolves more of the unstable spectrum present in the initial
conditions and leads to different results; converged numerical results are unachievable.
The influence of these modes is particularly strongly felt for discontinuous changes in
the source conditions, owing to the slower (algebraic rather than exponential) decay of
the Fourier amplitudes at high frequencies.

2.2. Regularization of the unsteady top-hat model
One might conclude that the model equations are without value based upon their ill-
posed nature. However as noted in Jospeh & Saut (1990), one may equally conclude
that the model is missing a physical process that dominates at short wavelengths.
Given the relative success of the steady model and the recent investigations of the
unsteady extension (e.g. Scase et al. 2008, 2009) we propose that the unsteady model
does have a predictive value but requires regularizing to render it well-posed. The
ill-posed nature of the system (2.1) was not realized in SCDH due to the method of
numerical solution (see Appendix therein). The first-order scheme’s inherent numerical
diffusion removed the short-wavelength instabilities for the spatio-temporal resolutions
chosen.

One likely mechanism for regularization of the model is to introduce a downstream
diffusion of velocity. It is straightforward to include an additional diffusion term in the
momentum equation for the plume, with a local diffusion coefficient of κ̂ . Appealing
to Prandtl’s mixing-length theory we pose that the diffusion coefficient should be
proportional to a local length scale and local velocity, hence we take κ̂ = εbw/2α
where ε is dimensionless. Now repeating the derivation of SCDH but including an
extra diffusion term, we find that the momentum equation ((2.1c) in their work)
becomes

Dw

Dt
= g

ρ∞ − ρ
ρ
+ 2uew

b
+ ε

2α
∂

∂z

(
bw
∂w

∂z

)
. (2.13)

(This differs from the approach taken by Schmidt 1941 who included radial gradients
of velocity in the momentum equation when exploiting Prandtl’s mixing-length theory
to characterize entrainment.) Following the approach of SCDH further, we can
integrate over the plume width to once again obtain (2.1b) herein, but now including
diffusion of the velocity field:

∂Q

∂t
+ ∂M

∂z
= QF

M
+ ε Q2

2αρ1/2
∞ M

∂

∂z

[
M1/2 ∂

∂z

(
M

Q

)]
. (2.14)
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The purpose of including the diffusion term in (2.14) is to regularize the unsteady
model by removing the increasing downstream spatial growth of linear disturbance
modes of high frequency and short wavelength. Note that any positive value of ε is
sufficient to regularize the unsteady model as for any ε > 0 there will exist a height
at which the perturbation’s wavelength will have decreased to such an extent that
diffusion will dominate the dynamics. However, given how established the classical
model is, any plausible modification of the governing system should not greatly affect
the steady solution structure. The steady form of (2.1) with (2.1b) replaced by (2.14)
still supports steady point-source solutions of the form Q= Q̂B where

Q̂B(z)= QB(z)
(

1− ε

10

)−1/3 = cQ̂ z5/3, (2.15a)

M̂B(z)=MB(z)
(

1− ε

10

)−2/3 = cM̂ z4/3, (2.15b)

F̂B(z)= F0, (2.15c)

and ·̂ denotes a quantity pertaining to the regularized model. This yields the, perhaps
surprising, result that the inclusion of the diffusion term does not affect the expected
plume radius profile of b = 6αz/5. Furthermore, provided that ε is small, the velocity
and reduced gravity are only affected to order ε, specifically

ŵB = 5
3

(
9

20

)1/3(
2αρ1/2

∞
)−2/3

F1/3
0 z−1/3

(
1− ε

10

)−1/3 = cŵ z−1/3, (2.16a)

ĝ′B =
5
3

(
9
20

)−1/3(
2αρ1/2

∞
)−4/3

F2/3
0 z−5/3

(
1− ε

10

)1/3
. (2.16b)

A common technique for measuring the entrainment coefficient, α, is to analyse the
spreading angle of an observed plume radius. Hence, we see that the rôle of the
diffusion in the steady model is relatively unimportant in this regard. However, the
diffusion is crucial in preventing growth of linear high-frequency instabilities in the
unsteady model.

An alternative approach to regularizing the unsteady model would be to utilize the
method of Kaminski, Tait & Carazzo (2005, see (3.3)–(3.5) in their treatment) but
including the unsteady terms in the Reynolds-averaged equations. That approach has
not been pursued here.

2.2.1. Interpretation as an eddy diffusion
By appealing to Prandtl’s mixing-length theory in introducing the velocity diffusion

term above, in (2.13), we are appealing to ideas based on the concept of eddy
diffusion. The diffusion term scales locally with the plume width and mean velocity
and so varies depending on the local structure of the plume, which is characterized by
the eddies. However, given the strong assumptions made in invoking the entrainment
assumption it is not clear that the introduction of the diffusive term in (2.13)
represents an eddy diffusion of velocity in the rigorous sense. If we were to interpret it
as such, a natural follow-on question would be that since the buoyancy is being acted
upon by the same eddies that are diffusing the momentum, should not a buoyancy
diffusion term be included in the regularizing model too. It is straightforward to
include a similar buoyancy diffusion term to the velocity diffusion term and in the
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steady case we have

dQ

dz
= 2αρ1/2

∞ M1/2,
dM

dz
= QF

M
+ ε Q2

2αρ1/2
∞ M

d
dz

[
M1/2 d

dz

(
M

Q

)]
, (2.17a,b)

dF

dz
= K

Q2

2αρ1/2
∞ M

d
dz

[
M1/2 d

dz

(
F

Q

)]
, (2.17c)

where we have introduced a buoyancy diffusion coefficient K. Power-law solutions of
(2.17) can be found and are given by

Q= 3c

5

(
9

20

)1/3

24/3F1/3
0

(
1− ε

10

)−1/3
z(5/3)[1+Φ/5], (2.18a)

M = c2

(
9
20

)2/3(
1+ Φ

5

)2

22/3F2/3
0

(
1− ε

10

)−2/3
z(4/3)[1+Φ/2], F = F0zΦ (2.18b,c)

(cf. (2.2)) where we have taken, without loss of generality, αρ1/2
∞ = 1, and Φ is given

by

Φ =
{

25+ 130K + K2
}1/2 − (5+ 9K)

2 (1− 2K)
∼ 2K + O(K2). (2.19)

By substitution into (2.17b), the constant c can be found explicitly as the root of
a cubic equation with no linear or quadratic terms and is given asymptotically by
c∼ 1− 13K/15+ O(ε2, εK,K2).

This solution has the undesirable property of not following the established classical
power-law solutions, unlike (2.15), and drifts further away from these solutions for
increasing K.

We anticipate that any diffusion acting will be weak, only affecting small
wavelengths to any significant degree. Hence, given the uncertainty surrounding the
rigour of identifying (2.17) as a genuine implementation of a consistent eddy diffusion
model and the added difficulty of introducing another parameter into the model,
we therefore restrict our attention to the case K ≡ 0, noting that understanding the
diffusion term as an eddy diffusion may still be a useful physical interpretation.

2.2.2. Modification to the unsteady similarity solutions
In SCDH attracting power-law similarity solutions were found for (2.1). These

solutions were observed experimentally in Scase et al. (2008). Again, the validity of
the velocity diffusion term (ε 6= 0) is drawn into question if these similarity solutions
are found to be significantly affected by its inclusion. For plumes propagating in an
unstratified ambient these similarity solutions are

Q̂= 2α2ρ∞
9

z3

t
, M̂ = α

2ρ∞
9

z4

t2
, F̂ = α

2ρ∞
9

z4

t3

(
1− ε

3

)
; (2.20a–c)

and these solutions also apply under translations in z and t. For such solutions we note
that b = 2αz/3 and, as with the steady case, the diffusion term does not enter. Hence,
we see that the inclusion of the diffusion term does not affect the predicted narrow
radius in the matching region investigated and observed experimentally in Scase et al.
(2008).
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3. Numerical results for top-hat plumes
The regularized problem is now (2.1) with (2.1b) replaced by (2.14). To approach

this modified problem numerically it is convenient to transform the system. We
introduce the variables A = ρ∞b2 = Q/w, proportional to the plume’s cross-sectional
area, and B = ρ∞b2g′, proportional to the total buoyancy (NB some authors use
B to denote the buoyancy flux which is denoted F herein). We define the
vector A = (A,w,B)T and rewrite the governing model (that is, (2.1) with (2.1b)
replaced by (2.14)) as

∂A

∂t
+ ∂

∂z
(wA)= 2γwA1/2, (3.1a)

∂w

∂t
+ ∂

∂z

(
1
2

w2

)
= B

A
− 2γ

w2

A1/2
+ ε

2γ
∂

∂z

(
wA1/2 ∂w

∂z

)
, (3.1b)

∂B

∂t
+ ∂

∂z
(wB)= 0, (3.1c)

where γ ≡ αρ1/2
∞ . In all of the numerical results presented below we take γ = 1, which

can be assumed without any loss of generality as it corresponds to a rescaling.
For simplicity we will choose finite source conditions by considering the truncated

domain z ∈ [1, zmax]. At z= 1 we impose conditions that are consistent with the steady
solutions (2.15),

F(z= 1, t)= F0(t), Q(z= 1, t)= cQ̂ F0 (t)
1/3, w(z= 1, t)= cŵ F0 (t)

1/3, (3.2a)

where F0(t) is a known source function. Owing to the increased order associated with
the diffusive term an additional downstream condition is needed, which we choose to
be

zmaxwz(z= zmax, t)

w(z= zmax, t)
=−1

3
. (3.2b)

This choice is ad-hoc, but it is motivated by the algebraic form of the solution (2.15),
which certainly must apply for at least some time after the change in source buoyancy
flux. In the results presented below, the exact nature of the boundary condition chosen
at z= zmax was not found to significantly affect the solutions obtained.

3.1. Linearized harmonic perturbations
We begin by repeating the analysis of § 2.1 but applied to the modified model
equations (3.1). We therefore suppose that the source is driven by a buoyancy
flux in the form of F0(t) = 1 + δeiωt, where δ � 1, and examine the resulting
harmonic perturbation ã = (Ã, w̃, B̃)

T
, defined analogously to (2.3), where AB =

(Q̂B/ŵB, ŵB, F̂B/ŵB)
T
, is the steady solution to the modified model, as given by (2.15)

and (2.16a). As before we consider a single Fourier mode and define ã= Ã(z)eiωt.
To solve for the perturbation, Ã(z), we first linearize (3.1)–(3.2), then discretize

using a second-order finite-difference scheme. The resulting banded matrix problem
is solved by LU decomposition. The results discussed below are independent of the
choice of domain size and spatial resolution.

In figure 3 we show the spatial variation of these linearized perturbations, Ã(z), for
ω = 2, 10 and a range of the diffusivity parameter ε. In each figure we provide the
corresponding solutions for the original model equations with ε = 0, as described in
§ 2.1. We note again that, when ε = 0, the harmonic perturbations grow increasingly



Unsteady turbulent plume models 465

|w|

101100

105

104

103

10–3

102

10–2

101

10–1

100

~

101100

105

104

103

10–3

102

10–2

101

10–1

100

|A|

101100

~

101100

101100 101100

|B|
~

z z

(a) (b)

(c) (d)

(e) ( f )

105

104

103

10–1

102

101

100

105

104

103

10–1

102

101

100

105

104

103

10–1

102

101

100

105

104

103

10–1

102

101

100

FIGURE 3. The downstream evolution of a linear harmonic perturbation to the modified
plume model. The perturbations are oscillatory in z but here we present the absolute value
for clarity. The original non-diffusive (ε = 0) model prediction (as discussed in § 2.1) is
shown as the dashed upper line in each figure, whilst the arrow shows decreasing values of
ε = 0.1, 0.05, 0.025, 0.0125. (a,c,e) ω = 2 and (b,d,f ) ω = 10.
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quickly as the frequency ω is increased, as can be observed by a comparison of the
left-hand column (ω = 2) and the right-hand column (ω = 10). Such behaviour is not
observed in the regularized system at finite values of ε, which renders the initial-value
problem well-posed.

In order to estimate an appropriate value for ε we have considered the laboratory
data, from nominally steady-source plumes, published by both Rouse, Yih &
Humphreys (1952) and Papanicolaou & List (1988). There is inevitably scatter
between the data sets, but certainly the values of ε that we have used in our numerical
solutions, specifically ε ∈ (0, 0.1], are within the range of published experimental data.

3.2. Nonlinear unsteady initial-value computations

To solve (3.1) we employ a segregated solver for the unknowns A(n)i , w(n)
i and B(n)i , over

a distribution of nodal points zi (i = 1, . . . ,N, where z1 = 1 and zN = zmax) and time
points tn. At each time level, tn, the advection–diffusion equation (3.1b) is evaluated
at the mid-point in time (tn + tn−1)/2 using a second-order finite-difference scheme.
During this solution phase we treat the quantities A(n)i and B(n)i as being known. The
advection equations (3.1a) and (3.1c) are solved by a conservative MUSCL approach
(‘monotone upwind-centred scheme for conservation laws’); this is a finite-volume
scheme that uses a piecewise linear approximation in each volume element and is
second-order in space and time. For this advection phase we treat w(n)

i as being known.
The coupled nature of the system is finally taken into account by an iteration for each
time step, repeating the above procedure until a tolerance (typically 10−8) is achieved
for the maximum change of all discrete variables across the whole spatial mesh at that
time step.

The unsteady problem (3.1)–(3.2) requires an initial condition, which we take to be
the steady solution (2.15). Therefore, if F0(t) takes a constant value for t>0, then no
unsteady behaviour will be observed in the initial-value problem.

We consider the evolution of the plume following a change in the source conditions.
For the source buoyancy flux we choose a rapidly varying (but smooth) profile in the
form

F0(t)= Fi + (Ff − Fi)
(

1− e−100t2
)
, (3.3)

which transitions from an initial value Fi to a final value of Ff .
In figure 4(a) we show the evolution of the plume radius for a ‘turned-down’

source with Fi = 1, Ff = 0.01, including diffusive effects with ε = 0.05. Figure 4(b)
shows the analogous ‘turned-up’ case with Fi = 0.01, Ff = 1 and ε = 0.05. In both
cases, but particularly for increases in source buoyancy flux, the profiles of A and B
develop steep gradients. The accurate resolution of these rapid transition regions was
the primary motivation for our separate numerical treatment of (3.1a) and (3.1c) via
the MUSCL approach.

In figures 4(c) and 4(d) the influence of varying ε ∈ [0.025, 0.1] is investigated,
again showing the plume radius, but at a fixed time. As ε→ 0, a ‘spike’ develops that
is associated with an increase in plume radius; this feature is clear for the turned-up
case, but it is also present for turned-down evolutions, as highlighted by the circle in
figure 4(c). At finite values of ε the same spike develops with time, as is most clearly
seen in figure 4(b). In figure 4(c) we also show a (dashed) line segment with a 2/3
gradient, which is a prediction for the neck region flow given by SCDH (for ε = 0).

Physically, the reason for the formation of the spike at the bottom of the neck
in the turned-down realizations is the different power-law behaviour of the plume’s
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FIGURE 4. The Boussinesq plume radius b =√A for a range of evolutions using the source
profile (3.3) with (a) Fi = 1, Ff = 0.01, ε = 0.05, t = 2 (– – –), 4 (- - -), 8 (—); (b) Fi = 0.01,
Ff = 1, ε = 0.05, t = 2 (– – –), 4 (- - -), 8 (—); (c) Fi = 1, Ff = 0.01, t = 8, ε = 0.1 (– – –),
0.05(– · – ·), 0.025 (—); (d) Fi = 0.01, Ff = 1, t = 2, ε = 0.1 (– – –), 0.05 (– · – ·), 0.025 (—).
The (dotted) straight line shows the solution for a steady plume radius in each case.

velocity in the necked (above) and lower (below) regions. Below the neck the plume is
following the classical w ∼ z−1/3 law and fluid just below the neck is therefore rising
as z∼ t3/4. In the neck, the velocity is behaving as w∼ z/2t and so fluid at the base of
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FIGURE 5. For the turned-up finite-source computation presented in figure 4(b), we compute:
(a) the height of the spike in plume radius, zh, and (b) the additional volume of the spike Vh
as defined by (3.4). The gradient of the dotted lines in each figure are the predictions of Scase
et al. (2009): (a) zh ∼ t3/4; and (b) Vh ∼ t9/4.

the neck is rising as z∼ t1/2. Thus, as time increases, fluid at the bottom of the neck is
swept up by fluid at the top of the lower plume, causing the formation of the spike.

The formation of the spike in the turned-up case is perhaps more intuitive despite
the same z−1/3 power-law behaviour of the velocity field either side of the spike. The
spike forms because the plume is adjusting to the faster source conditions, and hence
faster fluid is moving into regions of slower, less buoyant, fluid not withstanding the
usual z−1/3 decay in velocity.

In Scase et al. (2009) various scaling laws were suggested for the behaviour of the
spike, in the absence of explicit momentum diffusion. It was argued that the vertical
position of the spike scaled as zh ∼ t3/4, and the volume of fluid contained within the
spike scaled as Vh ∼ t9/4. These scalings were derived for point-source, pure plumes. It
was proposed that plumes emanating from finite-sized sources tend toward following
these scalings far from the source. In figure 5 we present data for zh and

Vh(t)= π
∫ z=zmax

z=1

{
A(z, t)−

(
6z

5

)2
}

dz ; (3.4)

in each figure the dotted lines show the predicted large-time t3/4 and t9/4 gradients.

4. Unsteady Gaussian plume models
The modelling of turbulent plumes under an assumption of Gaussian self-similarity

is popular as the model fits experimental data more closely than an assumed top-hat
profile. However, the modelling of the unsteady behaviour of a plume with an assumed
Gaussian profile presents additional difficulties compared to modelling plumes with an
assumed top-hat profile. In particular, replicating the analysis presented in SCDH fails
for ‘Gaussian plumes’ as the integral of the mass of the plume at a given height does
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not converge. Specifically, ∫ ∞
0
ρ r dr (4.1)

does not exist (cf. the first term of (2.4) in SCDH and the first term of (1) in Yu 1990).
The quantity (4.1) arises due to the inclusion of the unsteady part of the convective
derivative in the mass conservation equation. A top-hat plume has finite mass in its
cross-section, conversely a Gaussian plume has an infinite mass in its cross-section
and so lacks the compact support necessary to make the analysis of SCDH work. In
a steady framework, arguments can be made about entrainment into a plume with
Gaussian profiles, and indeed where this entrainment into the plume occurs, since the
plume has no edge (see e.g. Scase et al. 2007). However, when integral properties
of the plume are to be tracked, integrating over the plume cross-section fails in the
Gaussian case (4.1) as a result of this infinite mass. A naı̈ve approach to circumvent
the problem would be to attempt to subtract the steady ambient background density,
ρ∞, from the plume density, ρ (both multiplied by the radial ordinate), since it is only
the time derivative that is required. This attempt leads only to the density deficiency,
or buoyancy flux, equation though.

Despite this lack of convergence, several authors have presented models for unsteady
Gaussian plume behaviour. Here we consider the three different models posed by
Delichatsios (1979), Yu (1990) and Vul’fson & Borodin (2001) (see also Vul’fson
2001a,b).

To introduce the models of Delichatsios (1979) and Yu (1990), we assume that the
plume has Gaussian profiles in the radial direction, specifically

w(r, z)= w0(z) exp
{−r2/b2

}
, g′(r, z)= g′0(z) exp

{−r2/
(
λ2b2

)}
. (4.2)

Here, the ratio of temperature radius to velocity radius is λ. The governing equations
for unsteady Gaussian plumes due to both Delichatsios (1979) and Yu (1990) can be
represented by

κ
∂

∂t

(
b2
)+ ∂

∂z

(
b2w0

)= 2αbw0, (4.3a)

∂

∂t

(
b2w0

)+ 1
2
∂

∂z

(
b2w2

0

)= λ2b2g′0, (4.3b)

∂

∂t

(
b2g′0

)+ 1
1+ λ2

∂

∂z

(
b2w0g′0

)= 0, (4.3c)

where κ = 1 corresponds to the model of Delichatsios (1979) and κ = 2 is the
model of Yu (1990). The details of the derivation of the model due to Delichatsios
(1979) are brief, stating that the model is the appropriate unsteady generalization of
mass, momentum and energy conservation. Further exposition is given in Yu (1990),
although as discussed above the attempt to use a divergent integral renders the model’s
origins doubtful. The model of Vul’fson & Borodin (2001) has identical equations for
conservation of momentum and buoyancy as Delichatsios (1979) and Yu (1990), but
avoids the problems associated with the conservation of mass by replacing (4.3a) with
the assumption that the plume is conical at all times. This assumption that b(z, t) ∼ z
is very strong, but is based on similar assumptions by Schmidt (1941), Prandtl (1952)
and Schmidt (1957) in steady contexts. It is an open question as to how appropriate
such a strong assumption is in an unsteady context. In the special case λ = 1 the
model of Yu ((4.3), with κ = 2) can be scaled such that it is identical to the top-hat
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model of SCDH (2.1) and so the dynamical properties, and in particular the response
to perturbations at the source, of the two models are similar in this case.

We note here that the Gaussian models (4.3) accept power-law solutions in the form

b= 2αz

3
, w= 1+ λ2

2
z

t
, g′ = 1+ λ2

2
z

t2
. (4.4)

As with the top-hat model, w and g′ are independent of the entrainment coefficient, α.

4.1. Difficulties associated with unsteady Gaussian plume models
We can repeat the analysis of § 2 for the Gaussian plume models, and similarly
determine if those models are well-posed or not. In each case, the non-dimensional
quantities ζ and τ are defined as ζ = (zω/wB)

1/2, and τ = ωt, for the appropriate
steady basic flow velocity wB. In the case that λ = 1, the model of Yu (1990) predicts
exactly the same perturbation quantities q as the non-regularized, ε = 0, top-hat model,
due to the fact that the two models differ only by a scaling. However, the model of
Delichatsios (1979) produces significantly more unstable oscillations with (for λ= 1)

f = 3i
4ζ 5/4

ei[τ−3/4ζ2]
{

I7/8

(
3ζ 2

4

)∫ ζ

0

(
i− 2ξ 2

)
ξ 1/4e−3i/4ξ2

K7/8

(
3ξ 2

4

)
dξ

−K7/8

(
3ζ 2

4

)∫ ζ

0

(
i− 2ξ 2

)
ξ 1/4e−3i/4ξ2

I7/8

(
3ξ 2

4

)
dξ
}
, (4.5)

where I and K are modified Bessel functions of the first and second kind; whereas,
the model of Vul’fson & Borodin (2001) produces more physically realistic solutions:

f =
(

4
3λ2

)3/4 1
ζ 3/2

exp
{

iτ − 3i
8

[
π+ ζ 2(2+ λ2)

]}
M(λ2−2)/4λ2,1/4

(
3
4

iλ2ζ 2

)
, (4.6)

where M is the Whittaker-M function (see e.g. Abramowitz & Stegun 1965).
Figure 6 shows representative growths of the oscillations for the four models under

consideration (the non-regularized, ε = 0, top-hat model and the model of Yu 1990
coincide). The model of Vul’fson & Borodin (2001) has a benign response, with
the oscillations decaying away with height; however the extremely strong restriction
that b = 6αz/5 (for all time) makes the model unattractive if larger perturbations are
considered.

The analysis can be repeated under the assumption that F ≡ 0, and the systems are
modelling the evolution of unsteady turbulent jets. The same qualitative results are
found, and are shown in the Appendix.

4.2. Regularization and numerical solution of the Gaussian plume models
The Gaussian models, as described by (4.3) may also be cast into a form that is
analogous to (3.1). By including momentum diffusion (as before, with coefficient ε)
we obtain the modified model:

κ
∂A

∂t
+ ∂

∂z
(w0A)= 2w0A1/2, (4.7a)

∂w0

∂t
+
(

1− 1
κ

)
∂

∂z

(
1
2

w2
0

)
= λ2 B

A
− 2

w2
0

κA1/2

+
(

1
κ
− 1

2

)
w2

0

A

∂A

∂z
+ ε

2
∂

∂z

(
w0A1/2 ∂w0

∂z

)
, (4.7b)
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FIGURE 6. The growth of oscillations in the buoyancy flux field. (a) The top-hat model: the
thick solid line shows the field at a representative time. The thin solid boundary shows the
envelope of F and hence the growth of the perturbation. The outer dashed line is the envelope
for the model due to Delichatsios (1979). (b) The decay of oscillations in the Vul’fson &
Borodin (2001) model for λ= 1. The envelopes for differing values of λ are also shown.

∂B

∂t
+ 1

1+ λ2

∂

∂z
(w0B)= 0, (4.7c)

where, without loss of any generality, we have set the entrainment coefficient, α, to
be unity. Here we have kept a notation that is consistent with (3.1), using A = b2,
B = b2g′0. We must also note that the steady solutions to this system are slightly
modified from the top-hat case, in particular one must replace cQ → cQ (2λ2)

1/3 in
(2.2).

For κ = 2, Yu (1990), we have already noted that this system (when λ = 1) is
equivalent to the top-hat model of SCDH after a suitable rescaling. Therefore, our
previous discussion regarding the solution and regularization of the top-hat model also
applies to this system.

In the case κ = 1, Delichatsios (1979), we have investigated the response to linear
harmonic perturbations as per the discussion § 3.1. The growth of small-scale waves is
much more severe in this model when ε = 0 and our investigation for ε 6= 0 reveals
that the system remains ill-posed even in the presence of velocity diffusion. In this
sense we feel that this model is ill-suited to modelling such flows.

In figure 7 we present results at fixed time for the evolution of a turned-up and
turned-down source for a range of values of λ = 0.5, 1 and 1.5. These computations
are developed using the same scheme as described in § 3, starting from a steady-state
solution with the same transition profile (3.3).

5. Similarity solutions
Similarity solutions to unsteady integral plume models have been considered by

previous authors. It has been found experimentally that the source conditions of
a plume generated by a fast-growing fire are well-approximated by power-law
representations. As a result, similarity solutions can be used to predict detector,
or collector, measurement response, see for example Delichatsios (1979) and Yu
(1990). In the present section we revisit the previously derived similarity solutions
and demonstrate that for the range of power-law solutions considered in the literature
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FIGURE 7. The plume radius b(z, t) in the modified Gaussian model (κ = 2) for (a) Fi = 1,
Ff = 0.01, ε = 0.05, t = 8 and (b) Fi = 0.01, Ff = 1, t = 8, ε = 0.05. In both cases λ = 0.5
(– – –), 1 (- - -) and 1.5 (—). The dotted line shows the solution for a steady plume radius.

there is very little difference in the model predictions. We include predictions with and
without diffusion and show that, again, regularizing the models does not significantly
affect predictions that have previously been empirically validated; we discuss this
validation further below.

5.1. Governing equations
Following the methodology of Delichatsios (1979) and Yu (1990), we define a
similarity variable η = z/(Γ tn), and rescale the primary variables according to

b= b̃Γ tn, w= w̃Γ ntn−1, g′ = g̃′Γ n(n− 1)tn−2, (5.1)

for n 6= 0, 1. We seek solutions for b2wg′
∣∣

z=0
∝ tp (and take the constant of

proportionality to be c). To attain similarity solutions it follows that p = 4n − 3 as
shown by Delichatsios (1979) and Yu (1990). Making the substitution (5.1) into (4.3)
we find

κ

{
2b̃2 − ηdb̃2

dη

}
+ d

dη

(
b̃2w̃
)
− 2αb̃w̃= 0, (5.2a){

(3n− 1)b̃2w̃− nη
d

dη

(
b̃2w̃
)}
+ n

2
d

dη

(
b̃2w̃2

)
− λ2(n− 1)b̃2g̃′ = 0, (5.2b){

(3n− 2)
n

b̃2g̃′ − η d
dη

(
b̃2g̃′

)}
+ 1

1+ λ2

d
dη

(
b̃2w̃g̃′

)
= 0 (5.2c)

where the quantities in curly brackets are due to the time derivatives in (4.3). Solutions
to the steady system, where the quantities in curly brackets are ignored, are first
sought. They are identical for both the Delichatsios (1979) and Yu (1990) systems and
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Note Comment

I The factor of 2 is replaced with 1 for the Delichatsios (1979) model.
II A typographical error in Yu (1990) replaces this with a 1.
III The term is omitted in the Delichatsios (1979) model.
IV, VII Identically zero in the Vul’fson & Borodin (2001) model.
V The factor is only present in the Vul’fson & Borodin (2001) model.
VI Becomes 2w̄2 in the Vul’fson & Borodin (2001) model since b̄= 1.
(5.6a) Is replaced by b̄= 1 in the Vul’fson & Borodin (2001) model.
(5.6c) The top-hat model replaces the factor 2 (1+ λ2)

−1 with 1 throughout.

TABLE 1. The required adjustments to the Yu (1990) model, (5.6), in order to apply
the models of Delichatsios (1979) and Vul’fson & Borodin (2001) and the top-hat
SCDH model.

are given by

b̃u = 6α
5
η, w̃u = 5

3

(
9
20

)1/3(2αρ1/2
∞

F1/2
0

)−2/3(2cλ2

n3

)1/3

η−1/3, (5.3a,b)

g̃′u =
5
3

(
9

20

)−1/3(2αρ1/2
∞

F1/2
0

)−4/3(2cλ2

n3

)2/3 n

2λ2(n− 1)
η−5/3, (5.3c)

for Γ = (F0/ρ∞)
−1/4. We now define perturbation quantities such that

b̄= b̃/b̃u, w̄= w̃/w̃u, ḡ′ = g̃′/g̃′u, (5.4)

and finally rescale by taking

z̄= p

n
η4/3

[
5
3

(
9
20

)1/3(2αρ1/2
∞

F1/2
0

)−2/3(2cλ2

n3

)1/3
]−1

. (5.5)

For all four models, following the above procedure leads to

8z̄

[
w̄− 2︸︷︷︸

I

nz̄

p

]
db̄

dz̄
+ 4z̄b̄

dw̄

dz̄
= 5w̄

(
1− b̄

)
, (5.6a)

4z̄

 w̄︸︷︷︸
II

− 2
nz̄

p︸︷︷︸
III

 w̄

b̄

db̄

dz̄︸︷︷︸
IV

+4z̄

[
nz̄

p
− w̄︸︷︷︸

V

]
dw̄

dz̄
= 5

w̄2

b̄
− 3w̄2︸ ︷︷ ︸
VI

−2ḡ′ + w̄z̄, (5.6b)

2

b̄

[
2

1+ λ2
w̄− 2

nz̄

p

]
db̄

dz̄︸︷︷︸
VII

+ 2
1+ λ2

dw̄

dz̄
+ 1

ḡ′

[
2

1+ λ2
w̄− 2

nz̄

p

]
dḡ′

dz̄
=−1, (5.6c)

where the meaning of the underbraces, describing the differences between the models,
is given in table 1 (cf. (3.4) in Delichatsios 1979, (11)–(13) in Yu 1990). Asymptotic
approximations for all four models for small z̄ are shown in table 2 (cf. (3.8) in
Delichatsios 1979, noting that there is a typographical error in (3.8c)).
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(solid line) the effects of diffusion (ε = 0.1). The figure shows the solutions for n = 3/2,
p = 3, and λ = 0.85−1 for comparison with figure 1 in Yu (1990). The upper dotted line is
n(1 + λ2)z̄/p and the singularity in (5.6c) occurs at the intersection of this line and w̄ except
for the top-hat case. In the top-hat case the singularity occurs at the intersection of w̄ and
2nz̄/p, the lower dotted line. (b) The development of the starting plume under the model of Yu
(1990) with λ= 0.85−1, p= 3 and ε = 0.1.

Quantity Yu (1990) and
Delichatsios (1979)

Vul’fson & Borodin (2001) Top-hat

b̄ 1+ 2
(
2+ λ2

)
49

z̄+ O(z̄2) 1 1+ 6
49

z̄+ O(z̄2)

w̄ 1− 13
(
2+ λ2

)
98

z̄+ O(z̄2) 1− 2+ λ2

10
z̄+ O(z̄2) 1− 39

98
z̄+ O(z̄2)

ḡ′ 1− 39+ 44λ2

98
z̄+ O(z̄2) 1− 3+ 4λ2

10
z̄+ O(z̄2) 1− 83

98
z̄+ O(z̄2)

TABLE 2. The first two terms of the series solutions for (5.6) for the various models. Note
that the models of Yu (1990) and Delichatsios (1979) have identical expansions up to O(z),
but their expansions differ at O(z2). (Note further that there is a typographical error in
Delichatsios (1979) (3.8c).)

If, in addition the effects of a velocity diffusion are included in these four models an
extra term is required on the right-hand side of (5.6b), given by

ε

5

{
w̄2

[
z̄

db̄

dz̄
− b̄

]
− 8b̄2 d

dz̄

[
b̄w̄

dw̄

dz̄

]
+ ḡ′

}
. (5.7)

Figure 8(a) is a comparison of the similarity solutions of the four models under
consideration, with and without diffusion. The figure illustrates that the differences
between the four models are small and hence demonstrates that the experimental
observations used to verify these models are unlikely to indicate either which model
should be preferred or indeed that the underlying models are ill-posed. The model of
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Delichatsios (1979) with diffusion is not shown as the inclusion of diffusion fails to
regularize the model. Figure 8(b) shows the development of a starting plume under the
Yu (1990) model with boundary condition F0(t) = t3, for t>0, M0(t) = Q0(t) = 0 with
regularizing diffusion ε = 0.1. The profile is shown dashed for t = 1, 2, 3, 4 and solid
for t = 5. The position of the front is indicated at each time by a horizontal dotted line.
The position of the front varies as zh ∼ t3 (and tp in general) unlike the t3/4 behaviour
observed in the bounded turned-up cases considered in § 3.

5.2. Implications for experimental comparisons
Here we replot the results of the experiments of Delichatsios (1979) and Yu (1990)
and make comparisons between the original ill-posed models (via similarity solutions),
and the Yu (1990) and SCDH models regularized by the inclusion of diffusion.

Figure 9(a) is a reproduction of figure 2 in Delichatsios (1979) showing the family
of similarity solutions for p = 2, λ = 1.16. The solid lines are the numerical similarity
solution and the dashed line is the first-order asymptotic solution as given in table 2.
Figure 9(b) further illustrates this point by comparing experimental data to the model
predictions (cf. figure 4 in Delichatsios 1979). The difference between the ill-posed
original model and the other models under consideration, with and without diffusion,
is small compared to the scatter in the experimental data.

Figure 10 compares the performance of all four models against the experimental
data of Yu (1990) (cf. figures 7 and 8, tests 3 and 4 in Yu 1990). These results
were reproduced by Vul’fson & Borodin (2001) although their plotted model solutions
are erroneous. Figure 10(a) illustrates that all the models over-predict the velocity
of the plume as may be expected (see the arguments relating to the significance of
entrainment into the turbulent cap preceding a starting plume in Scase et al. 2009).
The regularized model of Yu that includes the self-similar Gaussian profiles of velocity
and density, of differing radius, is in closest agreement with the experimental data.
However, the difference between the four models is comparable with the scatter in
the data. Figure 10(b) shows that the regularized model of Yu (1990) is in closest
agreement with the data again.

Figures 9 and 10 demonstrate that, like the classical model, the omission of a
diffusion term does not significantly affect the predictions of the various models (in
the special case of these self-similar solutions). The experimental validation of these
models exhibited sufficient scatter in the data that the deficiencies of the models
as presented were not realized. Further, validation of the full unsteady models by
comparing the similarity solutions with experimental data, from experiments designed
to replicate those similarity solutions, was not sufficient to illustrate the ill-posedness
of the models.

6. Conclusions
We have revisited four existing integral models for describing the behaviour of

unsteady plumes and found all four models to be unsuitable in some regard. The
model of Vul’fson & Borodin (2001) is well-defined and well-posed but is bound by
the strong assumption that the plume remains conical at all times. The models of
SCDH, Yu (1990), and Delichatsios (1979) were all found to be ill-posed, possessing
unbounded temporal growth of infinitesimally short waves. In addition, the derivation
of the Gaussian models makes use of a divergent integral for the mass in the plume.

The models of SCDH and Yu (1990) are regularized by the inclusion of a velocity
diffusion term. This extra term in the model can be considered to mirror the vertical
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FIGURE 9. (a) Dimensionless radial spread, velocity, and buoyancy of an unsteady plume,
expressed as fractions of the quasi-steady values, versus the dimensionless vertical position
(cf. figure 2 in Delichatsios 1979): —, numerical solution (ε = 0); – – –, first-order
asymptotic solution, λ = 1.16; p = 2.0. (b) Comparison of experimental results with the
theoretical predictions (cf. figure 4 Delichatsios 1979): temperature histories over ignition
expressed as fractions of the quasi-steady values versus time expressed in terms of the
dimensionless parameter z̄. Early times correspond to large values of z̄. (t in s, H in m,
Q in W – here using the notation of Delichatsios 1979.) —, Numerical solution for ε = 0
under the Delichatsios (1979) model; – – –, numerical solution for ε = 0 under the Yu
(1990) model; —, numerical solution for ε = 0.1 under the Yu (1990) model; · · · ·, numerical
solution with ε = 0 under the SCDH model; – · – ·, numerical solution with ε = 0.1 under the
SCDH model; p= 2.0, and λ= 1.16 where applicable.

eddy structure of a real plume and is sufficient to render the initial-value problem
well-posed by inhibiting perturbations of arbitrarily small scales. The inclusion of this
term does not significantly affect any of the published, and well-established, results for
steady plumes. Similarly, the previously investigated unsteady similarity solutions for
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FIGURE 10. A comparison between the various models for p= 3.0, ε = 0.1 (cf. figures 7 and
8 tests 3 and 4 in Yu 1990, figure 2 in Vul’fson & Borodin 2001): – – –, top-hat; —, Yu;
— (thin), Vul’fson; · – · –, Delichatsios (ε = 0). (a) The normalized velocity field, w̄, (b) the
normalized buoyancy field, ḡ′. As in Vul’fson & Borodin (2001), data points 1 and 2 refer
to the data measurements taken by Yu (1990); the heat sources had different arrangements of
packing for the combustibles.

plumes generated by a power-law (increasing) source, and those generated by a sudden
bounded reduction in source strength, are largely unaffected. We suggest that this is
why diffusion can be safely neglected in steady regimes and why the importance of
a diffusive mechanism has not been noted previously. It is only when attempting to
solve the initial-value problem for an unsteady plume subject to general conditions at
its source that the ill-posed nature of the model equations becomes apparent.

Finally, our aim in this work was to revisit the range of model equations and
decide which is of most relevance to fully unsteady plumes. The model of Vul’fson
& Borodin (2001) requires a plume radius that is always conical, which renders
their model unsatisfactory for nonlinear changes in source conditions. The model of
Delichatsios (1979) is sufficiently ill-posed that even the inclusion of diffusion is not
enough to regularize it. This leaves the models of Yu (1990) and SCDH for Gaussian
and top-hat plumes respectively. Both can be regularized by diffusion, and in fact, both
are identical (apart from a rescaling) when the radii of velocity and reduced gravity
are the same. We therefore conclude that these two models (suitably regularized) are
of most relevance; there is no available experimental evidence that would distinguish
between them. The regularized SCDH model is more rigorously derived and simpler,
as a consequence of the top-hat assumption; however if an unsteady Gaussian plume
model is required, then a regularized version of the Yu model is most appropriate.
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Appendix. Harmonic perturbations to unsteady jet models
Using the notation of § 4 and noting that for the definitions (4.2) we have

b = Q/
√
ρ∞M and w = 2M/Q, we seek solutions to (4.3) with g′0 ≡ 0 that satisfy
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FIGURE 11. The growth of small perturbations to the momentum flux of the top-hat model
and the Gaussian models of Delichatsios (1979), Yu (1990) and Vul’fson & Borodin (2001).
Qualitatively similar results as for the plume are found. The model of Delichatsios (1979) is
the most unstable, while the most physically realistic in this instance is due to Vul’fson &
Borodin (2001).

the boundary condition Q(0, t) = M0 (0, 1+ δ exp{iωt})T. Writing q = (q,m)T for the
perturbation vector to the steady solutions QB = 2αρ1/2

∞ M1/2
0 z, MB = M0 it can be

shown that at order δ(
2κ −κ

2 0

)
∂q
∂τ
+ 1
ζ

∂q
∂ζ
+ 1
ζ 2

(
1 − 1

2

0 0

)
q= 0, (A 1)

where, as before, τ = ωt and ζ = (zω/wB)
1/2. In the case of SCDH and Yu (1990) the

models coincide up to a scaling (ζ → ζ/
√

2 from Yu 1990 to SCDH) since there is
no buoyancy. The constant κ = 2, and the solution to (A 1) satisfying the prescribed
boundary conditions is given by

q= ei[τ−ζ2]
{

cosh
[
eiπ/4ζ

]− e−iπ/4

2ζ
sinh

[
eiπ/4ζ

]}
,

m= ei[τ−ζ2] cosh
[
eiπ/4ζ

]
.

 (A 2)

In the far field, ζ →∞, the solutions grow as exp{ζ/√2}.
For the Gaussian model of Delichatsios (1979), κ = 1 and the solution is

q= ei[τ−ζ2/2]

2

(
ζ

2

)1/2

0

(
3
4

){
I−1/4

(
ζ 2/2

)+ iI3/4

(
ζ 2/2

)}
, (A 3a)

m= ei[τ−ζ2/2]
(
ζ

2

)1/2

0

(
3
4

)
I−1/4

(
ζ 2/2

)
, (A 3b)

where I is the modified Bessel function of the first kind. In the far field as ζ →∞
the perturbations are more unstable than the SCDH and Yu (1990) models, as before,
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growing as ζ−1/2 exp{ζ 2/2}. For the Vul’fson & Borodin (2001) model the solutions
are given by

q= 1
2 ei[τ−ζ2/2], m= ei[τ−ζ2/2], (A 4)

and the solutions neither grow nor decay.
Figure 11 illustrates the growth of the asymptotically small perturbations to the

source conditions of the jet under the four models considered. Qualitatively similar
responses to those found in the plume configuration are found. The Vul’fson &
Borodin (2001) model neither grows nor decays and so exhibits the most physically
realistic response in terms of perturbation growth. In the absence of any diffusion
the scalably identical models of SCDH and Yu (1990) (due to the vanishing
reduced gravity radius) show the same ill-posed behaviour, with perturbations growing
exponentially with downstream distance from the source. Again the perturbations
grow most rapidly under the model of Delichatsios (1979). As with the plume
modelling, no finite dominant frequency arises in the Delichatsios (1979), Yu (1990) or
SCDH models and so they are ill-posed.
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