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Abstract

We prove an existence and uniqueness result for a general class of backward stochastic
partial differential equations with jumps. This is a type of equations which appear as adjoint
equations in the maximum principle approach to optimal control of systems described by
stochastic partial differential equations driven by Lévy processes.
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1 Introduction

Let Bt, t ≥ 0 and η(t) =
∫ t

0

∫
Rn zÑ(ds, dz); t ≥ 0 be an m-dimensional Brownian motion

and a pure jump Lévy process, respectively, on a filtered probability space (Ω,F ,Ft, P ). Fix
T > 0 and let φ(ω) be an FT -measurable random variable. Let

b : [0, T ] × R
n × R

n×m → R
n

be a given vector field. Consider the problem to find three Ft-adapted processes p(t) ∈
R

n, q(t) ∈ R
n×m and r(t, z) ∈ R

n×m such that

dp(t) = b(t, p(t), q(t))dt + q(t)dBt +

∫

Rn

r(t, z)Ñ(ds, dz), t ∈ (0, T ) (1.1)

p(T ) = φ a.s. (1.2)

This is a backward stochastic (ordinary) differential equation (BSDE). It is called backward
because it is the terminal value p(T ) = φ that is given, not the initial value p(0). Still p(t) is
required to be Ft-adapted. In general this is only possible if we also are free to choose q(t)
and r(t, z) (in an Ft-adapted way).

The theory of BSDEs, when η = 0, is now well developed. See e.g. [EPQ], [MY], [PP1],
[PP2] and [YZ] and the references therein. In the jump case (η 6= 0) BSDE’s have been
studied. See [FØS], [NS], [S] and the references therein.

There are many applications of this theory. Examples include the following:

(i) The problem of finding a replicating portfolio of a given contingent claim in a complete
financial market can be transformed into a problem of solving a BSDE.
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(ii) The maximum principle method for solving a stochastic control problem involves a
BSDE for the adjoint processes p(t), q(t), r(t, z).

For more information about these and other applications of BSDEs we refer to [EPQ] and
[YZ] and references therein.

The purpose of this paper is to study backward stochastic partial differential equations
(BSPDEs) with jumps. They are defined in a similar way as BSDEs, but with the basic
equation being a stochastic partial differential equation rather than a stochastic ordinary
differential equation. More precisely, we will study a class of BSPDEs which includes the
following:

Find adapted processes Y (t, x), Z(t, x), Q(t, x, z) such that

dY (t, x) = AY (t, x)dt+ b(t, x, Y (t, x), Z(t, x))dt

+ Z(t, x)dBt +

∫

Rn

Q(t, x, z)Ñ (dt, dz), (t, x) ∈ (0, T ) × R
n (1.3)

Y (T, x) = φ(x, ω) (1.4)

Here dY (t, x) denotes the Itô differential with respect to t, while A is a partial differen-
tial operator with respect to x and Ñ(dt, dz) is the compensated Poisson random measure
associated with a Lévy process η(·).

The function b : [0, T ] × R
n × R × R → R is given and so is the terminal value function

φ(x) = φ(x, ω). We assume that φ(x) is FT -measurable for all x and that

E[

∫

Rn

φ(x)2dx] <∞, (1.5)

where E denotes expectation with respect to P . We are seeking the processes Y (t, x), Z(t, x)
and Q(t, x, z) such that (1.3) and (1.4) hold. The processes Y (t, x), Z(t, x) and Q(t, x, z)
are required to be Ft-adapted, i.e., Y (t, x), Z(t, x) and Q(t, x, z) are Ft-measurable for all
x ∈ R

n, z ∈ R and we also require that

E

[∫

Rn

∫ T

0
{Y (t, x)2 + Z(t, x)2 +

∫

Rn

Q(t, x, z)2ν(dz)}dt dx

]
<∞, (1.6)

where ν(·) is the Lévy measure of the underlying Lévy process. Equations of this type are
of interest because they appear as adjoint equations in a maximum principle approach to
optimal control of stochastic partial differential equations. See Section 2.

Example 1.1 Consider the following BSPDE:

dY (t, x) = − 1
2∆Y (t, x)dt+ Z(t, x)dBt +

∫

Rn

Q(t, x, z)Ñ (dt, dz), (t, x) ∈ (0, T ) × R
n (1.7)

Y (T, x) = φ(x) (1.8)

Here ∆Y (t, x) =
∑n

i=1
∂2Y (t,x)

∂x2

i

is the Laplacian with respect to x applied to Y (t, x), and φ(x)

satisfies E[
∫

Rn φ(x)2dx] <∞.
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In this simple case, we are able to find the solution explicitly:
We first use the Itô representation theorem to write, for almost all x,

φ(x) = h(x) +

∫ T

0
g(s, x, ω)dBs +

∫ T

0

∫

Rn

k(s, x, z, ω)Ñ(ds, dz)

where
h(x) = E[φ(x)],

g(s, x, ·) and k(s, x, z) are Fs-measurable for all s, x and

E[

∫

Rn

∫ T

0

{
g2(s, x, ·) +

∫

Rn

k2(s, x, z)ν(dz)

}
dsdx] <∞.

Let

Rtf(x) =

∫

Rn

(2πt)−
n
2 f(y)exp(−

|x− y|2

2t
)dy, t > 0

be the transition operator for Brownian motion defined for all measurable f : Rn → R such
that the integral converges. Then it is well known that

∂

∂t
(Rtf(x)) = 1

2∆(Rtf(x)) (1.9)

Now define

Y (t, x) = RT−t(

∫ t

0
g(s, ·, ω)dBs +

∫ t

0

∫

Rn

k(s, ·, z, ω)Ñ (ds, dz) + h(·))(x)

=

∫ t

0
(RT−tg(s, ·, ω))(x)dBs +

∫ t

0

∫

Rn

(RT−tk(s, ·, z, ω))(x)Ñ (ds, dz) + (RT−th)(x)

(1.10)

Then

dY (t, x)

=

[∫ t

0
−1

2∆(RT−tg(s, ·, ω))(x)dBs −
1
2

∫ t

0

∫

Rn

∆(RT−tk(s, ·, z, ω))(x)Ñ (ds, dz) − 1
2∆RT−th(·)(x)

]
dt

+ (RT−tg(t, ·, ω))(x)dBt +

∫

Rn

RT−t(k(t, ·, z, ω))(x)Ñ (dt, dz)

= −1
2∆Y (t, x)dt+ Z(t, x)dBt +

∫

Rn

Q(t, x, z)Ñ (dt, dz),

where
Z(t, x) = (RT−tg(t, ·, ω))(x) (1.11)

and
Q(t, x, z) = (RT−tk(t, ·, z))(x). (1.12)

Hence the processes Y (t, x), Z(t, x) and Q(t, x, z) given by (1.10)–(1.12) solve the BSPDE
(1.7)–(1.8).
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In the general case it is not possible to find explicit solutions of a BSPDE. However,
in Section 3 we will prove an existence and uniqueness result for a general class of such
equations. We will achieve this by regarding the BSPDE of type (1.3)–(1.4) as a special case
of a backward stochastic evolution equation for Hilbert space valued processes. This, in turn,
is studied by taking finite dimensional projections and then taking the limit. This is the
well known Galerkin approximation method which has been used by several authors in other
connections. See e.g. [B1], [B2] and [P]. We also refer readers to [PZ] for the general theory
of stochastic evolution equations on Hilbert spaces.

The rest of the paper is organized as follows: In Section 2 we prove a (sufficient) maximum
principle for optimal control of random jump fields, i.e. solutions of SPDE’s driven by Lévy
processes (Theorem 2.1). This principle involves a BSPDE of the form (1.3)-(1.4) in the
associated adjoint processes. In Section 3 we give the precise framework of our general
existence and uniqueness result. The existence and uniqueness result and its proof are given
in Section 4.

2 The stochastic maximum principle

In this section we prove a verification theorem for optimal control of a process described by
a stochastic partial differential equation (SPDE) driven by a Brownian motion B(t) and a
Poisson random measure Ñ(dt, dz). We call such a process a (controlled) random jump field.
The verification theorem has the form of a sufficient stochastic maximum principle and the
adjoint equation for this principle turns out to be a backward SPDE driven by B(·) and
Ñ(·, ·). This part of the paper is an extension of [Ø] to the case including jumps and an
extension of [FØS] to SPDE control.

Let Γ(t, x) = Γ(u)(t, x); t ∈ [0, T ], x ∈ R
k be the solution of a (controlled) stochastic

reaction-diffusion equation of the form

dΓ(t, x) = [(LΓ)(t, x) + b(t, x,Γ(t, x), u(t, x))] dt+ σ(t, x,Γ(t, x), u(t, x))dB(t)

+

∫

R

θ(t, x,Γ(t, x), u(t, x), z)Ñ (dt, dz); (t, x) ∈ [0, T ] ×G (2.1)

Γ(0, x) = ξ(x);x ∈ G (2.2)

Γ(t, x) = η(t, x); (t, x) ∈ (0, T ) × ∂G (2.3)

Here dΓ(t, x) = dtΓ(t, x) is the differential with respect to t and L = Lx is a given partial
differential operator of order m acting on the variable x ∈ R

k. We assume that G ⊂ R
k,f ⊂

R
l are given open and closed sets, respectively, and that b : [0, T ] × G × R × f → R,

σ : [0, T ]×G×R×f → R, θ : [0, T ]×G×R×f×R → R, ξ : G→ R and η : (0, T )×∂G → R

are given measurable functions. The process

u : [0, T ] ×G→ f

is called an admissible control if the equation (2.1)-(2.3) has a unique continuous solution
Γ(t, x) = Γ(u)(t, x) which satisfies

E

[∫ T

0

(∫

G

|f(t, x,Γ(t, x), u(t, x))| dx

)
dt+

∫

G

|g(x,Γ(T, x))| dx

]
<∞, (2.4)
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where f : [0, T ] ×G × R × f → R and g : G× R → R are given C 1 functions. The set of all
admissible controls is denoted by A. If u ∈ A we define the performance of u, J(u), by

J(u) = E

[∫ T

0

(∫

G

f(t, x,Γ(t, x), u(t, x))dx

)
dt+

∫

G

g(x,Γ(T, x))dx

]
. (2.5)

We consider the problem to find J ∗ ∈ R and u∗ ∈ A such that

J∗ := sup
u∈A

J(u) = J(u∗). (2.6)

J∗ is called the value of the problem and u∗ ∈ A (if it exists) is called an optimal control.
In the following we let L∗ denote the adjoint of the operator L, defined by

(L∗ ϕ1, ϕ2) = (ϕ1, Lϕ2) ; ϕ1, ϕ2 ∈ C∞
0 (G), (2.7)

where (ϕ,ψ) = (ϕ,ψ)L2(G) =
∫
G
ϕ(x)ψ(x)dx and C∞

0 (G) is the set of infinitely many times
differentiable functions with compact support in G.

We now formulate a (sufficient) stochastic maximum principle for the problem (2.6):
Let R denote the set of functions r : [0, T ] ×G× R × Ω → R.

Define the Hamiltonian

H : [0, T ] ×G× R × f × R × R×R → R

by

H(t, x, γ, u, p, q, r(t, x, ·))

= f(t, x, γ, u) + b(t, x, γ, u)p+ σ(t, x, γ, u)q +

∫

R

θ(t, x, γ, u, z)r(t, x, z)ν(dz) (2.8)

For each u ∈ A consider the following adjoint backward SPDE in the 3 unknown adapted
processes p(t, x), q(t, x) and r(t, x, z):

dp(t, x) = −{
∂H

∂γ
(t, x,Γ(u)(t, x), u(t, x), p(t, x), q(t, x), r(t, x, ·))

+ L∗p(t, x)}dt+ q(t, x)dB(t) +

∫

R

r(t, x, z)Ñ (dt, dz); t < T. (2.9)

p(T, x) =
∂g

∂γ
(x,Γ(u)(t, x)); x ∈ G (2.10)

p(t, x) = 0; (t, x) ∈ (0, T ) × ∂G. (2.11)

The following result may be regarded as a synthesis of Theorem 2.1 in [Ø] and Theorem 2.1
in [FØS]:

Theorem 2.1(Sufficient SPDE maximum principle for optimal control of reaction-
diffusion jump fields)
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Let û ∈ A with corresponding solution Γ̂(t, x) of (2.1)-(2.3) and let p̂(t, x), q̂(t, x), r̂(t, x, ·)
be a solution of the associated adjoint backward SPDE (2.9)-(2.11). Suppose the following,
(2.12)-(2.15), holds:

The functions (2.12)

(γ, u) 7→ H(γ, u) := H(t, x, γ, u, p̂(t, x), q̂(t, x), r̂(t, x, ·)); (γ, u) ∈ R × f

and

γ 7→ g(x, γ); γ ∈ R

are concave for all (t, x) ∈ [0, T ] ×G.

H(t, x, Γ̂(t, x), û(t, x), p̂(t, x), q̂(t, x), r̂(t, x, ·)) (2.13)

= sup
v∈f

H(t, x, Γ̂(t, x), v, p̂(t, x), q̂(t, x), r̂(t, x, ·))

for all (t, x) ∈ [0, T ] ×G.

For all u ∈ A

E

[∫

G

∫ T

0

(
Γ(t, x) − Γ̂(t, x)

)2
{
q̂(t, x)2 +

∫

R

r̂(t, x, z)2ν(dz)

}
dtdx

]
<∞ (2.14)

and

E

[∫

G

∫ T

0
p̂(t, x)2

{
σ(t, x,Γ(t, x), u(t, x))2 +

∫

R

θ(t, x,Γ(t, x), u(t, x), z)2ν(dz)

}
dtdx

]
<∞

(2.15)
Then û(t, x) is an optimal control for the stochastic control problem (2.6).

Proof. Let u be an arbitrary admissible control with corresponding solution Γ(t, x) =
Γ(u)(t, x) of (2.1)-(2.3). Then by (2.5)

J(û) − J(u) = E

[∫ T

0

∫

G

{
f̂ − f

}
dxdt+

∫

G

{ĝ − g} dx

]
, (2.16)

where

f̂ = f(t, x, Γ̂(t, x), û(t, x)), f = f(t, x,Γ(t, x), u(t, x))

ĝ = g(x, Γ̂(T, x)) and g = g(x,Γ(T, x)).

Similarly we put

b̂ = b(t, x, Γ̂(t, x), û(t, x)), b = b(t, x,Γ(t, x), u(t, x))

σ̂ = σ(t, x, Γ̂(t, x), û(t, x)), σ = σ(t, x,Γ(t, x), u(t, x))

and
θ̂ = θ(t, x, Γ̂(t, x), û(t, x), z), θ = θ(t, x,Γ(t, x), u(t, x), z).
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Moreover, we set

Ĥ = H(t, x, Γ̂(t, x), û(t, x), p̂(t, x), q̂(t, x), r̂(t, x, ·))

H = H(t, x,Γ(t, x), u(t, x), p̂(t, x), q̂(t, x), r̂(t, x, ·)).

Combining this notation with (2.8) and (2.16) we get

J(û) − J(u) = I1 + I2, (2.17)

where

I1 = E

[∫ T

0

∫

G

{
Ĥ −H − (̂b− b)p̂− (σ̂ − σ)q̂ −

∫

R

(θ̂ − θ)r̂ν(dz)

}
dxdt

]
(2.18)

and

I2 = E

[∫

G

{ĝ − g} dx

]
. (2.19)

Since γ 7→ g(x, γ) is concave we have

g − ĝ ≤
∂g

∂γ
(x, Γ̂(T, x)) · (Γ(T, x) − Γ̂(T, x)).

Therefore, if we put
Γ̃(t, x) = Γ(t, x) − Γ̂(t, x)

we get, by the Itô formula (or integration by parts formula) for jump diffusions ([ØS, Ex.
1.7])

I2 ≥ −E

[∫

G

∂g

∂γ
(x, Γ̂(T, x)) · Γ̃(T, x)dx

]

= −E

[∫

G

p̂(T, x) · Γ̃(T, x)dx

]

= −E

[∫

G

(
p̂(0, x) · Γ̃(0, x)

+

∫ T

0

{
Γ̃(t, x)dp̂(t, x) + p̂(t, x)dΓ̃(t, x) + (σ − σ̂)q̂(t, x)

}
dt

+

∫ T

0

∫

R

(θ − θ̂)r̂(t, x, z)N(dt, dz)

)
dx

]

= −E

[∫

G

(∫ T

0

{
Γ̃(t, x) ·

[
−

(
∂H

∂γ

)∧

− L∗p̂(t, x)

]

+p̂(t, x)
[
LΓ̃(t, x) + (b− b̂)

]
+ (σ − σ̂)q̂(t, x)

+

∫

R

(θ − θ̂)r̂(t, x, z)ν(dz)

}
dt

)
dx

]
, (2.20)

where (
∂H

∂γ

)∧

=
∂H

∂γ
(t, x, Γ̂(t, x), û(t, x), p̂(t, x), q̂(t, x), r̂(t, x, ·)).

7



Combining (2.17)-(2.20) we get

J(û) − J(u) ≥ E

[∫ T

0

(∫

G

{
Γ̃L∗p̂− p̂LΓ̃

}
dx

)
dt

]

+E

[∫

G

(∫ T

0

{
Ĥ −H +

(
∂H

∂γ

)∧

· Γ̃(t, x)

}
dt

)
dx

]
. (2.21)

Since Γ̃(t, x) = p̂(t, x) = 0 for all (t, x) ∈ (0, T ) × ∂G we get by an extension of (2.7) that
∫

G

{
Γ̃L∗p̂− p̂LΓ̃

}
dx = 0 for all t ∈ (0, T ).

Combining this with (2.21) we get

J(û) − J(u) ≥ E

[∫

G

(∫ T

0

{
Ĥ −H +

(
∂H

∂γ

)∧

· Γ̃(t, x)

}
dt

)
dx

]
. (2.22)

From the concavity assumption in (2.12) we deduce that

H − Ĥ ≤
∂H

∂γ
(Γ̂, û) · (Γ − Γ̂) +

∂H

∂u
(Γ̂, û) · (u− û). (2.23)

From the maximality assumption in (2.13) we get that

∂H

∂u
(Γ̂, û) · (u− û) ≤ 0. (2.24)

Combining (2.23) and (2.24) we get

H − Ĥ −
∂H

∂γ
(Γ̂, û) · (Γ − Γ̂) ≤ 0,

which substituted in (2.22) gives
J(û) − J(u) ≥ 0.

Since u ∈ A was arbitrary this proves Theorem 2.1.

3 Framework

We now present the general setting in which we will prove our main existence and uniqueness
result for backward SPDE’s with jumps:

Let V , H be two separable Hilbert spaces such that V is continuously, densely imbedded
in H. Identifying H with its dual we have

V ⊂ H ∼= H∗ ⊂ V ∗, (3.1)

where V ∗ stands for the topological dual of V . Let A be a bounded linear operator from V

to V ∗ satisfying the following coercivity hypothesis: There exist constants α > 0 and λ ≥ 0
such that

2〈Au, u〉 + λ|u|2H ≥ α||u||2V for all u ∈ V , (3.2)

8



where 〈Au, u〉 = Au(u) denotes the action of Au ∈ V ∗ on u ∈ V .
Remark that A is generally not bounded as an operator from H into H. Let K be another

separable Hilbert space. Let (Ω,F , P ) be a probability space. Let {Bt, t ≥ 0} be a cylindrical
Brownian motion with covariance space K on the probability space (Ω,F , P ), i.e., for any
k ∈ K,〈Bt, k〉 is a real valued-Brownian motion with E[〈Bt, k〉

2] = t|k|2K . Let (X,B(X))
be a measurable space, where X is a topological vector space. Further let η(t) be a Lévy
process onX. Denote by ν(dx) the Lévy measure of η. Denote by L2(ν) the L2-space of square
integrable H-valued measurable functions associated with ν. Set p(t) = ∆η(t) = η(t)−η(t−).
Then p = (p(t), t ∈ Dp) is a stationary Poisson point process on X with characteristic
measure ν. See [IW] for details on Poisson point processes. Denote by N(dt, dx) the Poisson
counting measure associated with the Lévy process, i.e., N(t, A) =

∑
s∈Dp,s≤t IA(p(s)). Let

Ñ(dt, dx) := N(dt, dx) − dtν(dx) be the compensated Poisson mesasure. Define

Ft = σ(Bs, N(s,A), A ∈ B(X), s ≤ t).

Recall that a linear operator S from K into H is called Hilbert-Schmidt if
∑∞

i=1 |Ski|
2
H <∞

for some orthonormal basis {ki, i ≥ 1} of K. L2(K,H) will denote the Hilbert space of
Hilbert-Schmidt operators from K into H equipped with the inner product 〈S1, S2〉L2(K,H) =∑∞

i=1〈S1ki, S2ki〉H . Let b(t, y, z, q, ω) be a measurable mapping from [0, T ]×H×L2(K,H)×
L2(ν) × Ω into H such that b(t, y, z, q, ω) is Ft-adapted,i.e., b(t, y, z, q, ·) is Ft-measurable
for all t, y, z, q. Suppose we are given an FT -measurable, H-valued random variable φ(ω).
We are looking for Ft-adapted processes Yt, Zt, Qt with values in H, L2(K,H) and L2(ν)
respectively, such that the following backward stochastic evolution equation holds:

dYt = AYtdt+ b(t, Yt, Zt, Qt)dt+ ZtdBt

+

∫

X

Qt(x)Ñ (dt, dx), t ∈ (0, T ) (3.3)

YT = φ(ω) a.s. (3.4)

From now on we assume that the following, (3.5) and (3.6), hold:
There exists a constant c <∞ such that

|b(t, y1, z1, q1)(ω) − b(t, y2, z2, q2)(ω)|H

≤ c(|y1 − y2|H + |z1 − z2|L2(K,H) + |q1 − q2|L2(ν)) (3.5)

for all t, y1, z1, q1, y2, z2, q2.

E[

∫ T

0
|b(t, 0, 0, 0)|2Hdt] <∞ (3.6)

4 Existence and Uniqueness

We now state and prove the main existence and uniqueness result of this paper.

Theorem 4.1 Assume that E[|φ|2H ] < ∞. Then there exists a unique H × L2(K,H) ×
L2(ν)-valued progressively measurable process (Yt, Zt, Qt) such that

(i) E[
∫ T

0 |Yt|
2
Hdt] <∞, E[

∫ T

0 |Zt|
2
L2(K,H)dt] <∞, E[

∫ T

0 |Qt|
2
L2(ν)dt] <∞.

(ii) φ = Yt +
∫ T

t
AYsds+

∫ T

t
b(s, Ys, Zs, Qs)ds+

∫ T

t
ZsdBs +

∫ T

t

∫
X
Qs(x)Ñ(ds, dx); 0 ≤ t ≤ T.
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As the proof is long, we split it into lemmas.

Lemma 4.2 Assume that E[|φ|2H ] < ∞, and that b(t, y, z, q, ω) = b(t, ω) is independent

of y, z and q, and E[
∫ T

0 |b(t)|2Hdt] <∞. Then there exists a unique H ×L2(K,H)×L2(ν)-
valued progressively measurable process (Yt, Zt, Qt) such that

(i) E[
∫ T

0 |Yt|
2
Hdt] <∞, E[

∫ T

0 |Zt|
2
L2(K,H)dt] <∞, E[

∫ T

0 |Qt|
2
L2(ν)dt] <∞.

(ii) φ = Yt +
∫ T

t
AYsds+

∫ T

t
b(s)ds+

∫ T

t
ZsdBs +

∫ T

t

∫
X
Qs(x)Ñ(ds, dx); 0 ≤ t ≤ T.

Proof.

Existence of solution.
Set D(A) = {v; v ∈ V,Av ∈ H}. Then D(A) is a dense subspace of H. Thus we can
choose and fix an orthonormal basis {e1, ...en, ...} of H such that ei ∈ D(A). Set Vn =
span(e1, e2, ..., en). Denote by Pn the projection operator from H into Vn. Put An = PnA.
Then An is a bounded linear operator from Vn to Vn. For the cylindrical Brownian motion
Bt, it is well known that the following decomposition holds:

Bt =

∞∑

i=1

βi
tki (4.1)

where {k1, k2, ..., ki, ...} is an orthonormal basis of K, and β i
t, i = 1, 2, 3, ... are indepen-

dent standard Brownian motions. Set Bn
t = (β1

t , ..., β
n
t ). Define Fn

t = σ(Bn
s , N(s,A), A ∈

B(X), s ≤ t) completed by the probability measure P , and put φn = E[Pnφ|F
n
T ] and

bn(t) = E[Pnb(t)|F
n
t ]. Consider the following backward stochastic differential equation on

the finite dimensional space Vn:

dY n
t = AnY

n
t dt+ bn(t)dt+ Zn

t dB
n
t

+

∫

X

Qn
t (x)Ñ(dt, dx) ; t < T (4.2)

Y n
T = φn(ω) a.s. (4.3)

As An is a bounded linear operator from Vn to Vn, it follows from the results of Situ [S]
that (4.2)–(4.3) admits a unique Fn

t - adapted solution (Y n
t , Z

n
t , Q

n
t ), where Y n

t ∈ Vn, Zn
t ∈

L2(Kn, Vn), Kn = span(k1, k2, ..., kn) and Qn
t ∈ L2(ν). We are going to show that the

sequence (Y n
t , Z

n
t , Q

n
t ) admits a convergent subsequence. Using Itô’s formula, we find that

E[|Y n
t |2H ] = E[|φn|

2
H ] − 2E[

∫ T

t

〈Y n
s , PnAY

n
s 〉ds]

−2E[

∫ T

t

< Y n
s , bn(s) > ds] −E[

∫ T

t

|Zn
s |

2
L2(Kn,Vn)ds] −E[

∫ T

t

ds

∫

X

|Qn
s (x)|2Hν(dx)], (4.4)

where |Zn
s |

2
L2(Kn,Vn) =

∑n
i,j=1(Z

n
s (i, j))2 stands for the Hilbert-Schmidt norm. It follows from

(3.2) that

E[|Y n
t |2H ] ≤ E[|φ|2H ] − αE[

∫ T

t

||Y n
s ||2V ds] + λE[

∫ T

t

|Y n
s |2Hds]
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+E[

∫ T

t

|Y n
s |2Hds] +E[

∫ T

t

|b(s)|2Hds] −E[

∫ T

t

|Zn
s |

2
L2(Kn,Vn)ds] −E[

∫ T

t

ds

∫

X

|Qn
s (x)|2Hν(dx)].

Hence,

E[|Y n
t |2H ] + αE[

∫ T

t

||Y n
s ||2V ds] +E[

∫ T

t

|Z̄n
s |

2
L2(K,H)ds] +E[

∫ T

t

ds

∫

X

|Qn
s (x)|2Hν(dx)]

≤ E[|φ|2H ] + (λ+ 1)E[

∫ T

t

|Y n
s |2Hds] +E[

∫ T

t

|b(s)|2Hds]

where Z̄n
s = Zn

s P̄n, and P̄n is the projection from K into Kn = span(k1, ..., kn). In particular,

E[|Y n
t |2H ] ≤ E[|φ|2H ] + (λ+ 1)E[

∫ T

t

|Y n
s |2Hds] +E[

∫ T

t

|b(s)|2Hds] (4.5)

Set Ȳ n
t =

∫ T

t
|Y n

s |2Hds. Then (4.5) implies that

−
d(e(λ+1)tȲ n

t )

dt
≤ e(λ+1)t(E[|φ|2H ] +E[

∫ T

t

|b(s)|2Hds])

Hence, ∫ T

0
E[|Y n

s |2H ]ds ≤ C(E[|φ|2H ] +E[

∫ T

0
|b(s)|2Hds]),

where C is an appropriate constant. This further implies that

sup
n
{

∫ T

0
E[|Y n

s |2H ]ds} <∞

sup
n
{

∫ T

0
E[||Y n

s ||2V ]ds} <∞ (4.6)

sup
n
{

∫ T

0
E[|Z̄n

s |
2
L2(K,H)]ds} <∞ (4.7)

sup
n
{

∫ T

0
E[|Qn

s |
2
L2(ν)]ds} <∞ (4.8)

For a separable Hilbert space L, we denote by M 2([0, T ], L) the Hilbert space of progres-
sively measurable, square integrable, L-valued processes equipped with the inner product
< a, b >M= E[

∫ T

0 < at, bt >L dt]. By the weak compactness of a Hilbert space, it follows from
(4.6),(4.7)and (4.8) that a subsequence {nk, k ≥ 1} can be selected so that Y nk

. , k ≥ 1 con-
verges weakly to some limit Y in M 2([0, T ], V ), Z̄nk

. , k ≥ 1 converges weakly to some limit Z
inM2([0, T ], L2(K,H)) andQnk

. , k ≥ 1 converges weakly to some limit Q inM 2([0, T ], L2(ν)).
Let us prove that ( a version of )(Y,Z,Q) is a solution to the backward stochastic evolution
equation (3.3) and (3.4). For n ≥ i ≥ 1, we have that

d〈Y n
t , ei〉 = 〈PnAY

n
t , ei〉dt+ 〈bn(t), ei〉dt+ 〈Z̄n

t dBt, ei〉 +

∫

X

〈Qn
t (x), ei〉Ñ(dt, dx)

= 〈AY n
t , ei〉dt+ 〈bn(t), ei〉dt+ 〈Z̄n

t dBt, ei〉 +

∫

X

〈Qn
t (x), ei〉Ñ (dt, dx) (4.9)
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Let h(t) be an absolutely continuous function from [0, T ] to R with h′(·) ∈ L2([0, T ]) and
h(0) = 0. By the Itô formula,

〈Y n
T , ei〉h(T ) =

∫ T

0
h(t)〈AY n

t , ei〉dt+

∫ T

0
h(t)〈bn(t), ei〉dt

+

∫ T

0
h(t)d〈

∫ t

0
Z̄n

s dBs, ei〉 +

∫ T

0

∫

X

h(t)〈Qn
t (x), ei〉Ñ (dt, dx) +

∫ T

0
〈Y n

t , ei〉h
′(t)dt. (4.10)

Replacing n by nk in (4.10) and letting k → ∞ to obtain

〈φ, ei〉h(T )

=

∫ T

0
h(t)〈AYt, ei〉dt+

∫ T

0
h(t)〈b(t), ei〉dt+

∫ T

0

∫

X

h(t)〈Qt(x), ei〉Ñ(dt, dx)

+

∫ T

0
h(t)d〈

∫ t

0
ZsdBs, ei〉 +

∫ T

0
〈Yt, ei〉h

′(t)dt. (4.11)

From (4.10) to (4.11), we have used the fact that the linear mappingG fromM 2([0, T ], L2(K,H))
into L2(Ω) defined by

G(Z) =

∫ T

0
h(t)d〈

∫ t

0
ZsdBs, ei〉 =

∞∑

j=1

∫ T

0
h(t)〈Zt(kj), ei〉dβ

j
t

is continuous and also the linear mapping F from M 2([0, T ], L2(ν)) into L2(Ω) defined by

F (Q) =

∫ T

0

∫

X

h(t)〈Qt(x), ei〉Ñ (dt, dx)

is continuous. So, the convergence of (4.10) to (4.11) takes place weakly in L2(Ω). Fix
t ∈ (0, T ) and choose , for n ≥ 1,

hn(s) =





1, s ≥ t+ 1
2n
,

1 − 1
n
(t+ 1

2n
− s), t− 1

2n
≤ s ≤ t+ 1

2n
,

0, s ≤ t− 1
2n

With h(·) replaced by hn(·) in (4.11), it follows that

〈φ, ei〉 =

∫ T

0
hn(s)〈AYs, ei〉ds+

∫ T

0
hn(s)〈b(s), ei〉ds+

∫ T

0

∫

X

h(t)〈Qt(x), ei〉Ñ(dt, dx)

+

∫ T

0
hn(s)d〈

∫ s

0
ZudBu, ei〉 +

1

n

∫ t+ 1

2n

t− 1

2n

〈Ys, ei〉ds. (4.12)

Sending n to infinity in (4.12) we get that

〈φ, ei〉 =

∫ T

t

〈AYs, ei〉ds+

∫ T

t

〈b(s), ei〉ds

+

∫ T

t

∫

X

〈Qs(x), ei〉Ñ(ds, dx) +

∫ T

t

d〈

∫ s

0
ZudBu, ei〉 + 〈Yt, ei〉.
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for almost all t ∈ [0, T ] ( with respect to Lebesgue measure).
As i is arbitrary, this implies that

φ =

∫ T

t

AYsds+

∫ T

t

b(s)ds+

∫ T

t

ZsdBs +

∫ T

t

∫

X

Qs(x)Ñ(ds, dx) + Yt. (4.13)

for almost all t ∈ [0, T ] ( with respect to Lebesgue measure).
For t ∈ [0, T ], define

Ŷt = φ−

∫ T

t

AYsds−

∫ T

t

b(s)ds−

∫ T

t

ZsdBs −

∫ T

t

∫

X

Qs(x)Ñ(ds, dx).

Then we see that (Ŷt, Zt, Qt) also satisfies (ii) in the Theorem 4.1 with Y replaced by Ŷ for
all t ∈ [0, T ]. Hence, (Ŷt, Zt, Qt) is a solution to the equations (3.3) and (3.4).

Uniqueness:
Let (Yt, Zt, Qt) and (Ȳt, Z̄t, Q̄t) be two solutions of the equation (3.3). Then

∫ T

t

A(Ys − Ȳs)ds+

∫ T

t

(Zs − Z̄s)dBs + (Yt − Ȳt) +

∫ T

t

∫

X

(Qs(x) − Q̄s(x))Ñ (ds, dx) = 0

Applying Itô’s formula, we get

0 = |Yt − Ȳt|
2
H + 2

∫ T

t

〈Ys − Ȳs, dMs〉

+

∫ T

t

∫

X

[|Ys− − Ȳs− +Qs(x) − Q̄s(x)|
2
H − |Ys− − Ȳs−|

2
H ]Ñ(ds, dx)

+ 2

∫ T

t

〈A(Ys − Ȳs), Ys − Ȳs〈ds+

∫ T

t

|Zs − Z̄s|
2
L2(K,H)ds

+

∫ T

t

∫

X

|Qs(x) − Q̄s(x)|
2
Hdsν(dx) (4.14)

where Mt =
∫ t

0 (Zs − Z̄s)dBs. By (3.2),we get that

E[|Yt − Ȳt|
2
H ] = −2

∫ T

t

E[〈A(Ys − Ȳs), Ys − Ȳs〉]ds−E[

∫ T

t

|Zs − Z̄s|
2
L2(K,H)ds]

−E[

∫ T

t

∫

X

|Qs(x) − Q̄s(x)|
2
Hdsν(dx)]

≤ −α

∫ T

t

E[||Ys − Ȳs||
2
V ]ds+ λ

∫ T

t

E[|Ys − Ȳs|
2
H ]ds

≤ λ

∫ T

t

E[|Ys − Ȳs|
2
H ]ds.

By a Gronwall type inequality, it follows that E[|Yt− Ȳt|
2
H ] = 0 , which proves the uniqueness.
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Lemma 4.3 Assume that E[|φ|2H ] <∞, and that b(t, y, z, q, ω) = b(t, z, q, ω) is indepen-
dent of y. Then there exists a unique H×L2(K,H)×L2(ν)-valued progressively measurable
process (Yt, Zt, Qt) such that

(i) E[
∫ T

0 |Yt|
2
Hdt] <∞, E[

∫ T

0 |Zt|
2
L2(K,H)dt] <∞, E[

∫ T

0 |Qt|
2
L2(ν)dt] <∞.

(ii) φ = Yt +
∫ T

t
AYsds+

∫ T

t
b(s, Zs, Qs)ds+

∫ T

t
ZsdBs +

∫ T

t

∫
X
Qs(x)Ñ(ds, dx); 0 ≤ t ≤ T.

Proof.

Set Z0
t = 0, Q0

t = 0. Denote by (Y n
t , Z

n
t , Q

n
t ) the unique solution of the backward stochas-

tic evolution equation:

dY n
t = AY n

t dt+ b(t, Zn−1
t , Qn−1

t )dt+ Zn
t dBt +

∫

X

Qn
t (x)Ñ (dt, dx) (4.15)

Y n
T = φ(ω). (4.16)

The existence of such a solution (Y n
t , Z

n
t , Q

n
t ) has been proved in Lemma 4.2. Putting M n

t =∫ t

0 Z
n
s dBs, and by Itô’s formula we get that

0 = |Y n+1
T − Y n

T |2H

= |Y n+1
t − Y n

t |2H + 2

∫ T

t

〈A(Y n+1
s − Y n

s ), Y n+1
s − Y n

s 〉ds

+ 2

∫ T

t

〈b(t, Zn
s , Q

n
s ) − b(t, Zn−1

s , Qn−1
s ), Y n+1

s − Y n
s 〉ds

+

∫ T

t

∫

X

[|Y n+1
s− − Y n

s− +Qn+1
s −Qn

s |
2
H − |Y n+1

s− − Y n
s−|

2
H ]Ñ(ds, dx)

+

∫ T

t

∫

X

|Qn+1
s −Qn

s |
2
H ]dsν(dx)

+ 2

∫ T

t

〈Y n+1
s − Y n

s , d(M
n+1
s −Mn

s )〉 +

∫ T

t

|Zn+1
s − Zn

s |
2
L2(K,H)ds

In virtue of (3.2), for ε > 0,

E[|Y n+1
t − Y n

t |2H ] +E[

∫ T

t

|Zn+1
s − Zn

s |
2
L2(K,H)ds] +E[

∫ T

t

∫

X

|Qn+1
s −Qn

s |
2
H ]dsν(dx)]

= −2E[

∫ T

t

〈A(Y n+1
s − Y n

s ), Y n+1
s − Y n

s 〉ds]

− 2E[

∫ T

t

〈b(t, Zn
s , Q

n
s ) − b(t, Zn−1

s , Qn−1
s ), Y n+1

s − Y n
s 〉ds]

≤ λE[

∫ T

t

|Y n+1
s − Y n

s |2Hds] − αE[

∫ T

t

||Y n+1
s − Y n

s ||2V ds]

+ εE[

∫ T

t

|b(t, Zn
s , Q

n
s ) − b(t, Zn−1

s , Qn−1
s )|2Hds] +

1

ε
E[

∫ T

t

|Y n+1
s − Y n

s |2Hds] (4.17)
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Choose ε < 1
4c

, where c is the Lipschitz constant in (3.5). It follows from (4.17) that

E[|Y n+1
t − Y n

t |2H ] +E[

∫ T

t

|Zn+1
s − Zn

s |
2
L2(K,H)ds]

+αE[

∫ T

t

||Y n+1
s − Y n

s ||2V ds] +E[

∫ T

t

∫

X

|Qn+1
s −Qn

s |
2
H ]dsν(dx)]

≤ (λ+
1

ε
)E[

∫ T

t

|Y n+1
s − Y n

s |2Hds] +
1
2E[

∫ T

t

|Zn
s − Zn−1

s |2L2(K,H)ds]

+
1

2
E[

∫ T

t

∫

X

|Qn
s −Qn−1

s |2H ]dsν(dx)] (4.18)

Let β = λ+ 1
ε
. Then we have from (4.18) that

−
d

dt
(eβtE[

∫ T

t

|Y n+1
s − Y n

s |2Hds]

+ eβtE[

∫ T

t

|Zn+1
s − Zn

s |
2
L2(K,H)ds]

+ eβtE[

∫ T

t

∫

X

|Qn+1
s −Qn

s |
2
H ]dsν(dx)]

+ αeβtE[

∫ T

t

||Y n+1
s − Y n

s ||2V ds]

≤
1

2
eβtE[

∫ T

t

|Zn
s − Zn−1

s |2L2(K,H)ds]

+
1

2
eβtE[

∫ T

t

∫

X

|Qn
s −Qn−1

s |2H ]dsν(dx)] (4.19)

From here, following a similar proof as in [PP1] we will show that (Y n, Zn, Qn) converges to
some limit (Y,Z,Q) in the product space ofM 2([0, T ], V ),M 2([0, T ], L2(K,H)) andM 2([0, T ], L2(ν)).

Integrating both sides in (4.19) we get that

E[

∫ T

0
|Y n+1

s − Y n
s |2Hds] +

∫ T

0
E[

∫ T

t

|Zn+1
s − Zn

s |
2
L2(K,H)ds]e

βtdt

+

∫ T

0
eβtE[

∫ T

t

∫

X

|Qn+1
s −Qn

s |
2
H ]dsν(dx)]dt + α

∫ T

0
E[

∫ T

t

||Y n+1
s − Y n

s ||2V ds]e
βtdt

≤ 1
2

∫ T

0
E[

∫ T

t

|Zn
s − Zn−1

s |2L2(K,H)ds]e
βtdt+

1

2

∫ T

0
eβtE[

∫ T

t

∫

X

|Qn
s −Qn−1

s |2H ]dsν(dx)]dt

(4.20)

In particular,
∫ T

0
E[

∫ T

t

|Zn+1
s − Zn

s |
2
L2(K,H)ds]e

βtdt+

∫ T

0
eβtE[

∫ T

t

∫

X

|Qn+1
s −Qn

s |
2
H ]dsν(dx)]dt

≤ 1
2

[∫ T

0
E[

∫ T

t

|Zn
s − Zn−1

s |2L2(K,H)ds]e
βtdt+

∫ T

0
eβtE[

∫ T

t

∫

X

|Qn
s −Qn−1

s |2H ]dsν(dx)]dt

]

(4.21)
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This implies that

∫ T

0
E[

∫ T

t

|Zn+1
s − Zn

s |
2
L2(K,H)ds]e

βtdt+

∫ T

0
eβtE[

∫ T

t

∫

X

|Qn+1
s −Qn

s |
2
H ]dsν(dx)]dt

≤ (1
2)nC

for some constant C. Thus, it follows from (4.20) that

E[

∫ T

0
|Y n+1

s − Y n
s |2Hds] ≤ (

1

2
)nC (4.22)

Hence, we conclude from (4.18) that

E[

∫ T

0
|Zn+1

s − Zn
s |

2
L2(K,H)ds] +E[

∫ T

0

∫

X

|Qn+1
s −Qn

s |
2
H ]dsν(dx)]dt

≤ (1
2 )nCβ + 1

2{E[

∫ T

0
|Zn

s − Zn−1
s |2L2(K,H)ds] +E[

∫ T

0

∫

X

|Qn
s −Qn−1

s |2H ]dsν(dx)]} (4.23)

Using the above inequality repeatedly gives

E[

∫ T

0
|Zn+1

s − Zn
s |

2
L2(K,H)ds] +E[

∫ T

0

∫

X

|Qn+1
s −Qn

s |
2
H ]dsν(dx)]

≤ (1
2 )nnCβ (4.24)

Combining (4.18) and (4.23) we have that

E[

∫ T

0
||Y n+1

s − Y n
s ||2V ds] ≤ (

1

2
)n(n+ 1)Cβ (4.25)

It follows now from (4.24) and (4.25) that the the sequence (Y n
t , Z

n
t , Q

n
t ),

n ≥ 1 converges in M 2([0, T ], V ) ×M 2([0, T ], L2(K,H)) ×M 2([0, T ], L2(ν)) to some limit
(Yt, Zt, Qt). Letting n→ ∞ in (4.14), we see that (Yt, Zt, Qt) satisfies

Yt +

∫ T

t

AYsds+

∫ T

t

b(s, Zs)ds+

∫ T

t

ZsdBs +

∫ T

t

∫

X

Qs(x)Ñ (ds, dx) = φ (4.26)

i.e., (Yt, Zt, Qt) is a solution to equation (3.3).

Uniqueness
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Let (Yt, Zt, Qt) , (Ȳt, Z̄t, Q̄t) be two solutions. By Itô’s formula , as in (4.14) we have

E[|Yt − Ȳt|
2
H ] +E[

∫ T

t

|Zs − Z̄s|
2
L2(K,H)ds]

+E[

∫ T

t

∫

X

|Qs(x) − Q̄s(x)|
2
Hdsν(dx)]

= −2E[

∫ T

t

< A(Ys − Ȳs), Ys − Ȳs > ds]

− 2E[

∫ T

t

〈b(t, Zs, Qs) − b(t, Z̄s, Q̄s), Ys − Ȳs〉ds]

≤ λE[

∫ T

t

|Ys − Ȳs|
2
Hds] − αE[

∫ T

t

||Ys − Ȳs||
2
V ds]

+ 1
2E[

∫ T

t

|Zs − Z̄s|
2
L2(K,H)ds] + cE[

∫ T

t

|Ys − Ȳs|
2
Hds]

+
1

2
E[

∫ T

t

∫

X

|Qs(x) − Q̄s(x)|
2
Hdsν(dx)] (4.27)

Consequently,

E[|Yt − Ȳt|
2
H ] ≤ (λ+ c)E[

∫ T

t

|Ys − Ȳs|
2
Hds] (4.28)

By Gronwall’s inequality ,
Yt = Ȳt

which further implies Zt = Z̄t and Qt = Q̄t by (4.27).

Proof of Theorem 4.1.

Let Y 0
t = 0. Define , for n ≥ 1, (Y n+1

t , Zn+1
t , Qn+1

t ) to be the solution of the equation:

dY n+1
t = AY n+1

t dt+ b(t, Y n
t , Z

n+1
t , Qn+1

t )dt

+ Zn+1
t dBt +

∫

X

Qn+1
t (x)Ñ (dt, dx) (4.29)

Y n+1
T = φ (4.30)

The existence of (Y n+1
t , Zn+1

t , Qn+1
t ) is contained in Lemma 4.3.

Using the similar arguments as in the proof of Lemma 4.3 it can be shown that (Y n+1
t , Zn+1

t , Qn+1
t )

converges to some limit (Yt, Zt, Qt), and moreover (Yt, Zt, Qt) is the unique solution to equa-
tion (3.3). We omit the details avoiding the repeating.

Example 4.2 Let H = L2(Rd), and set

V = H1
2 (Rd) = {u ∈ L2(Rd);∇u ∈ L2(Rd → R

d)}

Denote by a(x) = (aij(x)) a matrix-valued function on Rd satisfing the uniform ellipticity
condition:

1

c
Id ≤ a(x) ≤ cId for some constant c ∈ (0,∞).
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Let f(x) be a vector field on Rd with f ∈ Lp(Rd) for some p > d. Define

Au = −div(a(x)∇u(x)) + f(x) · ∇u(x)

Then (3.2) is fulfilled for (H,V,A). Thus, for any choice of cylindrical Brownian motion B,
any drift coefficient b(t, y, z, ω) satisfying (3.5) and (3.6) and terminal random variable φ,
the main result in Section 4 applies.
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