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Abstract

We consider the estimation of the spectral density matrix of a period-
ically correlated (PC) time series (also known as cyclostationary time se-
ries). We use the well known relation between the spectral density matrix
of a periodically correlated time series and a stationary vector time se-
ries (Gladyshev, 1961). The spectral matrix of the stationary vector time
series is estimated using the eigenvalue decomposition of block Toeplitz
matrices. The method of estimation is illustrated with simulated and real
time series.

Keywords: periodically correlated (cyclostationary) processes, Capon’s es-
timate, high resolution estimate, eigenvalue decomposition, block-Toeplitz ma-
trix.

1 Introduction
Many time series we come across in the real world exhibit nonstationary and
nonlinear property. It has been found that many meteorological variables such
as rainfall, global temperatures and precipitation are nonstationary. Most esti-
mate techniques depend on the assumption that the time series is stationary, and
the techniques for the identification of linear ARMA models, spectral estimation
(both parametric and nonparametric) also depend on this assumption. In recent
years attempts have been made to relax the assumption of stationarity. Priest-
ley (1965) defined an oscillatory process and the spectral representation of a
nonstationary time series which enabled him to define the spectral density func-
tion which depended on both time and frequency. Using Priestley’s definition,
Subba Rao (1970 and 1997) has considered the estimation of time-dependent
time series models.
A special class of nonstationary time series has been defined by Gladyshev

(1961), called periodically correlated (PC) time series (also known as cyclosta-
tionary time series). These time series are nonstationary, but have periodic
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means and covariances. They have been known to be very useful in describing
many time series (Hardin and Miamee, 1990, Gardner, 1994, Hurd et al., 1998,
Hipel and Mcleod, 1994, Mcleod, 1994, Boshnakov, 1996 and Nematollahi and
Soltani, 2000 ). Though lot of literature is now available on PC time series, we
are not aware of any literature on spectral estimation. It is well known that a PC
time series with period T can be characterized by a T-dimensional stationary
vector time series. We use this characterization for our estimation technique.
Our approach is based on the properties of the eigenvalues of block-Toeplitz ma-
trices, and is very similar to the approach given by Subba Rao and Gabr (1989)
and heavily based on the results of Hannan and Wahlberg (1989). The results
we derive here for T-dimensional vector time series are of general interest, and
can be used in the estimation of stationary vector time series. These can also
be used for the estimation of vector AR and ARMA models. We wish to pursue
these aspects in later publications.
In section 2, we review some necessary results related to the spectral domain

theory of a PC time series and also the relation between the PC time series and
the stationary vector series. The spectral density matrix of the stationary vector
series is expressed in terms of the eigenvalue matrices of the variance covariance
matrix of the series, in section 3. The theoretical form of the spectral density
matrix is expressed in terms of a truncated form which is an approximation to
the theoretical spectral matrix. In section 4, using the results of section 3, we
obtain a generalization of the high resolution spectral matrix similar to Capon’s
estimate. Two estimates for the spectral density function of the PC time series
are proposed in section 5. In section 6, the estimates proposed to the spectral
density matrix of vector series are calculated for a simulated series and compared
with their theoretical forms. We illustrate the above methodology with a real
time series in section 7.

2 Periodically correlated time series and their
spectra

Let {Xt} be a discrete parameter, zero mean and real time series and let
E |Xt|2 < ∞, t ∈ Z, where Z stands for all integers. The time series {Xt}
is said to be periodically correlated (PC) with period T, if there is a positive
integer T, such that the covariance function R(t, s) = cov(Xt,Xs) satisfies

R(t, s) = R(t+ T, s+ T ), (2.1)

for all t, s, and moreover T is the smallest integer for which (2.1) holds.
Since {Xt} is a nonstationary time series, it does not possess a spectral

density function in the conventional sense, but Gladyshev (1961) has shown
that we may associate with {Xt} a Hermitian nonnegative definite T ×T matrix
f(ω), which we may call the ”spectral matrix,” defined as follows. The (j,k)th
element of f(ω), fjk(ω) is given by
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fjk(ω) =
1

T
fk−j((ω − 2πj)/T ), j, k = 0, ..., T − 1, 0 ≤ ω ≤ 2π, (2.2)

where fk(ω) satisfies the relation

fk(ω) =
1

2π

∞X
τ=−∞

Bk(τ) exp(−iτω), (2.3)

with Bk(τ) = Bk+T (τ) the kth order coefficient of the Fourier series expansion
of the periodic function (with respect to t) Rt(τ) := E(Xt+τXt), i.e.

Bk(τ) =
1

T

T−1X
t=0

Rt(τ) exp(−
2πikt

T
). (2.4)

When k < 0 and ω < 0 or ω > 2π the functions {fk(ω)} are completely
determined by the identities fk(ω) = fk+T (ω) and fk(ω+2π) = fk(ω), fk(0) = 0
for all k. These fk(ω) are in a sense spectra of PC processes. It is well known
that the PC time series Xt must be harmonizable in the sense of Loeve (1963),
i.e. can be represented as

Xt =

2πZ
0

exp(itω)dZ(ω), (2.5)

where {Z(ω), 0 ≤ ω < 2π} is a zero mean complex-valued random process. The
covariance structure of {Z(ω), 0 ≤ ω < 2π} is described by the complex-valued
bivariate measure µ, restricted to [0, 2π)×[0, 2π) with increments µ(dω1, dω2) =
E[dZ(ω1)dZ(ω2)]. Moreover the original covariance function R(t, s) has the
expression

R(t, s) =

2πZ
0

2πZ
0

exp(i(tω1 − sω2))g(ω1,ω2)dω1dω2,

where g(ω1,ω2) be the spectral density function corresponding to the spectrum
µ. Also we have

g(ω1,ω2) =
T−1X

k=−T+1
fk(ω1)δ(ω2 − ω1 + 2πk/T ), (2.6)

where δ(.) is the Dirac delta function (see Sakai, 1991).
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Figure 1: Periodic diagonal nature for T=4

In the other words, the spectrum µ is concentrated on the 2T − 1 parallel
diagonal lines ω2 = ω1 + 2πk/T, k = 0,±1, ...,±(T − 1) restricted to [0, 2π) ×
[0, 2π) . In this case, we see Z(ω) has PC increments, i.e. µ(dω1, dω2) = 0,
unless ω2 = ω1 + 2πk/T, k = 0,±1, ...,±(T − 1). When T = 1, then Z(ω)
has orthogonal increments, i.e. µ(dω1, dω2) = 0, unless ω2 = ω1, i.e., µ is
concentrated on the main diagonal ω2 = ω1, that is a well known result related
to the stationary case. In the general case, the main diagonal component of
µ is µ(dω, dω) = E|dZ(ω)|2 = f0(ω)dω. The entire mass of the spectra in
f0(ω), is concentrated on the main diagonal ω2 = ω1, (like the spectrum of
a stationary time series ), and is a real valued and nonnegative function, and
the masses of the other spectra, which can be complex valued, namely fk−j ,
j 6= k, have their masses concentrated on the off diagonals ω1 = ω2 + 2πk/T,
k = ±1,±2, ..,±(T − 1). The periodic diagonal nature of this support set for
T = 4 is shown in Figure 2.1.
Following Gladyshev (1961), we may construct an alternative, but equiv-

alent definition of a PC process as follows. We say that the series {Xt} is
periodically correlated with period T if and only if the T -dimensional vector
series (XtT ,XtT+1, ...,XtT+T−1)0 is stationary in the wide sense. It can then be
shown that (Gladyshev, 1961) that

f(ω) =
1

T
U(ω)h(ω)U−1(ω), (2.7)
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where f(ω) = [fjk(ω)]j,k=0,...,T−1 is the spectral density matrix of {Xt}, h(ω) =
[hjk(ω)]j,k=0,...,T−1 the spectral density matrix of the stationary vector series
{(XtT ,XtT+1, ...,XtT+T−1)0} and U(ω) = [Ujk(ω)]j,k=0,...,T−1 is a unitary ma-
trix (i.e., U(ω)U∗(ω) = I) with elements Ujk(ω) = T−1/2 exp(

2πijk−ikω
T ).

The relation (2.7) suggests that the estimation of f(ω) can be accomplished
through the estimation of h(ω). One can estimate h(ω) using either parametric
estimation (say via linear vector ARMA models) or using the kernel approach
(Brillinger, 1975, chapter 7 and Hannan, 1970). Here our object is to exploit the
special structure of the block-Toeplitz matrix associated with multidimensional
series {Yt} to derive spectral estimates similar to those of Subba Rao and Gabr
(1989). The results of Subba Rao and Gabr (1989) also enable us to derive a
high resolution estimate of h(ω) and hence of the spectral matrix, f(ω) of PC
time series. We extensively use the result of Hannan and Wahlberg (1989) in
the derivation of our estimates and their interpretation.

3 Spectral density matrix of the stationary vec-
tor series and the eigenvalue decomposition

We now consider the estimation of the spectral density function of a vector-
valued series. Let {Yt, t ∈ Z} be zero mean, discrete-parameter and second
order T-dimensional stationary series with Yt(j), j = 0, ..., T − 1, as its jth
element and R(τ) = EYt+τY

0
t , τ ∈ Z, be the autocovariance matrix of Yt .

We assume that the series has an absolutely continuous spectrum and let h(ω)
denotes its spectral density matrix, i.e., Let

h(ω) =
1

2π

∞X
τ=−∞

R(τ)e−iωτ , 0 ≤ ω ≤ 2π. (3.1)

Let {Y1,Y2, ...,Yn} be a sample of size n from {Yt} and Pn(ω) be the
periodogram matrix. Then

E {Pn(ω)} =
1

2πn

nX
t=1

nX
s=1

R(t− s)e−i(t−s)ω (3.2)

= hn(ω) say, (3.3)

= h(ω) +O

µ
logn

n

¶
, (3.4)

under some regularity conditions on h(ω) (Priestley, 1981). We shall call hn(ω)
the truncated spectral density matrix.
Thus Pn(ω) is an asymptotically unbiased estimator of h(ω), but of course,

it is not consistent (Brillinger, 1975). In order to find a consistent estimator of
h(ω), the usual procedure is to smooth the periodogram by a suitable kernel
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(Brillinger, 1975). We first show that the theoretical spectral density matrix
h(ω) can be written in terms of the eigenvalues of the variance covariance matrix,
then we can estimate h(ω) using the eigenvalue decomposition of the sample
variance covariance matrix and show that it intrinsically makes use of Féjer
kernel type of weight functions.
Define a nT × 1 vector Yn = (Y0

n,Y
0
n−1, ...,Y

0
1)
0 and let Γn = EYnY0n be

its variance-covariance matrix. We have

Γn =

⎛⎜⎜⎝
R(0) R(1) ... R(n− 1)
R(−1) R(0) ... R(n− 2)
. . . .

R(−(n− 1)) R(−(n− 2)) ... R(0)

⎞⎟⎟⎠ .
We note that Γn is a block-Toeplitz matrix. Individual matrix elements are

not, in general, symmetric (R(τ) 6= R0(τ)), although R(−τ) = R0(τ).

Now letWn(ω) be the T × nT matrix given by

Wn(ω) = n
− 1
2

³
I, eiωI, ..., e(n−1)iωI

´
, (3.5)

where I is an T × T identity matrix and let ωj = 2πj
n , j = 0, ..., n − 1. From

Hannan and Wahlberg (1989) we have the eigenvalue decomposition of Γn,

Γn = fW∗
nD

g
nWn, (3.6)

where fWn is the nT ×nT matrix, with jth (block) rowWn(ωj) given by (3.5),
i.e.,

fWn =

⎛⎜⎜⎝
Wn(ω0)
Wn(ω1)

.
Wn(ωn−1)

⎞⎟⎟⎠ ,
and Dn = diag(Λn(ω0),Λn(ω1), ...,Λn(ωn−1)), where Λn(ω) is a T × T Hermi-
tian matrix given by

Λn(ω) =Wn(ω)ΓnW
∗
n(ω). (3.7)

We note that fWn is a unitary matrix, i.e., fWn
fW∗

n = I. We identify Λn(ωj) as
an ”eigenvalue-matrix” and alsoWn(ωj) as an ”eigenvector-matrix” associated
with Λn(ωj), ( clearly, they are not the eigenvalue and the eigenvector in the
usual sense). In the following we show that Λn(ωj) is proportional to hn(ωj),
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and hence asymptotically proportional to h(ωj), the spectral density function
of Yt. From (3.6) we have

Γn =
n−1X
j=0

W∗
n(ωj)Λn(ωj)Wn(ωj). (3.8)

Collecting the (t,s)th block-matrix element from both sides of (3.8), we
obtain

R(t− s) =
n−1X
j=0

W
t∗
n (ωj)Λn(ωj)W

s
n(ωj), (3.9)

where Ws
n(ωj) is the s-th block of Wn(ωj). Substituting R(t − s) from (3.9)

into (3.3), we now have

hn(ωl) =
1

2πn

nX
t=1

nX
s=1

⎡⎣n−1X
j=0

W
t∗
n (ωj)Λn(ωj)W

s
n(ωj)

⎤⎦ e−i(t−s)ωl
=

1

2πn

n−1X
j=0

[
nX
t=1

W∗t
n (ωj) exp(−itωl)]Λn(ωj)[

nX
s=1

Ws
n(ωj) exp(isωl)]

=
1

2πn

n−1X
j=0

B∗n(ωj ,ωl)Λn(ωj)Bn(ωj ,ωl),

where Bn(ωj ,ωl) =
nP
s=1

Ws
n(ωj) exp(isωl). We thus have

hn(ωl) =
1

4π

n−1X
j=0

An(ωj ,ωl), (3.10)

where

An(ωj ,ωl) =
2

n
B∗n(ωj ,ωl)Λn(ωj)Bn(ωj ,ωl) (3.11)

=
2

n

nX
t=1

nX
s=1

W
t∗
n (ωj)Λn(ωj)W

s
n(ωj)e

−i(t−s)ωl . (3.12)

To see the significance of writing hn(ωl) in the form (3.10), we shall first assume
that the stationary series {Yt} is circular, i.e.

Y1 = Y1+n,Y2 = Y2+n, ...

so that Γn can be replaced by the equivalent circulant block-matrix Γcn given by
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Γcn =

⎛⎜⎜⎝
R(0) R(1) ... R(n− 1)

R(n− 1) R(0) ... R(n− 2)
. . . .

R(1) R(2) ... R(0)

⎞⎟⎟⎠ . (3.13)

The equivalence of eigenvalues of Γn and Γcn in the univariate case are well
known (see Gray, 1972). The similar results for the block Toeplitz matrices
of the type considered here, have been proved by Nematollahi and Shishebor
(2005). This is not crucial for our estimation, we need this only for interpreta-
tion. By setting R(n − 1) = R

0
(1), R(n − 2) = R

0
(2), ...,R(1) = R

0
(n − 1)

in (3.13), we obtain a circular symmetric block-matrix. Using this matrix, one
can show the equivalence of eigenvalues of Γn and Γcn, see Nematollahi and
Shishebor (2005) for more details. From now on we shall only use the circulant
symmetric block-matrix Γcn for studying the properties, and in order to avoid
extra notation we shall use the same symbols for the eigenvalue-matrices and
eigenvector-matrices of Γnand Γcn. Using Hannan and Wahlberg (1989), it is not
difficult to show that

(i) Λn(ωj) ∼ 2πhn(ωj) ∼ 2πh(ωj), for ωj =
2πj
n , j = 0, 1, ..., n− 1.

(ii)For n odd,

Wn(ω0) = n
− 1
2 (I, I, ..., I) ,

Wn(ω2j) = n
− 1
2 2−

1
2 (0, sinωjI, sin 2ωjI, ..., sin(n− 1)ωjI) ,

Wn(ω2j−1) = n
− 1
2 2−

1
2 (I, cosωjI, cos 2ωjI, ..., cos(n− 1)ωjI) ,

and also we have Λn(ωj) = Λ
0

n(ωn−j), j = 1, 2, ...,
n−1
2 .

When n is even, a similar result holds, see Nematollahi and Shishebor (2005).
We shall now consider the behaviour of the function hn(ω) given by (3.10) when
we substitute the eigenvalue-matrices and eigenvector-matrices of the circular
symmetric matrix Γcn. For this we change variables from t, s to t, s-t in (3.12),
and then have

An(ωj ,ωl) =
2

n

n−1X
t=1

n−tX
s=−t

W
t∗
n (ωj)Λn(ωj)W

t+s
n (ωj)e

−isωl ,

= 2
n−1X

s=−(n−1)
∆n,j(s)e

−isωl ,

where for s > 0,
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∆n,j(s) =
1

n

n−sX
t=1

W
t∗
n (ωj)Λn(ωj)W

t+s
n (ωj).

When j = 0, using the above result, we have

∆n,0(s) =
1

n

n−sX
t=1

W
t∗
n (ω0)Λn(ω0)W

t+s
n (ω0)

=
n− |s|
n2

Λn(ω0),

and hence

An(ω0,ωl) = 2
n−1X

s=−(n−1)

n− |s|
n2

Λn(ω0)e
−isωl

=
2

n
2πFn−1(ωl)Λn(ω0),

where Fn(θ) = 1
2πn

sin2(nθ/2)
sin2(θ/2)

which is the Fejér kernel. Also we have

∆n,2j(s) =
1

n

n−sX
t=1

W
t∗
n (ω2j)Λn(ω2j)W

t+s
n (ω2j)

=
1

n2

n−sX
t=1

sin tωjΛn(ω2j) sin(t+ s)ωj

= Λn(ω2j)
n− s
2n2

cos(ωjs), (s > 0),

so that

An(ω2j ,ωl) = An(ω2j−1,ωl)

=
n−1X

s=−(n−1)
2
n− |s|
n2

Λn(ω2j)e
−isωle−isωj

=
1

n
Λn(ω2j) {2πFn−1(ωj + ωl) + 2πFn−1(ωj − ωl)} .

We note that Fn(θ) tends to a Dirac delta function as n→∞, and {2πFn(θ)}
tends to n as θ → 0. Hence {An(ω0,ωl)}→ 2Λn(ω0), as ωl → 0 andAn(ω2j ,ωl)→
Λn(ω2j), as ωl → ωj , .
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Now let us consider the truncated spectral matrix hn(ωl) given by (3.10)
and replace the eigenvalue-matrices and eigenvector-matrices given by these
new calculations. We then have

hn(ωl) =
1

4π
{An(ω0,ωl) + 2

n−1
2X
j=1

An(ω2j ,ωl)}

=
1

4π
{ 2
n
B∗n(ω0,ωl)Λn(ω0)Bn(ω0,ωl) + 2

n−1
2X
j=1

2

n
B∗n(ω2j ,ωl)Λn(ω2j)Bn(ω2j ,ωl)}

=
1

4π
{ 2
n
2πFn−1(ωl)Λn(ω0) + 2

n−1
2X
j=1

1

n
Λn(ω2j)[2πFn−1(ωj + ωl) + 2πFn−1(ωj − ωl)]}.

(3.14)

The approximate relation (3.14) tells us that the spectral density function
hn(ωl) given by (3.10) is in fact a smooth function of Λn(ωj) and the smooth-
ing function is the well known Fejér kernel. We observe that hn(ωl) is linear
in Λn(ωj) and that Bn(ωj ,ωl) does not depend on the time series {Yt} . This
suggests that these eigenvalue-matrices can be replaced by any nonlinear func-
tion of Λn(ωj) and by suitably defining an inverse function, we can, in the
limiting form, recover the original spectrum. To be more precise, consider a
strictly monotonic continuous function G(.) and g(.) be an inverse function, i.e.
g(G(x)) = x. Then we can consider the function

hn,P (ωl) = g

⎧⎨⎩
n−1X
j=0

2

n
B∗n(ωj ,ωl)G(Λn(ωj))Bn(ωj ,ωl)

⎫⎬⎭ , (3.15)

as an approximation to hn(ωl). In fact, this is a generalization of the way that
Pisarenko (1972) derived his estimate in the univariate case, and (3.15) is the
generalization of the theoretical form of the Pisarenko’s estimator, to the mul-
tivariate case. In section 5 we consider the estimation of hn,P (ωl), from the
data. Also, note that (3.15) must be multiplied by an appropriate scale factor
to recover hn(ωl), and this factor is independent of the form of G(.).

4 High resolution spectral density matrix of Yt

High resolution estimation of the spectral density function was introduced by
Capon (1969) in the univariate case. In this section we give a multivariate
generalization and also give an explicit expression for the spectral density matrix
of the vector series Yt. We shall show later that this form can be used for the
estimation of the spectrum of a PC time series. For this let us consider the
linear combination of the vector

¡
Y0
t,Y

0
t−1, ...,Y

0
t−p
¢0
,
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St =

pX
k=0

G(k)Yt−k =G
0eYt, (4.1)

where G0=(G(0),G(1), ...,G(p)) and eYt = ¡
Y0
t,Y

0
t−1, ...,Y

0
t−p
¢0
denotes the

matrix of coefficients and the vector of (p + 1) observations, respectively (the
choice of p is important in practical situations, but we do not consider this
problem here).
The variance-covariance matrix of St is

V ar(St) = EStS
0
t = EG

0eYteY0tG
= G0EeYteY0tG
= G0eΓpG, (4.2)

where the (p+1)T×(p+1)T block-Toeplitz autocovariance matrix eΓp = EeYteY0t
is given by

eΓp =
⎛⎜⎜⎝

R(0) R(1) ... R(p)
R(−1) R(0) ... R(p− 1)
. . . .

R(−p) R(−(p− 1)) ... R(0)

⎞⎟⎟⎠ .
The coefficient matrices {G(k)}, are to be chosen so that, at a frequency

ω under consideration, the frequency response of the filter has unit gain. This
constraint can be represented as

pX
k=0

G(k)e−kiωI = G0Lp(−ω) = I, (4.3)

where the matrix Lp(ω) is of dimension (p+ 1)T × T and is given by Lp(ω) =¡
I, eiωI, ..., epiωI

¢0
. We use Lagrange multiplier (K) for minimizing the trace of

the V ar(St), subject to (4.3). Let

Q=tr(V ar(St)) + 2K
0(I−G0Lp(−ω)).

By minimizing Q with respect to G and K and then substituting for K we
obtain

GMV = eΓ−1p Lp(ω)(L∗p(ω)eΓ−1p Lp(ω))
−1,
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(see Rogers, 1980, p.107 and Balestra, 1976). Substitution of this into (4.2)
yields the minimum variance

V ar(St)MV = (L
∗
p(ωl)eΓ−1p Lp(ωl))−1

If we consider St given by (4.1) as the output of the linear filter of the vector¡
Y0
t,Y

0
t−1, ...,Y

0
t−p
¢0
, V ar(St) is the measure of power function and is related

to the spectral density matrix of Yt. An appropriate minimum variance (MV)
spectral estimator that may be deduced from the above is

hp,cap(ω) =
1

π
[
2

p
L∗p(ω)eΓ−1p Lp(ω)]−1 (4.4)

This is a multivariate generalization of theminimum variance spectral (MVS)
estimator due to Capon.
The general form (3.15) also includes the above MVS estimate as shown

below. To obtain this, substitute G(Λn(ωj)) = Λ−1n (ωj) in (3.15) to obtain

ehn,P (ωl) =
⎧⎨⎩
n−1X
j=0

2

n
B∗n(ωj ,ωl)Λ

−1
n (ωj)Bn(ωj ,ωl)

⎫⎬⎭
−1

=

⎧⎨⎩
n−1X
j=0

fAn(ωj ,ωl)

⎫⎬⎭
−1

where

fAn(ωj ,ωl) =
n−1X
j=0

2

n
B∗n(ωj ,ωl)Λ

−1
n (ωj)Bn(ωj ,ωl)

=
2

n

nX
t=1

nX
s=1

W
t∗
n (ωj)Λ

−1
n (ωj)W

s
n(ωj)e

−i(t−s)ωl .

As ωj → ωl, fAn(ω2j ,ωl)→ Λn(ω2j), and hence (when ωl 6= 0)

ehn,P (ωl) ' 1

2
Λn(ωl) ' πhn(ωl).

Hence the theoretical form of generalized Capon’s estimator is given by

ehn,cap(ωl) = 1

π
ehn,P (ωl)

=
1

π

⎧⎨⎩
n−1X
j=0

fAn(ωj ,ωl)

⎫⎬⎭
−1

. (4.5)

12



Note that from (4.4) we have

hn,cap(ωl) =
1

π
[
2

n
L∗n(ωl)Γ

c−1

n Ln(ωl)]
−1, (4.6)

where Ln(ωl) =
¡
I, eiωlI, ..., eniωlI

¢0
. But

L∗n(ωl)Γ
c−1

n Ln(ωl) = L
∗
n(ωl)

n−1X
j=0

W∗
n(ωj)Λ

−1
n (ωj)Wn(ωj)Ln(ωl)

=
n−1X
j=0

L∗n(ωl)W
∗
n(ωj)Λ

−1
n (ωj)Wn(ωj)Ln(ωl)

=
n−1X
j=0

[
nX
t=1

W∗t
n (ωj) exp(−itωl)]Λ−1n (ωj)[

nX
s=1

Ws
n(ωj) exp(isωl)]

=
n−1X
j=0

B∗n(ωj ,ωl)Λ
−1
n (ωj)Bn(ωj ,ωl),

and so

2

n
L∗n(ωl)Γ

c−1

n Ln(ωl) =
n−1X
j=0

eAn(ωj ,ωl),

and therefore we have again (4.5). As seen above, the theoretical form of Capon’s
estimator ehn,cap(ωl) given by (4.5) is consistent with our definition of the power
spectral density matrix hn,cap(ωl) given by (4.6) .
In the previous sections we defined various characterizations of the spectral

density matrix of Yt, using the eigenvalue-matrices of the block-Toeplitz matrix
Γn. We note that all these forms depend on the eigenvalue-matrices, Λn(ωj),
j = 0, ..., T−1, which are the eigenvalue-matrices of Γn. In the following section
we briefly discuss the estimation of Γn and hence the estimation of Λn(ωj). We
proceed as in Subba Rao and Gabr (1989).

5 Estimation of the spectral density matrix of
Yt and the PC time series

Let {Y1,Y2, ...,Yn} be a sample of size n from {Yt}.We assume that EYt = 0.
Let n = Mm, where M and m are integers. Divide the data into M groups,
where each group consists of m observations, and let the observations in the l-th
group (l = 1, ...,M) be denoted by the mT × 1 vector eYl, where

eYl = (Y
0
lm,Y

0
lm−1, ...,Y

0
(l−1)m+1)

0 , l = 1, ...,M. (5.1)

13



We estimate the mT ×mT block-Toeplitz covariance matrix Γm of order m
by

bΓm = 1

M

MX
j=1

eYj
eY0
j . (5.2)

Let bΛm(ωj), j = 0, ...,m − 1 be the eigenvalue-matrices of bΓm and assume
that m is odd. We consider

bhm(ωl) = 1

4π

m−1X
j=0

bAm(ωj ,ωl), (5.3)

bhm,cap(ωl) = 1

π

⎧⎨⎩
m−1X
j=0

fAn(ωj ,ωl)

⎫⎬⎭
−1

. (5.4)

as estimators of hm(ωl) and hm,cap(ωl), respectively, where

bAm(ωj,ωl) =
2

m

mX
t=1

mX
s=1

W
t∗
m(ωj)bΛm(ωj)Ws

m(ωj)e
−i(t−s)ωl

and

gAm(ωj ,ωl) =
2

m

mX
t=1

mX
s=1

W
t∗
m(ωj)bΛ−1m (ωj)Ws

m(ωj)e
−i(t−s)ωl .

Using (2.7) we propose two estimators fm(ωl) = 1
TU(ωl)hm(ωl)U

−1(ωl)
(truncated spectral density matrix) and fm,cap(ωl) = 1

TU(ωl)hm,cap(ωl)U
−1(ωl)

(Capon estimator), as the estimates for the spectral density matrix of PC time
series, f(ωl), namely,

bfm(ωl) = 1

T
U(ωl)bhm(ωl)U−1(ωl), (5.5)

bfm,cap(ωl) = 1

T
U(ωl)bhm,cap(ωl)U−1(ωl). (5.6)

The sampling properties, such as bias and consistency ofbfm(ωl) and bfm,cap(ωl)
need to be investigated. These depend on the sampling behaviour of the eigenvalue-
matrices bΛm(ωj), which are the eigenvalues of bΓm.
6 Comparison of the truncated estimates and

the high resolution estimates

An appropriate way to compare the two estimates bfm(ωl) and bfm,cap(ωl) is
to compare their mean square errors. Since we do not have expressions for

14



their mean square errors, we calculated bhm(ωl) and bhm,cap(ωl) for a simulated
series and compared them with their theoretical spectral values. In view of the
relationships (5.5) and (5.6) this is equivalent to the comparison of bfm(ωl) andbfm,cap(ωl).
Let {Yt} be a bivariate stationary series generated from the model

Yt +A1Yt−1 = et (6.1)

where A1 =

∙
−0.16 0.15
−0.14 −0.15

¸
and et is a bivariate Gaussian white noise with

mean zero and variance covariance matrix Σ =
∙
1.19 0
0 2.15

¸
. It is well known

that the theoretical spectral density matrix of Yt is given by

h(ω) = [I+A1e
−iω]−1Σ[I+A1e

iω]
0−1, 0 ≤ ω ≤ 2π. (6.2)

Let h(ω) = [hjk(ω)]j,k=0,1. We note h00(ω) and h11(ω) are real valued func-
tions and h01(ω) = h10(ω), is a complex valued function as the cross spectral
density function.
First we generated 500 observationsYt, t = 1, 2, ..., 500 from model (6.1) and

collected them in 100 groups, with 5 elements in each group, i.e.,M = 100, m =
5. The estimates bhm(ωl) and bhm,cap(ωl) are calculated using the formulae (5.3)
and (5.4) with ωj =

2πj
m , j = 0, ...,m− 1. The above estimates are computed at

the frequencies ωl = lπ, l = 0(0.1)1. Figure 2 shows the logarithm of theoretical
density, truncated estimate and Capon estimate of h00(ωl), respectively. The
graph related to h11(ω) is similar.
As we see in Figure 2, the truncated estimate is closer to the theoretical

form for most all frequencies. We may use the following criteria for comparison

Q =
1

11

X
l=0(0.1)1

[(h00(ωl)− bh00(ωl))2 + (h11(ωl)− bh11(ωl))2] (6.3)

After calculating Q for two types of estimates, we obtain that Qtruncate =
4.0319 and QCapon = 4.1430. On the basis of this criterion, truncated estimate
seems to be preferable to Capon’s estimate.

7 Numerical examples
In this section we illustrate above methodology with two examples. First, we
consider a periodic autoregression (PAR) model with period T. These models
are introduced by Jones and Brelsford (1967). The following example is a PAR
model with period T = 2,
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Figure 2: The logarithm of theoretical density, truncated estimate and Capon
estimate of h00(ωl), ωl = lπ, l = 0(0.1)1

Xt = a(t)Xt−1 + et, (7.1)

where {et} is a sequence of independent random variables (periodic white noise),
where for each t,

et ∼
½
N(0, 3), when t is odd
N(0, 4), when t is even

and a(t) =

½
0.8, when t is odd
0.1, when t is even

Hurd, Makagon and Miamee (1998) derived an explicit form of the spectral
density of the time seriesXt satisfying the (7.1). For k = 0, ..., T−1, the spectral
density that concentrated on diagonals is given by

fk(ω) =
T−1X
l=0

|1− P exp(iT (ω + 2lπ/T )|−2 bJl(ω + 2lπ/T ) bJl−k(ω + 2lπ/T )σ2l ,
(7.2)

where Jn(ω) =
T−1P
k=0

Cnn−k+1 exp(−ikω), bJj(ω) = 1
T

T−1P
n=0

Jn(ω) exp(2iπjn/T ), j ∈

Z, Csr =
sQ
j=r

a(j) for r ≤ s and equal to 1 for r > s, P =
T−1Q
j=0

a(j) and σ2l = Ee
2
l .
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After some simplification for T = 2, for k = 0, 1,we obtain

fk(ω) = 3 |1− .08 exp(2iω)|−2 bJ0(ω) bJk(ω)
+ 4 |1− .08 exp(2i(ω + π))|−2 bJ1(ω + π) bJ1−k(ω + π).

(7.3)

When k = 0, bJ0(ω) = 1 + 0.45 exp(−iω), bJ0(ω + π) = 1 − 0.45 exp(−iω) and
when k = 1, we have bJ1(ω + π) = bJ−1(ω) = 0.35 exp(−iω). So we have

f0(ω) = 3 |1− .08 exp(2iω)|−2 |1 + 0.45 exp(−iω)|2

+ 4 |1− .08 exp(2i(ω + π))|−2 |0.35 exp(−iω)|2. (7.4)

We compare this theoretical form with our estimates. As noted by Pagano
(1978), there is a two-dimensional stationary autoregression process, Yt =µ

XtT
XtT+1

¶
, associated with this periodic autoregression (PAR) model . First

we generated 1000 observations from Xt and then using these observations we
constructed a 2-dimensional stationary time series Yt (t = 1, 2, ..., 500).We con-
sider these in 100 groups, with 5 elements in each group, i.e., M = 100, m = 5.
The estimates bhm(ωl) and bhm,cap(ωl) are calculated using the formulae (5.3)
and (5.4) with ωj =

2πj
m , j = 0, ...,m− 1. The above estimates are computed at

the frequencies ωl = lπ, l = 0(0.1)1. And then using relations (5.5) and (5.6) we
computed bfm(ωl) and bfm,cap(ωl), the truncated estimate and Capon estimate of
spectral density matrix of periodically correlated Xt. The estimates of bfm(ωl)
and bfm,cap(ωl) are given in the following table
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ωl bfm(ωl) bfm,cap(ωl)
0

µ
2.3871 .0082
.0082 .8001

¶ µ
1.7929 −.2618
−.2618 .6021

¶
0.1π

µ
2.2446 −.0406− .1316i

−.0406 + .1316i .9183

¶ µ
1.6528 −.2311− .1121i

−.2311 + .1121i .6601

¶
0.2π

µ
1.9660 −.1559− .2403i

−.1559 + .2403i 1.1724

¶ µ
1.4468 −.1825− .2312i

−.1825 + .2312i .8465

¶
0.3π

µ
1.7823 −.2701− .3535i

−.2701 + .3535i 1.3844

¶ µ
1.3724 −.1669− .3689i

−.1669 + .3689i 1.1077

¶
0.4π

µ
1.6773 −.3300− .4749i

−.3300 + .4749i 1.4980

¶ µ
1.3545 −.1815− .4872i

−.1815 + .4872i 1.3017

¶
0.5π

µ
1.4712 −.3261− .4742i

−.3261 + .4742i 1.5562

¶ µ
1.1811 −.1594− .4292i

−.1594 + .4292i 1.3768

¶
0.6π

µ
1.1570 −.2813− .2462i

−.2813 + .2462i 1.5679

¶ µ
.9326 −.0955− .1779i

−.0955 + .1779i 1.4268

¶
0.7π

µ
.9470 −.2229 + .0817i

−.2229− .0817i 1.5197

¶ µ
.8480 −.0587 + .1190i

−.0587− .1190i 1.5245

¶
0.8π

µ
.9746 −.1684 + .2647i

−.1684− .2647i 1.4670

¶ µ
.8805 −.0920 + .2717i

−.0920− .2717i 1.4485

¶
0.9π

µ
1.1238 −.1291 + .2502i

−.1291− .2502i 1.4736

¶ µ
.8878 −.1520 + .2273i

−.1520− .2273i 1.2320

¶
π

µ
1.2131 −.1145 + .2189i

−.1145− .2189i 1.4814

¶ µ
.8976 −.1775 + .1935i

−.1775− .1935i 1.1322

¶
Finally, one can determine the total amount of measure that concentrated

on each diagonal in Figure 1, by using the following relations (see (2.2)),

bf0(ω) = ( 2 bf00(2ω) ; 0 ≤ ω < π

2 bf11(2(ω − π)) ; π ≤ ω ≤ 2π
(7.5)

and

bf1(ω) = ( 2 bf01(2ω) ; 0 ≤ ω < π

2 bf10(2(ω − π)) ; π ≤ ω ≤ 2π.
(7.6)

Also, note that we have f−1(ω) = f1(ω).
The regularity condition of Xt is determined by the diagonal part of the

spectral measure µ of Xt, or its spectral density f0(ω). Miamee (1990) has
shown that the PC time series Xt is deterministic ifZ 2π

0

ln f0(ω)dω = −∞.

In Figure 3, the logarithm of two estimates of the f0(ω) with the logarithm
of the theoretical spectral density f0(ω) given by (7.4) are plotted. If we ap-
proximate the above integral by L =

P
l=0(0.1)1 ln f0(ωl)∆ωl, and compute this
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Figure 3: The logarithm of theoretical density, truncated estimate and Capon
estimate of f0(ωl), ωl = lπ, l = 0(0.1)1

for theoretical, truncated and Capon estimate, then we have LTheoretical =
10.3042, LTruncated = 7.0474, LCapon = 5.3832, and so we conclude that this
process is purely nondeterministic. By virtue of these calculations, we see that
the truncated estimate is closer to the theoretical form.
As an application of these methods for estimating the spectral density matrix

of a real PC time series, let us consider time series of mean monthly flows of
Fraser River at Hope, BC, from January 1913 to December 1990. This time
series has been used by several authors for fitting PC time series models, and
is known to have periodicity of 12 months, T = 12, ( Vecchia and Ballerini
(1991), Mcleod, (1994) and see Hipel and Mcleod (1994) ). The data is plotted
in Figure 4.
There is a twelve-dimensional stationary time series Yt, associated with this

time series. The number of observations are 936 and so we have 78 observations
from Yt, that we consider in M = 26 groups, with m = 3 elements in each
group. The estimates bhm(ωl) and bhm,cap(ωl) are calculated using the formulas
(5.3) and (5.4) with ωj =

2πj
m , j = 0, ...,m−1. The above estimates are computed

at the frequencies ωl = lπ, l = 0(0.1)1. And then using relation (5.5) and (5.6)
we computed bfm(ωl) and bfm,cap(ωl), the truncated estimate and Capon estimate
of spectral density matrix of periodically correlated Xt. The estimates of bfm(ωl)
and bfm,cap(ωl) are both 12 × 12 matrices and for reasons of space, we don’t
include these, but we plot the logarithm of bf0(ω) given by (7.5) in Figure 5.
From these illustrations, we see that the estimators are satisfactory, and the

truncated estimate seems to have more interesting features correspond to the
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Capon estimate, as we discussed in section 6.
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