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AN IMPROVED SCHUR-PADE ALGORITHM FOR FRACTIONAL
POWERS OF A MATRIX AND THEIR FRECHET DERIVATIVES*

NICHOLAS J. HIGHAM' AND LIJING LINT

Abstract. The Schur-Padé algorithm [N. J. Higham and L. Lin, SIAM J. Matriz Anal. Appl.,
32 (2011), pp. 1056-1078] computes arbitrary real powers A! of a matrix A € C™X™ using the
building blocks of Schur decomposition, matrix square roots, and Padé approximants. We improve
the algorithm by basing the underlying error analysis on the quantities ||(I — A)*||'/¥, for several
small k, instead of ||I — A||. We extend the algorithm so that it computes along with A? one or more
Fréchet derivatives, with reuse of information when more than one Fréchet derivative is required, as
is the case in condition number estimation. We also derive a version of the extended algorithm that
works entirely in real arithmetic when the data is real. Our numerical experiments show the new
algorithms to be superior in accuracy to, and often faster than, the original Schur-Padé algorithm
for computing matrix powers and more accurate than several alternative methods for computing the
Fréchet derivative. They also show that reliable estimates of the condition number of A! are obtained
by combining the algorithms with a matrix norm estimator.
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1. Introduction. We recently developed a Schur—Padé algorithm [25] for com-
puting arbitrary real powers A’ of a matrix A € C**". The algorithm combines a
Schur decomposition with the evaluation of a Padé approximant at a suitably trans-
formed Schur factor. That work was motivated by the increasing appearance of frac-
tional matrix powers in a variety of applications. In addition to the literature cited
in [25], we mention relevant recent work on fractional differential equations by Ben-
son, Meerschaert, and Revielle [8], Burrage, Hale, and Kay [12], and Ili¢, Turner, and
Anh [31].

We recall that for A € C"*™ having no eigenvalues on the closed negative real axis
R, the principal matrix power A’ is defined as exp(tlog A), where log is the principal
logarithm (the one whose eigenvalues have imaginary parts in the interval (—7, ) [24,
Thm. 1.31)). Without loss of generality we assume throughout that ¢ € (—1,1). For
general t € R we can write ¢ = m + f, where m € Z and f € (—1,1), and then
At = A™ A/, How to choose between the two possible pairs (m, f) is explained in [25,
sect. 6].

This work has three aims: to improve the accuracy and efficiency of the Schur—
Padé algorithm by sharpening the underlying error analysis, to extend the algorithm
so that it computes the Fréchet derivative, and to develop a version of the extended
algorithm that works entirely in real arithmetic when the data is real. The need for

*Received by the editors January 18, 2013; accepted for publication (in revised form) by M.
Van Barel May 29, 2013; published electronically September 17, 2013. This work was supported by
European Research Council Advanced grant MATFUN (267526).

http://www.siam.org/journals/simax/34-3/90611.html

fSchool of Mathematics, The University of Manchester, Manchester, M13 9PL, UK
(nicholas.j.higham@manchester.ac.uk, http://www.maths.manchester.ac.uk/ higham, lijing.lin@
manchester.ac.uk, http://www.maths.manchester.ac.uk/"lijing).

1341

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/17/13 to 130.88.123.32. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

1342 NICHOLAS J. HIGHAM AND LIJING LIN

a more sophisticated error analysis is illustrated by the upper triangular matrix

1 1016 0
(1.1) A=10 1 10
0 0 1

For any t € (—1,1) the Schur-Padé algorithm of [25] takes 108 square roots of A
then evaluates rp, (I — A) for some m < 7, where r,,(z) denotes the [m/m] Padé
approximant to (1 — z)!. However, no square roots are necessary: since (I — A)¥ =0
for k > 3, the error in r,, (I — A) is zero for any m > 1. By estimating the quantities
(I — A)¥||/* for a few k, our new Algorithm 3.1 requires no square roots for this
matrix, and returns a result with the same (high) accuracy as that from the original
algorithm.

The Fréchet derivative of a general matrix function f on C"*™ is a linear operator
L¢(-, E) satisfying

f(A+ E) = f(A)+ L;(A E) + o[ E)

for all F € C"*™. The Fréchet derivative therefore describes the sensitivity of f to
small perturbations, and can be used to define a condition number

If(A+E) = F(AI _ LA A

(1.2) cond(f, A) :=lim sup

=0 B|<e| Al el FCA)l IFAN
where
L#(X,Z
(1.3) 1L ()] = IE%%

[24, sect. 3.1]. We develop an algorithm for computing L, by Fréchet differentiating
our algorithm for A*. We then use the algorithm in conjunction with a matrix norm
estimator to estimate cond(z?, A). By replacing the Schur decomposition with a real
Schur decomposition in the case where A and E are real, we derive an algorithm that
works entirely in real arithmetic, thereby halving the required intermediate storage
and halving the number of (real) arithmetic operations required.

In section 2 we extend the analysis of [25] for the error in Padé approximants of
(1 — 2)! evaluated at a matrix argument X € C™*" to use the quantities || X*||*/*
instead of || X]|. In section 3 we develop a Schur-Padé algorithm based on these
bounds. In section 4 we extend the algorithm to compute both A! and the Fréchet
derivative L,:(A, F) and make comparisons with other approaches to computing the
Fréchet derivative. In section 5 we modify the algorithms so that they use only real
arithmetic when A and E are real. In section 6 we explain how to use the algorithms to
estimate the condition number of A?, based on evaluations of L _, (A, E) for several E.
Numerical experiments that compare the new algorithms with existing ones are given
in section 7 and conclusions are given in section 8.

2. Forward error analysis. The Schur-Padé algorithm of Higham and Lin [25]
computes a Schur decomposition A = QT'Q* (Q unitary, T upper triangular), takes
s square roots of T, evaluates the [m/m] Padé approximant r,,(z) of (1 — x)" at
I — T2 squares the result s times, then transforms back. The choice of m and
s in the algorithm is based on the forward error bound in the following theorem.
The norm here is any subordinate matrix norm and 74, (x) denotes the [k/m] Padé

approximant to (1 — x)*.
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THEOREM 2.1 (see [25, Thm. 3.5]). Let X € C™*" with || X|| < 1. Fork >m
and -1 <t <1,

(2.1) (T = X)" = 7 (X < (1= X" = 7 (IX )]

In particular, when —1 <t <0, (2.1) holds for k > m — 1.
The bound in Theorem 2.1 can be sharpened by applying the technique of Al-
Mohy and Higham [3] in order to base the error bound on the quantities

(22) 0y (X) = max (|| X717, | X7+ /00,

where the integer p > 1. As explained in [3], p(X) < a,(X) < || X]||, where p is
the spectral radius, and o,(X) < || X]| is possible for nonnormal X. Moreover,
if he(z) = >°;2,ciz’ is a power series with radius of convergence w then, from [3,
Thm. 4.2(a)], for any X € C™*" with p(X) < w we have ||he(X)|| < 357, |cilap(X)?
for p satisfying p(p — 1) < £. A new error bound in terms of the «; is given in the
next result.

THEOREM 2.2. Let X € C™*™ with p(X) < 1. Fork>m and —1 <t <1, and
fork>m—1and -1 <t <0,

(2.3) I=X) —rem(X)= > X",
i=k+m-+1

where every coefficient 1¥; = 1;(t, k,m) has the same sign. Moreover,

(2.4) 1T = X)" = riem (X < 1(1 = ap(X))" = e (0 (X)),

where ay is defined in (2.2) and p satisfies

(2.5) E+m+1>pp-1).

Proof. The error in the [k/m] Padé approximant rg, (z) to (1 —z) can be written
25, Lem. 3.4]

(1= 2)" = 7hm () = qrm (1) qrm ()" Z (_?'l(gz__t(f :—n;n))m o |z < 1,
i=k4+m+1 ’ m

where g, is the denominator of r,, with g, (0) = 1 and (a); = a(a+1)...(a+i—1)
with (a)g = 1. We can write gpm(z) = c[[~,(z; — z), where z;, i = 1: m, are the
zeros of qym(z) and ¢ = [[I%, z; '. Assuming k > m, from [25, Cor. 3.3], [33, Cor. 1]
we have x; > 1 for all 4. Hence if |z| < 1,

m —1 m 2 o}
qkm(x)1=H(1—x%) :H(1+§+%+m) Z:;dimi,

i=1 i=1 ? i

where d; > 0. (That d; > 0 also follows when ¢ € (—1,0) from a more general result
of Gomilko, Greco, and Zigtak [19, Cor. 5.6].)

It follows that for any ¢ € (—1,1), in the error expansion (1 — z)! — rg,(x) =
> hima Wi’ each 1p; has the same sign. Therefore (2.3) holds for p(X) < 1.
Finally, by applying [3, Thm. 4.2(a)] to (2.3), we obtain
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o0

I =X) = (X < D0 [ilap(X)

i=k+m-+1

Z ¢i04p(X)i

1=k+m-+1

= (1 = 0p(X))" = 1m0 (X))

for p satisfying (2.5).

If -1 <t < 0, it follows from [25, Cor. 3.3], [33, Cor. 1] that the roots x;
of ggm satisfy x; > 1 for & > m — 1, so the conclusion of the theorem holds for
k>m—1. a

3. Improved Schur—Padé algorithm. Whereas the Schur—Padé algorithm of
[25] is based on the norm of I — T'*/?" through the use of (2.1), here we will exploit
(2.4), which uses the generally smaller quantities a,(I —T'/?"), p > 1. We require
that o, = a, (I — T/?") satisfies

(3.1) I(1— O‘p)t —rm(ap)] < u,

where v = 27%3 &~ 1.1 x 10716 is the unit roundoff for IEEE double precision arith-
metic, which by (2.4) ensures double precision accuracy of the Padé approximant. For
given ¢t and m, we denote by 6% the largest § such that |(1 — 8) — 7,,,(0)| < u, and
define

(3.2) O, = min{ 60 - t € [-1,1] }.

The values of 6,,, determined in [25], are shown in Table 3.1. Our algorithm requires
that o, (I — TY/?") <6, for some p satistying p(p — 1) < 2m + 1.

As in [25] we compute square roots of triangular matrices by the Bjorck and
Hammarling recurrence [11], [24, Alg. 6.3], which costs n®/3 flops, and we compute
rm by evaluating its continued fraction form in bottom-up fashion (see section 4.2),
which costs 2mn3/3 flops.

Our overall aim is to choose the parameters s and m to minimize the total cost
subject to (3.1). The following reasoning is adapted from that used to derive an
inverse scaling and squaring algorithm for the matrix logarithm that is also based on
the «, [4]. Although the 6, and the cost of evaluating the Padé approximant are
different than in the logarithm case, the algorithm turns out (perhaps surprisingly)
to have exactly the same form.

For any putative s and m satisfying a,(I — T"/?") < 6,, for some p, it is worth
taking one more square root (costing n3/3 flops) if it allows a reduction in the Padé
degree m by more than one (resulting in a saving of at least 2n3/3 flops once the extra
squarings are taken into account), that is, if ap(I—T1/25+1) < @ —2 for some p. Since
(I=TY>"YI+TY?) = I-TY?" | we have that o, (I —TY>"") & La,(I-T'/%),
for suitably large s. Since 0,,/2 < 0,2 for m > 7, the cost of computing T will
be minimized if we take square roots of T' repeatedly until oy, (I — TY?") < 0 for
some p € {1,2,3,4} (see Table 3.2). Some work can be saved by using the fact that
pI — D) =p(I—-T) < a,(I —T), where D = diag(T'), and so there is no need to
compute o, (I —T/?") until p(I —D'/?") < @7; let us denote the smallest such s by so.

After obtaining sy and computing 7' < T/2™ we first check if m = 1 or m = 2
can be used, since no more square roots need to be taken in this case. If m = 1 and
m = 2 are ruled out we now determine whether more square roots are needed and

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/17/13 to 130.88.123.32. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

FRACTIONAL MATRIX POWERS AND FRECHET DERIVATIVES 1345

TABLE 3.1
Values of O in (3.2) and n,, in (4.7).

m 1 2 3 4 5 6 7 8 9

O 1.51e-5  2.24e-3 1.88e-2  6.04e-2 1.24e-1 2.00e-1 2.79e-1  3.55e-1  4.25e-1
M, 2.57e-7T  3.26e-4 7.07e-3 3.28e-2 8.10e-2  1.45e-1  2.17e-1  2.89e-1  3.58e-1

m 10 11 12 13 14 15 16 32 64

O0m | 4.87e-1  5.42e-1  5.90e-1 6.32e-1  6.69e-1  7.00e-1  7.28e-1  9.15e-1  9.76e-1
N | 4.21le-1 4.78e-1  5.28e-1  5.73e-1  6.12e-1 6.47e-1  6.77e-1  8.93e-1  9.68e-1

TABLE 3.2
Values of p for which 2m +1 > p(p — 1) is satisfied, for m = 1: 7, and corresponding required
a; and d; = || XY/ (in view of a3z < az < o).

m | 1 2 3,4,5 6, 7
D 1,2 1,2 1,2,3 1,2,3,4
Required «; a2 o [e % g, g

Required d; | d2,ds d2,d3 d3,ds d3, da, ds

which Padé degree m to use. By the analysis above, m does not exceed 7, so only
a3 and a4 will be needed, as can be seen from Table 3.2. We next check whether
as(I —T) < 67. If az(I —T) > 67, we check whether au(I —T') > 07, and if it is we
set T < T'/2 and repeat the process; if az(I —T) > 07 and ay(I — T) < 07 then it is
necessary to check whether ay(I — T) < 65 to determine whether m =7 or m = 6 is
to be used. We now consider the case where as(I —T) < 7. If ag(I —T) > 0 and
2a3(I —T) < 05 then the above analysis predicts that one more square root should be
taken to reduce the cost and so the process is repeated with 7' < T'*/2. Since it is not
guaranteed that az(I — T/2) < 05, we will allow at most two extra square roots to
be taken to avoid unnecessary square roots. If %a3(I —T) > 05 then no extra square
root is needed and again a4 (I —T') needs to be checked to determine whether m =7
or m = 6 is to be used. Consider now the case where ag(I —T') < g: an extra square
root is not necessary since 6 < %x for all x € (Ok41,0k+2] for k = 2,3,4; we find the
smallest m € {3,4,5,6} such that as(I —T) < 6,, and evaluate r,,(I —T).

We use the 1-norm, so a,(X) = max{||X?||}/?, | XP+1|;/®T}, but instead of
computing || X?||;, we estimate it without forming X? by using the block 1l-norm
estimation algorithm of Higham and Tisseur [28], so that we obtain an estimate of
a,(X) in O(n?) flops. The l-norm estimator estimates ||B||; by sampling a small
number of products BY and B*Z for Y, Z € R"*", where r is a parameter that we
set to 2. It requires 4r products on average and is rarely more than a factor of 3 away
from the true 1-norm [24, p. 67].

We are now ready to state the improved algorithm. Note that we take the oppor-
tunity on lines 37, 41, and 42 to recompute quantities for which there is an explicit
formula that can be evaluated accurately.

ALGORITHM 3.1 (Schur-Padé algorithm). Given A € C™*™ with no eigenvalues
on R™ and a nonzero t € (—1,1) this algorithm computes X = A wvia a Schur
decomposition and Padé approximation. It uses the constants 0,, in Table 3.1 and
the function normest(A, m), which produces an estimate of ||A™||1. The algorithm is
intended for IEEE double precision arithmetic.

1 Compute a (complex) Schur decomposition A = QT Q™.

2 If T is diagonal, X = QT*Q*, quit, end

3 To=T

4 Find s, the smallest s such that p(I — D/?") < 6;, where D = diag(T).
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5 fori=1:s¢

6 T < T'/? using [11], [24, Alg. 6.3].

7 end

8 s=350,q=0

9 dy = normest(I —T,2)"/?, d3 = normest(I — T, 3)/3

10 a9 = rnax(dz, dg)
11 fori=1:2

12 if ap < 6;, m =i, goto line 38, end

13 end

14 while true

15 if s > 59, d3 = normest(I —T,3)'/3, end
16 dy = normest(I — T,4)'/* a3 = max(ds, d4)
17 if ag <07

18 jlzmin{i:a3§9i,i=3:7}

19 if j1 <6

20 m = ji1, goto line 38

21 else

22 if%(13§05 and ¢ < 2

23 qg=q+1

24 goto line 33

25 end

26 end

27 end

28 ds = normest(I — T,5)/°, ay = max(dy, ds)
29 7 = min(as, ag)

30 fori=06:7

31 if n <0;, m =1, goto line 38

32 end

33 T + T2 using [11], [24, Alg. 6.3].

34 s=s+1

35 end

36 R=1-T

37 Replace the diagonal and first superdiagonal of R by the diagonal and
first superdiagonal of I — T01/25 computed via [1, Alg. 2] and [25, eq. (5.6)],
respectively.

38 Evaluate U = r,,(R) using the continued fraction in bottom-up fashion
25, Alg. 4.1].

39 fori=s:—1:0

40 ifi <s, U<+ U?, end

41 Replace diag(U) by diag(Tp)"? .

42 Replace first superdiagonal of U by first superdiagonal of Tg/ ?

obtained from [25, eq. (5.6)] with the power ¢/2¢.

43 end

4 X =QUQ*

Cost: 25n3 flops for the Schur decomposition plus (2s + 2m — 1)n3/3 flops for U

and 3n? for X: about (28 + (2s + 2m — 1)/3)n? flops in total.

4. Computing the Fréchet derivative. We now turn to the computation of
L+ (A, E), the Fréchet derivative of A? at A in the direction E. The idea we pursue is
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to simultaneously compute A and L,:(4, E) in a way that reuses matrix operations
from the computation of A’ in the computation of L,:(A, E).
Recall that A! is approximated by (ignoring the Schur decomposition for
simplicity)
Al = (A2 = (1 - X))~ (X))

3

where I — X = AY/2" and p(X) < 1. Differentiating A* = ((4'/2)*)? and applying the
chain rule [24, Thm. 3.4], we obtain

(4.1) Ly (AE) = AY? L, (AY? Ey) + L (AY2, E)AY?,

where By = L,1/2(A, E) and so AY2E, + E,AY? = E. Using this relation we can
construct the following recurrences for computing L,:(A, E). First we form

EO:Ea X0:A7

X, = x/?
(4.2) T =1,
Solve X, E; + E; X, = E;_1 for E;

after which Ey = L,1/2: (A, E) and X, = AY/?" and then

(43) Ys = rm(-[ - Xs)a Ls ~ Lwt (Xsa E8)7
Li_y=Y;L; + L;Y;

(4.4) 9 it=s:—1:1,
Yi1=Y];

after which Lo =~ L, (A4, E).
To approximate L,¢(Xs, Es) in (4.3) we simply differentiate the Padé approxima-
tion (note that Lyt (X, E) = L(lfw)t (I — X, —E)):

(4.5) Ly (Xs,Es)~ L, (I — X4, —Es).

We now bound the error in this approximation.

4.1. Error analysis. From Theorem 2.2, the error in r,,(X) has the form

(4.6) I-X) —rm(X)= Y X' =gy (X).
i=2m+1

Differentiating both sides of (4.6), we have

o) [

La—oy(X,B) = Ly, (X,E) = Ln,, . (X,B) = > Wiy XIT'EX',
i=2m+1  j=1

where the second equality is from [24, Prob. 3.6]. Therefore

Loy (X, E) = L (X, E)| < Y [l Y X7 EX |
i=2m+1 j=1
<| > wlx e
1=2m+1

= |y (IX D[N E]-
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Define n,(,tl) =max{ z : |hy,, ()] <u} and

(4.7) n,, = min{n{ : t € [~1,1] }.

With u = 27%% we determined 7,, empirically in MATLAB, using high precision
computations with the Symbolic Math Toolbox for a range of m € [1,64]. Table 3.1
reports the results to three significant figures. Notice that for all m we have n,,, < 6,,.

Our error bound for the Fréchet derivative of r,, is based on ||.X||, whereas the
error bound for r, itself is based on a,(X). The same situation holds in the work
of Al-Mohy, Higham, and Relton [5] for the matrix logarithm, and the arguments
used there apply here, too, to show that an a,-based bound for ||L_,y (X, E) —
L. (X, E)| is not possible. Despite the fact that n,, < 6,,, we will base our algorithm
for computing A? and L,:(A, E) on the condition a,(I — AY/?") < 6, (analogously to
[5]) and will test experimentally whether this produces accurate Fréchet derivatives.

4.2. Evaluating the Fréchet derivative of r,,. In [25], 7, (X) is computed
by evaluating the continued fraction [6, p. 66], [7, p. 174]

C1x
(4.8) rm(z) =1+ ) o ’
+1+ C3T
14 comax
where
—j+t —j—t
Clz—t, C2j = ]+ J j:1,2,...,

2025 — 1) P T 325 +1)
in bottom-up fashion. Denote

Yom (T) = com,

T
4.9 yi(r) = —3L = om—1:-1:1.
Then we have ry, (z) = 14+yi1(z). From (4.9), (14+y;4+1(x))y;(x) = cjz. Differentiating
the matrix analogue, we have

Ly, (X, E)y;(X) + (I + yj+1(X)) Ly, (X, E) = ¢, E,

which, together with L, (X, E) = com F, provide a recurrence for computing L, , (X, E)
= L,, (X, E). We obtain the following algorithm for evaluating both r,, and L, .
ALGORITHM 4.1 (continued fraction, bottom-up). This algorithm evaluates rp(X)
and L, (X,E) for X,E € C"*".
1 Yo, = C2mX7 Zom = Com B

2 forj=2m—1:-1:1

3 Solve (I +Y;11)Y; = ¢; X for Yj.

4 Solve (I+ }/j+l)Zj = CjE — Zj+1}/j for Zj.
5 end

6 Tm=14+Y]

7 er =7
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Cost: In the case where X is a triangular matrix and F is full, the total cost is
(2m — 1)(n3/3 + 2n3) flops.

We are now ready to state the overall algorithm for computing both A’ and
L_.(A,E). In lines 3-8 we employ an explicit formula obtained from the Daleckii and
Krein theorem for the Fréchet derivative that applies in the case of normal A [24,
Thm. 3.11].

ALGORITHM 4.2 (Schur-Padé algorithm for matrix power and Fréchet deriva-
tive). Given A € C™ ™ with no eigenvalues on R™,FE € C" ", and a nonzero
t € (—=1,1) this algorithm computes X = A' and its Fréchet derivative L,:(A, E)
via a Schur decomposition and Padé approximation. It uses the constants 0, in Ta-
ble 3.1. The algorithm is intended for IEEE double precision arithmetic.

1 Compute a (complex) Schur decomposition A = QT Q™.

2 E+ Q*EQ

3 If T is diagonal

4 X =QT'Q*

5 Form K, where k;; is the divided difference f[t;;, t;;] for f(z) = a*
computed from [25, eq. (5.6)].

6 L = Q(K o E)Q*, where o is the Hadamard product.

7 quit

8 end

9 To=T

10 Find sg, the smallest s such that p(I — D'/?") < 6, where D = diag(T).
11 Ey=F
12 for i =1:sp

13 T + T'/? using [11], [24, Alg. 6.3].
14 Solve TE; + E;T = E;_1 for E; by substitution.
15 end

16 --- Execute lines 8-44 in Algorithm 3.1 but with the following changes:
Immediately after line 33 execute
“Solve TEsy1 + Es41T = E; for Esy1 by substitution.”
Replace line 38 with
“Evaluate U = r,(R) and V = L, (R, —Es) using Algorithm 4.1.”
Replace line 40 with
“f i< s, VUV +VU,U <+ U? end”
Replace line 44 with
HX — QUQ*7 L — QVQ*77

Cost: The cost is the (28 + (2s + 2m — 1)/3)n® flops cost of Algorithm 3.1 plus
the extra cost for computing L, (A, E) of s solves of triangular Sylvester equations,
2m — 1 full-triangular matrix multiplications and 2m — 1 solves of multiple right-hand
side triangular systems (in Algorithm 4.1), 2s full-triangular matrix multiplications,
and 2 full matrix multiplications, namely an extra cost of (4s + 4m + 2)n® flops.

In some situations, such as in condition estimation (see section 6), several Fréchet
derivatives L (A, E) are needed for a fixed A and different E. The parameters s
and m depend only on A so we need only compute them once; moreover, we can
save and reuse the Schur decomposition, the square roots T2 and the powers
UT ~ T21_5t.

4.3. Alternative algorithms. We describe several alternative ways to compute
the Fréchet derivative of Af.
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By applying the chain rule to the expression A* = exp(tlog A) we obtain [25,
sect. 2]

L,(A E) = tLexp(tlog A, Liog(A, E)).

The first method evaluates this formula using the inverse scaling and squaring algo-
rithm of Al-Mohy, Higham, and Relton [5] to evaluate Lios and the scaling and squar-
ing algorithm of Al-Mohy and Higham [2] to evaluate Ley,. Both of these algorithms
are based on Padé approximation. The total cost, assuming a Schur decomposition
is initially computed and used for both the Lj,g and Ley, computations and that
the maximal Padé degree is chosen in each algorithm, is about (682 + %(s1 + s2))n?
flops, where s; and sy are the scaling parameters for the Liog and Ley, computations,
respectively. This is to be compared with (62% + 4%5)713 flops for Algorithm 4.2, and
since s will be of similar size to s; these two approaches will be of broadly similar
cost.
A second method is based on the property, for arbitrary f [24, eq. (3.16)],

A E\ _ |f(A) LiAE)

o (5 2D -1 )
which shows that by applying Algorithm 3.1 to the 2n x 2n matrix [{ ] we obtain
A" and L, (A, E) simultaneously. This method has two drawbacks. First, it has eight
times the cost and four times the storage requirement of Algorithm 3.1 (both of which
can be reduced by exploiting the block triangular structure). Second, since Ly (A, E)
is linear in E the norm of E should not affect an algorithm for computing L;(A, E),
but Algorithm 3.1 applied to [4 £] will be affected by ||E|| and the best way to scale
E is not clear.

The other approaches that we consider are applicable only when ¢ = 1/t is an
integer. The problem is then to compute the Fréchet derivative for the matrix gth
root. This can be done by exploring the relation [24, Thm. 3.5]

(411) qu(Al/qaLwl/q(AvE)) =FE.

Since Ly«(X,E) = X1 X/7'EX%, L ,,,(A E) can be obtained by solving the
generalized Sylvester equation 25:1 (AY9)i=1y (AY/9)9=7 = E for Y. An explicit for-
mula expressing the solution of the more general equation Y /" A" *XB’ =Y asan
infinite integral is given by Bhatia and Uchiyama [9]. However, currently no efficient
algorithm is known for solving this equation. Another way to compute L 1/4(A, E) is
proposed by Cardoso [13]. The idea is first to write the Fréchet derivative L ,(A4, E)
in terms of the solution of a set of g recursive Sylvester equations and then reverse
the procedure (in view of (4.11)) to get L_,,,. The matrix A% must be computed by
some other method before applying this procedure. To save computation in solving
the Sylvester equations, an initial Schur decomposition is used, which makes the co-
efficients of the Sylvester equations triangular. This method costs (4qg + 31%)n3 flops
plus the cost of computing A/ and always requires complex arithmetic, even when
A and E are real. Recall that the extra cost in Algorithm 4.2 in addition to that for
computing A? is (4s + 4m + 2)n® flops. The values of of ¢, s, and m depend on the
problem but m < 7, so Cardoso’s algorithm will be competitive in cost only if ¢ < s.

Another method for the gth root case is proposed by Cardoso [14], who applies
the repeated trapezium rule to an integral representation of the Fréchet derivative.
This method is competitive in cost only when low accuracy is required (relative errors
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> u!/?, say), and its cost increases rough linearly with ¢, so we will not consider it
further.

5. Algorithm for real data. In the case where A and E are real both A
and L_,(A, E) are real, so an algorithm that avoids complex arithmetic is desired to
increase the efficiency of the computation and guarantee a real result in floating point
arithmetic. We summarize the changes that can be made to Algorithms 4.1 and 4.2
so that they work entirely in real arithmetic for real inputs.

1. Use the real Schur decomposition instead of the Schur decomposition.

2. Compute real square roots of real quasi-triangular matrices using the recur-
rence of Higham [23], [24, Alg. 6.7].

3. Instead of updating the diagonal and the first superdiagonal elements before
the squaring stage by using an explicit formula for the tth power of a 2 x 2 triangular
matrix, update the (full) 2 x 2 diagonal blocks. Assume the 2 x 2 diagonal blocks are

of the form
{a b ]
c a

with bec < 0, which is the case when the real Schur decomposition is computed by
MATLAB. Then B has eigenvalues A+ = a + i3, where f = (—bc)'/2. Let =
arg(A4+) € (0,m) and r = |A4|. It can be shown that

Bt — ' [ Bcos(th) bsin(th)
~ B | csin(td) Bcos(th) |’

which can be evaluated to high relative accuracy as long as we are able to compute 6,
cos, and sin accurately. The explicit formula for 2 x 2 triangular matrices can still be
used to update the first superdiagonal elements when two or more successive 1 x 1
diagonal blocks are found.

With these changes we will gain a halving of the storage required for interme-
diate matrices and an approximate halving of the operation count measured in real
arithmetic operations. Fortran experiments reported in [5] with the inverse scaling
and squaring algorithm for the matrix logarithm show that use of the real instead of
complex Schur form halves the run time, and the same will be true here since exactly
the same computational kernels are used.

6. Condition number estimation. From (1.2) and (1.3) it is clear that the
essential task in computing or estimating the condition number is to compute or
estimate the norm ||L_.(A)|| of the Fréchet derivative.

Denoting by vec the operator that stacks the columns of a matrix into one long
vector, for a general f we have vec(L(A,Z)) = Ks(A)z, where z = vec(Z), for a
certain matrix K;(A) € C**n* called the Kronecker representation of the Fréchet
derivative. Moreover [24, Lem. 3.18],

<K (Al < nllLg(A)1

We will therefore apply the block matrix 1-norm estimation algorithm of [28] to
K,+(A), which requires the computation of K, +(A)y and K,+(A)*z for given vectors
y and z. In order to avoid forming the n? x n? matrix K,:(A) we compute K,:(A)y
as vec(L,.(A,Y)), where vec(Y) = y. How to compute K,+(A)*z is less clear. The
following results provide an answer for a general function f.
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Our analysis makes use of the adjoint L;S of the Fréchet derivative Ly, which is
defined by the condition

(6.2) (L{(A,G),H) = (G, L}(A, H))

for all G, H € C"*™ where (X,Y) = trace(Y*X) = vec(Y)*vec(X).

LEMMA 6.1. Kf(A)*vec(H) = Vec(L}((A, H)).

Proof. We have (L¢(A,G),H) = vec(H)*vec(Ls(A,G)) = vec(H)*Ky(A)vec(G)
and (G, L} (A, H)) = vec(L}(A, H))*vec(G). By the definition (6.2) of adjoint these
expressions are equal for all G and so vec(H)*Kf(A) = vec(ij(A, H))*, which yields
the result. O

LEMMA 6.2. Let f be 2n—1 times continuously differentiable on an open subset D
of R or C such that each connected component of D is closed under conjugation, and
suppose that f(A)* = f(A*) for all A € C™™™ with spectrum in D, where f(z) := f(Z).
Then

(6.3) L}(A,E) = Ly(A*, E) = L#(A, E*)*.

Proof. Suppose, first, that f has the form f(z) = az¥, so that L;(A,G) =
aZle A1G AR~ Then

k
(Lf(A,G), H) = trace (H*a Z Ai_lGAk_i)

i=1

k
= trace (a Z Ak_iH*Ai_1G>
i=1

:<G,ai(A*)i‘lH(A*)k‘i>

i=1

= (G, LT(A*v H)),

and so L;Z(A, H) = L7(A*, H), which is the first equality in (6.3). By the linearity of
Ly it follows that this equality holds for any polynomial. Finally, the equality holds
for all f satisfying the conditions of the theorem because the Fréchet derivative of f
is the same as that of the polynomial that interpolates f and its derivatives at the
zeros of the characteristic polynomial of diag(A, A) [24, Thm. 3.7], [29, Thm. 6.6.14].

Let g = f. By the definition of Fréchet derivative, L, (A, E) = g(A+ E) — g(A) +
o(||E|]). Taking the conjugate transpose gives L,(A4, E)* = g(A+ E)* — g(A)* +
o(||E|]) = g(A* + E*) — g(A*) + o(|| E||) = Lg(A*, E*) + o(||E||), and by the linearity
of the Fréchet derivative it follows that Ly(A, E)* = Ly(A*, E*), which is equivalent
to the second equality in (6.3). 0

If fis n— 1 times continuously differentiable on D (so that f(A) is a continuous
matrix function on the set of matrices with spectrum in D [24, Thm. 1.19]), then
f(A*) = f(A)* for all A with spectrum in D is equivalent to f = f [26, Proof of
Thm. 3.2]. Some other equivalent conditions for f(A*) = f(A)* are given in [24,
Thm. 1.18], [26, Thm. 3.2].

Combining Lemmas 6.1 and 6.2 gives K(A)*vec(H) = vec(L7(A, H*)*). For our
function f(z) = 2 we have f = f and so to implement the condition estimation we
just need to evaluate L¢(A).
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7. Numerical experiments. Our numerical experiments were carried out in
MATLAB R2012b in IEEE double precision arithmetic. We use the same set of 45
test matrices that was used in [25] to test the original Schur—Padé algorithm. This
set includes a selection of 10 x 10 nonsingular matrices taken from the MATLAB
gallery function and from the Matrix Computation Toolbox [22]. Any matrix found
to have an eigenvalue on R™ was squared; if it still had an eigenvalue on R~ it was
discarded. We report experiments using the matrices in the test set and their complex
Schur factors T. Our previous experience [2], [5], [25] is that for methods that begin
with a reduction to Schur form, differences in accuracy between different methods are
greater when the original matrix is triangular, as errors in the transformations to and
from Schur form are avoided.

We test each matrix with each of the 14 ¢-values in the vector constructed by

v=1[1/52 1/12 1/3 1/2], v=[v 1—-wv(1:3)], v=[v —v].

For the computation of A alone we tested three algorithms:

1. SPade: Algorithm 3.1.

2. SPade-real: the real version of Algorithm 3.1, as described in section 5.

3. SPade-o0ld: the original Schur—Padé algorithm [25, Alg. 5.1], which is based
on the error analysis in Theorem 2.1 expressed in terms of ||A]|.

Relative errors are measured in the l1-norm. To compute the “exact” A! we run
powern [25, Fig. 8.1] (which uses the eigendecomposition of A) in 300 digit precision
with the VPA arithmetic of the Symbolic Math Toolbox, but we subject A to a random
perturbation of relative norm 10715 in order to ensure it is diagonalizable, following
the approximate diagonalization approach of Davis [15]. All errors are postprocessed
using the transformation in [17] to lessen the influence of tiny relative errors on the
performance profiles.

For the Fréchet derivative L _,(A, E), we tested six algorithms:

1. SPade-Fre: Algorithm 4.2.

2. SPade-Fre-real: the real version of Algorithm 4.2, as described in section 5.

3. SPade-Fre-mod: Algorithm 4.2 modified so as to call SPade-o01d instead of
SPade.

4. explog-Fre: reduction to Schur form T = @Q*AQ followed by evaluation
of L (A, E) = tQLexp(tlog T, Liog (T, Q*EQ))Q* by the inverse scaling and
squaring method for the Fréchet derivative of the logarithm [5] and the scaling
and squaring method for the Fréchet derivative of the exponential [2].

5. SPade-2by2: SPade applied to the block 2 x 2 matrix in (4.10).

6. rootm-Fre (applied when ¢ = 1/¢ for some integer ¢): reduction to Schur
form T with T/9 computed by SPade and L1/, (T, Q* EQ) computed by [13,
Alg. 3.5].

To obtain the “exact” Fréchet derivative we apply the same approach as above
to (4.10).

We note that for an efficient implementation, which is not our concern here, it is
important to implement carefully the computation of square roots of (quasi-) trian-
gular matrices and the solution of (quasi-) triangular Sylvester equations. Efficient
blocked and recursive ways to carry out these operations are described by Deadman,
Higham, and Ralha [16] and Jonsson and Kagstrom [32], respectively.

Ezperiment 1. In this experiment, we compute A? by SPade and SPade-old for
the Schur factors of the matrices in the test set and for all values of ¢ in the vec-
tor v. Figure 7.1 shows the relative errors, with the problems sorted by decreasing
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F1G. 7.1. Ezperiment 1: relative errors in At for a selection of 10 x 10 triangular matrices and
several t.
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Fic. 7.2. Ezxzperiment 1: performance profile for the data in Figure 7.1.

condition number. The solid line is cond(x?, A)u. Figure 7.2 shows the corresponding
performance profile [18], [21, sect. 22.4]. Figure 7.3 shows the ratios of the costs of
the algorithms, where the cost is measured by the n3 terms in the operation counts.
The results show that SPade and SPade-o0ld both perform in a stable manner but
that SPade outperforms SPade-o0ld and has a cost that is no larger and up to around
40 percent less than that of SPade-old. In some of the test problems SPade requires
only half as many matrix square roots as SPade-old.
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Fi1c. 7.3. Ezperiment 1: ratios “cost of SPade/cost of SPade-old.”
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FiG. 7.4. Ezperiment 2: relative errors in L, (A, E) for the problems with t = 1/q for an
integer q.

When the experiment is repeated with the full (un-Schur-reduced) matrices, the
same trends are seen but they are less pronounced.

Ezperiment 2. In this experiment, we compute L _.(A, E) for the Schur factors of
the matrices in the test set using a different E, generated as randn(n), for each pair
of A and t. Note that rootm-Fre is only applicable for the problems where t = 1/¢
for some integer ¢ (the gth root problem). Figures 7.4 and 7.5 show the results from
the gth root problems and Figures 7.6 and 7.7 show the results from the rest of the
problems: those where ¢ € [£51/52 +11/12 +2/3]. In each case we show the relative
errors and the corresponding performance profile. The solid line in Figures 7.4 and 7.6
is condy, (A4, F)u, where condy, (4, F) is the condition number of the Fréchet derivative,
defined as

L (A+AAE+AE)—-L (A E
condr, (A, E) = lim sup 1Ly (A + + ) 2t )i

=0 a4 <e|A| €l|L,. (A, E)
lAB|<c|E]

We estimated condy, (A, E) using an algorithm of Higham and Relton [27].
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F1G. 7.5. Ezperiment 2: performance profile for the data in Figure 7.4.
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FIG. 7.6. Experiment 2: relative errors in L _,(A, E) for the problems where t # 1/q for an

integer q.

Some observations can be made. First, all the methods behave stably, but the
errors for rootm-Fre and explog-Fre are significantly larger than those for the other
algorithms. SPade-Fre, SPade-Fre-mod, and (the very expensive) SPade-2by2 per-
form very similarly. However, for the non-gth root problems, SPade-Fre is the clear

winner.
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Fi1G. 7.8. Experiment 3: performance profile for the relative errors in At for the real test problems.

Again, similar results, but with less pronounced differences, are obtained when
working with the full test matrices.

Experiment 3. In this experiment, we test the real-arithmetic algorithms SPade-
real and SPade-Fre-real on the (un-Schur-reduced) real matrices from the test set
and we show just performance profiles. Figure 7.8 compares SPade with SPade-real
and SPade-o1d for computing A*. Figure 7.9 compares SPade-Fre-real, SPade-Fre,
SPade-2by2, and explog-Fre for all values of ¢ in the vector v (rootm-Fre is omitted
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Fia. 7.9. Ezperiment 3: performance profile for the relative errors in L_, (A, E) for the real
test problems.

due to its poor performance in the previous experiment). For these real problems,
SPade-real and SPade-Fre-real show a significant improvement in accuracy over
the algorithms working in complex arithmetic.

Finally, we mention that we used SPade-Fre with the block 1-norm estimator
to estimate the condition numbers of A* with matrices in the test set and found the
estimate of || K,¢(A)||1 always to be within a factor 2 of the true quantity.

8. Conclusions. This work provides three main contributions.

1. The improved Schur—Padé algorithm with sharper underlying error analysis.
Our experiments show that the improved algorithm is more accurate and often more
efficient (by up to 40 percent for our test problems) than the original algorithm of [25].

2. An extension of the improved Schur—Padé algorithm that also computes the
Fréchet derivative. We have shown this algorithm to be superior in accuracy to and
at least as efficient as alternative techniques. The fact that the Fréchet derivative
computation in Algorithm 4.2 is based on an error bound that is strictly valid only
for the A® computation itself (see section 4.1) does not affect the accuracy of the
computed Fréchet derivatives in our experiments (as was found analogously for the
matrix logarithm in [5]).

3. The real arithmetic versions of the improved and extended algorithms for real
data. These bring a significant improvement in accuracy over the complex versions,
run at twice the speed, and need only half the intermediate storage.

Finally, it is worth emphasizing that when 1/t = g € Z, our algorithms are very
competitive with algorithms specialized to the matrix qth root problem, as is shown
here, in further tests we have conducted that are not reported here, and in [25],
[30]. Moreover, our algorithms have an operation count independent of ¢, unlike most
algorithms for the gth root problem [10], [20], [24, Chap. 7], [30], and this is significant
for applications requiring a large ¢, such as the optic applications in [34] in which ¢
can be as large as 10°.
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