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NLEIGS: A CLASS OF ROBUST FULLY RATIONAL KRYLOV
METHODS FOR NONLINEAR EIGENVALUE PROBLEMS∗

STEFAN GÜTTEL† , ROEL VAN BEEUMEN‡ , KARL MEERBERGEN‡, AND

WIM MICHIELS‡

Abstract. A new rational Krylov method for the efficient solution of nonlinear eigenvalue
problems, A(λ)x = 0, is proposed. This iterative method, called fully rational Krylov method for
nonlinear eigenvalue problems (abbreviated as NLEIGS), is based on linear rational interpolation and
generalizes the Newton rational Krylov method proposed in [R. Van Beeumen, K. Meerbergen, and
W. Michiels, SIAM J. Sci. Comput., 35 (2013), pp. A327–A350]. NLEIGS utilizes a dynamically con-
structed rational interpolant of the nonlinear function A(λ) and a new companion-type linearization
for obtaining a generalized eigenvalue problem with special structure. This structure is particularly
suited for the rational Krylov method. A new approach for the computation of rational divided
differences using matrix functions is presented. It is shown that NLEIGS has a computational cost
comparable to the Newton rational Krylov method but converges more reliably, in particular, if the
nonlinear function A(λ) has singularities nearby the target set. Moreover, NLEIGS implements an
automatic scaling procedure which makes it work robustly independent of the location and shape of
the target set, and it also features low-rank approximation techniques for increased computational
efficiency. Small- and large-scale numerical examples are included.
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1. Introduction. We consider the problem of finding eigenvalues λ ∈ Σ and
eigenvectors x ∈ Cn\{0} of a nonlinear eigenvalue problem (NLEP)

(1.1) A(λ)x = 0,

with a compact target set Σ ⊂ C and a family of matrices A(λ) : Σ→ Cn×n depending
analytically on λ, i.e., each component of A(λ) is an analytic function of λ.

The NLEP (1.1) has been studied extensively in the literature and there ex-
ist specialised methods for different families of A(λ), see e.g., [28, 34]. Popular
approaches can be roughly classified as Newton-type methods [29, 6, 22], methods
based on contour integration [8, 7, 10], and methods based on approximations of
A(λ) [28, 11, 34, 21, 35]. The method proposed in this paper belongs to the last class.

The infinite Arnoldi method was first proposed in [21]. The key idea is to ap-
ply Arnoldi’s method in a function setting to a linear operator eigenvalue problem,
which is equivalent to the original nonlinear eigenvalue problem. Its “Taylor ver-
sion” can be interpreted as a shift-and-invert Arnoldi method applied to a companion
linearization obtained from a Taylor expansion of the nonlinear function A(λ) into
polynomials of λ. The degree of the expansion is not fixed in advance, resulting in a
dynamical iterative algorithm. In its “Chebyshev version”, the method can be inter-
preted as Arnoldi’s method applied to a spectral discretization of the operator, which
for delay eigenvalue problems has an interpretation as a rational approximation of
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the exponential terms. See [40] for the connection between a spectral discretization
and rational approximation. In a recent work [35], the Taylor version of the infinite
Arnoldi method was generalized to the case of multiple interpolation nodes, yielding
the Newton rational Krylov method. This method uses an interpolatory expansion
of A(λ) into Newton polynomials of λ. Other modifications and extensions of the
infinite Arnoldi algorithm have been proposed, for example, a restarted version [20],
or a spatially adaptive version allowing for the solution of operator-valued (instead of
matrix-valued) nonlinear eigenproblems [18].

For methods relying on polynomial interpolants of A(λ), the convergence is lim-
ited by the convergence of polynomials. With an appropriate choice of the interpola-
tion nodes, polynomial interpolation performs very well if A(λ) is an entire function,
in which case any polynomial interpolant is guaranteed to converge throughout the
complex plane, or when singularities of A(λ) are sufficiently far away from the target
set Σ. However, if A(λ) is difficult or impossible to approximate by polynomials, the
performance of the expensive rational Krylov iteration will be limited by the accu-
racy of the underlying polynomial expansion. The good convergence properties of the
Chebyshev version of the infinite Arnoldi method for the delay eigenvalue problem
can to a large extent be attributed to the fact that the underlying approximation is a
rational approximation [19]. However, this rational approximation is implicit in the
sense that it is induced by the spectral discretization of the operator and, e.g., the
poles can not be chosen freely by the user, unlike in the presented method.

In this work we propose a new rational Krylov method where the nonlinearityA(λ)
is explicitly expanded in rational functions of λ, hence the name fully rational Krylov
method for nonlinear eigenvalue problems, abbreviated as NLEIGS. The combination
of a new linearlization, based on rational Newton basis functions, with a rational
Krylov method offers a lot of flexibility:

First, in the spirit of [11] and [34], the approximation and the corresponding
linearization can be first constructed, in such a way that the approximation error is
guaranteed to be uniformly small on the target set Σ (assumed as a compact subset
of the complex plane). The resulting linear eigenvalue problem can then be solved
by any method of choice, like the standard rational Krylov method. An advantage
of the proposed rational approximation is that the interpolation nodes and poles
can be freely chosen, hence a choice based on arguments from potential theory (e.g.,
Leja–Bagby points) may lead to a fast uniform convergence of the approximation
on the whole target set. Another advantage, which stems from the rational Newton
expansion and the companion-like linearization, is that interpolation nodes and poles
can be added incrementally in a straightforward way by simply extending the matrices
of the linearization, while the convergence of the approximation can be monitored by
the magnitude of the computed generalized divided differences.

Second, in the spirit of the infinite Arnoldi method and the Newton rational
Krylov method, which are based on dynamic local approximation, the construction
of the rational approximation and the application of the rational Krylov method can
be tightly interwoven, by exploiting the structure of the linearization, a special start-
ing vector, and the “trick” proposed in [35] of choosing the shifts of the rational
Krylov space identical to the interpolation nodes. This results in a fully dynamic
method, where the underlying linearization of the resulting rational eigenvalue prob-
lem is extended at every rational Krylov iteration, thereby discovering more and more
eigenpairs with ever increasing accuracy. In other words, the order of the linearization
is not fixed in advance; it will increase dynamically as the iteration proceeds. Even
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though the dynamic property of the algorithm is a major advantage achieved by equat-
ing interpolation nodes and rational Krylov shifts, there might also be a price to pay
because an optimal choice in view of achieving a fast converging linearization, which
typically means choosing interpolation nodes on the boundary of the target set, might
not always be favorable for the rational Krylov method to converge quickly, e.g., if
the eigenvalues are not located close to the boundary of the target set, and vice-versa.

Therefore a combination of the two approaches is sometimes necessary, as we shall
illustrate in the paper. For instance, we can start with the dynamic variant where
shifts/interpolation nodes are determined by the underlying approximation problem,
and at the moment that the approximation has converged to sufficient accuracy, we
can freeze the linearization and continue the rational Krylov iterations on the resulting
matrices with the selection of shifts as for the standard rational Krylov method.

We now give some motivation for the approach of the paper by means of the
simple scalar NLEP

(1.2) A(λ) = 0.2
√
λ− 0.6 sin(2λ),

which illustrates the improvements that can potentially be achieved by using a rational
expansion instead of a polynomial expansion. Suppose we want to find all 3 real
eigenvalues of A(λ) on the interval Σ = [α, β] = [10−2, 4]. Of course, this is in fact just
a root-finding problem. A natural solution approach is to first approximate A(λ) by a
polynomial interpolant PN (λ) of degree N , interpolating at nodes σ0, σ1, . . . , σN ∈ Σ,
and then to compute the roots of PN (λ) on Σ. See [9] for a recent review of polynomial
root-finding. Let λ∗ be such a root, i.e., PN (λ∗) = 0. Then the residual A(λ∗) is
bounded by the uniform approximation error of PN (λ) for A(λ):

|A(λ∗)| ≤ max
λ∈Σ
|A(λ)− PN (λ)| =: ‖A(λ)− PN (λ)‖Σ.

In view of this inequality, it is natural to make the error ‖A(λ) − PN (λ)‖Σ small.
The asymptotic convergence of PN (λ) to A(λ) in the uniform norm is determined
by the location of the singularities of A(λ) relative to Σ, and by the distribution of
interpolation nodes on Σ. For interpolation nodes which are chosen asymptotically
optimal on Σ we can show that convergence takes place at a geometric rate

(1.3) lim sup
N→∞

‖A(λ)− PN (λ)‖1/NΣ ≤
(√

κ− 1√
κ+ 1

)
. exp(−2/

√
κ),

with κ = β/α and . denoting an approximate upper bound that is asymptotically
sharp for large κ. This is the best possible asymptotic convergence that can be
achieved by polynomial interpolation. Examples of interpolation nodes for which
this convergence is achieved are the Chebyshev points σj = α+β

2 + α−β
2 cos(πj/N),

j = 0, 1, . . . , N , and Leja points (see, e.g., [30]).
It is well known that rational interpolants QN (λ) potentially exhibit faster con-

vergence than polynomials, in particular, if the function to be approximated has
singularities nearby Σ. In example (1.2), the singularity set Ξ of A(λ) is the branch
cut of the square root, Ξ = (−∞, 0]. In this case it can be shown that there exist
asymptotically optimal sequences of interpolation nodes σj in Σ and poles ξj in Ξ,
so-called Leja–Bagby points [3], such that the resulting rational interpolants QN (λ)
converge considerably faster than (1.3), namely like

(1.4) lim sup
N→∞

‖A(λ)−QN (λ)‖1/NΣ ≤ exp(−1/cap(Σ,Ξ)) . exp(−π2/ log (16κ)),
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with cap(Σ,Ξ) denoting a logarithmic capacity; see Section 4 for details. In Fig-
ure 1.1(a) we show a numerical comparison of polynomial and rational interpolation
for (1.2), and in Figure 1.1(b) the convergence of the resulting root-finding iterations.
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Figure 1.1. Scalar NLEP (1.2): (a) Uniform error of polynomial interpolation at Chebyshev
and Leja points on Σ, as well as linear rational interpolation at Leja–Bagby points. The curve for
Chebyshev interpolation is only shown for reference; we do not actually use it in the algorithms.
The predicted convergence slopes given by (1.3) and (1.4) are indicated. (b) Convergence history
for the 3 real roots on Σ computed with the rational Krylov methods using polynomial interpolation
(dashed blue) and linear rational interpolation (solid red).

We now outline our contributions and the structure of this work. In Section 2
we show how the NLEP (1.1) can be approximated by linear rational interpolation,
including a new theorem on the stable computation of rational divided differences via
matrix functions. We then present a new linearization of the resulting rational eigen-
value problem. In Section 3 we discuss how this linearization can be combined with
the rational Krylov iteration. The resulting algorithm, called fully rational Krylov
method, generalizes the Newton rational Krylov method of [35] (when all poles ξj are
infinite), and the Taylor version of the infinite Arnoldi method of [21] (when all poles
ξj are infinite and all interpolation nodes σj coincide). Our approach is particularly
efficient when some information about the (approximate) location of the singularities
of A(λ) is available, described by a set Ξ, and we will discuss the problem of choos-
ing near-optimal Leja–Bagby parameters in Section 4. These Leja–Bagby points may
not always be advantageous for the rational Krylov iteration to quickly find the tar-
geted eigenvalues of the linearization. However, as can be observed for example in
Figure 1.1(a), the rational expansion can be truncated after about 65 iterations due
to its fast convergence, which ultimately allows us to freely choose the shifts of the
rational Krylov space. This truncation procedure will be discussed in Section 5. We
also present in that section an automated scaling procedure via an estimation of the
logarithmic capacity of (Σ,Ξ) using control points on the boundary of Σ, which im-
proves the numerical stability, as well as a strategy to exploit low-rank structure in
the NLEP. Finally, in Section 6 we demonstrate the performance of our method with
some numerical examples and our Matlab implementation nleigs, which is available
for download (see Section 6 for a web link).

Throughout this paper, we denote vectors v by lowercase Roman characters, ma-
trices A by capital Roman characters, scalars α by lowercase Greek letters, and sets Σ
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by capital Greek letters. For block vectors and block matrices we use v and A, re-
spectively, and a superscript as in v[j] denotes the j-th block of the block vector v .
The conjugate transpose of a matrix A is denoted by A∗. If not stated otherwise,
Vj denotes a matrix with j columns and Aj,k is a matrix of size j × k. We omit
subscripts when the dimensions of matrices are clear from the context. Column j of
the matrix V is denoted by vj . A superscript such as λ(j) is used to denote the value
at iteration j of a quantity that may change from one iteration to the next.

2. Linearization of the NLEP. In order to solve the NLEP (1.1), we will
approximate A(λ) by a rational function QN (λ), resulting in a rational eigenvalue
problem. The approximation will be constructed with a linear rational interpolation
procedure to be detailed in Section 2.1. In Section 2.2 we show how the resulting ratio-
nal eigenvalue problem is equivalent to a generalized eigenvalue problem in companion
form.

2.1. Linear rational interpolation. Given a sequence of interpolation nodes
σ0, σ1, . . . , and another sequence of nonzero poles ξ1, ξ2, . . ., we consider a sequence
of rational basis functions

(2.1) bj(λ) =
1

β0

j∏
k=1

λ− σk−1

βk(1− λ/ξk)
, j = 0, 1, . . . ,

where the numbers β0, β1, . . . are nonzero scaling parameters to be specified later.
Note that if all poles ξj are at infinity, then the functions bj(λ) reduce to Newton
basis polynomials. Also note that there is a trivial recursion

(2.2) b0(λ) =
1

β0
, bj+1(λ) =

(λ− σj)
βj+1(1− λ/ξj+1)

bj(λ), j = 0, 1, . . . .

Our aim is to compute a sequence of rational divided difference matrices Dj ∈
Cn×n, j = 0, 1, . . . , such that for each N = 0, 1, . . . the rational eigenvalue problem

(2.3) QN (λ) = b0(λ)D0 + b1(λ)D1 + · · ·+ bN (λ)DN

interpolates A(λ) in Hermite’s sense (that is, counting multiplicities) at the nodes
σ0, σ1, . . . , σN . Note that the poles ξ1, ξ2, . . . , ξN are prescribed and we will assume
that they are all distinct from the nodes σ0, σ1, . . . , σN . In this case, QN (λ) is a
linear rational interpolant of type [N,N ] and hence guaranteed to exist uniquely. In
particular, if A(λ) itself is a rational eigenvalue problem of type [N,N ] with poles
ξ1, ξ2, . . . , ξN , then the interpolant QN (λ) = A(λ) will be exact.

A straightforward way for computing the divided differences Dj when all the
interpolation nodes σj are distinct can be derived from (2.3) and (2.1). By the inter-
polation condition Q0(σ0) = A(σ0) and the formula for b0(λ) we have D0 = β0A(σ0).
From the interpolation conditions A(σj) = Qj(σ), j ≥ 1, we then find recursively

Dj =
A(σj)− b0(σj)D0 − · · · − bj−1(σj)Dj−1

bj(σj)
=
A(σj)−Qj−1(σj)

bj(σj)
.

Note that the matrix-valued numerator in Dj can be evaluated via the Horner scheme
starting with the coefficient Dj−1, using the fact that each bj−1(λ) divides bj(λ).
Computing the matrices Dj this way is mathematically equivalent to computing the
diagonal entries of a divided-difference tableau with matrix entries. In the confluent
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case, when some of the interpolation nodes coincide, derivatives of A(λ) will enter the
formulas. We will not discuss this further to keep the presentation simple. Instead
we will show that the confluent case can often be handled conveniently using matrix
functions.

In situations where A(λ) is a linear combination involving scalar functions fi(λ)
and constant matrices Ci

A(λ) = f1(λ)C1 + f2(λ)C2 + · · ·+ fm(λ)Cm,

it suffices to compute the scalar divided differences di,j of all fi(λ) such that

qi,N (λ) = di,0b0(λ) + di,1b1(λ) + · · ·+ di,NbN (λ), i = 1, 2, . . . ,m,

satisfy the prescribed interpolation conditions. The divided differences of A(λ) are
then given by linearity as

(2.4) Dj =

m∑
i=1

di,jCi, j = 0, 1, . . . .

The following theorem is inspired by the rational interpolation procedure underlying
the “PAIN method” for matrix function approximation, see [15, Section 5.4.2] and
[16].

Theorem 2.1. Let f(λ) be a scalar function, and let qN (λ) = d0b0(λ)+d1b1(λ)+
· · · + dNbN (λ) be its rational interpolant of type [N,N ] with prescribed interpolation
nodes σ0, σ1, . . . , σN and poles ξ1, ξ2, . . . , ξN . Then the rational divided differences
d0, d1, . . . , dN can be computed as

(2.5)


d0

d1

...
dN

 = f
(
HNK

−1
N

)
(β0e1),

where f
(
HNK

−1
N

)
is a matrix function, e1 = [1, 0, . . . , 0]T ∈ RN+1, and KN and HN

are the upper (N + 1)× (N + 1) parts of the (N + 2)× (N + 1) matrices

KN =



1
β1/ξ1 1

β2/ξ2
. . .

. . . 1
βN+1/ξN+1

 and HN =



σ0

β1 σ1

β2
. . .

. . . σN
βN+1

 .

Proof. Define the matrix VN+1(λ) = [b0(λ), b1(λ), . . . , bN (λ), bN+1(λ)]. With this
matrix it can easily be verified by multiplication that

λVN+1(λ)KN = VN+1(λ)HN ,

which is a so-called rational Krylov decomposition in the sense defined in [15, Defini-
tion 5.5]. The entries bj(λ) in VN+1(λ) are rational functions of type [N + 1, N + 1]
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with the common denominator pN (λ) := (1−λ/ξ1)(1−λ/ξ2) · · · (1−λ/ξN+1). There-
fore the columns of VN+1(λ) span a linear space of rational functions. It has been
shown in [15, Theorem 5.8] that

qN (λ) = VN (λ)f
(
HNK

−1
N

)
(β0e1)

is a rational function of type [N,N ] with denominator pN (λ), interpolating in Her-
mite’s sense the function f(λ) at the eigenvalues of HNK

−1
N . The eigenvalues of

HNK
−1
N are precisely the nodes σ0, σ1, . . . , σN , which concludes the proof.

2.2. Rational companion linearization. The following theorem generalizes
Theorem 3.1 and formula (3.21) in [1] from polynomial to linear rational interpolation.

Theorem 2.2. Given a rational eigenvalue problem of the form (2.3), with the
rational functions bj(λ) defined in (2.1), and matrices Dj ∈ Cn×n. Then QN (λ)x = 0
is equivalent to

(2.6) ANyN = λBNyN ,

where

AN =


D0 D1 · · · DN−2 DN−1 − σN−1DN/βN
σ0I β1I

. . .
. . .

σN−3I βN−2I
σN−2I βN−1I

 ,(2.7)

BN =


D0/ξN D1/ξN · · · DN−2/ξN DN−1/ξN −DN/βN
I β1/ξ1I

. . .
. . .

I βN−2/ξN−2I
I βN−1/ξN−1I

 ,(2.8)

and

yN = vec
(
b0(λ)x, b1(λ)x, · · · , bN−2(λ)x, bN−1(λ)x

)
.

Proof. The proof simply follows by multiplying out ANyN = λBNyN and reading
the product row-wise. The first row corresponds to the expansion of QN (λ) in (2.3),
and the other rows correspond to the recursion (2.2).

Note that the last pole ξN plays a special role in Theorem 2.2. In what follows
it will be convenient to choose ξN = ∞. In this case the linearization has the same
structure as in the Newton-type companion form used in [35], and we can run exactly
the same rational Krylov algorithm for the growing pencil (AN ,BN ).

3. Fully rational Krylov methods for the NLEP. In this section we in-
troduce a class of fully rational Krylov methods for NLEPs (1.1), abbreviated as
NLEIGS. All these methods use the new rational companion linearization proposed
in Section 2.2. The main difference lies in the way the construction of the linear
rational approximation of A(λ) is connected with the rational Krylov iteration for
computing the eigenpairs.

Once we have chosen N nodes and poles leading to the linear eigenvalue problem
(2.6), we can compute eigenvalue estimates of the NLEP by solving (2.6) using the
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rational Krylov method. This is the standard method for solving linear eigenvalue
problems. This approach corresponds to the discretize first and then solve approach,
which is advocated by [11] and [34]. We call it the static NLEIGS variant. The
shifts of the rational Krylov space are chosen to solve this linear problem efficiently.
They are not necessarily related to the interpolation nodes of the linearization. The
difference with [34] is that NLEIGS does not require low rank nonlinear terms and can
adopt polynomials of high degree as numerical examples will illustrate. In addition, it
will be shown further that also NLEIGS can greatly benefit from low rank nonlinear
terms as in [34].

On the other hand, when the shifts of the rational Krylov space are chosen equal
to the interpolation nodes, we can use a dynamic variant of the method, i.e., the nodes
and poles can be chosen dynamically during the execution of the NLEIGS method.
This method we call the dynamic NLEIGS variant and is a direct generalization of
the Newton rational Krylov method [35] from polynomial to rational interpolation.
This method has the same computational cost per iteration as the Newton rational
Krylov method, but it may require considerably fewer iterations. The new method
uses the companion-type linearization of Theorem 2.2. Similar to [35], we choose the
shifts of the rational Krylov space equal to the interpolation nodes of the interpolant
QN (λ) defined in (2.3). We also use a specific starting vector. This allows us to
dynamically expand QN (λ) and to exploit the structure of the generalized eigenvalue
problem (2.6).

In the remainder of this section we describe the dynamic variant in more detail: in
Section 3.1 we outline some properties of the associated rational Krylov space and in
Section 3.2 we describe the algorithm. Some of the proofs are very similar or identical
to those in [35, Section 4.1] and we will often refer to this paper.

3.1. Building the rational Krylov space. We start with the following lemma.
Lemma 3.1. Let AN and BN be defined by (2.7)–(2.8), setting ξN =∞, and

yj = vec
(
y

[1]
j , y

[2]
j , . . . , y

[j+1]
j , 0, . . . , 0

)
,

where yj ∈ CNn and y
[i]
j ∈ Cn for i = 1, . . . , j + 1. Then for all j, 0 ≤ j ≤ N − 2, the

solution xj of the linear system of equations with shift σj,

(3.1) (AN − σjBN )xj = yj ,

is of the structure

xj = vec
(
x

[1]
j , x

[2]
j , . . . , x

[j+1]
j , 0, . . . , 0

)
,

where xj ∈ CNn and x
[i]
j ∈ Cn for i = 1, . . . , j + 1.

Proof. We can expand (3.1) in the following block form

D0 D1 . . . Dj Dj+1 Dj+2 . . .

−µ(j)
0 I ν

(j)
1 I
. . .

. . .

−µ(j)
j−1I ν

(j)
j I

0 ν
(j)
j+1I

−µ(j)
j+1I ν

(j)
j+2I
. . .

. . .


xj =



y
[1]
j

y
[2]
j
...

y
[j+1]
j

0
0
...


,
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where

µ
(j)
i = σj − σi, i = 0, 1, . . . , N − 1,

ν
(j)
i = βi(1− σj/ξi), i = 1, 2, . . . , N − 1.

The zero block at the (j+1)-st subdiagonal position yields a decoupling of the system
(3.1). As the lower-right part of the matrix AN − σjBN and the lower part of yj
result in a zero solution, only the upper part of xj is nonzero.

The main difference to a standard rational Krylov method (see [31, 32]) is that the
shifts are not free parameters, but they are implicitly prescribed by the matrices AN

and BN in (2.7)–(2.8), namely the nodes σ1, σ2, . . .. We need the following definition.
Definition 3.2. Let AN and BN be given by (2.7) and (2.8), respectively. Given

the shifts σ1, σ2, . . . , σk−1, we define by

Qk := span
{
v1, (AN − σ1BN )−1BNw1, (AN − σ2BN )−1BNw2, . . .

. . . , (AN − σk−1BN )−1BNwk−1

}
(3.2)

:= span {v1, v2, v3, . . . , vk}

the rational Krylov space of dimension k ≤ N constructed with the matrices AN , BN

and the starting vector v1 ∈ CNn, where wj = Vjtj with Vj = [v1, v2, . . . , vj ], and tj
is the vector of continuation coefficients.

This definition holds for all starting vectors v1, but the special structure of the
matrices AN and BN can be exploited by choosing the particular starting vector

(3.3) v1 := vec
(
v

[1]
1 , 0, 0, . . . , 0

)
with v

[1]
1 ∈ Cn.

The advantageous consequences of choosing (3.3) as starting vector for (3.2) are sum-
marized in the following lemmata.

Lemma 3.3. Suppose that a starting vector v1 of the form (3.3) is used for the
rational Krylov method. Then for all j, 1 ≤ j ≤ N − 1, the vector

(3.4) vj+1 = (AN − σjBN )−1BNwj ,

where wj = Vjtj, is of the structure

vj+1 = vec
(
v

[1]
j+1, v

[2]
j+1, . . . , v

[j+1]
j+1 , 0, . . . , 0

)
with v

[i]
j+1 ∈ Cn (i = 1, . . . , j + 1).

Proof. The proof is analogous to the one of Lemma 4.3 in [35].
Lemma 3.4. Let the rational Krylov space Qk be constructed as in Definition 3.2

and Lemma 3.3. Then at each iteration j of the rational Krylov method only the
upper-left parts of the matrices AN − σjBN are used to compute the leading nonzero
parts of the vectors vj+1, i.e.,

(3.5) (Aj − σjBj)ṽj+1 = Bjw̃j ,

where

ṽj+1 = vec
(
v

[1]
j+1, v

[2]
j+1, · · · , v

[j+1]
j+1

)
and w̃j = vec

(
w

[1]
j , w

[2]
j , · · · , w

[j]
j , 0

)
.

Proof. The proof is a direct consequence of Lemma 3.1 and Lemma 3.3.
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At each iteration j of the rational Krylov method, following Lemma 3.4, we only
have to solve system (3.5) of dimension (j + 1)n × (j + 1)n, instead of (3.4), which
is of dimension Nn × Nn. This results in a significant reduction of computational
cost. In fact, we can formally set N = ∞ because Lemma 3.4 tells us that at any
finite iteration number j only a finite leading principal submatrix of AN − σjBN is
required. The companion-type form of the matrix Aj−σjBj can be exploited further
to efficiently solve (3.5) using operations on n× n sparse matrices only.

Lemma 3.5. The linear system (3.5) can be solved using the equations

(3.6) A(σj)v
[1]
j+1 = z

(j)
0 ,

where

(3.7) z
(j)
0 = − 1

β0

j∑
i=1

Di

i∑
k=1

∏i−1
`=k µ

(j)
`∏i

`=k ν
(j)
`

(
w

[k]
j +

βk
ξk
w

[k+1]
j

)
,

with
∏i−1
`=i (·) := 1 and w

[j+1]
j := 0, and

v
[2]
j+1 =

µ
(j)
0

ν
(j)
1

v
[1]
j+1 +

1

ν
(j)
1

(
w

[1]
j +

β1

ξ1
w

[2]
j

)
,

...(3.8)

v
[j]
j+1 =

µ
(j)
j−2

ν
(j)
j−1

v
[j−1]
j+1 +

1

ν
(j)
j−1

(
w

[j−1]
j +

βj−1

ξj−1
w

[j]
j

)
,

v
[j+1]
j+1 =

µ
(j)
j−1

ν
(j)
j

v
[j]
j+1 +

1

ν
(j)
j

w
[j]
j .

Proof. The proof is analogous to the one of Lemma 4.5 in [35].
Corollary 3.6. At each iteration j of the rational Krylov method one only has

to perform an LU factorization of A(σj) ∈ Cn×n, instead of an LU factorization of
AN − σjBN ∈ CNn×Nn. With repeated interpolation nodes σj one can reuse LU
factors for several iterations.

Proposition 3.7. The Ritz values λ
(j)
i , computed at iteration j of the rational

Krylov method (see Section 3.2 and Algorithm 1), are independent of N as long as
j < N . These Ritz values are also independent of σj+1, . . . , σN and ξj+1, . . . , ξN .

Proof. At iteration j, the Ritz values are computed from the upper j × j parts of
two Hessenberg matrices obtained by orthogonalization of v1, v2, . . . , vj+1. Following
Lemmas 3.3–3.5, only the first j + 1 nodes σ0, . . . , σj , and the first j poles ξ1, . . . , ξj ,
are used for the construction of the rational Krylov vectors Vj+1. Therefore the
approximated eigenvalues are independent of the nodes σj+1, . . . , σN and the poles
ξj+1, . . . , ξN . Hence they are also independent of N .

Remark 3.8. It is neither necessary to choose all the nodes σj and poles ξj in
advance, nor the degree N of the rational interpolant QN (λ). Instead, at each it-
eration we can choose the next node and pole based on information of the previous
iterations. Therefore, the rational Krylov method can be implemented in an adaptive
and incremental way. The rational Krylov method is initialized with a node σ0 ∈ Σ
and a particular starting vector, and can run until convergence by dynamically adding
a node σj and pole ξj at each iteration.
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3.2. Algorithm. Based on the previous section, our dynamic NLEIGS algo-
rithm for solving the NLEP (1.1) can be implemented efficiently. Algorithm 1 gives
an outline. Similar to [35, Algorithm 2], we can subdivide each iteration j of NLEIGS
into two phases: an expansion phase and a rational Krylov phase.

Algorithm 1: NLEIGS: dynamic variant

1 Choose node σ0, scaling parameter β0 = 1, and starting vector v1.

for j = 1, 2, . . . do

Expansion phase:
2 Choose node σj , pole ξj , and scaling parameter βj .
3 Compute rational divided difference matrix Dj .
4 Expand Aj , Bj and Vj .

Rational Krylov phase:
5 Choose vector of continuation coefficients tj .
6 Compute continuation vector w = Vjtj .
7 Compute w := (Aj − σjBj)

−1Bjw .
8 Orthogonalize w := w −Vjhj , where hj = V ∗j w .

9 Get new basis vector vj+1 = w/hj+1,j , where hj+1,j = ‖w‖.
10 Compute Ritz pairs (λi,ui := Vj+1Hjsi).

11 Nonlinear eigenpairs
(
λi, u

[1]
i

)
and test for convergence.

end

Firstly, in the expansion phase (lines 2–4), we choose at iteration j the next
interpolation node σj , pole ξj , and scaling parameter βj . We then compute the corre-
sponding rational divided difference Dj in order to extend the linearization matrices
Aj−1 and Bj−1 to Aj and Bj , respectively. We also extend the matrix Vj with a
zero block at the bottom.

Secondly, in the rational Krylov phase, we compute a new basis vector of the
rational Krylov space (lines 5–7). This vector is then orthogonalized against Vj

and normalized in order to append the rational Krylov basis with vj+1 (lines 8–9). In
line 10, the Ritz values are computed as eigenvalues of the low-dimensional generalized
eigenproblem

Kjsi = λiHjsi, si 6= 0,

where Hj is the upper j × j part of the Hessenberg matrix Hj obtained from the
orthogonalization process and

Kj = Hj diag(σ1, . . . , σj) + Tj ,

with Tj the upper triangular matrix built from the vectors of continuation coefficients
t1, . . . , tj . The Ritz vectors ui are obtained by left multiplication of si with Vj+1Hj .
Finally, in line 11, we take the first blocks of ui as approximations for the nonlinear

eigenvectors and check for convergence of the nonlinear eigenpairs
(
λi, u

[1]
i

)
.

4. The choice of parameters. Our algorithm requires a choice of the interpo-
lation nodes σj , poles ξj , and scaling parameters βj . The choice of the parameters βj
is dictated by numerical stability considerations and will be discussed in Section 5.1.
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Choosing the parameters σj and ξj in a (near) optimal way is closely related to
rational approximation problems on the target set Σ. These problems are in turn very
closely related to logarithmic potential theory; see [25, 33] for introductions. For the
purpose of this paper we only focus on linear rational interpolation with prescribed
poles and nodes (as opposed to interpolation with free poles, a well-known special case
of which is Padé approximation). This is a classical problem that has been studied
extensively since the late 1960s by Bagby [3], Walsh [37, 38, 39], and others.

Let us assume that Σ ⊂ C is a simply connected compact set, and that A(λ) =
[ai,j(λ)] is analytic in a simply connected open set Ω ⊃ Σ. Let QN (λ) be a rational
interpolant of A(λ) with interpolation nodes σ0, σ1, . . . , σN in Σ, and poles ξ1, . . . , ξN
outside Σ. Let each component of QN (λ) = [q

(N)
i,j (λ)] have accuracy ε on Σ, i.e.,

maxi,j ‖ai,j(λ)−q(N)
i,j (λ)‖Σ ≤ ε. Assume further that (λ∗, x) with λ∗ ∈ Σ and ‖x‖2 = 1

is an eigenpair for QN (λ), i.e., QN (λ∗)x = 0. Then from

(4.1) ‖A(λ∗)x‖2 = ‖(A(λ∗)−QN (λ∗))x‖2 ≤ ‖A(λ∗)−QN (λ∗)‖F ≤ nε

we find that a small component-wise uniform error of QN (λ) for A(λ) implies that
(λ∗, x) has a small residual for the original NLEP (1.1).

In what follows we will drop the element indices from ai,j(λ) = a(λ) and q
(N)
i,j (λ) =

q(N)(λ). The uniform interpolation error ‖a(λ) − q(N)(λ)‖Σ can be studied conve-
niently using the nodal rational functions

sj(λ) =
(λ− σ0)(λ− σ1) · · · (λ− σj)

(1− λ/ξ1) · · · (1− λ/ξj)
, j = 0, 1, . . . .

Let Γ be a rectifiable closed curve in Ω \ Σ, winding around Σ exactly once. Then
by the Walsh–Hermite integral representation of the interpolation error (see, e.g., [39,
p. 50]) and standard estimation of integrals we have for all λ ∈ Σ

(4.2) |a(λ)− q(N)(λ)| =
∣∣∣∣ 1

2πi

∫
Γ

sN (λ)

sN (ζ)

a(ζ)

(ζ − λ)
dζ

∣∣∣∣ ≤ C |sN (λ)|
minζ∈Γ |sN (ζ)|

,

for a constant C that only depends on Γ and a(λ). The pair (Σ,Γ) is called a condenser
[2, 13]. It can be shown [13, 24] that there exists a number cap(Σ,Γ) > 0, called the
condenser capacity of (Σ,Γ), such that

(4.3) lim sup
N→∞

(
maxλ∈Σ |sN (λ)|
minλ∈Γ |sN (λ)|

)1/N

≥ exp(−1/cap(Σ,Γ)),

with equality if the points σj and ξj are distributed according to the so-called signed
equilibrium measure on (Σ,Γ). A sequence of points that follow this distribution
are the Leja–Bagby points for (Σ,Γ) [37, 3], which can be constructed as follows:
start with an arbitrary σ0 ∈ Σ, and then define the nodes σj ∈ Σ and poles ξj ∈ Γ
recursively such that the following conditions are satisfied:

max
λ∈Σ
|sj(λ)| = |sj(σj+1)| and inf

λ∈Γ
|sj(λ)| = |sj(ξj+1)|, j = 0, 1, . . . .

By the maximum modulus principle for analytic functions, the points σj lie on ∂Σ, the
boundary of Σ, and Γ can be replaced by its closed exterior, say Ξ, without changing
the capacity of cap(Σ,Γ) = cap(Σ,Ξ). Combining the inequality (4.2) and (4.3) (with
equality), we arrive at the asymptotic convergence result

lim sup
N→∞

‖A(λ)−QN (λ)‖1/NΣ ≤ exp(−1/cap(Σ,Ξ))
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for linear rational interpolation at Leja–Bagby points. The convergence is thus geo-
metric with a rate depending on the target set Σ and the poles on Ξ, which should
stay away from Σ. In our numerical experiments we will typically use for Ξ (a dis-
cretization of) the singularity set of f(λ). The determination of the numerical value
cap(Σ,Ξ) is difficult for general condensers (Σ,Ξ). However, in some cases, includ-
ing the example (Σ,Ξ) =

(
[α, β], (−∞, 0]

)
from the introduction, there are known

closed formulas derived from conformal maps; see [16] for some examples, including
the formula (1.4).

5. Computational considerations. In this section we will discuss various in-
gredients of an efficient and reliable computer realization of our algorithm. We have
implemented these techniques in a Matlab code nleigs.

5.1. Scaling. Once the points σj and ξj have been specified, as described in Sec-
tion 4, it remains to choose appropriate scaling parameters βj . Note that, for a given
fixed linearization QN (λ) of A(λ), changing a parameter βj to αβj has no influence
other than scaling the divided difference matrices Dj , Dj+1, . . . to αDj , αDj+1, . . ..
Although scaling has no effect on the eigenvalues of the linearization (AN ,BN ) in
Theorem 2.2, the following choice of βj can dramatically improve both the stabil-
ity and the convergence of the rational Krylov method for finding these eigenvalues:
choose the βj such that all bj(λ) defined in (2.1) are (approximately) of unit uniform
norm on Σ, i.e., ‖bj(λ)‖Σ = 1.

This choice is motivated by the well-known fact that for polynomial interpola-
tion at Leja points the set Σ should be scaled to unit capacity for stability [30], or
alternatively, we can scale the Newton basis polynomials at each iteration. We are
following the second approach, with the difference that we are now dealing with ra-
tional functions instead of polynomials. Our scaling also seems natural by inspecting
the block-components of the eigenvectors of the linearization in Theorem 2.2. If all
bj(λ) have the same order of magnitude on Σ, then the eigenvectors corresponding to
eigenvalues λ in the target set Σ have evenly balanced block-entries bj(λ)x.

Under the condition that the poles ξj are away from Σ, the value ‖bj(λ)‖Σ is
attained on the boundary Γ = ∂Σ (see Section 4). In order to practically implement
the scaling procedure, we only need a sufficiently fine discretization Γν = {γ1, . . . , γν}
of Γ, and then choose each βj such that maxλ∈Γν |bj(λ)| = 1. In our numerical
experiments we evaluated each bj(λ) at ν = 1000 equispaced control points, a scalar
computation which is of negligible constant cost when using the recursion (2.2).

5.2. Truncating the expansion. The scaling such that ‖bj(λ)‖Σ = 1 for all j
is also convenient for error estimation: from a convergent expansion Qj(λ) of A(λ)
we find maxλ∈Σ ‖A(λ) − Qj(λ)‖F ≤ ‖Dj+1‖F + ‖Dj+2‖F + · · · . Since the divided
differences Dj are computed as in (2.4), we use the scalar divided differences di,j for
checking the accuracy of the expansion

δj := max
i
|di,j |.

This scalar quantity is readily available in our algorithm and can be computed ac-
curately via matrix functions. Assume that we wish to compute eigenpairs (λ∗, x)
with λ∗ ∈ Σ and ‖x‖2 = 1 such that ‖A(λ∗)x‖2 ≤ tol, with a user-specified residual
tolerance tol. Then we will stop expanding Qj(λ) if the last ` quantities δj ≤ tol/10,
where 10 is a safety factor. In our experiments we found that ` = 5 is a practical
choice.
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5.3. Residual stopping criterion. In our numerical experiments reported in
Section 6 we have used a very simple stopping criterion for NLEIGS. First of all,
we will allow the user to specify a maximal iteration number, with 250 as default.
While the iteration is running, we test for the accuracy of the expansion Qj(λ) using
the estimator δj described in Section 5.2. We will never stop iterating as long as
δj > tol/10, because in this case Qj(λ) cannot be accepted as a sufficiently accurate
approximation of A(λ). Otherwise, we perform at least a minimal number of extra

iterations, with 20 as default. Next, we stop the iteration if all Ritz pairs (λi, u
[1]
i )

with λi ∈ Σ have a residual norm below tol.

5.4. Exploiting low-rank structure. In several applications the NLEP (1.1)
consists of a polynomial part and a nonlinear part which is of low rank. For self-
containedness of the paper, we now review and generalize the exploitation of low-rank
structure in the coefficient matrices [35, Section 4.4].

Suppose that the NLEP is defined as follows

(5.1) A(λ)x =

(
p∑
i=0

Biλ
i +

m∑
i=1

Cifi(λ)

)
x = 0,

where Bi, Ci ∈ Cn×n are constant matrices, fi(λ) are scalar functions of λ, p � n2

and m � n2. Furthermore, we assume that the matrices Ci have rank-revealing
factorizations Ci = LiU

∗
i , where Li, Ui ∈ Cn×ri are of full column rank ri � n.

Approximating the scalar functions fi(λ) of (5.1) by linear rational interpolants
with nodes σ0, σ1, . . . , σN and poles ξ1, ξ2, . . . , ξN yields

(5.2) Q̃N (λ) =

N∑
i=0

D̃ibi(λ) =

p∑
i=0

(
B̃i + C̃i

)
bi(λ) +

N∑
i=p+1

C̃ibi(λ),

where

B̃i =

p∑
j=0

βijBj and C̃i =

m∑
j=1

γijCj =

m∑
j=1

γijLjU
∗
j ,

with scalars βij and γij . Define

L̃i =
[
γi1L1 γi2L2 · · · γimLm

]
and Ũ =

[
U1 U2 · · · Um

]
,

where the size of L̃i and Ũ is n × r and r = r1 + r2 + · · · + rm. Similarly as in
Theorem 2.2, we obtain a companion-type reformulation where the pair (λ, x 6= 0) is
an eigenpair of the rational eigenvalue problem (5.2) if and only if

ÃN ỹN = λB̃N ỹN ,
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where

ÃN =



B̃0 + C̃0 B̃1 + C̃1 . . . B̃p + C̃p L̃p+1 L̃p+2 . . .
σ0I β1I

. . .
. . .

σp−1I βpI

σpŨ
∗ βp+1I

σp+1I βp+2I
. . .

. . .


,

B̃N =



(B̃0+C̃0)/ξN (B̃1+C̃1)/ξN . . . (B̃p+C̃p)/ξN L̃p+1/ξN L̃p+2/ξN . . .
I β1/ξ1I

. . .
. . .

I βp/ξpI

Ũ∗ βp+1/ξp+1I
I βp+2/ξp+2I

. . .
. . .


,

and

ỹN = vec
(
b0(λ)x, b1(λ)x, . . . , bp(λ)x, bp+1(λ)Ũ∗x, bp+2(λ)Ũ∗x, . . .

)
.

For this type of linearization we can also prove Lemmas 3.1–3.5.

6. Numerical experiments. In the introduction we demonstrated NLEIGS as
a root finder for a scalar problem and illustrated the differences between polynomial
and rational interpolation in Algorithm 1. We now apply NLEIGS to two large-scale
problems. For the ‘gun’ problem, we first discuss polynomial versus rational interpo-
lation and compare with the Newton rational Krylov method. We then illustrate the
use of Leja–Bagby points in Algorithm 1 and discuss the truncation strategy proposed
in Section 5.2. Finally, for an application from physics, we use NLEIGS for computing
real eigenvalues very close to singularities.

All numerical experiments are performed in Matlab version 7.14.0 (R2012a) on
a Dell Latitude notebook running an Intel(R) Core(TM) i5-2540M CPU @ 2.60GHz
quad core processor with 4 GB RAM. Our experiments can be reproduced with the
NLEIGS code available from

http://twr.cs.kuleuven.be/research/software/nleps/nleigs.html

The syntax of NLEIGS resembles that of Matlab’s sparse eigensolver eigs: in its
simplest version we call [V,D] = nleigs(A,Sigma,Xi), where A is a structure rep-
resenting A(λ), Sigma is a vector of vertices of a polygonal target set Σ, and Xi is a
discretization of the singularity set Ξ.

6.1. Gun problem. We consider the ‘gun’ problem of the Manchester collec-
tion [5] (see also [26]). This is a large-scale problem that models a radio-frequency
gun cavity and is of the form

(6.1) A(λ)x =
(
K − λM + i

√
λ− σ2

1 W1 + i
√
λ− σ2

2 W2

)
x = 0,

where M , K, W1 and W2 are real symmetric matrices of size 9956×9956, K is positive
semidefinite and M is positive definite. As in [5], we take σ1 = 0 and σ2 = 108.8774.



16 S. GÜTTEL, R. VAN BEEUMEN, K. MEERBERGEN, AND W. MICHIELS

The complex square root
√
· corresponds to the principal branch. For measuring the

convergence of an approximate eigenpair (λ, x), we used the relative residual norm
defined in [27],

E(λ, x) =
‖A(λ)x‖2

/
‖x‖2

‖K‖1 + |λ| ‖M‖1 +
√
|λ− σ2

1 | ‖W1‖1 +
√
|λ− σ2

2 | ‖W2‖1
.

The target set Σ is the upper half disk with centre 2502 and radius 3002 − 2002,
see Figure 6.1(a). The singularity set Ξ = (−∞, σ2

2 ] corresponds to the union of
branch cuts of the square roots. Thanks to the automatic scaling strategy described
in Section 5.1, we can solve the NLEP (6.1) directly with Algorithm 1, instead of first
transforming Σ to roughly the upper half of the unit disk as in [21, 35].

Before presenting the results of the numerical experiments, we first describe 5
variants of Algorithm 1 to be compared below.

Variant P : a polynomial version of Algorithm 1, which is in fact the Newton
rational Krylov method introduced in [35]. In this variant, A(λ) is approximated
by interpolating polynomials Pj(λ) with cyclically repeated interpolation nodes σj ∈
Ωcycl ⊂ Σ and all poles ξj = ∞. The shifts of the rational Krylov space are chosen
equal to the interpolation nodes σj in order to make the algorithm dynamic.

Variant R1: a rational version of Algorithm 1, whereby A(λ) is approximated
by rational interpolants Qj(λ) with cyclically repeated interpolation nodes σj ∈ Ωcycl

and poles ξj ∈ Ξ selected in Leja–Bagby style. Again, the shifts of the rational Krylov
space are chosen equal to the interpolation nodes σj .

Variant R2: a rational version of Algorithm 1, whereby A(λ) is also approximated
by rational interpolants Qj(λ), but the selection of interpolation nodes and poles is
different. As long as the interpolant Qj(λ) has not yet converged, we choose Leja–
Bagby interpolation nodes σj ∈ Σ and poles ξj ∈ Ξ. Upon convergence we switch to
cyclically repeated interpolation nodes σj ∈ Ωcycl in order to obtain faster convergence
of the rational Krylov method to eigenvalues located in the interior of Σ. The poles ξj
are still selected in Leja–Bagby style. The shifts of the rational Krylov space are again
chosen equal to the interpolation nodes σj in order to make the algorithm dynamic.

Variant R3: this variant is similar to Variant R2, but we truncate and freeze the
rational expansion Qj(λ) when it has converged to A(λ). In this variant, the shifts of
the rational Krylov space are the same as in Variant R2: in the beginning equal to the
Leja–Bagby interpolation nodes σj ∈ Σ and upon convergence equal to the cyclically
repeated points in Ωcycl.

Variant S: a static rational version of Algorithm 1. We first determine the
rational approximation QN (λ) such that QN (λ) ≈ A(λ) for all λ ∈ Σ. For the
computation of QN (λ) we select Leja–Bagby interpolation nodes σj ∈ Σ and poles
ξj ∈ Ξ, and use the same truncation criterion as for Variant R3. Then, once the
linearization is fixed, we use the rational Krylov method with shifts in Ωcycl for solving
the generalized eigenvalue problem in a nondynamic way.

6.1.1. Polynomial (P) versus rational (R1) interpolation. In a first exper-
iment we compare Variant P and Variant R1. In both variants, we chose 5 cyclically
repeated interpolation nodes in Σ, indicated by “×” in Figure 6.1(a). The correspond-
ing Leja–Bagby poles, selected in Variant R1, are indicated by “•”.

The convergence history of the eigenpairs computed with Variant P and Vari-
ant R1 are given in Figure 6.1(b) and Figure 6.1(c), respectively. Note that in these
figures the solid and dotted lines correspond to eigenvalues lying inside and outside
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Figure 6.1. Results for the ‘gun’ problem: (a) Approximate eigenvalues for the original NLEP
(6.1) obtained with Variant R1, (b) convergence history for Variant P , and (c) convergence history
for Variant R1.

the target set Σ, respectively. From these figures, we can see that the eigenvalues com-
puted with Variant R1 converge much faster than these computed with Variant P
and this with similar total computation cost. Hence, we conclude that NLEIGS can
be significantly faster than the Newton rational Krylov method introduced in [35].

We will now look at the corresponding convergence of the approximations of
A(λ) by polynomial interpolants Pj(λ) and rational interpolants Qj(λ). Figure 6.2(a)
shows the maxima of the scalar (generalized) divided differences in every iteration
j of Algorithm 1. We see that in Variant P (solid line) there is no convergence for
j →∞. Thus, it is possible to miss some eigenvalues since in this case the underlying
linearized polynomial eigenvalue problem does not approximate the original NLEP
accurately in the whole target set Σ. See also Table 6.1 below, which shows that only
17 of 21 eigenvalues are found with Variant P . On the other hand, in Variant R1

(dashed line), the approximations Qj(λ) of A(λ) converges slowly as j increases.

6.1.2. Leja–Bagby nodes and poles: comparison between R2 and R3.
In order to get faster convergence of the approximations of A(λ), we can use Leja–
Bagby interpolation nodes and poles in Algorithm 1. These points are near optimal
for uniform convergence of the rational expansions Qj(λ). However, since Leja–Bagby
interpolation nodes are located on the boundary ∂Σ of the target set Σ, their use as
shifts of the rational Krylov space may not be advantageous for finding eigenvalues
inside Σ quickly. Hence, upon convergence of Qj(λ), we recommend to either switch



18 S. GÜTTEL, R. VAN BEEUMEN, K. MEERBERGEN, AND W. MICHIELS

0 20 40 60 80 100
10-15

10-10

10-5

100

105

1010

iteration

δ
j

P

R1

(a) Variant P and Variant R1

0 20 40 60 80 100
10-15

10-10

10-5

100

105

1010

iteration

δ
j

R2

R3

(b) Variant R2 and Variant R3

Figure 6.2. Convergence of the approximations of A(λ) for the ‘gun’ problem: (a) Variant P
(solid line) and Variant R1 (dashed line) and (b) Variant R2 (dotted line) and Variant R3 (dashed
line).

to interpolation nodes in the interior of Σ, or apply the truncation strategy explained
in Section 5.2.

We return to the square root ‘gun’ problem (6.1). The Leja–Bagby interpolation
nodes and poles used in this experiment are indicated in Figure 6.3(a) by “×” and
“•”, respectively. We also set the tolerance for the relative residual norm E(λ) to
tol = 10−10. In Figure 6.2 we see that the error of the rational interpolants with
Leja–Bagby points, shown as the dotted line in Figure 6.2(b), decreases much faster
than that of the rational interpolants with cyclically repeated nodes in Variant R1,
shown by the dashed line in Figure 6.2(a).

In Variant R2 we used Leja–Bagby points only until the approximations Qj(λ)
converged after j = 35 iterations. We then switched to cyclically repeated interpola-
tion nodes, indicated by “◦” in Figure 6.3(a), in order to obtain faster convergence to
eigenvalues located in the interior of Σ. The resulting convergence history is shown
in Figure 6.3(b). In this figure we see that during the expansion phase, i.e., when the
shifts of the rational Krylov space are only lying on ∂Σ, there is very slow convergence
for some eigenvalues close to ∂Σ and where the density of interpolation nodes is high.
From iteration j = 36 onwards, that is when we use cyclically repeated interpola-
tion nodes in the interior of Σ, we notice in Figure 6.3(b) a fast and very regular
convergence for all eigenvalues in Σ.

Furthermore, in Figure 6.2(b) we notice that after 35 iterations the newly added
rational divided differences do not further improve the approximation of A(λ). We
therefore applied in Variant R3 the truncation strategy and froze the linearization.
Comparison of Figures 6.3(b) and 6.3(c) shows that the convergence history of the
eigenpairs in Variant R3 is very similar to Variant R2, which justifies the truncation
strategy. Additionally, after freezing the linearization in Variant R3, the rational
Krylov vectors do not grow anymore. This results in lower memory consumption and
a cheaper orthogonalization process compared to Variant R2.

6.1.3. Truncating the expansion: comparison between R3 and S. In the
previous paragraph it was illustrated that during the expansion phase of Variant R2

and Variant R3 there is only slow convergence for some eigenvalues. This is because
the shifts of the rational Krylov space are chosen equal to the Leja–Bagby interpolation
nodes in order to make the algorithm dynamic.

Therefore, in Variant S we first determine the rational approximation QN (λ)
and then freeze the linearization. Next, the generalized eigenvalue problem is solved
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Figure 6.3. Results for the ‘gun’ problem: (a) Approximate eigenvalues for the original NLEP
(6.1) obtained with Variant R3, (b) convergence history for Variant R2, and (c) convergence history
for Variant R3.

with the standard rational Krylov method with cyclically repeated shifts, indicated
by “◦” in Figure 6.3(a). The corresponding convergence history of the eigenpairs
computed with Variant S is given in Figure 6.4(b). For easy comparison, we repeat
the convergence history of Variant R3 in Figure 6.4(a). From these figures we conclude
that Variant S is the most suitable for computing eigenvalues of the ‘gun’ problem
inside Σ.
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Figure 6.4. Results for the ‘gun’ problem: (a) Convergence history for Variant R3 and (b)
convergence history for Variant S.
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6.1.4. Timings and memory usage. We now compare timings and memory
usage of the 5 different variants of Algorithm 1 for solving the ‘gun’ problem. In
all experiments, we used the reorthogonalization strategy of [23] and exploited the
low-rank structure of the nonlinear part of (6.1) as explained in Section 5.4. Hence,
the orthogonalization cost is not dominant compared to the one for the system solves.
In case of cyclically repeated shifts σj ∈ Ωcycl of the rational Krylov space, we reused
the LU factors of A(σj).

Table 6.1
Timings and memory usage for the ‘gun’ problem.

# iter. # conv. λ system solves orthog. total cpu-time memory usage
Variant P 100 17 7.1 s 2.1 s 9.6 s ∼ 115 MB
Variant R1 100 21 7.1 s 2.9 s 10.7 s ∼ 115 MB
Variant R2 95 21 26.3 s 3.0 s 31.1 s ∼ 110 MB
Variant R3 95 21 26.5 s 2.7 s 30.2 s ∼ 105 MB
Variant S 70 21 6.0 s 1.1 s 8.1 s ∼ 89 MB

A comparison for solving the ‘gun’ problem with Variant P , Variant R1, Vari-
ant R2, Variant R3, and Variant S is given in Table 6.1. From this table, we see
that the computational cost and memory usage of Variant P and Variant R1 are
very similar: both variants require the same number of system solves and LU fac-
torizations, and the rational Krylov vectors are of the same length. There is only
a difference in computation cost of the orthogonalization process, due to different
amount of reorthogonalization: only 35% of the iterations of Variant P require re-
orthogonalization, whereas in Variant R1 reorthogonalization is required in 89% of
the iterations.

Variant R2 and Variant R3 require more computation time, due to the higher
number of LU factorizations, but in these variants the approximations of A(λ) con-
verge. Therefore Variant R2 and Variant R3 are more robust than Variant P and
Variant R1. The slightly lower memory usage in Variant R2 is due to the stopping of
this method after 95 iterations. Variant R3 gives a further reduction of the memory
usage since the rational Krylov vectors do not grow any more after the linearization is
frozen. However, without the exploitation of the low-rank structure this would result
in a much larger difference between Variant R2 and Variant R3.

Table 6.1 also shows that Variant S is the most efficient variant for solving the
‘gun’ problem. Firstly, this variant requires only 70 iterations, since the rational
Krylov process only starts after the approximation has converged. Together with the
reuse of LU factors, this results in a low system solving cost. Secondly, although the
rational Krylov vectors are of the same length as in Variant R3, the memory usage
in Variant S is lower since less iterations are needed to compute all the eigenvalues
in Σ. On the other hand, compared to the other variants, Variant S does no longer
have the property of being dynamic.

6.2. Particle in a canyon problem. We consider the Schrödinger equation for
a particle in a potential well attached to a number of contacts. In this example, the
particle has mass 0.2 me and the two-dimensional potential has a canyon-like shape
with a canyon length, width and depth of 2.2 nm, 4 nm and 3 eV, respectively, while
the width and depth of the valley in the contacts is 2 nm and 3 eV, respectively. The
Schrödinger equation is discretized on a 4× 10 nm2 grid. For more information about
the physics we refer to [36].

The corresponding nonlinear eigenvalue problem is

(6.2) A(λ)x =
(
H − λI −

∑nz
k=1 e

i
√
m(λ−αk)LkU

∗
k

)
x = 0,



NLEIGS: A ROBUST FULLY RATIONAL KRYLOV METHOD 21

where H ∈ R16281×16281 is symmetric, Lk, Uk ∈ R16281×2, m = 0.2 and nz = 81. The
branch points are defined by αk ∈ R and sorted in ascending order. We take the
interval between the first and second branch point as target set Σ = [α1 + ε, α2 − ε],
with α1 ≈ −0.198, α2 ≈ −0.132 and ε = 10−4. In order to make Σ branch cut
free, we define the branch cut corresponding to the first nonlinear term in (6.2) as
(−∞, α1], whereas all other branch cuts are defined as [αk,+∞) for k = 2, 3, . . . , nz.
The singularity set Ξ = (−∞, α1] ∪ [α2,+∞) is then the union of all branch cuts.

For this NLEP (6.2) we only compare Variant R3 and Variant S of Algorithm 1.
The Leja–Bagby interpolation nodes and poles, used in both experiments, are indi-
cated in Figure 6.5(a) by “×” and “•”, respectively. In Variant R3 we choose the
shifts of the rational Krylov space equal to the interpolation points, whereas in Vari-
ant S we choose the cyclically repeated shifts indicated by “◦” in Figure 6.5(a). The
tolerance for the residual norm ‖A(λ)x‖2 is set to tol = 10−10.

The convergence histories of the eigenpairs computed with Variant R3 and Vari-
ant S are given in Figure 6.5(b) and Figure 6.5(c), respectively. From these figures
we conclude that Variant R3 is the most appropriate for computing eigenvalues of the
particle in a canyon problem.
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Figure 6.5. Results for the branch cut problem: (a) approximate eigenvalues for the NLEP
(6.2) obtained with Variant R3, (b) convergence history for Variant R3, and (c) convergence history
for Variant S.

7. Conclusions and future work. In this paper we have introduced a new
linearization for nonlinear eigenvalue problems based on linear rational interpolation.
We have shown how the involved divided differences can be computed stably using
matrix functions, and how the linearization can be efficiently intertwined with a ratio-
nal Krylov method for finding its eigenpairs. The resulting method is called NLEIGS.
Truncation and scaling strategies were proposed to make NLEIGS computationally
efficient and stable.

Our numerical experiments have revealed that several variants of NLEIGS are
viable. We found that for all examples, NLEIGS largely outperforms the Newton
rational Krylov method, both in speed and reliability. We expect two variants of
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NLEIGS to be useful for applications. Both first build a rational approximation of
A(λ) using Leja–Bagby nodes and poles. For the dynamic variant, the truncation
strategy and switching to shifts σj in the interior of Σ may be important for fast
rational Krylov convergence. The resulting method is by far more reliable than the
Newton rational Krylov method, although not always faster in terms of computation
time. We also proposed a static variant of the method where the linearization is
determined first and then rational Krylov is applied to the linearized problem. For
problems with eigenvalues on an interval nearby singularities, as in the canyon prob-
lem, the dynamic version purely based on Leja–Bagby points appears to be the most
efficient and reliable method in terms of number of iterations. For problems with
eigenvalues on a two-dimensional target set, as in the ‘gun’ problem, the static ver-
sion appears to be both fast and reliable. We believe that our method can be seen as
a promising and robust approach for solving nonlinear eigenvalue problems.

In future work we wish to explore the use of rational interpolation with prescribed
interpolation nodes σj in the interior of Σ, instead of Leja–Bagby nodes discussed
in Section 4 which are typically on ∂Σ. The poles of interpolants optimal in a least-
squares sense can be found easily if Σ is the unit disk, see [37], or on more general
sets when an external conformal map is available, see e.g., [12, 4]. Other ideas in-
clude the spectrally adaptive choice of poles and interpolation nodes using Ritz value
information, similarly as has been done in [17], or the automated detection of the
singularity set Ξ via rational interpolation with free poles, e.g., using the SVD-based
Padé approximants from [14]. An interesting algebraic question is whether or not
Theorem 2.2 provides a strong linearization in the sense that it preserves the mul-
tiplicities of eigenvalues, cf. [1]. As an algorithmic enhancement we are currently
developing a restarted version of NLEIGS.
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