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A local field is a locally compact non-discrete field.

Here they are:
R, C, F/Qp, Fq((x))

A local field F admits a metric via Haar measure of the additive group of
F :

|x | =
µ(xE )

µ(E )

Main example is Qp in which each element looks like

x =
∑
n≥N

anpn

The valuation is valF (x) = N and the norm is |x |F = p−N .
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From now on, F will be a local non-archimedean field.
In this talk: G will be GLn(F ), SLn(F ) or one of their inner forms
GLm(D), SLm(D).
We will need the Langlands dual group G∨.
This is a complex connected reductive group.

The dual of GLn(F ) is the complex reductive group GLn(C ).
The dual of SLn(F ) is the complex reductive group PGLn(C).
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We need the Weil group

WF = IFo < Frob >

Let F be a separable closure of F . The inertia group IF fixes F∞ ⊂ F and
the Frobenius Frob generates the Galois group ( a cyclic group) of each
finite unramified extension Fn ⊂ F∞.
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The Weil group WF is a totally disconnected locally compact group. The
inertia group IF is a compact open subgroup, the quotient WF/IF = Z in
the discrete topology. The Weil group is a modified version of the absolute
Galois group.

We have
WF ↪→ Gal(F/F )

but with a change of topology.
A Langlands parameter is a conjugacy class of morphisms

φ : WF × SL2(C)→ G∨

which are semisimple.
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The set of L-parameters will be denoted Φ(G ).

Φ(GLn(F )) := Homss(WF × SL2(C),GLn(C))/GLn(C)

Φ(SLn(F )) := Homss(WF × SL2(C),PGLn(C))/PGLn(C)
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Definition

A representation (π,V ) on a complex vector space V is smooth if, for
each v ∈ V , there exists an open subgroup of G which fixes v .
Denote by Irr(G ) the set of equivalence classes of irreducible smooth
representations of G .

The local Langlands correspondence for G = GLn(F ):

Irr(G ) ' Φ(G )

unique subject to several conditions
[Laumon-Rapoport-Stuhler; Harris-Taylor, Henniart].
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In general the Langlands parameters do not suffice. It is necessary to refine
the parameters, via irreducible representations of a certain finite group S.

When the right choice is made for S, it is possible to parametrize the
union of the Irr-sets over the inner forms of SLn(F ).

We need to define inner form and the S-group.
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An associative algebra over a field is a division algebra if and only if it has
a multiplicative identity element 1 6= 0 and every non-zero element a has a
multiplicative inverse, i.e. an element x with ax = xa = 1.

Let F be a local field, and let D be a division algebra with centre F , of
dimension dimF (D) = d2. The F -group GLm(D) is an inner form of
GLmd(F ) and they all arise this way.

The inner forms of GLn(F ) share the same dual group GLn(C)
Proofs of LLC for GLm(D) are to be found in [ABPS1] and [HS]
We write

GLm(D)] := {g ∈ GLm(D) : Nrd(g) = 1}

This is the derived group of GLm(D). It is an inner form of SLmd(F ) and
every inner form of SLn(F ) arises in this way.
The inner forms of SLn(F ) share the same dual group PGLn(C).
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Given a parameter

φ] : WF × SL2(C)→ PGLn(C).

We have the morphism

SLn(C)→ PGLn(C).

We need the following groups:

Sφ] = π0 ZPGLn(C)(imφ])

Sφ] = π0 ZSLn(C)(imφ])
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Short exact sequence

1→ Zφ] → Sφ] → Sφ] → 1

The irreducible reprsentations attached to all the inner forms of SLn(F )
will hopefully be parametrized by Irr(Sφ]).

This kind of idea can be traced to Arthur, Vogan and Lusztig.
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Define

Φe(inn SLn(F )) = {(φ], ρ) : φ] ∈ Φ(SLn(F )), ρ ∈ Irr(Sφ])}

Theorem (Hiraga-Saito; Aubert-Baum-Plymen-Solleveld)

Let F be a non-archimedean local field. There exists a bijection from

Φe(inn SLn(F ))

to
{(G ], π) : G ] standard inner form of SLn(F ), π ∈ Irr(G ])}

sending
(φ], ρ) 7→ (G ]

ρ, π(φ], ρ))

with several crucial properties.
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Given (φ], ρ). Given ρ ∈ Irr(Sφ]) evaluate ρ on exp(2πi/n) ∈ Zφ] to get a
complex number exp(2πi/d). Let L/F be the unramified extension of
degree d . Take the Frobenius automorphism σ = Frob ∈ Gal(L/F ) and
construct the cyclic algebra

(L/F , σ,$F ) := L[x ]σ/(xd −$F ).

in which ux = xσ(u) for all u ∈ L, and xd = $F . The cyclic algebra has
dimension d2 over F with basis

uix
i 1 ≤ i , j ≤ d

where u1, . . . , ud is an F -basis of L.

Let
D = (L/F , σ,$F )

and
G ]
ρ = GLm(D)]

with n = md .
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The two extremes:

If ρ(Zφ]) = 1 then d = 1, L = F ,m = n,D = F ,G ]
ρ = SLn(F ).

If ρ(Zφ]) is cyclic of order n then d = n,m = 1,G ]
ρ = SL1(D).

The central character of ρ determines the inner form G ]
ρ and will

sometimes be denoted χG ] .

Roger Plymen The local Langlands correspondence for inner forms of SLn



The two extremes:

If ρ(Zφ]) = 1 then d = 1, L = F ,m = n,D = F ,G ]
ρ = SLn(F ).

If ρ(Zφ]) is cyclic of order n then d = n,m = 1,G ]
ρ = SL1(D).

The central character of ρ determines the inner form G ]
ρ and will

sometimes be denoted χG ] .

Roger Plymen The local Langlands correspondence for inner forms of SLn



The two extremes:

If ρ(Zφ]) = 1 then d = 1, L = F ,m = n,D = F ,G ]
ρ = SLn(F ).

If ρ(Zφ]) is cyclic of order n then d = n,m = 1,G ]
ρ = SL1(D).

The central character of ρ determines the inner form G ]
ρ and will

sometimes be denoted χG ] .

Roger Plymen The local Langlands correspondence for inner forms of SLn



Now lift the parameter φ] from PGLn(C) to GLn(C):

φ : WF × SL2(C)→ GLn(C)

Now φ is relevant for GLm(D): the minimal Levi subgroup of GLn(C)
containing imφ is of the form GLn1(C)× · · · ×GLnk (C) with d |nj . Recall
that n = md . This clears the way to apply the LLC for GLm(D).

We obtain a singleton packet Πφ for GLm(D). Recall that the dual group
of GLm(D) is GLn(C).
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Our fundamental short exact sequence admits a different expression:

1→ Zφ] → Sφ] → XG (Πφ(G ))→ 1

where

XG (Πφ(G )) = {γ ∈ Irr(G/G ]) : Πφ(G )⊗ γ ' Πφ(G )}

The characters γ create intertwining operators Iγ . These intertwining
operators span the commuting algebra EndG ](Πφ(G )).
The map γ 7→ Iγ is a projective representation of XG (Πφ(G )). The
cocycle is trivial if and only if G is the split group GLn(F ).
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Lemma (Hiraga–Saito, Lemma 12.5)

Denote the homomorphism Sφ] → XG (Πφ(G ) by α. There exists a
homomorphism

Λ : Sφ] → End(Πφ)

such that
Λ(s) ∈ C× · Iα(s), s ∈ Sφ]

Λ(z) = χG ](z) · Id , z ∈ Zφ]

This determines a representation of Sφ] × G ] on V (the G -module on
which Π(φ) acts). This, in turn, determines the decomposition

V '
⊕

ρ⊗ π(φ], ρ) (1)

the sum taken over those ρ ∈ Irr(Sφ]) with central character χG ] .

Eqn.(1) defines π(φ], ρ). The multiplicity of π(φ], ρ) in the module V is
dim(ρ).
End of Part 1
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Part 2. Joint work with Sergio Mendes.
Let F be a local function field of characteristic 2, so that F = Fq(($F ))
with q = 2f .
We have the following canonical homomorphism:

WF →Wab
F ' F× → F×/F×2.

For these local function fields, we have, based on Artin-Schreier theory,

F×/F×2 '
∏

Z/2Z

the product over countably many copies of Z/2Z. Using the countable
axiom of choice, we choose two copies of Z/2Z. This creates a
homomorphism

WF → Z/2Z× Z/2Z

There are countably many such maps.
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Following [Weil, Exercises dyadiques], denote by α, β, γ the images in
PSL2(C) of the elements

zα =

(
i 0
0 −i

)
, zβ =

(
0 1
−1 0

)
, zγ =

(
0 i
i 0

)
,

in SL2(C). Denote by J the group generated by α, β, γ:

J := {ε, α, β, γ} ' Z/2Z× Z/2Z.

The group J is unique up to conjugacy in PSL2(C).
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The pre-image of J in SL2(C) is the group {±1,±zα,±zβ,±zγ} and is
isomorphic to the group U8 of unit quaternions {±1,±i,±j,±k}.
Define

φ] : WF → J ↪→ PSL2(C)

We have
Sφ] := ZPSL2(C)(imφ]) = J

Note that
Sφ] := ZSL2(C)(imφ]) = U8

as it contains the subgroup {I ,−I} of SL2(C).
We have the short exact sequence

1→ Zφ] → Sφ] → Sφ] → 1

with Zφ] = Z/2Z, Sφ] ' U8, Sφ] ' J.

Roger Plymen The local Langlands correspondence for inner forms of SLn



The pre-image of J in SL2(C) is the group {±1,±zα,±zβ,±zγ} and is
isomorphic to the group U8 of unit quaternions {±1,±i,±j,±k}.
Define

φ] : WF → J ↪→ PSL2(C)

We have
Sφ] := ZPSL2(C)(imφ]) = J

Note that
Sφ] := ZSL2(C)(imφ]) = U8

as it contains the subgroup {I ,−I} of SL2(C).
We have the short exact sequence

1→ Zφ] → Sφ] → Sφ] → 1

with Zφ] = Z/2Z, Sφ] ' U8, Sφ] ' J.

Roger Plymen The local Langlands correspondence for inner forms of SLn



The pre-image of J in SL2(C) is the group {±1,±zα,±zβ,±zγ} and is
isomorphic to the group U8 of unit quaternions {±1,±i,±j,±k}.
Define

φ] : WF → J ↪→ PSL2(C)

We have
Sφ] := ZPSL2(C)(imφ]) = J

Note that
Sφ] := ZSL2(C)(imφ]) = U8

as it contains the subgroup {I ,−I} of SL2(C).
We have the short exact sequence

1→ Zφ] → Sφ] → Sφ] → 1

with Zφ] = Z/2Z, Sφ] ' U8, Sφ] ' J.

Roger Plymen The local Langlands correspondence for inner forms of SLn



The pre-image of J in SL2(C) is the group {±1,±zα,±zβ,±zγ} and is
isomorphic to the group U8 of unit quaternions {±1,±i,±j,±k}.
Define

φ] : WF → J ↪→ PSL2(C)

We have
Sφ] := ZPSL2(C)(imφ]) = J

Note that
Sφ] := ZSL2(C)(imφ]) = U8

as it contains the subgroup {I ,−I} of SL2(C).
We have the short exact sequence

1→ Zφ] → Sφ] → Sφ] → 1

with Zφ] = Z/2Z, Sφ] ' U8, Sφ] ' J.

Roger Plymen The local Langlands correspondence for inner forms of SLn



The S-group has order 8 and admits 4 characters ρ1, . . . , ρ4 of order 1 and
one irreducible representation ρ5 of degree 2:

12 + 12 + 12 + 12 + 22 = 8

The central character of ρj when 1 ≤ j ≤ 4 is trivial, and so in this

case G ]
ρ = SL2(F ).

The central character of ρ5 is of order 2 and we have G ]
ρ = SL1(D).
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In the local Langlands correspondence for the inner forms of SL2(F ), the
parameter

φ] : WF → PGL2(C)

creates an L-packet for SL2(F ) with 4 elements, and a singleton packet for
the inner form SL1(D):

{π(φ], ρ1), π(φ], ρ2), π(φ], ρ3), π(φ], ρ4)}

{π(φ], ρ5)}

For the field F = Fq(($F )) with q = 2f , this phenomenon happens
infinitely often.
Informally: the parameter φ] creates a ”big packet” and the elements
ρ ∈ Irr(Sφ]) partition this big packet into two smaller packets, one for
SL2(F ) and one for SL1(D).
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For SL2(F ) this is a supercuspidal L-packet.
Each parameter φ] : WF → PGL2(C) lifts to a representation

φ : WF → GL2(C).

This representation is triply imprimitive, as in [BH,p. 255].
Let T(φ) be the group of characters χ of WF such that χ⊗ φ ' φ. Then
T(φ) is non-cyclic of order 4, as in [BH,p. 257].

The group T(φ) is
isomorphic to the group XG (Πφ) which we had before, via the LLC.
The characters in T(φ) can be distinguished, to some extent, see [BH,
p.257].

Roger Plymen The local Langlands correspondence for inner forms of SLn



For SL2(F ) this is a supercuspidal L-packet.
Each parameter φ] : WF → PGL2(C) lifts to a representation

φ : WF → GL2(C).

This representation is triply imprimitive, as in [BH,p. 255].
Let T(φ) be the group of characters χ of WF such that χ⊗ φ ' φ. Then
T(φ) is non-cyclic of order 4, as in [BH,p. 257]. The group T(φ) is
isomorphic to the group XG (Πφ) which we had before, via the LLC.

The characters in T(φ) can be distinguished, to some extent, see [BH,
p.257].

Roger Plymen The local Langlands correspondence for inner forms of SLn



For SL2(F ) this is a supercuspidal L-packet.
Each parameter φ] : WF → PGL2(C) lifts to a representation

φ : WF → GL2(C).

This representation is triply imprimitive, as in [BH,p. 255].
Let T(φ) be the group of characters χ of WF such that χ⊗ φ ' φ. Then
T(φ) is non-cyclic of order 4, as in [BH,p. 257]. The group T(φ) is
isomorphic to the group XG (Πφ) which we had before, via the LLC.
The characters in T(φ) can be distinguished, to some extent, see [BH,
p.257].
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Formal degrees via gamma ratios
Let (π,V ) be a discrete series representation of G and let µ be a Haar
measure on G . There exists a positive real constant degµ(π) such that for
all v ∈ V

degµ(π) ·
∫
G
|(v , π(g)v)|2dµ(g) = (v , v)2

We will normalize µ so that the formal degree of the Steinberg is 1. This
is the Euler–Poincaré measure.
The formal degree, w.r.t. this measure, will be denoted Deg(π).
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Formula for the formal degree [Mark Reeder]: with ϕ = φ], we have

Deg(π(ϕ, ρ)) =
dim ρ

|Sϕ|
·
∣∣∣∣ γ(ϕ)

γ(ϕ0)

∣∣∣∣
where

γ(ϕ) =
L(Adϕ, 1) · ε(Adϕ)

L(Adϕ, 0)
.

The Artin-Deligne L-function L(Adϕ, s)

L(Adϕ, s) = det(1− q−sFq|hu)−1

where

Fq = Adϕ

(
Frob×

(
q−1/2 0

0 q1/2

))
and h is the be the subspace of g fixed by the inertia subgroup IF under
Adϕ and hu is the fixed set of Adϕ(u).
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Adϕ0 is given by

Adϕ0 : WF × SL2(C)→ SL2(C)→ PSL2(C)→ Aut(sl2(C))

and
γ(ϕ0) =

q

1 + q−1

where q = 2f . We have

L(Adϕ, s) =
1

1 + q−s

and so we have

γ(ϕ) =
2

1 + q−1
· ε(ϕ)

where
ε(ϕ) = ±qα(ϕ)/2.

Roger Plymen The local Langlands correspondence for inner forms of SLn



We have ∣∣∣∣ γ(ϕ)

γ(ϕ0)

∣∣∣∣ =
2

q
· ε(ϕ). (2)

To compute the epsilon number ε(Adϕ).

Recall the data:

Ad ◦ ϕ : Gal(L/F ) ' J ↪→ PSL2(C)→ Aut(g)

where L/F is a biquadratic extension.
Hence J admits a lower ramification filtration:
J ≥ J0 ≥ J1 ≥ J2 ≥ · · · ≥ Jt > Jt+1 = 1 by normal subgroups Ji of J.
Now α(ϕ) is the Weil-Deligne version of the Artin conductor

α(ϕ) =
∑
i≥0

dim(g/gJi )

[J0 : Ji ]
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The formal degrees of the elements in the supercuspidal packets for
SL2(F ) depend on the breaks in the lower ramification filtration of the
Galois group J attached to the biquadratic extensions of F . Here are the
answers:
Case 1: We have

J = Z/2Z× Z/2Z ; J0 = ... = Jt = Z/2Z ; Jt+1 = {1}

We have
α(ϕ) = (1 + t)2

We have

Deg(π(ϕ, ρ)) =
1

4
·
∣∣∣∣ γ(ϕ)

γ(ϕ0)

∣∣∣∣ =
1

4
· 2

q
· |ε(ϕ)| = 2t−f
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Case 2.1: The lower ramification filtration is (with t an odd number)

J = . . . = Jt = Z/2Z× Z/2Z ; Jt+1 = {1}

We have

α(ϕ) =
∑
i≥0

dim(g/gJi )

[J0 : Ji ]
= (t + 1)3

We have

Deg(π(ϕ, ρ)) =
1

4
·
∣∣∣∣ γ(ϕ)

γ(ϕ0)

∣∣∣∣
= 23(1+t)/2−f−1

The formal degree is a rational number.
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Case 2.2: This case admits the following lower ramification filtration
(with t1 odd):

J = J0 = ... = Jt1 = Z/2Z× Z/2Z
Jt1+1 = ... = J2t2−t1 = Z/2Z ; J2t2−t1+1 = {1}

We have

α(ϕ) =
∑
i≥0

dim(g/gJi )

[J0 : Ji ]
= (t1 + 1)3 +

(2t2)2

2
= 3 + 3t1 + 2t2

and we have

Deg(π(ϕ, ρ)) =
1

4
·
∣∣∣∣ γ(ϕ)

γ(ϕ0)

∣∣∣∣
= 23(1+t1)/2+t2−f−1

the formal degree of each supercuspidal in the packet Πφ.
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The formal degrees depend on the residue degree f and the breaks in the
lower ramification filtration of the Galois group Gal(L/F ) of a biquadratic
extension L/F . In fact, the set of formal degrees is

{2n : n ∈ Z}

Reference: Mendes-Plymen, arXiv:1302.6038[math.RT]
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