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Abstract

The present work presents a general theoretical framework for the
study of operators which merge partial probabilistic evidence from dif-
ferent sources which are individually coherent, but may be collectively
incoherent. We consider a number of principles for such an operator to
satisfy including a set of principles derived from those of Konieczny and
Pino Pérez [11] which were formulated for the different context of proposi-
tional merging. Finally we investigate two specific such merging operators
derived from the Kullback-Leibler notion of informational distance: the
social entropy operator, and its dual, the linear entropy operator. The
first of these is strongly related to both the multi-agent normalised ge-
ometric mean pooling operator and the single agent maximum entropy
inference process, ME. By contrast the linear entropy operator is simi-
larly related to both the arithmetic mean pooling operator and the limit
centre of mass inference process, CM∞.

Keywords: uncertain reasoning, probability function, merging of evi-
dence, Kullback-Leibler, divergence, probabilistic merging, merging op-
erator, Konieczny and Pino Pérez, social entropy process, inference pro-
cess, aggregation of probabilities, pooling operator, probabilistic inference,
maximum entropy.

1 Introduction

This work studies some of the global logical desiderata which a well-defined pro-
cess for merging partial probabilistic evidence should satisfy. The probabilistic
evidence is thought of as arising from a set sources each of which provides co-
herent probabilistic evidence, while the collective evidence from all the sources
is typically inconsistent. The objective of such a merging process is to merge

∗The first author was supported by a Marie Curie Early Stage Researcher Fellowship
(MALOA - from Mathematical Logic to Applications) financed by the European Commission.
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the evidence of a set of such sources into a single coherent evidence base, which
best represents the declared evidence of all the sources, but no more.

The result of such a merging process will not always be a single probability
function, but rather a non-empty closed convex set of such functions which rep-
resents the merged evidence as if from the standpoint of an unbiased external
observer with no evidence of her own. If for pragmatic purposes a single proba-
bility function must be chosen, then this choice can be made at a second stage
by the use of whatever single-agent inference process is preferred.

Much axiomatic analysis has been done previously on the very special case
of probabilistic pooling or aggregation operators1, where each individual source
offers a single probability distribution as evidence. Furthermore many differ-
ent algorithms have been suggested for dealing with the far more complex case
of probabilistic merging where each source offers only partial probabilistic evi-
dence2. However few authors have considered the global desiderata which such
general probabilistic merging should satisfy, and where such desiderata have
been considered, many authors have not clearly distinguished the operation of
merging the evidence bases from the goal of choosing a unique probability func-
tion from the merged evidence. One exception in this respect is Williamson
who stresses the philosophical distinction between these two processes, and has
sought to adapt3 to the probabilistic context the norms for propositional merg-
ing which were first formulated by Konieczny and Pino Pérez in [11].

We believe that Williamson’s distinction above is a useful one. In this pa-
per we formulate a probabilistic adaptation of the Konieczny and Pino Pérez
principles. We then investigate in this context the properties of two particular
probabilistic merging operators, social entropy, and linear entropy, which are
respectively generalisations of the normalised geometric mean and linear pool-
ing operators. Social entropy was defined in [22], and was shown in [23] to bear
a natural relationship to the well-known maximum entropy inference process
ME4. On the other hand linear entropy, which is a dual merging operator to
social entropy, bears a corresponding natural relationship to CM∞, the limit
centre of mass inference process5.

Konieczny and Pino Pérez in [11] proposed an axiomatic framework, re-
ferred to below as KPP, for expressing the desiderata required of a propositional
merging operator. Such an operator ∆ acts on a multiset of knowledge bases
T1, . . . , Tn to generate a single knowledge base. Each knowledge base Ti is as-
sumed consistent6, but the union of two or more knowledge bases may not be

1See e.g. [9] for a survey
2See e.g. [10],[14],[18],[22],[20],[21].
3See [19],[20],[21].
4See [15] or [17] for a detailed characterisation of ME.
5See [15] for a definition of CM∞.
6This is a slight restriction of the KPP formulation which is more appropriate for our
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consistent. The resulting merged knowledge base ∆(T1, . . . , Tn) should be con-
sistent, and the operator ∆ should at a minimum satisfy the principles listed
below. In [11] the case was considered where a knowledge base is interpreted
to mean a consistent set of sentences of a given finite propositional language
L. However, as noted in [11], the general idea of a merging operator can easily
be applied to other types of knowledge base, and there exists a large literature
concerning such generalisations7.

In the KPP framework described above a merging operator ∆ should satisfy
the following principles:

For every n,m ≥ 1 and every propositional language L and knowledge bases
K1, . . . ,Kn, F1, . . . , Fm for L:

(A1) ∆(K1, . . . ,Kn) is a knowledge base,

(A2) If K1, . . . ,Kn are jointly consistent then ∆(K1, . . . ,Kn) is logically equiv-
alent to

⋃n
i=1Ki,

(A3) If K1, . . . ,Kn and F1, . . . , Fn are such that there exist a permutation π
of the index set {1, . . . , n} such that Ki is logically equivalent to Fπ(i) for
1 ≤ i ≤ n, then ∆(K1, . . . ,Kn) is logically equivalent to ∆(F1, . . . , Fn),

(A4) If K1 and F1 are jointly inconsistent then ∆(K1, F1) 6|= K1,

(A5) ∆(K1, . . . ,Kn) ∪∆(F1, . . . , Fm) |= ∆(K1, . . . ,Kn, F1, . . . , Fm),

(A6) If ∆(K1, . . . ,Kn) ∪∆(F1, . . . , Fm) is consistent then

∆(K1, . . . ,Kn, F1, . . . , Fm) |= ∆(K1, . . . ,Kn) ∪∆(F1, . . . , Fm).

In the next section we will reformulate the ideas behind the KPP principles
above in order to apply them to the different context of the merging of proba-
bilistic evidence bases, or more explicitly, to the search for an objective method
of merging probabilistic evidence from distinct sources into a single coherent
evidence base.

Before continuing our discussion we will now formulate the prerequisite con-
cepts which we will need in order to define precisely the general notion of a
probabilistic merging operator.

2 From Propositional to Probabilistic Merging

Let L = {p1 . . . ph} be a finite propositional language where p1, . . . , ph are propo-
sitional variables. We denote the set of all propositional sentences which are

present considerations.
7See [12] for a survey paper and bibliography.
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possible to define over L as SL. By the disjunctive normal form theorem any
L-sentence can be expressed as a disjunction of atomic sentences (atoms), and
we will denote by At(L) some fixed maximal set of logically inequivalent atoms
{α1, . . . , αJ}, where J = 2h. The atoms of At(L) are thus mutually exclusive
and exhaustive.

A probability function w over L is defined as a function w : At(L) → [0, 1]

such that
∑J
j=1 w(αj) = 1. A value of w on any L-sentence ϕ may then be

defined by setting

w(ϕ) =
∑
αj |=ϕ

w(αj).

We will denote the set of all probability functions over L by DL. For the sake of
simplicity we will often write wj instead of w(αj), but note that this makes sense
only for atoms. Given a probability function w ∈ DL, a conditional probability
is defined by Bayes’s formula

w(ϕ|ψ) =
w(ϕ ∧ ψ)

w(ψ)

for any L-sentence ϕ and any L-sentence ψ such that w(ψ) 6= 0 and is left
undefined otherwise.

A probabilistic evidence base K over L is a set of constraints on probabil-
ity functions over L such that the set of all probability functions satisfying the
constraints in K forms a nonempty closed convex subset V LK of DL. For brevity
we shall use the terminology evidence base instead of probabilistic evidence
base. V LK may be thought of as the set of possible probability functions in DL
of a particular agent which are consistent with her evidence base K. We shall
generally write VK instead of V LK unless there is any ambiguity about which
language is referred to. Note that this standard formulation ensures that linear
constraint conditions such as w(θ) = a , w(φ | ψ) = b , and w(ψ | θ) ≤ c ,
where a, b, c ∈ [0, 1] and θ , φ , and ψ are L-sentences, are all permissible in
an evidence base K provided that the resulting constraint set K is consistent
with the laws of probability. Note that a constraint such as w(ψ | θ) ≤ c is
interpreted as w(ψ∧ θ) ≤ c ·w(θ) which makes sense as a linear constraint even
though w(θ) may take the value zero (see [15] for details).

If K1 and K2 are such that VK1
= VK2

we shall say that K1 and K2 are
equivalent. In practice we shall only be interested in constraint sets up to equiv-
alence, and consequently we may sometimes informally identify an evidence
base K with its extension VK, and with slight abuse of language we may also
refer to a non-empty closed subset of DL as an evidence base. Note that the
non-emptiness of VK corresponds to the assumption that K is consistent with
the laws of probability, while if K and F are evidence bases then the set of
constraints K ∪ F corresponds to VK∪F = VK ∩ VF, and so forms an evidence
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base provided that the latter intersection is non-empty.

The set of all evidence bases VK over L is denoted by CL. A more restricted
notion of evidence base is an evidence base which bounds probability functions
away from zero. This is an evidence base K ∈ CL such that VK satisfies a set
of constraints on w ∈ VK of the form

{aj ≤ wj : 1 ≤ j ≤ J}

where 0 < aj < 1 for all j = 1 . . . J . We call such an evidence base bounded,
and we will denote the set of all bounded evidence bases for a given language
L by BCL. A slightly more general notion is that of an evidence base K ∈ CL
which does not “force” any atom to take the value zero. More precisely we call
K weakly bounded if for every 1 ≤ j ≤ J there is w ∈ VK such that wj 6= 0. The
set of weakly bounded evidence bases for L will be denoted by WBCL. Note
that BCL ⊂ WBCL ⊂ CL and that by convexity if K ∈ WBCL then there
exists some w ∈ VK such that wj 6= 0 for all j = 1 . . . J .

There are at several possible motivations for studying evidence bases with
a boundedness condition imposed. Broadly speaking, the imposition of such a
condition may avoid some of the potentially intractable technical and philosoph-
ical difficulties which arise from treating zero probabilities in certain contexts.
In this paper we will confine ourselves to stating and proving some theorems
concerning particular merging operators for certain classes of evidence base, but
will not consider further the epistemological status of the various notions of ev-
idence base.

Let ∆ denote an operator defined for all n ≥ 1 and all L as a mapping

∆L : CL× . . .× CL︸ ︷︷ ︸
n

→ P(DL)

where P(DL) denotes the power set of DL. We will call such a ∆ a prob-
abilistic merging operator, abbreviated to p-merging operator, if it satisfies the
following

(K1) Defining Principle.

If K1, . . . ,Kn ∈ CL then the set ∆L(K1, . . . ,Kn) ∈ CL.

Note that (K1) is a natural counterpart to (A1); just as (A1) ensures that
a propositional merging operator applied to a multiset of knowledge bases yields
a knowledge base, so (K1) ensures that a p-merging operator applied to a mul-
tiset of evidence bases yields an evidence base.

In general we shall suppress the subscript L in ∆L except where an ambigu-
ity could be caused by such an omission. We may sometimes slightly abuse the
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above terminology by referring to an operator ∆ as a p-merging operator even
though the domain over which ∆ is properly defined may be a certain subclass
of the CL× . . .× CL︸ ︷︷ ︸

n

. Whenever we do this however the correct restriction of

the domain of application will always be made apparent.

We now set about reformulating the remaining KPP principles so as to make
them applicable to the context of a p-merging operator ∆. We express the re-
maining four principles as follows:

For every n ≥ 1 and every propositional language L

(K2) Consistency Principle. For all K1, . . . ,Kn ∈ CL if
⋂n
i=1 V

L
Ki
6= ∅

then ∆(K1, . . . ,Kn) =
⋂n
i=1 V

L
Ki

.

(K2) can be interpreted as saying that if the evidence bases of a set of
agents are collectively consistent then the merged evidence base should
simply consist of all the evidence of the agents collected together.

(K3) Equivalence Principle. If K1, . . . ,Kn ∈ CL and F1, . . . ,Fn ∈ CL are
such that there exist a permutation π of the index set {1, . . . , n} such that
V LKi

= V LFπ(i)
for 1 ≤ i ≤ n, then ∆(K1, . . . ,Kn) = ∆(F1, . . . ,Fn).

Notice that K3 has the effect that for any ∆ which satisfies it, the or-
der in which the evidence bases occur when ∆ is applied is immaterial,
and therefore we can loosely refer to ∆ as being applied to a multiset
of evidence bases instead of a sequence of such evidence bases. On the
other hand repetitions of evidence bases will in general be significant, so
the sequence (or multiset) of evidence bases cannot be considered as a set;
the ∆ we consider will typically share most of the characteristics of what
are commonly referred to as majority merging operators.

(K4) Disagreement Principle. Let K1, . . . ,Kn ∈ CL and
F1, . . . ,Fm ∈ CL. Assume that

⋂m
i=1 V

L
Fi
6= ∅.

Then ∆(K1, . . . ,Kn) ∩∆(F1, . . . ,Fm) = ∅ implies that

∆(K1, . . . ,Kn,F1, . . . ,Fm) ∩∆(K1, . . . ,Kn) = ∅.

(K4) represents a significant but natural strengthening of (A4), adapted to
the p-merging context. Intuitively the principle says that if the merged evidence
base K of a set of agents is inconsistent with the merged evidence F of a distinct
set of agents, where the evidence bases of the latter set are collectively consis-
tent, then the result of merging the evidence bases of all the agents together is
also inconsistent with K. Expressed more pithily, but less exactly, we could say
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that a coherent group who disagree with another group and then merge with
them can be sure that they have influenced the opinions of the combined group.

(K5) Agreement Principle. If ∆(K1, . . . ,Kn) ∩∆(F1, . . . ,Fm) 6= ∅ then

∆(K1, . . . ,Kn) ∩∆(F1, . . . ,Fm) = ∆(K1, . . . ,Kn,F1, . . . ,Fm).

(K5) combines the ideas of (A4) and (A5) into a single principle adapted
to the probabilistic context. In particular (K5) implies that if each of two dis-
tinct sets of agents arrive at the same set of possible conclusions then the result
of considering the evidence bases of all the agents together should result in the
same set of possible conclusions.

The intuitive idea behind p-merging is that the probabilistic evidence from
a set of agents should be shared on an equal basis by some objective collabo-
rative process, which takes full account of the declared evidence base of each
agent, including the implicit ignorance of each agent whenever an agent has not
specified a singleton probability function as constituting her evidence base. The
result of this process should be a new “social” or merged evidence base, which
represents the total declared evidence of the set of agents, just as if the set had
merged to form a single agent. As in the case of the evidence base of an indi-
vidual agent, it is clear from (K2) that this merged evidence base will not in
general be a singleton. It should be viewed instead as the set of those possible
probability functions which are rationally generated by the total evidence of the
set of agents in the absence of any other information.

This general intersubjective approach to probabilistic merging was expounded
in a slightly different form by the second author in [22], and accords well with
certain philosophical ideas elaborated independently by Williamson [20],[19].
Both stress the advantages of initially merging the evidence bases of a set of
agents into a single evidence base, as opposed to merging the probabilistic be-
liefs of the individual agents, i.e. the unique probability functions which each
agent may hypothetically arrive at solely by considering her own evidence base
and applying to it a standard inference process8 such as the maximum entropy
inference process ME.

Our reformulation of the KPP principles into a probabilistic framework is a
fairly straightforward translation with the exception, as noted above, of (K4).
We should note however that whereas Williamson previously advocated the rel-
evance of the KPP principles in relation to the merging of evidence bases, in
a more recent paper [21] he rejects the KPP principles (A2), (A4), and (A6)
as representing norms which are too strong to be applicable in this context.

8See e.g. [15] for a comprehensive account of single agent inference processes, including
ME.
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However in order to arrive at this conclusion Williamson uses a particular in-
terpretation of the epistemological status of an agent’s evidence base, which
he calls “granting”, and which we do not share; for this reason we do not find
Williamson’s arguments against these principles to be conclusive. Furthermore,
as we will show later, the hitherto known p-merging operators which satisfy
perhaps the most attractive desiderata other than (K1)-(K5) do in fact satisfy
the above principles (K1), (K2), (K3), and satisfy (K4) and (K5) at least
when their application is restricted to bounded evidence bases.

In [22] and [23] a specific p-merging operator is defined, which we will here
call the Social Entropy operator9, denoted by ∆KL, which is strongly related to
Kullback-Leibler divergence. In the next section we will examine in more detail
some of the properties of the operator ∆KL together with those of its dual, the
Linear Entropy operator ∆̂KL.

3 Two Probabilistic Merging Operators

3.1 The Social Entropy Operator∆KL

In order to define the social entropy operator we first need to define Kullback-
Leibler divergence KL : DL × DL → R ∪ {+∞}. This may be thought of as
a function which measures of the (asymmetric) “informational distance” from
one probability function to another, and returns a value in the interval [0,+∞].
The asymmetry of this notion is the reason for the use of the term “divergence”
rather than “distance”. The divergence from w ∈ DL to v ∈ DL is +∞ whenever
vj 6= 0 and wj = 0 for some atom αj . If this is not the case we say that w
dominates v and write w� v. Let Sig(w) = {j: wj 6= 0}. Then the Kullback-
Leibler divergence is defined by

KL(v‖w) =

{ ∑
j∈Sig(w) vj log

vj
wj

if w� v,

+∞ otherwise.

with the usual convention that x log x is defined to take the value zero at x = 0.

9In [22] and [23] this was introduced as the first stage of a merging operator called the
social entropy process, SEP, which for any multiset of evidence bases chooses a unique
merged probability function. The first stage consists of applying ∆KL and the second stage
chooses the unique maximum entropy point in the resulting merged evidence base.
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Given evidence bases K1, . . . ,Kn ∈ CL let

CK1,...,Kn
= min {

n∑
i=1

KL(v‖w(i)) : v ∈ DL ; w(1) ∈ V LK1
, . . . ,w(n) ∈ V LKn

}

It is easy to see that this is well-defined (see [23]). Note that this value lies in
the interval [0,+∞] . Also CK1,...,Kn

= 0 if and only if v = w(1) = . . . = w(n)

in the definition above in which case the K1, . . . ,Kn are jointly consistent. Also
CK1,...,Kn

is finite if and only if the following holds:

There is some atom αj such that for no i is it the case that

for all w ∈ V LKi
w(αj) = 0. (1)

The p-merging operator ∆KL is now defined as follows: for any L and any
K1, . . . ,Kn ∈ CL ∆KL

L (K1, . . . ,Kn) is defined as

{v ∈ DL : ∃w(1)∈ V LK1
, . . . ,w(n)∈ V LKn

s.t.

n∑
i=1

KL(v‖w(i)) = CK1,...,Kn
}

In [23] it is shown that for any K1, . . . ,Kn ∈ CL this set ∆KL
L (K1, . . . ,Kn) is

always a non-empty closed convex region of DL, and hence it follows that the p-
merging operator ∆KL satisfies (K1). We note however that although ∆KL is
everywhere defined10 it is really only interesting as a merging operator for those
K1, . . . ,Kn ∈ CL for which the relatively undemanding condition (1) above
is satisfied, since otherwise applying ∆KL simply returns the whole space DL.
The fact that social entropy operator ∆KL satisfies (K2) follows at once from
the fact noted above that CK1,...,Kn

= 0 if and only if v = w(1) = . . . = w(n)

in the definition of CK1,...,Kn . Moreover ∆KL satisfies (K3) trivially by defi-
nition.

∆KL turns out to have many other desirable properties, some of which
closely resemble the axiomatic properties which have been used to characterise
the ME inference process in [17], and [15]. (See [22], [23], [1] for details.) In
particular we mention the following:

1. Language Invariance

Suppose L ⊂ L′ and K1, . . . ,Kn ∈ CL. K1, . . . ,Kn may also be re-
garded as evidence bases in CL′. For any w′ ∈ DL′

denote by w′ �L the
marginalisation of w′ to DL. Then

∆KL
L (K1, . . . ,Kn) = {w′ �L : w′ ∈ ∆KL

L′ (K1, . . . ,Kn)}

10In the presentation in [23] the region ∆KL
L (K1, . . . ,Kn) is only defined assuming that

condition (1) holds, but this does not significantly affect the results.
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Language Invariance means that if we change a multiset of evidence bases
only by adding propositional variables to the language in which they are
formulated but add no new evidence, then the restriction of the new
merged evidence base to the original language is the same as the original
merged evidence base. The fact that ∆KL satisfies language invariance
is proved in [1].

2. The Consistent Irrelevant Information Principle.

Let L = L1 ∪ L2 where L1 and L2 are disjoint propositional languages.
Let K1, . . . ,Kn and F1, . . . ,Fn be knowledge bases formulated for the
languages L1 and L2 respectively, and suppose that F1, . . . ,Fn are jointly
consistent. Then

∆KL
L (K1 ∪ F1, . . . ,Kn ∪ Fn) �L1 = ∆KL

L (K1, . . . ,Kn) �L1.

where �L1 denotes marginalisation to DL1 . This property of ∆KL fol-
lows from Lemma 5.2 of [1]. Together with language invariance, it ensures
that if a set of agents have evidence bases formulated in the language
L1 then their merged evidence base remains the same if each agent ac-
quires additional new evidence formulated in a disjoint language L2 and
the newly merged evidence base of all the agents is then restricted to
the language L1, provided that all the new evidence in the language L2 is
jointly consistent.

3. ∆KL Generalises the LogOp Pooling Operator

In [22] the following equivalence between (i) and (ii) below is given, which
provides an alternative characterisation of ∆KL in the case when condi-
tion (1) above is satified:

(i) The L-probability functions v, w(1), . . . ,w(n) minimize
∑n
i=1 KL(v‖w(i))

subject only to w(1) ∈ VK1
, . . . ,w(n) ∈ VKn

.

(ii) The L-probability functions w(1), . . . ,w(n) maximize
∑J
j=1(

∏n
k=1 w

(k)
j )

1
n ,

subject only to w(1) ∈ VK1
, . . . , w(n) ∈ VKn

, and

vj =
(
∏n
k=1 w

(k)
j )

1
n∑J

j=1(
∏n
k=1 w

(k)
j )

1
n

for all j = 1, . . . , J . (2)

Whenever (2) holds we write v = LogOp(w(1), . . . ,w(n)). LogOp
is of course just the normalised geometric mean, or “logarithmic”,
pooling operator familiar to decision theorists. Thus we see that for
v to be in ∆KL there must exist some w(i) ∈ VKi which maximise
the normalising factor in the definition of logarithmic pooling, and
for which v = LogOp(w(1) . . .w(n)) . In the very special case when
each each agent i specifies a single probability function w(i) then
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∆KL
L (K1, . . . ,Kn) is just the singleton {LogOp(w(1), . . . ,w(n))}. No-

tice that condition (1) is exactly the condition required to ensure that
the LogOp pooling operator is defined.

4. ∆KL is a Natural Companion to the ME Inference Process

At first sight this assertion might seem strange, since if ∆KL is applied
to the evidence base K of a single agent X it simply returns the same
evidence base in the form VK, which does not help X to choose a single
preferred point in VK. However let us imagine that X now appoints a
fanatically unbiased oracle Y with evidence base F = {< 1

J ,
1
J . . .

1
J >},

in order to help her to choose a preferred point in her evidence base. Y
advises X to imagine cloning herself n times, for some large n, and forming
a committee of n+1 members consisting of the n clones of X, together with
Y as chairman. Finally Y advises X to compute the result of applying
∆KL to the n + 1 evidence bases of the members of An and then to let
n → ∞. The result of this procedure is that the merged evidence bases
converge towards a single point, the maximum entropy point of VK. (See
[23] for a proof11.)

The following theorem is our first main result of the present work.

Theorem 3.1. The p-merging operator ∆KL satisfies the principles (K1),
(K2) and (K3). Furthermore ∆KL satisfies (K4) and (K5) provided that the
evidence bases to which ∆KL is applied are restricted to WBCL.

The fact that (K1), (K2) and (K3) hold for ∆KL has been established above.
The rest of the theorem will be proved in section 4.

�

3.2 The Linear Entropy Operator ∆̂KL

The Linear Entropy operator ∆̂KL is a p-merging operator which may natu-
rally be considered as the dual of the ∆KL p-merging operator defined above.

In brief, whereas ∆KL (K1, . . . ,Kn) comprises those v which globally min-
imise

n∑
i=1

KL(v‖w(i))

11In [23] a similar more general result is proved which holds for any number of agents.
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∆̂KL (K1, . . . ,Kn) comprises those v which globally minimise

n∑
i=1

KL(w(i)‖v)

Given evidence bases K1, . . . ,Kn ∈ CL let

ĈK1,...,Kn
= min {

n∑
i=1

KL(w(i)‖v) : v ∈ DL ; w(1) ∈ V LK1
, . . . ,w(n) ∈ V LKn

}

As in 3.1 it is easy to see that this is well-defined, non-negative, and zero
if and only if v = w(1) = . . . = w(n) in the definition of ĈK1,...,Kn

. However

unlike the case for ∆KL we may note that ĈK1,...,Kn is always finite since any
v all of whose coordinates are non-zero will always give a finite non-zero value
to
∑n
i=1 KL(w(i)‖v) .

The p-merging operator ∆̂KL is now defined as follows: for any L and any
K1, . . . ,Kn ∈ CL ∆̂KL

L (K1, . . . ,Kn) is defined as

{v ∈ DL : ∃w(1)∈ V LK1
, . . . ,w(n)∈ V LKn

s.t.

n∑
i=1

KL(w(i)‖v) = ĈK1,...,Kn}.

It is easy to show (cf. section 4) that whenever

n∑
i=1

KL(w(i)‖v) = ĈK1,...,Kn

then v = LinOp(w(1), . . . ,w(n)) where LinOp(w(1), . . . ,w(n)) just returns
the arithmetic mean of w(1), . . . ,w(n) . Hence ∆̂KL is a generalisation of the
arithmetic pooling operator LinOp, and indeed coincides with that operator
in the special case when each Ki specifies a unique probability function.

It is straightforward to prove that
∑
j∈Sig(y) xj log

xj
yj

is a convex func-

tion over the domain {(x,y) ∈ DL × DL: y � x}. It follows that the set
∆̂KL
L (K1, . . . ,Kn) is nonempty, closed and convex for all K1, . . . ,Kn ∈ CL and

hence that the p-merging operator ∆̂KL satisfies (K1). As in the case of ∆KL ,
the fact that the operator ∆̂KL satisfies (K2) follows at once from the remark
above that ĈK1,...,Kn

= 0 if and only if v = w(1) = . . . = w(n) in the definition

of ĈK1,...,Kn . Similarly ∆̂KL satisfies (K3) trivially by definition.

It can also be shown that, as in the case of ∆KL, Language Invariance and
the Consistent Irrelevant Information Principle of section 3.1 also hold for the
p-merging operator ∆̂KL. Finally if the “chairman” procedure of section 3.1,
which related ∆KL to ME is instead applied using ∆̂KL then the point chosen in
in VK is not the maximum entropy point, but the CM∞ point, or limit centre
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of mass point, of VK. These last results will be proved in a forthcoming paper.

Before stating our second theorem of this article we introduce the following
natural strengthening of the disagreement principle (K4).

(K4*) Strong Disagreement Principle.

Let K1, . . . ,Kn ∈ CL and F1, . . . ,Fm ∈ CL.
Then ∆(K1, . . . ,Kn) ∩∆(F1, . . . ,Fm) = ∅ implies that

∆(K1, . . . ,Kn,F1, . . . ,Fm) ∩∆(K1, . . . ,Kn) = ∅.

Trivially the strong disagreement principle implies the disagreement princi-
ple.

Theorem 3.2. The p-merging operator ∆̂KL satisfies (K1), (K2), (K3) and
(K5). Furthermore the evidence bases to which ∆KL is applied are restricted
to BCL, ∆KL satisfies the Strong Principle of Disagreement (K4*).

The fact that (K1), (K2) and (K3) hold for ∆̂KL has been established above.
The proofs for (K4*) and (K5) will be given in the next section.

�

Historical Remarks.

Minimising Kullback-Leibler divergence from a convex set to a given prob-
ability function, or KL-projection, has long been used for updating and in ma-
chine learning algorithms (see e.g. [3], [6], [5], [8] and [2]). Connections between
the minimisation of sums of Kullback-Leibler divergences and the operators
LinOp and LogOp have also been noted previously by several authors within
somewhat different frameworks. In particular we should mention the work of
Matúš [13] who proved a number of convergence theorems covering the iteration
of alternating operations of KL–projection or its dual to several compact con-
vex sets followed by LinOp or, respectively, LogOp, and showing that under
certain conditions these iterations converge to fixed points. These fixed points
correspond respectively to particular points of ∆̂KL or ∆KL .

4 Proofs of Results

In this section we prove the two main results of this paper – the theorems 3.2
and 3.1. Since the properties (K1), (K2) and (K3) have already been estab-
lished for the two p-merging processes it remains to deal with the agreement
and disagreement principles. The proofs of the agreement principle (K5) are
straightforward and are given in 4.5 below. However the proofs for the disagree-
ment principle ((K4) or (K4*)) are more complex and are different in flavour
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for ∆KL and for ∆̂KL. The result for ∆̂KL is proved in 4.6 and that for ∆KL in
4.8.

We start by reviewing some geometrical properties of the space of proba-
bility functions DL with respect to the divergence KL. First of all notice that
for given v ∈ DL the Kullback-Leibler divergence KL(w‖v) is a strictly convex
function in the first argument over the domain specified by v � w. Owing to
this if v ∈ DL is given and W ⊆ DL is a closed convex set such that there is at
least one probability function in W which v dominates, then we can define the
KL-projection of v to W . This is defined as that unique point w ∈ W which
minimizes KL(w‖v). For more details see [2].

The following theorem is due to Csiszár [5].

Theorem 4.1 (Extended Pythagorean Theorem). Let w be the KL-projection
of v ∈ DL to a closed convex set W ⊆ DL. Let a ∈W be such that v� w� a.
Then

KL(a‖w) + KL(w‖v) ≤ KL(a‖v).

�
An illustration of the extended Pythagorean theorem:

V LK

w

a

v

KL-projection

KL(a‖w)+KL(w‖v)≤ KL(a‖v).

The following theorem is well known in information theory, see for instance
[4].

Theorem 4.2 (Parallelogram Theorem). Let w(1), . . . ,w(n),v ∈ DL be such
that v� w(i) for all 1 ≤ i ≤ n. Then

n∑
i=1

KL(w(i)‖v) =

n∑
i=1

KL(w(i)‖LinOp(w(1), . . . ,w(n)))+

+n ·KL(LinOp(w(1), . . . ,w(n))‖v).
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�

Lemma 4.3. Let u(1), . . . ,u(n) ∈ DL and a(1), . . . ,a(n) ∈ DL be such that

n∑
i=1

KL(u(i)‖v) >

n∑
i=1

KL(a(i)‖a),

where v = LinOp(u(1) . . . ,u(n)) and a = LinOp(a(1) . . . ,a(n)). Assume that
u(i) � a(i) for all 1 ≤ i ≤ n. Then

n∑
i=1

∑
j∈Sig(v)

(a
(i)
j − u

(i)
j ) · (log u

(i)
j − log vj) < 0.

Proof. First of all notice that by the assumption u(i) � a(i) for all 1 ≤ i ≤ n
we have that

KL(a(i)‖v)−KL(u(i)‖v)−KL(a(i)‖u(i)) =
∑

j∈Sig(v)

(a
(i)
j −u

(i)
j ) · (log u

(i)
j − log vj).

(3)
The above makes sense since v � u(i) for all 1 ≤ i ≤ n. By the parallelogram
theorem

n∑
i=1

KL(a(i)‖v) =

n∑
i=1

KL(a(i)‖a) + n ·KL(a‖v).

Hence
n∑
i=1

KL(a(i)‖a)−
n∑
i=1

KL(u(i)‖v) + n ·KL(a‖v)−

−
n∑
i=1

KL(a(i)‖u(i)) =

n∑
i=1

∑
j∈Sig(v)

(a
(i)
j − u

(i)
j ) · (log u

(i)
j − log vj). (4)

Since KL(w‖v) is a convex function in both arguments whenever v � w,
by the Jensen inequality

n ·KL(a‖v)−
n∑
i=1

KL(a(i)‖u(i)) ≤ 0. (5)

The inequality (5) together with the assumption that

n∑
i=1

KL(u(i)‖v) >

n∑
i=1

KL(a(i)‖a)

gives that left-hand side of the equality (4) is negative and so the right-hand
side and

n∑
i=1

∑
j∈Sig(v)

(a
(i)
j − u

(i)
j ) · (log u

(i)
j − log vj) < 0

follows.
�
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The following picture illustrates the situation in the proof above for n = 2.
Arrows indicate corresponding Kullback-Leibler divergences.

u(2)

u(1)

v

a(2)

a(1)

a

Lemma 4.4. Let w(1), . . . ,w(n) ∈ DL be fixed. Then

(i)
∑n
i=1 KL(w(i)‖v) is strictly minimal for v = LinOp(w(1), . . . ,w(n)).

(ii)
∑n
i=1 KL(v‖w(i)) is strictly minimal for v = LogOp(w(1), . . . ,w(n))

provided that LogOp(w(1), . . . ,w(n)) is defined, i.e. provided that for some j

for all i w
(i)
j 6= 0 .

Proof. (i) Let w = LinOp(w(1), . . . ,w(n)). Clearly w� w(i) for all 1 ≤ i ≤ n.
It is easy to see that

∑n
i=1 KL(w(i)‖v) −

∑n
i=1 KL(w(i)‖w) = n · KL(w‖v).

Since KL(w‖v) = 0 only if v = w it follows that
∑n
i=1 KL(w(i)‖v) is strictly

minimal for v = LinOp(w(1), . . . ,w(n)).

(ii) The proof is equally straightforward, see e.g. [22].
�

We will denote by Γ̂KL
L (K1, . . . ,Kn) the set of all n-tuples w(1) ∈ V LK1

, . . . ,

w(n) ∈ V LKn
such that for some v ∈ ∆̂KL

L (K1, . . . ,Kn)

n∑
i=1

KL(w(i)‖v) = ĈK1,...,Kn
.

This notation will be useful in the following two proofs.

Theorem 4.5. (i) The ∆̂KL p-merging operator satisfies (K5).
(ii) The ∆KL p-merging operator satisfies (K5) for all evidence bases in

WBCL.

Proof. The proofs are very similar in both cases, so we shall just give the proof
for ∆̂KL below.
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Since we are assuming that ∆̂KL
L (K1, . . . ,Kn) ∩ ∆̂KL

L (F1, . . . ,Fm) 6= ∅ ,

there is some v ∈ ∆̂KL
L (K1, . . . ,Kn)∩ ∆̂KL

L (F1, . . . ,Fm). For any such v this is

equivalent to the assertion that for some w(1) . . .w(n) ∈ Γ̂KL
L (K1, . . . ,Kn) and

some u(1) . . .u(m) ∈ Γ̂KL
L (F1, . . . ,Fm)

n∑
i=1

KL(w(i)‖v) = ĈK1,...,Kn
and

m∑
i=1

KL(u(i)‖v) = ĈF1,...,Fm .

Then since by definition ĈK1,...,Kn + ĈF1,...,Fm ≤ ĈK1,...,Kn,F1,...,Fm the
same vectors v,w(1) . . .w(n),u(1) . . .u(m) globally minimize the sum

n∑
i=1

KL(w(i)‖v) +
m∑
i=1

KL(u(i)‖v) (6)

subject to w(i) ∈ V LKi
, 1 ≤ i ≤ n and u(i) ∈ V LFi , 1 ≤ i ≤ m.

Thus v ∈ ∆̂KL
L (K1, . . . ,Kn,F1, . . . ,Fm), and

ĈK1,...,Kn + ĈF1,...,Fm = ĈK1,...,Kn,F1,...,Fm . (7)

Since v was arbitrary we have proved that

∆̂KL
L (K1, . . . ,Kn) ∩ ∆̂KL

L (F1, . . . ,Fm) ⊆ ∆̂KL
L (K1, . . . ,Kn,F1, . . . ,Fm).

Now suppose x ∈ ∆̂KL
L (K1, . . . ,Kn,F1, . . . ,Fm). Then for some y(1) . . .y(n),

z(1) . . . z(m) ∈ Γ̂KL
L (K1, . . . ,Kn,F1, . . . ,Fm) and

n∑
i=1

KL(y(i)‖v) +

m∑
i=1

KL(z(i)‖v) = ĈK1,...,Kn,F1,...,Fm .

In view of (7) if we did not now have that
∑n
i=1 KL(y(i)‖x) = ĈK1,...,Kn

and∑m
i=1 KL(z(i)‖x) = ĈF1,...,Fm then this would contradict the minimality of ei-

ther ĈK1,...,Kn
or ĈF1,...,Fm . Hence x ∈ ∆̂KL

L (K1, . . . ,Kn)∩∆̂KL
L (F1, . . . ,Fm)

and the result is proved.

The proof for ∆KL is similar except that the final argument involving equa-
tion (7) fails if either of the quantities CK1,...,Kn or CF1,...,Fm is +∞ , which is
the reason for the restriction of evidence bases to WBCL in that case.

�

The following theorem proves that the ∆̂KL p-merging operator satisfies
the strong disagreement principle (K4*) if the evidence bases are restricted to
BCL. This together with theorem 4.5 above and the results of section 3.2 is
sufficient to establish our theorem 3.2.
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Theorem 4.6. Let K1, . . . ,Kn ∈ CL and F1, . . . ,Fm ∈ CL be such that for
every

(v(1), . . . ,v(n),u(1), . . . ,u(m)) ∈ Γ̂KL
L (K1, . . . ,Kn,F1, . . . ,Fm)

there is (a(1), . . . ,a(m)) ∈ Γ̂KL
L (F1, . . . ,Fm) such that

u(i) � a(i) for all 1 ≤ i ≤ m.

Then ∆̂KL
L (K1, . . . ,Kn) ∩ ∆̂KL

L (F1, . . . ,Fm) = ∅ implies

∆̂KL
L (K1, . . . ,Kn,F1, . . . ,Fm) ∩ ∆̂KL

L (K1, . . . ,Kn) = ∅.

Proof. Assume that v ∈ ∆̂KL
L (K1, . . . ,Kn) and

v ∈ ∆̂KL
L (K1, . . . ,Kn,F1, . . . ,Fm).

Let (v(1), . . . ,v(n)) ∈ Γ̂KL
L (K1, . . . ,Kn) be an n-tuple associated with v; in

particular then v = LinOp(v(1), . . . ,v(n)).
Let

(w(1), . . . ,w(n),u(1), . . . ,u(m)) ∈ Γ̂KL
L (K1, . . . ,Kn,F1, . . . ,Fm)

be an (n+m)-tuple associated with v; then

v = LinOp(w(1), . . . ,w(n),u(1), . . . ,u(m)).

This can only happen when

w(i) = v(i) for all 1 ≤ i ≤ n

since the projections of the fixed v to each VKi
are unique. Since in that case

v = LinOp(v(1), . . . ,v(n))

and
v = LinOp(v(1), . . . ,v(n),u(1), . . . ,u(m)).

we have that
v = LinOp(u(1), . . . ,u(m)).

Now let a ∈ ∆̂KL
L (F1, . . . ,Fm) and (a(1), . . . ,a(n)) ∈ Γ̂KL

L (F1, . . . ,Fm) be
associated m-tuple with a and such that u(i) � a(i) for all 1 ≤ i ≤ m. This is
possible by the assumption of the theorem.

If v ∈ ∆̂KL
L (F1, . . . ,Fm) then

∆̂KL
L (K1, . . . ,Kn) ∩ ∆̂KL

L (F1, . . . ,Fm) 6= ∅

and we are done. On the other hand we show that v 6∈ ∆̂KL
L (F1, . . . ,Fm) leads

to a contradiction. First of all notice that from this assumption it follows that

m∑
i=1

KL(u(i)‖v) >

m∑
i=1

KL(a(i)‖a).
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Then by the lemma 4.3

m∑
i=1

∑
j∈Sig(v)

(a
(i)
j − u

(i)
j ) · (log u

(i)
j − log vj) < 0.

On the other hand by the extended Pythagorean theorem (the theorem 4.1) and
by the equation (3)

0 ≤
m∑
i=1

KL(a(i)‖v)−KL(u(i)‖v)−KL(a(i)‖u(i)) =

=

m∑
i=1

∑
j∈Sig(v)

(a
(i)
j − u

(i)
j ) · (log u

(i)
j − log vj) < 0.

which is a contradiction.
�

The following counterexample shows that the assumption of theorem 4.6 re-
stricting evidence bases to BCL is necessary even if we reformulate the theorem
using the weaker disagreement principle (K4) in place of (K4*).

Example 4.7. Assume that |L| = 2, VK1
= {(1, 0, 0, 0)}, VK2

= {(0, 1, 0, 0)},
VF1

= {(x, 0, 1 − x, 0) : x ∈ [0, 1]} and VF2
= {(0, x, 1 − x, 0) : x ∈ [0, 1]}.

Clearly ∆̂KL
L (K1,K2) = {( 1

2 ,
1
2 , 0, 0)} and ∆̂KL

L (F1,F2) = {(0, 0, 1, 0)}. There-

fore ∆̂KL
L (K1,K2) ∩ ∆̂KL

L (F1,F2) = ∅. It can now be shown that

∆̂KL
L (K1,K2,F1,F2) = {( 1

2 ,
1
2 , 0, 0)}

which suffices to contradict the disagreement principle.

�

Before leaving the discussion of ∆̂KL we note that this p-merging opera-
tor is one of a large class of p-merging operators which all satisfy the same
properties as ∆̂KL does in Theorem 4.6. These are formed by the class of op-
erators generated by substituting any convex Bregman divergence12 in place
of Kullback–Leibler divergence in the definition of ∆̂KL. This holds primarily
because the well-known geometric properties of Bregman divergences, such as
the extended Pythagorean theorem above, are exactly what is required for the
proof of (K4*). Amongst such Bregman divergences is the very special case of
squared Euclidean distance E2 defined by

E2(w‖v) =

J∑
j=1

(wj − vj)2.

12For the definition of a Bregman divergence see [2].
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Since in the case of this divergence the zero points cause no discontinuity, the
strong disagreement principle holds without any restriction on the class CL
for the ∆̂E2 p-merging operator defined for any K1, . . . ,Kn ∈ CL as the set
∆̂E2
L (K1, . . . ,Kn) of probability functions v ∈ DL which globally minimise the

sum of squared Euclidean distances

n∑
i=1

E2(w(i)‖v) (8)

subject only to the conditions that w(1) ∈ V LK1
, . . . ,w(n) ∈ V LKn

.

However what all the p-merging operators defined by convex Bregman di-
vergences have in common is that they are generalisations of LinOp and reduce
to LinOp when marginalised as pooling operators. The social entropy opera-
tor ∆KL, which marginalises to the LogOp pooling operator therefore has very
different characteristics from p-merging operators defined in this way.

Finally the theorem below proves that the ∆KL-merging operator satisfies
the disagreement principle (K4) if the evidence bases are restricted to WBCL.
This together with theorem 4.5 above, and the earlier results of section 3.1, is
sufficient to establish our theorem 3.1.

Theorem 4.8. For all evidence bases K1, . . . ,Kn,F1, . . . ,Fm ∈ WBCL the
social entropy operator ∆KL satisfies (K4).

Proof. Let K1, . . . ,Kn,F1, . . . ,Fm ∈ WBCL be such that
⋂m
i=1 VFi 6= ∅.

Given our assumption that evidence bases belong to WBCL we can assume
that for every 1 ≤ i ≤ n and every 1 ≤ j ≤ J there is w ∈ VKi such that
wj 6= 0. Then we must show that

∆KL(K1, . . . ,Kn) ∩∆KL(F1, . . . ,Fm) = ∅

implies that

∆KL(K1, . . . ,Kn,F1, . . . ,Fm) ∩∆KL(K1, . . . ,Kn) = ∅.

We prove the contrapositive. Suppose that for some fixed v we have that v ∈
∆KL(K1, . . . ,Kn) and v ∈ ∆KL(K1, . . . ,Kn,F1, . . . ,Fm). Let v(1), . . . ,v(n) be

such that they minimize
∑J
j=1

∑n
i=1 vj log

vj

v
(i)
j

subject to v(1) ∈ VK1 , . . . ,v
(n) ∈

VKn
. Then

v = LogOp(v(1) . . . ,v(n)). (9)

Similarly let w(1), . . . ,w(n),u(1), . . . ,u(m) be such that they minimize

J∑
j=1

n∑
i=1

vj log
vj

w
(i)
j

+

J∑
j=1

m∑
i=1

vj log
vj

u
(i)
j
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subject to

w(1) ∈ VK1 , . . . ,w
(n) ∈ VKn and u(1) ∈ VF1 , . . . ,u

(m) ∈ VFm .

Equivalently w(1), . . . ,w(n),u(1), . . . ,u(m) are such as to maximize

J∑
j=1

[ n∏
i=1

w
(i)
j

m∏
i=1

u
(i)
j

] 1
n+m

(10)

subject to w(1) ∈ VK1 , . . . ,w
(n) ∈ VKn and u(1) ∈ VF1 , . . . ,u

(m) ∈ VFm and are
such that

v = LogOp(w(1), . . . ,w(n),u(1), . . . ,u(m)). (11)

The above can only happen when for all j such that vj 6= 0

w
(i)
j = v

(i)
j for all 1 ≤ i ≤ n (12)

since
∑
j,vj 6=0 vj log

vj

w
(i)
j

for fixed v is strictly convex function and hence it has

a unique minimizer subject to w(i) ∈ VKi for all 1 ≤ i ≤ n. Notice that this
holds only under the assumption that for every 1 ≤ i ≤ n there is x ∈ VKi

such
that xj 6= 0. Hence by (9) and (10) the equation (11) can be rewritten as

vj =
[
∏m
i=1 u

(i)
j ]

1
m

(
∑
j [
∏n
i=1 v

(i)
j

∏m
i=1 u

(i)
j ]

1
n+m )

m+n
m

(
∑
j [
∏n
i=1 v

(i)
j ]

1
n )

n
m

.

Notice that the denominator is independent of j.

On the other hand if for any given j vj = 0 then w
(1)
j = 0, . . . , w

(n)
j = 0 and

u
(1)
j = 0, . . . , u

(m)
j = 0. This is proved in [23] theorem 3.6 (ii), and holds only

under the assumption that for every 1 ≤ i ≤ n and every j there is x ∈ VKi

such that xj 6= 0. So the denominator above is certainly non-zero.

Putting the above together it follows that

v = LogOp(u(1), . . . ,u(m)).

Now let a be consistent with Fi for all i so that in particular

a ∈ ∆KL(F1, . . . ,Fm) =

m⋂
i=1

VFi .

Consider

F (λ) =

J∑
j=1

[ n∏
i=1

v
(i)
j

m∏
i=1

(u
(i)
j + λ(aj − u(i)j ))

] 1
n+m

.
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We need to show that

∆KL(K1, . . . ,Kn) ∩∆KL(F1, . . . ,Fm) = ∆KL(K1, . . . ,Kn) ∩
m⋂
i=1

VFi 6= ∅.

For this it is sufficient to prove that d
dλF |λ=0 > 0 unless u(1) = . . . = u(n) = v.

The idea here is that if the maximum value of F is obtained for u(1), . . . ,u(n)

which are not all equal then from the existence of the point a ∈
⋂m
i=1 VFi we

can show that F (0) < F (λ) for some λ > 0 ; this is a contradiction since by
the convexity of the VFi each u(i) + λ(a − u(i)) ∈ VFi so that F (0) < F (λ)
contradicts the maximality of (10) given (12).

Note that vj =
(
∏m
i=1 u

(i)
j )

1
m

M where M =
∑J
j=1(

∏m
i=1 u

(i)
j )

1
m < 1 unless

u(1) = . . . = u(m).

d

dλ
F (λ) =

J∑
j=1

( n∏
i=1

v
(i)
j

) 1
n+m

[ m∏
i=1

u
(i)
j + λ

m∑
i=1

(aj − u(i)j )
∏

i 6=i′,i′=1,...,m

u
(i′)
j +

+O(λ2)
] 1
n+m−1 ·

[ m∑
i=1

(aj − u(i)j )
∏

i 6=i′,i′=1,...,m

u
(i′)
j +O(λ)

]
.

We got this by expanding
∏m
i=1(u

(i)
j + λ(aj − u(i)j )) =

∏m
i=1 u

(i)
j + λ

∑m
i=1(aj −

u
(i)
j )
∏
i 6=i′,i′=1,...,m u

(i′)
j +O(λ2). Furthermore

d

dλ
F (λ)|λ=0 =

J∑
j=1

(

n∏
i=1

v
(i)
j )

1
n+m [(Mvj)

m]−1+
1

n+m ·

·
[ m∑
i=1

( aj
u
(i)
j

Mm(vj)
m−Mm(vj)

m
)]

= C·
J∑
j=1

(vj)
n

n+m−m+ m
n+m+m

[ m∑
i=1

aj

u
(i)
j

−1
]

=

= C ·
[ J∑
j=1

m∑
i=1

vjaj

u
(i)
j

−m
]

= C ·
[ J∑
j=1

aj

m∑
i=1

(
∏m
k=1 u

(k)
j )

1
m

u
(i)
j M

−m
]
,

where C = M
1

n+m · (
∑J
j=1[

∏n
i=1 v

(i)
j ]

1
n )

n
n+m is a positive constant.

Note that if u
(i)
j = 0 and aj 6= 0 for some 1 ≤ i ≤ m and some j then

F (λ) → +∞ as λ → 0+. On the other hand if also aj = 0 then we can just
leave out that index j from the summation. Finally by the AG-inequality

C ·
[ J∑
j=1

aj

m∑
i=1

1

u
(i)
j

(
∏m
k=1 u

(k)
j )

1
m

M
−m

]
≥
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≥ C ·
[ J∑
j=1

ajm ·
( m∏
i=1

1

u
(i)
j

) 1
m (
∏m
k=1 u

(k)
j )

1
m

M
−m

]
= Cm

1−M
M

.

The last term is greater than 0 unless u(1) = . . . = u(m) which concludes the
proof.

�

The following counterexample shows that the theorem above fails if WBCL
is replaced by CL in the theorem above.

Example 4.9. Let V LK1
= {(0, 0, 13 ,

2
3 )} and V LF1

= {(0, 13 ,
2
9 ,

4
9 )}.

Obviously ∆KL(K1) ∩∆KL(F1) = ∅.
However ∆KL(K1,F1) = LogOp

[
(0, 0, 13 ,

2
3 ) , (0, 13 ,

2
9 ,

4
9 )
]

= (0, 0, 13 ,
2
3 ).

�
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[6] Csiszár, I. and Tusnády, G. (1984), Informational Geometry and Alternating
Minimization Procedures, Statistic and Decisions, Supplement Issue No. 1, pp.
205-237

[7] Deming, W.E. and Stephan, F.F. (1940), On a least square adjustment of
a sampled frequency table when the expected marginals totals are unknown,
Ann. Math. Statist., 11:427-444
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