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Smoothing non-smooth systems with low-pass filters

James Hook
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Abstract

Low pass filters, which are used to remove high frequency noise from time
series data, smooth the signals they are applied to. In this paper we examine
the action of low pass filters on discontinuous or non-differentiable signals
from non-smooth dynamical systems. We show that the application of the
filter is equivalent to a change of variables, which transforms the non-smooth
system into a smooth one. We examine this smoothing action on a variety of
examples and demonstrate how it is useful in the calculation of a non-smooth
system’s Lyapunov spectrum.

Introduction

Non-smooth dynamical systems are used to model mechanical systems
with impacts or friction, as well as control systems with switching between
distinct modes of operation. Non-smooth systems are also interesting math-
ematically as they generically exhibit bifurcation structures that would be
impossible or of high co-dimension in the space of smooth systems [1].

In this paper we introduce the notion of smoothing a non-smooth system
with a low-pass filter. The idea is that the filter’s action on the time-series
can be used to construct a change of variables that actually transforms a
non-smooth system into a smooth one. There are some subtleties here, the
‘smoothed’ system will not be smooth everywhere as singular discontinuities
(grazes and chattering points) will be mapped to singularities in the new flow,
also the transformation and the smoothed system will typically be impossible
to compute analytically. However we will still be able to obtain it for simple
examples or numerically for more complex systems. To apply a smoothing
transformation numerically to an orbit we simply apply the associated low
pass filter to the time-series. Indeed whenever an engineer analyses data from
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a non-smooth system that has been filtered they are inadvertently studying
a ‘smoothed’ system of the sort presented here.

There are therefore two complimentary reasons for trying to undersand
the action of these smoothing transformations. Firstly we might find the
smoothing action useful or interesting in its own right (we will show that it
is useful for computing Lyapunov exponents) and secondly such systems are
already being investigated whenever experimental data is smoothed with a
low pass filter.

This paper is organised as follows. In section 1 we show how a non-
smooth system can be transformed into a smooth one using a change of
variables. The approach used in section 1 is rather ac hoc and does not use
low pass filters but it allows us to understand the link between the smooth
and non-smooth system in as simple a setting as possible. In section 2 we
show how a similar smoothing action can be achieved using our low-pass
filter formulation. We examine some analytic examples and consider some
of the signal processing issues associated with the transformation. In section
3 we briefly explain the state space reconstruction method which enables
us to model a differentiable dynamical system from its time-series data and
examine some simple numerical examples. In section 4 we argue that linear
stability (when it exists) is preserved by the smoothing procedure. In section
5 we apply the smoothing procedure to time series from a impacting Duffing
oscillator and calculate its Lyapunov spectrum using a time-series method
that relies on differentiability.

1. Ad hoc smoothing

Consider a mass on a linear spring whose motion is obstructed by a wall
placed at the spring’s natural length. Suppose that when the mass hits the
wall it bounces off it elastically with coefficient of restitution c. Let x(t)
measure the distance from the wall to the mass. The motion of the mass is
governed by ẍ = −x, along with the rule that whenever limτ→t x(τ) = 0 we
set ẋ(t) = limτ→t−cẋ(τ).

Orbits to this system are composed of a series of smaller and smaller
semi-circles, see figure 1. A solution evolves by describing one of the semi-
circles until it reaches x = 0, when it instantaneously jumps to the start of
a new smaller semi-circle and so on. This roughly periodic behaviour is just
like that of a smooth system with a stable fixed point, where solutions spiral
into the equilibrium.
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Figure 1: Left to right: deforming the discontinuous system into a smooth system.

Indeed we can imagine sticking a pin into the origin of this picture and
stretching the space around it to fill the plane. The two sides of the boundary
would meet and it would be possible to glue them together so that the jump
‘take offs’ and ‘landings’ joined together. If any kinks in the picture could
then be ironed out we would have something that looked exactly like the
stable equilibrium of a smooth system.

It turns out that for this simple example we can formulate a transforma-
tion that has these exact properties. In polar co-ordinates

T

(
r
θ

)
=

(
rc

θ
π

2θ

)
,

maps the semi-circle starting at (ẋ, 0) to the 360 degree spiral starting at
(ẋ, 0) and finishing at (cẋ, 0). T transforms the original non-smooth system
to a smooth system governed by

d

dt

[
p
q

]
=

[
log(c)
π

1

−1 log(c)
π

][
p
q

]
.

Let φ : X × R+ 7→ X be the flow of the original discontinuous system
and ϕ : R2 × R+ 7→ R2 be the flow of the new smoothed system. The
transformation T provides the commutation

φt(x, ẋ) = T−1 ◦ ϕt ◦ T (x, ẋ),

so that we can substitute one flow for another. Likewise their stability is
related by

dφt(x
′, ẋ′)

d(x′, ẋ′)
|(x,ẋ) =

dT−1(p, q)

d(p, q)
|ϕt◦T (x,ẋ) ×

dϕt(p, q)

d(p, q)
|T (x,ẋ) ×

dT (x′, ẋ′)

d(x′, ẋ′)
|(x,ẋ).
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This alternative expression is much simpler to evaluate as we no longer have
to worry about repeated application of saltation matrices every time the orbit
crosses the discontinuity. Instead we only need to evaluate the stability of
the smooth flow then multiply it by the derivatives of T . Moreover since
the derivatives of T and its inverse are everywhere bounded the Lupanov
spectrums of the two systems are identical. It is easy to show from the
smoothed system that both Lupanov exponents are equal to log(c)/π.

We are able to play the same game with the bouncing ball system. This
evolves according to ẍ = −g along with the rule that whenever limτ→t x(τ) =
0, we set ẋ(t) = limτ→t−cẋ(τ). Here the analysis is only a little more
complicated, we start by mapping parabolas to 360 degree spirals to obtain
a transformation between the discontinuous bouncing ball system and the
smooth (everywhere except the origin) system

d

dt

[
p
q

]
=

2πg(c− 1)

log c
√
p2 + q2

[
log c
2π

1

−1 log c
2π

] [
p
q

]
.

It should come as no surprise that this ‘smoothed’ system is not quite smooth.
The conjugacy between its flow and that of the bouncing ball means they
must share stability properties and the bouncing ball is a singular system;
all orbits reach the origin in finite time.

It would be fantastic if we could explicitly construct such conjugacies for
more complicated non-smooth systems. Unfortunately although our filter
based transformation has the desired smoothing action, explicitly applying
it to obtain the smoothed system is not typically possible as it requires inte-
grating solutions to the original problem. However we will show in the next
section that it is still possible to examine the smoothed system by smoothing
time-series data recorded from the non-smooth system.

2. Smoothing with low-pass filters

A finite impulse response filter Ψ is a linear operator given by

Ψ(f)(t) =

∫ 0

−w
f(t+ τ)h(τ)dτ,

where h(τ) is the kernel and w the window. We can use filters like these to
create a smoothing transformation. Let φ : Rn × R 7→ Rn be the flow of a
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non-smooth system with state space Rn. Now define Φ : Rn 7→ Rn by

[Φ(x)]i =

∫ 0

−w
[φτ (x)]ih(τ)dτ,

so that Φ(x)’s ith component is calculated by integrating the value of the ith
co-ordinate of x’s orbit up to w seconds backwards in time. For the time-
being we will assume that Φ is an invertible map. Given this assumption Φ
induces a new flow ϕ defined by

ϕt(y) = Φ ◦ φt ◦ Φ−1(y).

So that if we think of [φt(x)]i as a function of time t and likewise for ϕ, then
we have

x Φ(x)

φ(x) Ψ[φ(x)] = ϕ[Φ(x)]

φ

Φ

Ψ

ϕ

Or in words, the unfiltered orbits from the transformed (smoothed) system
are identical to the filtered orbits of the original system. Whenever we analyse
time-series data from a non-smooth system that has been filtered (to reduce
noise say) we are inadvertently studying one of these smoothed systems. It
is therefore important to understand how this smoothing process affects the
features that we are interested in e.g. stability and grazing points.

2.1. Invertibility

For our purposes it is essential that Φ be invertible. This requirement
can be split into two parts. Firstly we require the filter Ψ to be invertible as
an operator on the time series φt(x). Secondly given this first condition we
still require that the transformation Φ itself is an injection. Both of these
problems are well studied in the context of smooth systems [2, 3].

Filters, as defined in (6), are best described in Fourier space where we
have

Ψ̂(f)(s) = f̂(s)×H(s),
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Figure 2: Left to right: vector field of original discontinuous system, once smoothed system
and twice smoothed system.

wherêdenotes the Fourier transform and H is the transfer function

H(s) =

∫ w

0

h(−τ) exp[−2πisτ ]dτ.

If the application of a filter is to be invertible it is essential that H(s) = 0

only when f̂(s) = 0 also. Of course if we are applying a filter to remove
noise the transformation will not be invertible (we can not expect to recover
deleted noise) but we must still compare the spectrum of the input data to
the transfer function of the filter to ensure that the only information lost is
in a band consigned as noise.

As we will show in example 3 invertibility of Ψ does not guarantee in-
vertibility of Φ. In these cases we use the method of delays to construct an
invertible map with the required properties. Taken’s theorem states that for
generic smooth flow φ, delay d and smooth measuring function f , there exists
finite m such that

F (x) =
(
f [x], f [φ−d(x)], ..., f [φ−md(x)]

)
,

is invertible and provides the conjugacy between φ and a diffeomorphically
equivalent system ϕ. Of course our systems are non-smooth and our measur-
ing function depend on the flow so they are not generic. Therefore Taken’s
theorem gives us no guarantees but we follow its spirit and find that the
method of delays works well in this non-smooth setting.

2.2. Example 1 - Moving average transformation applied twice to a discon-
tinuous system

Let φ be the flow of the system governed by (ẋ, ẏ) = (1, 0) along with
the rule that whenever limτ→t x(τ) = 0, we set (x(t), y(t)) = (1, limτ→t 2y),
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see figure 2. The moving average transformation Φ is the simplest of our
smoothing transformations with window w = 1 and constant kernel h = 1.

The transformation is piecewise smooth on smooth on the state space of
our system. For x < 0 or x ≥ 2 there are no discontinuities in the one-second
backward time flow so that

Φ

[
x
y

]
=

∫ 0

−1

[
x− τ
y

]
dτ =

[
x− 1

2

y

]
.

For 1 ≥ x < 2 there will be a discontinuity in the one-second backwards time
flow so that the integral expression for Φ will contain contributions from
before and after the jump,

Φ

[
x
y

]
=

∫ 1−x

−1

[
x− 1− τ

y
2

]
dτ +

∫ 0

1−x

[
x− τ
y

]
dτ =

[
2x− 5

2
xy
2

]
.

The transformed system ϕ is the governed by the non-smooth ODE[
ṗ
q̇

]
=

dΦ

(.x, y)

[
ẋ
ẏ

]
Φ−1(p,q)

,

and inverting Φ and substituting gives

[
ṗ
q̇

]
=



[
1
0

]
, for p < −0.5,

[
2
2q

p+ 5
2

]
, for −0.5 ≤ p < 1.5,

[
1
0

]
, for 1.5 ≤ p.

Applying the moving average transformation we have obtained a non-differentiable
but continuous system conjugate to our original discontinuous system.

We can now apply the transformation a second time, which is equivalent
to one application of a smoother filter with window w = 2 and kernel

h(τ) =

{
τ + 2, for −2 ≤ τ < −1,
−τ, for −1 ≤ τ ≤ 0.
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Again, this transformation is piecewise smooth but now depends on the be-
haviour of the two second backward time flow,

Φ

[
x
y

]
=



[
x− 1
y

]
, for x < 0,

[
x2

2
− 3

2

( (x−1)2

4
+ 1

2
)y

]
, for 1 ≤ x < 2,

[
−x2

2
+ 4x− 11

2

(1− (x−3)2

4
)y

]
, for 2 ≤ x < 3,

[
x− 1
y

]
, for 3 ≤ x.

The discontinuous system is transformed into the differentiable system gov-
erned by

[
ṗ
q̇

]
=



[
1
0

]
, for p < −1,

[ √
2p+ 3

4q(
√

2p+3−1)

(
√

2p+3−1)2+2

]
, for −1 ≤ p < 0.5,

[ √
5− 2a

2q(
√

5−2a−1)

4−(1−
√

5−2a)2

]
, for 0.5 ≤ a < 2,

[
1
0

]
, for 2 ≤ p.

Through double application of the moving average transformation we have
obtained a differentiable system conjugate to our original discontinuous sys-
tem.

The non-differentiable features that would have affected the stability of
the system have been smoothed out. But their effect on the dynamics has
not been lost, it has been integrated into the new smooth flow. Smoothing
non-smooth systems doesn’t destroy information about the discontinuities,
rather it encodes this information in a different way.
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Figure 3: Left to right: vector field of original discontinuous system and once smoothed
system, red curve indicates grazing orbit and its T image.

This smoothing action at regular discontinuities (jumps or switches that
are not grazes or chattering points) can be shown to work in a general setting.
In [4] we present normal forms for smoothing these sorts of discontinuities
with the moving average transformation.

2.3. Example 2 - Moving average transformation applied once to a non-
differentiable grazing system

Let φ be the flow governed by

[
ẋ
ẏ

]
=



[
0
−1

]
, for x < y2,

[
1
0

]
, for x ≥ y2.

This system has a grazing point at the origin. The moving average transfor-
mation is given by

Φ

[
x
y

]
=



[
x

y − 1
2

]
, for x < y2,

[
y2 + (x−y2)2

2

y + (1−x+y2)2

2

]
, for y2 ≤ x < y2 + 1,

[
x− 1

2

y

]
, for y2 + 1 ≤ x.
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Unfortunately we can not explicitly invert Φ as it requires us to solve a
quartic polynomial. However we can approximate the flow at the image of
the graze by ignoring terms that are smaller than x or y2 to obtain a local
description of the transformed system for (p, q) ≈ (0, 0.5) given by[

ṗ
q̇

]
=

[ √
p√
p

]
+

[
0
−1

]
+

[
0 −1
0 −1

] [
p

q − 1
2

]
.

Notice that although the square root expression will be non-differentiable at
p = 0 the affine part of the right hand side ensures that there is no problem
with non-uniqueness of solution.

It is easy to show that the transformed system is differentiable everywhere
except at the image of the grazing orbit. Away from this orbit the smoothing
action will be exactly as in example 1, the non-differentiable switch will be
replaced with a differentiable switch and any saltation associated with the
switch integrated into the new flow.

As with the regular jump and switch this smoothing action is totally
general and we derive a normal form for the moving average smoothed graze
in [4].

3. State space reconstructions

We have shown that filtered data from non-smooth systems resembles
unfiltered data from smoothed system. Therefore in cases where we are
unable to study the smoothed systems directly by explicitly computing and
applying the transformation, we can instead record time-series data from the
non-smooth system and filter it to obtain a time-series that is equivalent to
a recording from the smoothed system.

In this section we give a very brief and informal account of the method of
state space reconstruction through which one is able to construct a numerical
model of a differentiable system from its time-series. For a more thorough
exposition see [5].

Suppose that φ is a differentiable flow on a manifold M ⊂ Rn. We are
able to record an orbit of the system on a computer by storing the value of
φt(x) every τ seconds. The data is a long sequence [x(i)]Ni=1 with the property
that x(i+ 1) = φτ [x(i)].

Provided the stored orbit explores the manifold M sufficiently thoroughly
we will be able to build a piecewise affine model of M and the time-τ map
φτ : M 7→M .
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Figure 4: Reconstruction from data cartoon, grey region represents ball of radius ε centered
at x(i).

To construct an affine model of M and φτ in the vicinity of the point x(i)
we start by searching the time-series for other data points that are within a
distance ε of x(i). Let x(j1), x(j2), ..., x(jm) be the points that are close to
x(i). A basis for the tangent space of M at x(i) is approximated by the span
of the matrix

T (i) =
[
x(j1)− x(i) x(j2)− x(i) . . . x(jm)− x(i)

]
,

which is computed by taking the SVD decomposition and ignoring basis
vectors corresponding to small singular values,

T (i) = U(i)S(i)V (i),

so the basis of M ’s tangent space at x(i) is given by [U1(i), U2(i), ..., Ud(i)]
say, where Uk(i) is the kth column of U(i).

The time-τ map takes points close to x(i) to points close to x(i+ 1) and
we have already shown how to approximate M in these locations. Using
these tangent vectors for local co-ordinates at x(i) and x(i+ 1) we have

φτ [x(i) + z] = x(i+ 1) + U(i+ 1)|dT̂ (i)(V t(i)s|−1
d )z,

where

U(i+ 1)|d =
[
U1(i+ 1) U2(i+ 1) . . . Ud(i+ 1)

]
,

T̂ (i) =
[
x(j1 + 1)− x(i+ 1) x(j2 + 1)− x(i+ 1) . . . x(jm + 1)− x(i+ 1)

]
,

(V t(i)s|−1
d ) =

[
V1(i)
S1,1(i)

V2(i)
S2,2(i)

. . . Vd(i)
Sd,d(i)

]
.
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With sufficient data it is possible to reconstruct a system accurately
enough to compute its Lyapunov spectrum and even predict its future be-
haviour.

3.1. Example 3 - moving average transformation and bump transformation
applied to a noisy data from a discontinuous system

We return to the mass on a spring system used in section 1. The mo-
tion of the mass is governed by ẍ = −x along with the rule that whenever
limτ→t x(τ) = 0, we set ẋ(t) = limτ→t−cẋ(τ). To set up an artificial study
of noisy experimental data we simulate this system on a computer and add
Gaussian noise to every variable to produce a noisy time series. The noisy
data is useless for reconstructing the phase space of the system, all we see is a
noisy blob, see figure 5. In order to reduce the noise in the signal we smooth
it with the moving average filter. Since we are working in a numerical setting
we have the time series stored as a discrete sequence so any filter will be in
the form of a weighted sum rather than an integral.

The moving average smoothed data clearly has much less noise than the
original signal. However if we use this data to try to reconstruct the original
phase space we have two problems. Firstly, as we would expect the data is
no-longer discontinuous. Smoothing the data is equivalent to smoothing the
system and we have already shown that the moving average transformation
will map a discontinuous system to a continuous but non-differentiable one.
Secondly, the transformation is not an injection; different points in the orig-
inal phase space are mapped to the same point under the smoothing, so we
can not reconstruct a smooth dynamical system from this data. To remedy
this problem we add a delay vector

D[x(t), dx(t)] = [x(t), dx(t), x(t− d)].

The delayed data gives a reconstruction of the state space of the continuous
but non-differentiable system conjugate to the original system via the moving
average transformation with delay. This smoothed system is an ODE with
discontinuous right hand side whose state space is a non-differentiable cone
formed from two smooth halves.

To obtain a totally smooth system we can apply a filter with smooth
kernel. The bump filter has window w = 1 and kernel

h(τ) = e
−1

x(x−1) .
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Figure 5: Left to right: non-smooth system, moving average smoothed system, bump
smoothed system. Top to bottom: velocity variable versus time, phase space, delay space.
(Bottom left is noise free.)

In principal this filter can completely smooth any integrable data, however
since we are working numerically we instead expect to see any jumps in
the first few derivatives to be removed. The exact action will depend on
the stiffness of the data and the length of the filtering window. Again, the
smoothed time series is not sufficient for a phase space reconstruction as the
transformation is not injective, so we use the method of delays.

The smoothed delayed data gives a reconstruction of the smooth sys-
tem conjugate to the original system via the bump filter with delay. This
smoothed system is an ODE with smooth right hand side with state space a
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Non-smooth 

stuff Σ
Smooth stuff

Φ(Σ)

Figure 6: Poincaré map cartoon.

smooth cone. In fact if we position ourselves to ‘look down’ into the cone we
would have a picture exactly like the smoothed system described in section
1.

We therefore find that it is impossible to apply a filter to reduce noise from
a non-smooth time series without transforming the system into a smooth one.
However this needn’t be a problem. We argue in section 4 that the smoothed
system will have the same stability properties as the original system, and we
have already shown how non-smooth discontinuities are smoothed out by the
transformations so that if we are interested in looking for e.g. a graze we
know to look for a square root singularity in the flow.

4. Smoothness and stability

The easiest way to show that smoothing preserves stability is to consider
a Poincaré return map constructed away from any discontinuities. Provided
there are no discontinuities in the w-second backward time flow from the
section Σ, we can be sure that Φ is smooth on Σ. The Poincaré maps of the
original and smoothed systems are therefore smoothly conjugate and will
have exactly the same stability properties.

An immediate consequence of this stability equivalence is that our smooth
systems will often not be smooth everywhere. If a non-smooth system con-
tains a grazing orbit, say, its return map will contain singular points which
will have to be mirrored in the return map of the smoothed system.

Just as we saw in the ad hoc smoothing of the bouncing ball and the
moving average smoothing of the graze discontinuity, these singular discon-
tinuities give rise to isolated singularities in the otherwise smooth flow of the
transformed system.
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5. Numerical Example with stability calculation

In this section we will apply our smoothing procedure to time-series data
recorded from a computer simulation of a non-linear Duffing impact oscilla-
tor. We will then use the smoothed data to calculate the Lyapunov spectrum
of the system using a method that relies on the underlying system being dif-
ferentiable.

The system we use is taken from [6] where Stefanski uses the coupling
method to determine the largest Lyapunov exponent of the system from a
numerical experiment. This provides us with a standard to test our result
against. The system is governed by

ẍ = x(1− x2)− 0.1ẋ+ cos t

along with the rule that whenever limτ→t x(τ) = 0.5, we set ẋ(t) = limτ→t−0.65ẋ(τ).
In order to make the system autonomous we include a forcing phase variable
θ that obeys θ̇ = 1, along with the rule that whenever limτ→t θ(τ) = 2π,
we set θ(t) = 0. This autonomous formulation has two different discontinu-
ities, one associated with the impacting in the oscillator model, and another
associated with the phase variable reset.

We simulate a long orbit of this chaotic system. The system lives on a
strange attractor, which can be broken into three distinct regions depending
on which discontinuities points reach forwards and backwards in time. We
plot in blue points which have phase reseted and are about to impact, green
for points which have impacted are about to impact again and red for points
which have impacted and are about to reset, see figure 7.

We apply the bump smoothing transformation to this data. The smoothed
data is a single connected component. This transformation is not an injec-
tion, so for the calculation we include a delay vector in each of the original
variables.

Using the state space reconstruction method presented in [5] we com-
pute the Lyapunov spectrum of the system from the data. We calculate
the largest exponent to be 0.0813, which agrees with Stefanski calculation of
0.0832. Since the system is autonomous and dissipative we know that the
second largest eigenvalue is zero and that the third is negative and greater
in magnitude that the first. Our results agree with this theory; we have
second exponent 0.0031 and third −0.1663. Since our system analyses 6 di-
mensional data we could produce up to three additional spurious exponents.
Our algorithm produces two further finite exponents at much larger order of
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Figure 7: Top: phase and state space time series for Duffing oscillator, bottom: smoothed
phase and state space time series for Duffing oscillator.

magnitude and the last exponent becomes infinite during the calculation, see
figure 8.

6. Conclusion

We have shown that low-pass filters can be used to formulate smooth-
ing transformations that map discontinuous or non-differentiable systems to
smooth (or smooth everywhere except for the image of grazes) systems. We
have demonstrated two different techniques for studying these smoothed sys-
tems.
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Figure 8: Left: convergence of three largest Lupanov exponents, right: behaviour of all 6
exponents, 6th exponent in bold red is taken to be −∞ shortly after experiment begins.

For simple systems, we can explicitly formulate the transformation and
the smoothed system to see how features in the non-smooth flow are inte-
grated into the flow of the smoothed system.

For more complex systems we smooth a time-series, then use state space
reconstruction techniques to study the smoothed system. We have shown
that the smoothing procedure preserves stability properties, which gives us
a novel way to calculate the Lupanov spectrum of a non-smooth system.

That these smoothing transformations are brought about whenever we
apply a low-pass filter to time-series data means that experimentalists may
already be inadvertently studying smooth systems of the sort presented here.
Our message to experimentalists would be not to avoid this smoothing action
by using filters with very short windows or by using more complex smooth-
ing techniques such as the Savitzky Golay smoothing filter. Instead, since it
is possible to understand how non-smooth features are transformed by the
smoothing, they should apply low-pass filters to reduce the noise then take
the effect of the smoothing into account when analysing the data. For exam-
ple by looking for discontinuities in the second derivative when looking for
switches after applying the moving average filter, or looking for square root
behaviour in the flow when looking for grazes in a smoothed system.

In future work we hope to apply the ideas in this paper to experimental
data in the spirit described above. There are many other open questions on
the signal processing side of things. For instance, what is the optimal window
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and kernel for a smoothing filter when applied to a discontinuous system?
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