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In this thesis I explore three new topics in Dynamical Systems. In Chapters 2 and
3 I investigate the dynamics of a family of asynchronous linear systems. These sys-
tems are of interest as models for asynchronous processes in economics and computer
science and as novel ways to solve linear equations. I find a tight sandwich of bounds
relating the Lyapunov exponents of these asynchronous systems to the eigenvalue
of their synchronous counterparts. Using ideas from the theory of IFSs I show how
the random behavior of these systems can be quickly sampled and go some way to
characterizing the associated probability measures.

In Chapter 4 I consider another family of random linear dynamical system but
this time over the Max-plus semi-ring. These models provide a linear way to model
essentially non-linear queueing systems. I show how the topology of the queue net-
work impacts on the dynamics, in particular I relate an eigenvalue of the adjacency
matrix to the throughput of the queue.

In Chapter 5 I consider non-smooth systems which can be used to model a wide
variety of physical systems in engineering as well as systems in control and computer
science. I introduce the Moving Average Transformation which allows us to system-
atically ’smooth’ these systems enabling us to apply standard techniques that rely
on some smoothness, for example computing Lyapunov exponents from time series
data.
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Chapter 1

Introduction

Preface

As a PhD student in the CICADA (Center for interdisciplinary computational and

dynamical analysis) group I have been exposed to a wide variety of exciting new topics

in applied mathematics. The group’s focus on novel systems arising in Computer

science, Control, Biology and Engineering has given me the opportunity to study a

wide variety of so called Hybrid systems. Although there is no universally accepted

definition of a Hybrid system any dynamical system which contains a mixture of

discrete and continuous dynamics roughly fits the bill. The non-smooth systems

I investigate in chapter 5 are certainly of this form and whilst the asynchronous

processes considered in the earlier chapters are not hybrid as such they do share a

common unusualness, in the sense that whilst having some tractable structure they

do not easily fit into the standard theory of continuous or discrete dynamical systems.

Developing theory for these new systems which are of great interest in science and

engineering is an important new challenge in mathematics and I hope to show that

despite their apparent complexity many of these new systems can still be successfully

investigated in an analytic way.

My Thesis consists of three main bodies of work; Asynchronous linear systems,

Max-plus linear systems and Non-smooth systems which I present in chapters 2,3 and

4 and 5 respectively.

10
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Chapters 2, 4 and 5 form the basis of research papers which I hope to submit

shortly.

The remainder of this introductory chapter is divided along the lines of my three

topics. Each chapter includes a fairly comprehensive introduction so the remaining

sections of this first chapter simply introduce some of the basic concepts or highlights

any pertinent standard theory not discussed in the following chapters.

1.1 Asynchronous linear systems

In chapters 2 and 3 our basic set up is as follows. We have a finite set of matrices

{A(i) ∈ RN×N : i = 1, 2, ..,M} which we randomly apply to some state x ∈ RN

by at each stage drawing in ∈ {1, 2, ..,M} with some Bernoulli or Markov rule and

multiplying so that

x(n+ 1) = A(in)x(n) (1.1)

The idea here is that each of the matrices corresponds to a different action in some

system of agents with no global control over what happens. For instance we could

have a group of agents trying to synchronize some value associated with them by

randomly changing their value to be closer to their neighbors, without some hierarchy

there is no way to control the order in which the agents update so we have such an

asynchronous system where the matrix A(i) corresponds to the ith agent updating

their state.

For a class of systems with some additional structure I address the questions; i)

when does this system converge? ii) if it exists is the equilibrium a random variable

or somehow predetermined? and iii) what is the expected rate of convergence?

There are two important pieces of standard theory here. The Multiplicative er-

godic theorem and the theory of Contraction on Average Iterated Function Systems

(IFSs). Some key IFS results are quoted and referenced in chapter 2 sections 2.2 and

2.3. Several versions of the Multiplicative ergodic theorem have existed before Valery

Oseledec’s work but his is the strongest and most recent.
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Definition T : X 7→ X is ergodic with ergodic measure µ if for all continuous

f : X 7→ R and µ almost all x

lim
n→∞

1

n

n−1∑
k=0

f [T k(x)] =

∫
X

f(x′)dµ (1.2)

Definition A cocyle C : X × N 7→ Rn×n on a dynamical system T : X 7→ X is

defined by, C(x, 0) = I and

C(x, n+ 1) = F [T n(x)]C(x, n) (1.3)

Where F : X 7→ Rn×n is continuous.

Theorem If T : X 7→ X is an ergodic map with ergodic measure µ and C : X×N 7→

Rn×n a cocycle on X then

λ = lim
n→∞

1

n
log
||C(x, n)u||
||u||

(1.4)

exists for µ almost all x and depends only on u taking at most n different values,

the Lyapunov exponents.

This result implies that if we choose matrices from a Markov chain and multiply them

together the size of the real parts of the product’s eigenvalues should scale with these

Lyapunov exponents and therefore, with probability one, not depend on the sequence

of matrices we choose.

1.2 Max-plus linear systems

In chapter 4 I investigate the dynamics of stochastically timed petri-nets (a fairly

general queue type model) using Max-plus algebra. I fully detail the application,

whose connection to the Max-plus system is quite involved, in the chapter so this

section will serve simply to introduce the reader to the Max-plus algebra and Max-

plus linear systems.

Formally the Max-plus algebra is the semi-ring Rmax = [R ∪ −∞,⊕,⊗] where

a⊕ b = max{a, b} and a⊗ b = a+ b, we include minus infinity to act as the additive

(taking the maximum) identity which we will denote ε throughout.
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We can now define the moduloid RN
max by taking an N vector of elements from

Rmax and further define linear maps on this moduloid in exact analogy with the linear

maps on RN with standard algebra, that is with matrices.

The map T : RN
max 7→ RN

max is linear if and only if there exists a max-plus matrix

M ∈ RN×N
max s.t. T (x) = M ⊗ x for all x ∈ RN

max where

[M ⊗ x]i =
N⊕
j=1

Mi,j ⊗ xj =
N

max
j=1

Mi,j + xj (1.5)

So that linear maps on RN
max are exactly as the standard linear maps on RN except

we substitute max for plus and plus for times.

Deterministic, autonomous max-plus linear systems are therefore evolved by a

dynamic of the form

x(n+ 1) = A⊗ x(n) = A⊗n ⊗ x(0) (1.6)

The matrix product A⊗n = A ⊗ A ⊗ ... ⊗ A has a very neat interpretation in terms

of paths through weighted graphs. Suppose that G is a graph on N vertices with an

edge from j to i of weight Ai,j whenever Ai,j is not equal to ε and no edge when this

is the case. Now consider the components of A⊗ A we have

[A⊗ A]i,j =
∞

max
k=1

Ai,kAk,j (1.7)

which is the weight of the maximally weighted path of length 2 from j to i through

the graph, likewise A⊗ni,j is the weight of the maximally weighted path of length n

from j to i through the graph. Finally when we include the initial condition x(0)

we have the interpretation that A⊗n ⊗ x(0)i is the weight of the maximally weighted

path of length n that ends at i and begins with an initial weight x(0)j when the first

vertex in the path is j.

For a stochastic or non-autonomous linear system we have

x(n+ 1) = A(n)⊗ x(n) = [
n⊗
k=1

A(k)]⊗ x(0) (1.8)

for some sequence of Max-plus matrices [A(k)]∞k=1. In this case we have more or less

the same interpretation

[
n⊗
k=1

A(k)]i,j = max
k1,k2,...,kn−1

A(1)j,k1 + A(2)k1,k2 + ...+ A(n)kn−1,i (1.9)
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is the weight of the maximally weighted path of length n from j to i that accumulates

a weight from kth transition according to the components of the matrix A(k) which

we can think of as the maximally weighted path through a graph whose weights

change from stage to stage.

In chapter 4 I show that an analogue of the multiplicative ergodic theorem holds

for random Max-plus matrices and prove some new bounds on the Lyapunov expo-

nents relating them to the topology of the graphs induced by the matrices.

1.3 Smoothing non-smooth systems

In chapter 5 I introduce an original technique for smoothing non-smooth systems

using the Moving Average Transformation. In this introduction I shall briefly discuss

via an example how my technique differs from the standard vector field regularization

procedure.

Consider the non-smooth ODE

 ẋ

ẏ

 =


1 x for y ≥ 0

1 for y < 0

 (1.10)

By defining ẋ = 1 ẏ = 0 on {y = 0, x ≤ 0} we have existence and uniqueness of

solution φt(x, y) for all positive time t for any initial condition (x, y).

This sliding system contains a sliding discontinuity on {y = 0, x ≤ 0} and a non-

differentiable switch on {y = 0, x > 0} as well as a grazing point at (0, 0). See Fig

1,a.



CHAPTER 1. INTRODUCTION 15

Figure 1.1: Sketch of solutions for a)Original non-differentiable system, b) Differen-

tiable regularized system, c) Differentiable Moving Average Transformation trans-

formed system.

The regularization procedure defines a new vector field

H(x, y) = hε(y)[F (x, y)−G(x, y)] +G(x, y) (1.11)

where F and G are the vector fields as defined above and below the switching surface

respectively and

hε(y) =


0 for y < 0

1
2

+ y
2ε

for 0 ≤ y ≤ 1

1 for y > 1

(1.12)

The new system (ẋ, ẏ) = H(x, y) is differentiable and the sliding surface becomes the

slow manifold of the resulting fast slow system. See Fig 1,b.

My technique employs the moving average transformation

(p, q) = Φ(x, y) =

∫ 0

−1

φτ (x, y)dτ (1.13)
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which is multi-valued on {y = 0, x ≤ 0} as there is no unique backwards behavior

from the sliding surface. This turns out not to matter, we simply take all the possible

branches of Φ and define the transformed system

(ṗ, q̇) =

 Φ′(p, q)F [Φ−1(p, q)] for Φ−1(p, q)2 ≥ 0

Φ′(p, q)G[Φ−1(p, q)] for Φ−1(p, q)2 < 0
(1.14)

which is differentiable. The sliding surface still ’absorbs’ other orbits but in a differ-

entiable manner through a square root term in the flow. See Fig 1,c.

Whilst the regularization approach is easier to understand and implement it

changes the orbit structure of the system (the dynamics!) and results in a stiff

system which can not be reliably investigated numerically.

My approach does not affect the orbit structure, indeed the original and trans-

formed systems are topologically equivalent. Nor does it result in a stiff system as

the action of the discontinuity is ’spread out’ over the length of the averaging period

which is not intended to be on a short scale.

In chapter 5 I rigourously investigate the action of the transformation on many

of the typical non-smooth discontinuity normal forms and transform examples both

analytically and numerically. As an application of the technique I calculate the

Lyupanov spectrum of a chaotic non-smooth system from its time-series.



Chapter 2

Consensus in an asynchronous

network: an IFS perspective

Abstract

We examine a linear model of a group of agents reaching consensus in an asynchronous

networked environment. We show that the system can be described by an Iterated

Function System IFS that contracts on average. This observation allows us to draw

on a rich theory and in particular we make some quantitative links between the

dynamics of the model and the topology of the network that it lives on.

Introduction

We are interested in asynchronous systems that live on networks. By this we mean

that for some graph G = 〈V,E〉 the state of the whole system is the direct product

of states at each vertex x =
⊗

v∈V xv and that associated with each vertex v is an

’update’ function fv whose application only changes the state of vertex v and only

depends on the states of those vertices adjacent to v in G.

The state of our system is then evolved by applying a sequence of these functions

to it. Asynchrony is reflected by the fact that the vertices do not update in unison.

Instead they update in some random order and if we then choose our sequence of

17



CHAPTER 2. CONSENSUS IN AN ASYNCHRONOUS NETWORK 18

updates (σ1, σ2, ...) from some Markov chain then we arrive at a sequence of functions

(fσ1 , fσ2 , ...) which we can apply to the state to evolve the system. This is therefore a

formalism with scope to define a wide variety of asynchronous agent based models [1].

For instance such a system could describe the dynamics of some series of interactions

in a social network [2] or the evolution of a consensus or synchronization algorithm

distributed over a large network of communicating robots [3]. In examining these

systems it is natural to ask how the topology of the network impacts on the dynamics?

For the class of linear systems that we examine two useful theories are developed.

One describes the rate of convergence to consensus. The other involves recasting a

systems as an IFS then examining the Hausdorff dimension of the induced probability

measure which it turns out is related to the topology of the network. Whilst this

sounds very abstract it has a neat interpretation to do with the relative importance

of the exact order in which vertices updates for a particular network.

This chapter is laid out as follows. In section 1 we introduce our linear model

and prove that it is stable and that its rate of convergence is almost surely a con-

stant which we bound with an expression involving the eigenvalue of an associated

synchronous process. In section 2 we show how to recast the model as an IFS and

for an explicit example use this formulation to quickly approximate statistics of the

systems asymptotic behavior. In section 3 we use the commutivity relations defined

by the network to bound the Hausdorff dimension of the measure associated with the

IFS and treat some further examples.

2.1 The Model

Let G = 〈V,E〉 be an undirected connected finite graph. For each v ∈ V we associate

a state space Xv = R so that the systems state space is given by the direct product

X =
⊗

v∈V Xv = R|V |=N . Next we assume that each vertex ’updates’ itself inde-

pendently of the others with exponential parameter λv inter-update-times. When a

vertex v updates it does so by taking its new state to be a skewed mean of its old



CHAPTER 2. CONSENSUS IN AN ASYNCHRONOUS NETWORK 19

state and the states of its neighbors so that

xv 7→ πv,vxv +
∑

u:(v,u)∈E

πv,uxu (2.1)

where πv,v +
∑

u:(v,u)∈E πv,u = 1 is a measure supported (i.e. non zero) on all indices

in the sum.

So vertices independently choose to update at random times and when they do

they average themselves to be more like the other vertices around them but not

necessarily in a uniform way. That this system converges to a consensus when all

vertices have the same state is fairly obvious. What is more interesting (hopefully!)

is that although the value of this eventual equilibrium is a random variable the rate

of convergence to it is almost surely a constant. The measure induced by this system

(the probability distribution of the equilibria) can be very complicated, we show how

to quickly approximate its statistics using backwards sampling and show how its

fractal properties can be characterized by the topology of the graph G.

In all subsequent examples we will use a less general formulation with πi,j = ε
di

where di is the degree of i in G and πi,i = 1 − ε for some real parameter ε. We can

therefore talk about the system on graph G without specifying the measures π.

2.1.1 Discrete Time Random Matrix Model

Index the vertices of G by {1, 2, .., N}. Updating vertex i is equivalent to multiplying

the system state vector x = (x1, x2, ..., xN)> by the matrix A(i) where

A(i)j,k =



πi,i for j = k = i

πi,k for j = i, (j, k) ∈ E

1 for j = k 6= i

0 otherwise

(2.2)

So that A(i) is the identity except for the ith row which takes its entries from the

measure π. Now the vertices update independently and randomly with exponential

parameter βi inter-update-times and this induces a measure on the possible sequences

of updates. Let S = {1, 2, ..., N}N be the set of infinite sequences of vertices so that
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an element σ = (σ1, σ2, ...) corresponds to σ1 updating first then σ2 and so on. At

any point in time the probability that the ith vertex is the next to update is given

by

µi =

1
βi∑N
j=1

1
βj

(2.3)

So the measure induced on S is Bernoulli (µ1, µ2, ..., µN). We can now define the

discrete time system

x(n) = A(σn)A(σn−1)...A(σ1)x(0) = A(σ)|n[x(0)] (2.4)

Where A takes a sequence in {1, 2, ..., N} to the corresponding product of matrices

which we then apply to the state. This is equivalent to the original continuous

time system since the nth stage of the discrete time system is exactly the state of the

continuous time system at time T (n) the time of the nth update. We will make use of

the law of large numbers throughout this chapter so we state it here for completeness

Theorem Suppose that (xn)∞n=1 is a sequence of i.i.d. random variables with finite

expectation, Exi = µ <∞ then

P[ lim
n→∞

1

n

n∑
k=1

xk − µ = 0] = 1 (2.5)

Which implies

lim
n→∞

T (n)

n
=

1∑N
j=1 βj

(2.6)

which we will use to reconcile our convergence results for the discrete system with

the continuous time system.

2.1.2 Convergence to Equilibrium

All of the A(i) are row-stochastic so they act as the identity on the diagonal

D = {x ∈ Rd : x1 = x2 = ... = xN} (2.7)

Theorem With probability-1 limn→∞ x(n) exists and is inD. We will write limn→∞ x(n) =

d[x(0), σ], since the eventual equilibrium is a well defined function of the initial

condition and update sequence.
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Proof Define t(x) ∈ {1, 2, ..., N} s.t. xt(x) ≥ xi ∀i and likewise b(x) ∈ {1, 2, ..., N}

s.t. xb(x) ≤ xi ∀i choosing the greatest possible t(x) and least b(x) if they are

non-unique. Now δD(x) = xt(x) − xb(x) = 0 if and only if x ∈ D. We shall show

that with probability 1 limn→∞ δD(x(n)) = 0.

Claim 1 δD[x(n)] is non-increasing

Proof Suppose that xi = xt(x) and that we apply the map A(i) the new value

of xi will be
∑N

j=1A(i)i,jxj ≤ xi so xt(x) can not increase and likewise xb(x)

can not decrease so δD(x) is non-increasing.

Now suppose that xi1 = xi2 = ... = xim = xt(x) we shall show that there exists

a finite sequence of updates that will decrease δD(x) and that the probability

associated with the sequence and the fraction that it decreases δD can both be

bounded.

Construction of ς For each ij let b(x), ςj(1), ςj(2), ..., (ςj(m) = ij) be the

shortest path from b(x) to ij in G - a sequence of vertices in G. Now

define ς = ςmςm−1...ς1 to be the sequence obtained by sticking all the ςj

together.

Claim 2 δD[A(ς)(x)] ≤ θδD(x) for some fixed θ < 1

Proof We assume the ’worst case scenario’ in which all vertices but b(x) have

the value xt(x). Now suppose we apply the sequence ςj. Since ςj(1) is

connected to b(x) we have

x(ςj(1)) 7→ xt(x)(1− Ab(x),ςj(1)) + xb(x)Ab(x),ςj(1) (2.8)

and ςj(2) is connected to ςj(1) so

x(ςj(2)) 7→ xt(x)(1− Ab(x),ςj(1)Aςj(1),ςj(2)) + xb(x)Ab(x),ςj(1)Aςj(1),ςj(2) (2.9)

and so on until finally

x(ij) 7→ xt(x) (1− Aςj(m−1),ςj(m)...Aςj(b(x)),ςj(1))︸ ︷︷ ︸+xb(x)Aςj(m−1),ςj(m)...Ab(x),ςj(1)

(2.10)
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= γb(x),ij and since we assumed the worst case scenario

δD[A(σ)(x)] ≤ sup
j
γb(x),ijδD(x) ≤ sup

i,j
γi,jδD(x) (2.11)

= γdD(x)

Claim 3 µ[ς] ≥ ρ for some fixed ρ > 0

Proof µ[ς] =
∏m

j=1 µ[ςj] ≥ infj µ[ςj]m and since we can have at most N − 1

vertices with the state t(x) we have µ[ς] ≥ infj µ[ςj]d−1. Now infj µ[ςj]

is the least probability associated with a path from b(x) to one of our ij

which is bounded by the least probable shortest-path between any two

vertices ρ̃ so that

µ[ς] ≥ ρ̃d−1 = ρ (2.12)

So at step n with probability greater than ρ

δD[x(n+ k)] ≤ θδD[x(n)] (2.13)

where k < (d− 1)2 is the maximum length of ς and with probability less than

(1− ρ)

δD[x(n+ k)] ≤ δD[x(n)] (2.14)

therefore by the law of large numbers

lim
nk→∞

log δD[x(nk)]→ −∞ (2.15)

so with probability 1 limn→∞ δD[x(n)] = 0.

Claim 4 limm→∞ |x(n)− x(n+m)| ≤ CδD[x(n)]

Proof We have already shown that x(t(x)) is non-increasing and x(b(x)) is

non-decreasing so for each vertex i we have xb(x(n)) ≤ x(n+m)i ≤ xt(x(n))

so that in the l1 norm we have

lim
m→∞

|x(n)− x(n+m)| ≤ N × δD[x(n)] (2.16)

and we can find another constant for any equivalent norm.
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Therefore as the system approaches D it slows down in all directions and really

does converge to an equilibrium point d[σ, x(0)].

So our system converges to a point on the diagonal D which is a function of the

sequence of updates so ought to be thought of as a random variable.

2.1.3 Rate of Convergence

The rate of convergence of x(n) = A(σ)|n[x(0)] is determined by the second largest

eigenvalue of the matrix A(σ)|n which is not ideal so we modify the system as follows.

Set B(i) = PA(i) where P is an orthogonal projection onto the hyperplane

D⊥ = {x ∈ Rd : x1 + x2 + ...+ xN = 0} (2.17)

now for each n

x(n) = A(σ)|nx(0) = B(σn)...B(σ1)x(0) + d[n, σ, x(0)] = B(σ)|nx(0) + d[n, σ, x(0)]

(2.18)

for some function d : N × S × Rn → D which records the information lost by the

repeated application of the projection. The rate of convergence of the system is now

determined by the greatest eigenvalue of B(σ)|n which we denote X [B(σ)|n].

Theorem With probability-1 limn→∞
1
n

logX [B(σ)|n] = λ exists and is a constant

independent of the sequence of updates.

Proof Define the modified geometric means λn by

λn =
∑
σ|n

µ[σ|n]

n
logX [B(σ)|n] (2.19)

where the sum is taken over all the distinct sequences of length n.

Claim 1 λn is non-increasing and converges

Proof Consider

λn+m =
∑
σ|n

∑
ς|m

µ[σ|n]µ[ς|m]

n+m
logX [B(σ)|nB(ς)m] (2.20)
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using the fact that X (A)X (B) ≥ X (AB) and summing over each set of

sequences we obtain

(n+m)λn+m ≤ nλn +mλm (2.21)

Lemma Fekete’s Subadditive Lemma states that for a subadditive sequence,

that is a sequence [a(n) ∈ R]∞n=1 with a(n + m) ≤ a(n) + a(m) the limit

limn→∞
a(n)
n

= supn→∞
a(n)
n

exists. so by Fekete’s Subadditive Lemma

(λn)∞n=1 is a decreasing sequence that converges to some constant λ.

Now suppose that we have some long sequence σ|nm+k with k < m, n which we

decompose as (σ0|kσ1|nσ2|n...σm|n) then

1

nm+ k
logX [B(σ)|nm+k] ≤

1

nm+ k
(logX [B(σ0)|k] +

m∑
i=1

logX [B(σi)|n])

(2.22)

and by the law of large numbers we have limm→∞
1

nm+k
logX [B(σ)|nm+k] ≤ λn

and from (2.20) limm,n→∞ λn = λnm+k.

Claim 2 With probability 1 limm,n→∞
1

nm+k
logX [B(σ)|nm+k] = λnm+k = λ

Proof Suppose that µ[{σ|nm+k : 1
nm+k

logX [B(σ)|nm+k] < λnm+k− ε}] = p > 0

then since λnm+k is the mean of these quantities

λnm+k ≤ (1− p)λnm+k + p(λnm+k − ε) (2.23)

which is a contradiction.

So with probability-1 limn→∞
1
n

logX [B(σ)|n] = λ where λ = limn→∞ λn.

Remark This proof has provided us with a series of arbitrarily tight upper bounds

to λ the λn. However these are ridiculously expensive to compute since we

would have to sum over dn sequences to obtain λn. We have already used this

idea, in section 1 we showed that λ ≤ λk < 1 which was enough to prove that

the system converges to an equilibrium.
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To obtain a more useful upper bound on λ we must compare our asynchronous process

to a corresponding synchronous process. Define the synchronous matrix A by

A = [
N∑
i=1

A(i)]− (N − 1)I (2.24)

So that multiplying a state by A corresponds to all the vertices simultaneously up-

dating their states. A is non-negative irreducible and aperiodic.

Upper bound λ ≤ ρ+ 1
2
(1− 1

N
)ρ̂ Where

ρ = sup
y:
∑
i yi=0

1

〈y, y〉
yT


µ1

. . .

µN

 (A− I)y (2.25)

and

ρ̂ = sup
y:
∑
i yi=0

1

〈y, y〉
[(A− I)y]T


µ1

. . .

µN

 (A− I)y (2.26)

In the case that the update rates are uniform, i.e. µ1 = µ2 = ... = µN = 1
N

we

have
√
ρ̂ = ρ = %− 1 where % is the second largest eigenvalue of A.

Proof Since λ is almost surely a constant we can express it as an expectation

λ = lim
n→∞

1

n

∑
σ|n

µ[σ|n] logH[A(σ|n)x] (2.27)

Which is independent of x and where H is the semi-norm measuring the l2

distance to the diagonal D.

= lim
n→∞

1

n

n∑
m=1

∑
σ|m−1

µ[σ|m−1] (
N∑
i=1

µi logH[A(i)A(σ|m−1)x]− logH[A(σ|m−1)x])︸ ︷︷ ︸
and the underbraced is less than or equal to

sup
y:H(y)=1,

∑
i yi=0

N∑
i=1

µi logH[A(i)y] (2.28)

Now

H[A(i)y]2 = [yi + 〈Li, y〉 −
1

N
〈Li, y〉]2 +

∑
j 6=i

[yj −
1

N
〈Li, y〉]2 (2.29)
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Where Li is the ith row of (A− I).

H[A(i)y]2 =
N∑
j=1

y2
j −

2〈Li, y〉
N

N∑
j=1

yj + 2yi〈Li, y〉+ (1− 1

N
)〈Li, y〉2 (2.30)

= 1 + 2yi〈Li, y〉+ (1− 1

N
)〈Li, y〉2

Where we have used the face that
∑N

i=1 yi = 0 and
∑N

i=1 y
2
i = 1. Using log(1 +

x) ≤ x the underbraced term is less than or equal to

sup
y:H(y)=1,

∑N
i=1 yi=0

1

2

∑
i

µi[2yi〈Li, y〉+ (1− 1

N
)〈Li, y〉2] (2.31)

= sup
y:H(y)=1,

∑
i yi=0

[y +
1

2
(1− 1

N
)(A− I)y]T


µ1

. . .

µN

 (A− I)y

= ρ+
1

2
(1− 1

N
)ρ̂

which on substitution back into (35) yields

λ ≤ ρ+
1

2
(1− 1

N
)ρ̂ (2.32)

which in the uniform update rate case gives

Nλ ≤ %− 1 +
1

2
(1− 1

N
)(%− 1)2 (2.33)

2.1.4 Example

Let G be the complete graph on three vertices. If the update function of each vertex

v with neighbors u,w is the skewed mean

fv(xv;xu, xw) = (1− ε)xv +
ε

2
(xu + xw) (2.34)

then the random matrix product system consists of the three matrices

A(1) =


1− ε ε

2
ε
2

0 1 0

0 0 1

 A(2) =


1 0 0

ε
2

1− ε ε
2

0 0 1

 A(3) =


1 0 0

0 1 0

ε
2

ε
2

1− ε


(2.35)
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which we apply according to a bernoulli measure µ = (µ1, µ2, µ3). For µ uniform we

compare an accurate numerical estimate of λ to our upper bound over a range of ε.

We carry out the same simulation for the system on the complete graph of twenty

vertices.

Figure 2.1: λ (blue) and upper bound (red) vs ε for N = 3 (left) and N = 20 (right).

2.2 IFS Perspective

We can recast out system as an IFS. From section 1 we know that

lim
n→∞

A(σ(n))...A(σ(1))x(0) = α(σ, x(0))(1, ..., 1)> (2.36)

Where α(σ, x(0)) is the eventual consensus value which is some unknown function of

the initial condition and the update sequence. Multiplying both sides on the right

by 1
N

(1, ..., 1) we obtain

lim
n→∞
〈A(σ(n))...A(σ(1))x(0),

1

N
(1, ..., 1)>〉 = α(σ, x(0)) (2.37)

We can now take the A(i) to the other side of the inner product so that

lim
n→∞
〈x(0), A>(σ(1))...A>(σ(n))

1

N
(1, ..., 1)>︸ ︷︷ ︸〉 = α(σ, x(0)) (2.38)

= φ(σ|n). The value of the consensus can therefore be expressed as the scalar product

of the initial condition and the limit of a new system which only depends on the

sequence σ.
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Definition An Iterated Function System is a triple [X,F, µ] where X is some state

space, F is a finite set of functions fi : X → X and µ is a bernoulli measure on

the set of infinite sequences of functions in F . We have two process associated

with the system

ϕ|n(x, σ) = fσ(n) ◦ ... ◦ fσ(1)(x) (2.39)

where σ is a µ distributed random variable is the forwards process and

φ|n(x, σ) = fσ(1) ◦ ... ◦ fσ(n)(x) (2.40)

is the backwards process.

Definition We say that an IFS is a Contraction on Average if

λ′ =

∫
σ

lim
n→∞

1

n
sup
x,y

log
|ϕn(x, σ)− ϕ|n(y, σ)|

|x− y|
dσ (2.41)

is less than zero.

Theorem If [X,F, µ] is a Contraction on Average IFS then

• limn→∞ φ|n(x, σ) exists and is independent of x

• The measure

νF (A ∈ X) = lim
n→∞

1

n

∑
I(ϕ|n(x, σ) ∈ A) (2.42)

Is well defined and for a µ measure one set identical to the measure

νB(A ∈ X) = µ{σ : lim
n→∞

φ|n(x, σ) ∈ A} (2.43)

Proof See Diaconis and Freedman [4]

Theorem φ|n(σ) as defined in (2.39) gives rise to a contraction on average IFS on

the unit simplex.

Proof The unit simplex is defined by

∆d = {x ∈ Rd : x1 + x2 + ...+ xd = 1 : xj ≥ 0∀j} (2.44)
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Recall that

φ(σ)|n = AT (σ(1))...AT (σ(n))
1

d
(1, ..., 1)t (2.45)

now the A(i) are non-negative and row stochastic so A(i)T : ∆n → ∆n. All

that remains is to show that we have a contraction on average which we shall

do using the following metric on ∆|n

d(x, y) = sup
z∈∆|n

|〈x− y, z〉| (2.46)

Now the integrand of (2.40) becomes

lim
n→∞

1

n
sup

x,y∈∆|n
log

supz∈∆|n |〈ϕn(x, σ)− ϕn(y, σ), z〉|
supz′∈∆|n |〈x− y, z′〉|

(2.47)

= lim
n→∞

1

n
sup

x,y∈∆|n
log sup

z∈∆|n
|〈x− y,A(σ|n)z〉|

And with probability one A(σ|n)z = d(z, σ) + exp(λn)d⊥(n, z, σ) where d ∈ D

and d⊥ is perpendicular to D and does not grow or decay exponentially in size.

Therefore for almost all σ the integrand equals

λ+ lim
n→∞

1

n
sup

x,y∈∆|n
log sup

z∈∆|n
|〈x− y, d⊥(n, z, σ)〉 = λ (2.48)

So that λ′ = λ < 0 as claimed.

2.2.1 Backwards sampling

Now suppose that we want to know the probability that we converge to a particular

set K ⊂ D from some initial condition x. A naive approach would be to simulate

the process many times and record the fraction of times we arrived in K this would

clearly take a very long time to give us an accurate answer. Instead we can easily find

the set K̃ ⊂ ∆d s.t. limn→∞ φ|n(x, σ) ∈ K̃ if and only if limn→∞ x(n) ∈ K that is the

set in the IFS system K̃ corresponding to a set of equilibrium points in the original

system K. Now we compute νF (K̃) from a simulation of the forwards process. The

number we obtain will be the probability we are looking for only now we essentially

obtain a statistically correct trial run of the system in every step of the calculation

vastly improving the rate of convergence. We can use this trick to approximate any

statistic of ν that we like.
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Example

Using the sampling method outlined we can quickly approximate the distribution on

equilibria for a given initial condition. Using the network in Fig 2 with the randomly

generated initial condition

x = (0.29, 0.93, 0.55, 0.74, 0.65, 0.91, 0.53, 0.97) (2.49)

we record the sequence 〈x, ϕ|n(σ)〉 for 10000 iterations and use this data to produce

the distributions approximation with mean 0.68 and standard deviation 0.028 shown

in Fig 3.

Figure 2.2: Simulated network.

Figure 2.3: CDF and PDF for sampled data.
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2.2.2 Barycentric form

The AT (i) that constitute our IFS act on ∆N as affine maps (since the maps are linear

on RN and ∆N is an affine subspace). Conveniently they admit the same standard

matrix representation when we use the slightly redundant (in the sense that we have

one more co-ordinate than dimension) barycentric co-ordinate system defined on ∆N

as follows.

The boundary of ∆N consists of d copies of ∆d−1 which we can enumerate by

δ(∆N)i = {x ∈ Rd : x1 + x2 + ...+ xN = 1 : xj ≥ 0∀j : xi = 0} (2.50)

The barycentric co-ordinates of a point x ∈ ∆N are then given by xi = d[x, δ(∆N)i]

where [x, δ(∆N)i] is the distance from x to the ith boundary of ∆N .

2.2.3 Example

For the same system treated in 1.4 the IFS lives on ∆3 which is an equilateral triangle

embedded in R3.

Figure 2.4: Orientation of ∆3 in R3 and action of A>(i).

The action of the map AT (i) is to contract the simplex towards the ith part of

its boundary, equivalently we are pushed away from the ith co-ordinate axis. This

means that when we eventually take the scalar product with our initial condition the
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ith state is less important as a result of updating - which makes sense because when

a vertex updates it is attempting to average itself into the group. The measure ν

induced by this system can be very complicated.

• For ε ≤ 2
3
ν appears to be supported continuously with a distribution whose

mass becomes more and more centered as ε is made smaller.

• For ε = 2
3

it is easy to show that ν is uniform on ∆3. For an initial condition

x(0) = (0, 1, a ∈ [0, 1]) this induces a density on the set of possible consensus

values given by

ω(c) =


c

2a
for c ≤ a

1−c
2(1−a)

otherwise
(2.51)

which can easily be modified for an arbitrary initial condition by translation,

dilation and some permutation.

• For ε > 2
3
ν is supported on a fractal set. That is there exist sets of ν measure 1

but zero Lebesgue measure (area). By recording an orbit of the foreword process

we can obtain a scattering of points from one of these sets. For ε = 0.75 we

simulate such an orbit see Fig 5.

Figure 2.5: Sampled orbit from system on complete graph of three vertices (left) and

a graph of three vertices in a line (right).



CHAPTER 2. CONSENSUS IN AN ASYNCHRONOUS NETWORK 33

We can do the same thing for the network of three vertices on a line. The matrix

product system consists of the following matrices

A(1) =


1− ε ε 0

0 1 0

0 0 1

 A(2) =


1 0 0

ε
2

1− ε ε
2

0 0 1

 A(3) =


1 0 0

0 1 0

0 ε 1− ε


(2.52)

Now vertices 1 and 3 are not connected so that the result of applying f1 does not

depend on the state of vertex 3 and visa versa. Thus the action of the map A>(1)

on ∆3 is still to contract towards the 1st part of the boundary but in a way that

conserves the distance from the 3rd part. Again we simulate the foreword process

this time for ε = 0.6.

In general if G is a graph on N vertices and Ui is the set of vertices in G not

connected to vertex i then A>(i) acts by contracting ∆N towards δ[∆N ]i in such a

way as to preserve the distance from each δ[∆N ]j : j ∈ Ui.

2.3 Characterizing ν

As we have seen the induced measure ν can be very complicated. We can characterize

this complexity with a fractal dimension which we first define for a set X. Suppose

that N(ε) is the number of diameter ε sets required to cover X then

dimBOX(X) = lim
ε→0

logN(ε)

− log ε
(2.53)

this we call the box counting dimension. This notion of dimension coincides with the

conventional meaning of dimension when we consider simple objects like manifolds.

The dimension of a measure is then defined by

dimBOX(ν) = inf{dimBOX(X) : ν(X) = 1} (2.54)

Hausdorff dimension is another notion of fractal dimension with some nice additional

properties [5] and although we will not use it directly we keep in mind the inequality

dimBOX ≥ dimH (2.55)
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and since we will bound the box dimension above we automatically get the same

result for the Hausdorff dimension.

Broomhead et al. show that the dimension of the measure induced by a con-

traction on average IFS can be bounded by the entropy of the symbol sequence (the

random sequence of updates) divided by the Lypanov exponent of the system [6]. In

this section we sketch a proof of their result for our special case and show how to

calculate the entropy of the symbol sequence from the topology of the network.

2.3.1 Robust commutivity relations

We say that a set of functions {fi : Rd 7→ Rd} satisfy a commutivity relation if an

identity of the form

fi ◦ fj(x) = fj ◦ fi(x) (2.56)

holds for all x and some i, j

Theorem Commutivity relations are not Typical

Proof We must first define what we mean by typical. Let F be the set of all

pairs of continuous functions f1, f2 : Rd 7→ Rd and equip F with the metric

d[(f1, f2), (g1, g2)] = max{supx∈Rd(f1(x)−g1(x)), supx∈Rd(f2(x)−g2(x))}. Now

define C to be the set of all pairs that commute

Claim C is an open and dense subset of F

Proof First we show that C is open. Consider the commutator map πc(f, g) =

f ◦ g − g ◦ f which is clearly continuous and πcC = πcF/{0} is open in πcF so

C must be open in F . To show that C is dense consider a pair of points (f1, f2)

which commute. Now chose any fixed x0 to define the perturbed pair

g1(x) =

 f1 ◦ f2(x0) + ε for x = f2(x0)

f1(x) otherwise

g2 = f2

(2.57)



CHAPTER 2. CONSENSUS IN AN ASYNCHRONOUS NETWORK 35

Now g1 ◦ g2(x0) = f1 ◦ f2(x0) + ε and g2 ◦ g1(x0) = f1 ◦ f2(x0) unless we also

have f2(x0) = x0 and f2[f1(x0) + ε] = f2 ◦ f1(x0) + ε in which case we make the

second perturbation

h1 = f1

h2(x) =

 g2(x0 + ε) + ε for x = x0 + ε

g2(x) otherwise

(2.58)

And obtain a non commuting pair within an ‖ε‖ distance of our original com-

muting pair.

Remark The same result follows when we take F to be the set of pairs functions

that are continuous, differentiable, twice differentiable, ..., smooth.

A possible interpretation of this result is that we should be very cautious of any

mathematical analysis of a model for a physical system that relies on exploiting

a commutivity relation. This is because the physical reality of the system

that we are modeled can be thought of as a perturbation of our mathematical

model and according to the theorem a generic perturbation will destroy any

commutivity relations.

Definition An IFS [X,F, µ] is G = 〈V,E〉 admissible if there exists a bijection

between the vertices of G and the functions constituting the IFS so that they

can be written F = {fv : v ∈ V } and fu and fv commute whenever u and v are

non adjacent in G.

Theorem The commutivity relations satisfied by functions {fv : v ∈ V } associated

with a G = 〈V,E〉 admissible IFS are robust in the sense that they persist for

any perturbation to the fi that respects the network structure.

Proof This is trivial as for the perturbation to respect the network structure we

require that the perturbed system be G admissible and it therefore satisfies the

same relations.

Remark 1 Any asynchronous scheme on a graph G = 〈V,E〉 as outlined in the

introduction gives rise to a G admissible IFS. We have a set of functions {fv :
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v ∈ V } and we can also index the co-ordinates of the state space X with the

elements of V such that fv(x)u = xv whenever u and v are non adjacent in G

and fv(x)v = Fv(x) and δFv(x)
δxu

= 0 whenever u and v are non adjacent in G.

Therefore if u and v are non adjacent we have

fu ◦ fv(x1, ..., xv, ..., xu, ..., xd) = fu(x1, ..., Fv(xw : (w, v) ∈ E), ..., xu, ..., xd)

(2.59)

= (x1, ..., Fv(xw : (w, v) ∈ E), ..., Fu(xw : (w, u) ∈ E), ..., xd)

and likewise for fv ◦ fu(x). So that an asynchronous system on G gives rise to

a G admissible IFS.

Remark 2 Therefore in the context of networked systems commutivity relations are

typical. If we have some physical system admitting a network structure then

slight changes to the exact behavior of the agents playing out the dynamics will

not affect the network structure and therefore leave the commutivity relations

unchanged. We can therefore exploit these relations to make robust statements

about the system.

For our example this means that some sequences of updates give rise to exactly the

same behavior which gives rise to an equivalence relation on the update sequences.

σ|n ./ ς|n ⇔ A(σ|n) = A(ς|n) (2.60)

We can now count Dn the number of equivalence classes of sequences of length n.

Theorem The exponent

θ = lim
n→∞

logDn

n
(2.61)

is less than or equal to X the greatest eigenvalue of the matrix Â obtained by

setting all diagonal and upper triangular elements of G’s adjacency matrix A(G)

to one.

Proof Suppose that we have a representative σ for each ./ |n equivalence class. We

will define a total order on the symbols in V then apply a sort of restricted
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bubble sort algorithm to the truncated sequence σ|n to obtain a unique ’locally

as increasing as possible’ representative ς. The algorithm is as follows

1. Examine the pairs (σi, σi+1) in turn until finding a pair corresponding to

non adjacent vertices with σi > σi+1

2. Swap this pair so that the sequence now reads σ1, ..., σi−1, σi+1, σiσi+2, ..., σn

3. Continue until no pair satisfies the conditions required for a swap.

Claim The restricted bubble sort algorithm terminates

Proof The algorithm gives rise to a deterministic finite state space dynamical system

and all orbits are therefore eventually periodic. Suppose that the algorithm does

not terminate, then there is a periodic orbit to the algorithm. Now suppose

that i 6= j are two symbols that appear in the some periodic sequence and that

during the evolution of the algorithm at least one (i, j) or (j, i) swap occurs.

By periodicity at least one (j, i) or (i, j) swap must also occur in order for us

to return to the original state and since either i > j or j > i one of these swaps

is invalid and a contradiction.

Thus each equivalence class can be identified with a locally increasing sequence and

Dn ≤ D̂n where D̂n is the number of locally increasing sequences of length

n. The set of all locally increasing sequences of length n is given by Î =

{σ|ns.t.σ(k) = i, σ(k + 1) = j ⇒ either i < j or i and j are connected in G} or

equivalently

Î = {σ|n : σ(k) = i, σ(k + 1) = j ⇒ Âi,j = 1} (2.62)

Where Â is the matrix obtained by setting all diagonal and upper triangular

elements of G’s adjacency matrix to one.

Claim D̂n = ‖l(n)‖1 where l(n)i is the number of length n locally increasing se-

quences ending in the symbol i and l(n+ 1) = Âl(n)

Proof It is easy to see that l(n+ 1) = Âl(n) since the number of length n+ 1 locally

increasing sequences ending in the symbol i is the number of length n locally
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increasing sequences that are still locally increasing if we add the symbol i to

their end.

Now D̂n = ‖Ânl(0)‖1 and since Â is irreducible and positive it has a unique greatest

eigenvalue X which is positive and associated with a positive eigenvector v with

nonzero weight on all co-ordinates so that

lim
n→∞

log D̂n

n
= lim

n→∞

logX n〈l(0), v〉
n

= X ≥ θ (2.63)

We are now ready for the main theorem

Theorem For a network admissible IFS

dimBOX(ν) ≤ log θ

−λ
≤ logX
−λ

(2.64)

Proof Consider the sequence of sets

Cn =
⋃

σ|n∈S|n

φ(σ|n)(∆d) (2.65)

where the union is taken over all length n sequences. Since composition is taken

backwards

φ(σ|n+1)(∆d) ⊂ φ(σ|n)(∆d) (2.66)

then Cn+1 ⊂ Cn so limm→∞Cm ⊂ Cn and ν(Cn) = 1. Now many of the se-

quences are equivalent so we can instead take the union over a set of equivalence

classes.

Cn =
⋃

σn∈ Sn
./|n

φ(σ|n)(∆d) (2.67)

For a µ measure one set of sequences l(σ)|n the diameter of the set φ(σ|n)(∆d)

satisfies

lim
n→∞

1

n
log l(σ)|n = λ (2.68)

We can therefore represent a measure one set of equivalence classes with a

sequence satisfying the above limit. Thus Cn is union of ≈ θn sets of diameter

≈ eλn and

dimBOX(ν) ≤ log θ

−λ
(2.69)

The second inequality follows from the previous theorem.
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Remark This result therefore gives us a way of characterizing the measure associated

with a network admissible IFS but moreover gives us a way of characterizing

different network topologies. For a fixed Lyupanov exponent (which is admit-

tedly a bit of a fiddle) a network with a smaller eigenvalue X will tend to

induce a more singular measure. We might use the following rule of thumb;

less connectivity⇒ more commutivity⇒ smaller X ⇒ more singular measure.

Therefore X is a natural way to characterize the degree of connectivity in a

network when we are considering an asynchronous process evolving on it.

2.3.2 Example

We can now obtain the bound for any example we like by calculating X then using

our upper bound for λ from 1.3. We choose the following illustrative example as the

two different networks have the same λ upper bound and therefore make for a ’fair’

comparison.

Figure 2.6: Example networks, ring and tree.
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Figure 2.7: Measure dimension upper bound vs epsilon for the two systems on four

vertices. Ring (blue) and tree (red). ν is guaranteed to be singular when the dimen-

sion is less than three, the dimension of ∆4.

For the system on the ring we have θ = 3.4142 and for the tree θ = 3. So

that at the same lyupanov exponent the system on the line will have a more singular

measure. Of course the value of the exponent will usually also depend on the network

in a complicated way so we should be careful in making any direct comparisons.

Although in this case the figure clearly shows that the measure associated with the

system on the tree is more singular.

2.4 Conclusion

We have shown that our class of linear systems converge to a random stable equi-

librium. We have shown that an IFS formulation can be explicitly obtained which

enables us to better examine the distribution on equilibrium values. In particular by

counting the equivalence classes of update sequences we bound the dimension of the

induced measure from above. This in tern gives us a neat way to characterize dif-

ferent networks with the eigenvalue X which roughly tells us how singular we expect

the induced measures to be.

The IFS formulation relies on us being able to take the adjoint of our update

functions and they must therefore be linear for this approach to work. The results of
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section 3 will be perfectly valid for a non-linear system provided it is already in an

COAIFS form which our original system was not. For instance the set of equilibrium

points is a non-trivial fix subspace so the system is not a contraction. Of course it

would be possible to linearize a non-linear system in the vicinity of an equilibrium

to obtain a system with an COAIFS formulation and the eigenvalue X may still be

useful for comparing different networks even when we are only interested in non-linear

dynamics.
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Chapter 3

Iterative solution of graph

Laplacians: Synchrony vs

Asynchrony

Abstract

Iterative relaxation is the numerical technique used to solve the equation Ax = b by

simulating the dynamical system x(n+1) = (εA−I)x(n)−εb. As well as reviewing the

standard implementation of this method we consider an asynchronous implementation

where the individual nodes (co-ordinates of x) update themselves independently of the

others in a random order. This procedure can in principal be carried out much faster,

especially on an asynchronous CPU or over a network of parallel CPUs. Further

computational advantage can be obtained if A is a sparse matrix, where we can

identify the support of A with a graph of relatively few connections. Focusing on

graph Laplacians we show that the asynchronous relaxation converges to a solution

of the original problem and obtain a sandwich inequality for the rate of convergence.

43
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3.1 Introduction

The Laplacian of a graph G on {1, 2, ..., N} is an N ×N matrix L with

Li,j =


−1 if i = j

1
di

if (i, j) is an edge

0 otherwise

(3.1)

where di is the in degree of i in G. In analogy to the Laplacian operator ∇2, L can be

used to describe diffusion processes on a graph, in particular the dynamical system

x(n+ 1) = (I − εL)x(n) (3.2)

corresponds exactly to the standard spatiotemporal discretization of the heat equation

when G is taken from a regular grid partitioning the spatial domain.

Boundary conditions can be added to these systems by forcing some subset of

vertices to maintain fixed boundary values, again in analogy to the PDE case. If we

have a graph G on N + M vertices where the last M are all boundary vertices then

the state of the non-boundary vertices evolves according to

x(n+ 1) = (I − εL|G/B)x(n) + εb (3.3)

where L|G/B is the graph Laplacian restricted to G/B defined by

Li,j =


−1 if i = j

1
di

if (i, j) is an edge in G/B

0 otherwise

(3.4)

but di is still the in degree of i in G, not in G/B. And b - as in (3.3) - is defined by

bi =
1

di

∑
j∈Bi

xj (3.5)

where Bi is a subset of the boundary containing vertices with directed edges to i and

the xj are the corresponding boundary values.

This chapter is concerned with finding solutions to L|G/Bx = b by iterating (3.3).

In particular we are interested in the rate of convergence of this procedure when (3.3)

is implemented in an asynchronous way.
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3.1.1 Asynchronous iteration

Suppose that instead of updating all of the co-ordinates of x simultaneously we as-

signed a separate processor to each vertex of G which was able to broadcast its state

down all of its outwards edges and receive the current states of its neighbors through

all of its inwards edges. The individual processers could then independently com-

pute the next value of their vertices state and update it as soon as the computation

was finished, rather than having to wait until all the other vertices where ready. In

principal the average ’update’ rate per vertex of this asynchronous system could be

faster than the simultaneous version as there would be less time spent waiting for

other slower processes to finish.

A fully realistic model of the sequence of inter-update times for a particular vertex

is beyond the scope of this work, instead we use a random sequence with some

appealing mathematical properties. We assume that each vertex updates its state

independently of all the others with i.i.d. mean-ν exponentially distributed inter-

update times. The main advantage of this formulation is that the sequence of updates,

that is a sequence in the vertex set given by the order they update in, is Bernoulli

distributed. The Asynchronous iteration of (3.3) is then given by

x(σ, n) = A(σn)x(σ, n− 1) + b(σn) (3.6)

where A(i) is the N×N identity except for the ith row which is taken from I−εL|G/B,

b(i) = eibi and σ is a {1, 2, ..., N}N-valued random variable with uniform bernoulli

distribution.

This discrete time system is reconcilable with the continuous time system outlined

through the law of large numbers, T (n) the time of the nth update satisfies (with

probability one)

lim
n→∞

T (n)

n
=

ν

N
(3.7)
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3.2 Synchronous system

The synchronous iteration is given by

x(n) = (I − εL|G/B)x(n− 1) + εb = Ax(n− 1) + b (3.8)

In what follows we will require that G/B is irreducible, that there is a directed path

between any two vertices, and aperiodic, that the greatest common divider of the

cycles in G/B is one. These assumptions are required for applying standard results

to the matrix A, they are not entirely necessary though, for instance G/B may be

comprised of two disconnected components which could be thought of as two separate

irreducible systems. Further degeneracies can be treated similarly.

Theorem The synchronous system converges exponentially quickly to the unique

equilibrium x = L|−1
G/Bb with exponent log λ, where λ is the unique maximal

eigenvalue of the matrix A.

Proof Since our system is linear we can separate the equilibrium from the state so

that

x(n) = L|−1
G/Bb+ [x(n)− L|−1

G/Bb] (3.9)

and

x(n+ 1) = (I − εL|G/B)L|−1
G/Bb+ A[x(n)− L|−1

G/Bb] + εb (3.10)

= L|−1
G/Bb+ A[x(n)− L|−1

G/Bb] = L|−1
G/Bb+ An[x(0)− L|−1

G/Bb]︸ ︷︷ ︸
So the difference between the equilibrium and the state of our system at stage

n is given by the underbraced term. The matrix A is irreducible and aperiodic

so has a simple maximal eigenvalue 0 < λ < 1 with an eigenvector u which is

strictly positive. Therefore this error term will decay like λn.

3.3 Asynchronous system

As in the synchronous case we are able to separate the equilibrium from the state so

that

x(σ, n) = L|−1
G/Bb+ [x(σ, n)− L|−1

G/Bb] (3.11)
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and

x(σ, n+ 1) = A(σn+1)L|−1
G/Bb+ A(σn+1)[x(n)− L|−1

G/Bb] + εb(i) (3.12)

= L|−1
G/Bb+ A(σn+1)[x(σ, n)− L|−1

G/Bb] = L|−1
G/Bb+ [

n+1∏
k=1

A(σk)][x(σ, 0)− L|−1
G/Bb]︸ ︷︷ ︸

So that once again our state is given by the equilibrium plus an error which evolves

independently to the solution. The stability of this system is determined by the

exponent

µ(σ) = lim
n→∞

1

n
sup
x

log
||
∏n

k=1A(σk)x||
||x||

(3.13)

whose existence and uniqueness for a measure one set of sequences, σ is guaranteed

by the multiplicative ergodic theorem so we are justified in simply writing µ. In order

to show that the asynchronous system converges to the equilibrium we must show

that µ < 0.

3.3.1 Bounds on µ

We will exploit some strong non-negativity properties to prove both of our bounds

on µ.

Theorem We have the following bounds

log λ ≤ Nµ ≤ N log(1 +
λ− 1

N
) (3.14)

The proof follows the supporting lemma below

Lemma The exponent can be re-expressed by

µ = lim
n→∞

1

n
sup
x′

log
||
∏n

k=1 A(σk)x
′||

||x′||
(3.15)

= lim
n→∞

1

n
log〈

n∏
k=1

A(σk)x, u〉

For any strictly-positive x. Recall that u is the eigenvector corresponding to

A’s unique maximal eigenvalue.
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Proof With probability one

P (σ, n) =
n∏
k=1

A(σk) (3.16)

is strictly positive for all n greater than some finite n0. We must prove this

componentwise, for i 6= j the (i, j)th component is non-decreasing and will

increase strictly on the application of A(ςM = i)A(ςM−1)...A(ς1 = j) where ς is

the shortest path from j to i, with probability one we will eventually apply this

sequence of updates. The (i, i)th component is only affected by the ith vertex

updating when its new value is bounded below by (1− εdi) times the old value,

this remains positive so our claim is true.

The matrix P (σ, n) is therefore irreducible and aperiodic so has a maximal

simple eigenvalue γ(σ, n) corresponding to a strictly positive eigenvector v(σ, n).

The supremum in (3.15) is therefore attained by this eigenvector and

µ = lim
n→∞

1

n
log γ(σ, n) (3.17)

The second expression in (3.15) becomes

lim
n→∞

1

n
log〈γ(σ, n) v(σ, n) min

j

xj
vj︸ ︷︷ ︸+

n∏
k=1

A(σk)y, u〉 (3.18)

where y is the difference between the non-zero underbraced term and x. Now

since y is non-negative we have

≥ lim
n→∞

1

n
log γ(σ, n) +

1

n
log〈v(σ, n) min

j

xj
vj
, u〉 ≥ µ (3.19)

And since our original expression for µ was a maximum which gives the opposite

non-strict inequity our two expressions are the same.

Upper bound µ < log(1 + λ−1
N

) < 0

Proof Since µ is a constant for almost all sequences we can express it as an expec-

tation

µ = lim
n→∞

1

n
Eσ log〈

n∏
k=1

A(σk)x, u〉 (3.20)
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and the expectation of a log is less than the log of an expectation so

µ < lim
n→∞

1

n
logEσ〈

n∏
k=1

A(σk)x, u〉︸ ︷︷ ︸ (3.21)

By linearity of expectation we can take the expectation inside the inner product.

Eσ
n∏
k=1

A(σk) =
1

Nn

∑
σ|n

n∏
k=1

A(σk) =
1

Nn−1

∑
σ|n−1

N∑
i=1

1

N
A(i)

n−1∏
k=1

A(σk) (3.22)

= [
N∑
i=1

1

N
A(i)]

1

Nn−1

∑
σ|n−1

n−1∏
k=1

A(σk) = [
N∑
i=1

1

N
A(i)]n = (I +

A− I
N

)n

so that

µ < lim
n→∞

1

n
log〈(I +

A− I
N

)nx, u〉 = lim
n→∞

1

n
log〈x, u(I +

A− I
N

)n〉 (3.23)

= log(1 +
λ− 1

N
) + lim

n→∞

1

n
log〈x, u〉 = log(1 +

λ− 1

N
)

Lower bound µ ≥ 1
N

log λ

Proof Again we use the expectation expression for µ

µ = lim
n→∞

1

n

1

Nn

∑
σ|n

log〈
n∏
k=1

A(σk)x, u〉 (3.24)

= lim
n→∞

1

n

n∑
m=1

1

Nm
[
∑
σ|m

log〈
m∏
k=1

A(σk)x, u〉 −N
∑
σ|m−1

log〈
m−1∏
k=1

A(σk)x, u〉]︸ ︷︷ ︸
and the underbraced term can be rewritten as

∑
σ|m−1

[
N∑
i=1

log〈A(i)
m−1∏
k=1

A(σk)x, u〉]−N log〈
m−1∏
k=1

A(σk)x, u〉 (3.25)

=
∑
σm−1

︷ ︸︸ ︷
log

N∏
i=1

〈A(i)y, u〉
〈y, u〉

where y =
∏m−1

k=1 A(σk)x. Using A(i) = I + [A(i) − I] the overbraced term is

given by

log
N∏
i=1

〈y, u〉+ 〈y, u[A(i)− I]〉
〈y, u〉

(3.26)
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and since A(i) only acts on u’s ith component we have

= log
N∏
i=1

[1 +
〈y, (λ− 1)uiei〉

〈y, u〉
] = log

N∏
i=1

[1 +
(λ− 1)uiyi
〈y, u〉

] (3.27)

= log[1 + (λ− 1)
N∑
i=1

uiyi
〈y, u〉

+ (λ− 1)2
∑
i 6=j

uiyiujyj
〈y, u〉2

+ ...] = log[λ+ g(y)]

where

g(y) =
N∑
k=1

(−1)k(1− λ)k
∑

i1 6=i2 6=... 6=ik

∏k
j=1 uijyij

〈y, u〉k
(3.28)

≥
N/2∑
k=1

(1− λ)2k

〈y, u〉2k
[

∑
i1 6=i2 6=... 6=i2k

k∏
j=1

uijyij −
(1− λ)

〈y, u〉
∑

i1 6=i2 6=... 6=i2k+1

k∏
j=1

uijyij ] (3.29)

=

N/2∑
k=1

(1− λ)2k

〈y, u〉2k
∑

i1 6=i2 6=... 6=i2k

[
k∏
j=1

uijyij (1− (1− λ)
∑

t6=i1,...,i2k

utyt
〈y, u〉

)︸ ︷︷ ︸]
So since ∑

t6=i1,...,i2k

utyt
〈y, u〉

≤ 1 (3.30)

and (1− λ) < 1 the underbraced term in (3.29) is positive and g(y) is positive

for all y. We can therefore replace equality with log[λ + g(y)] in (3.27) with

greater than or equal to log λ. Substituting back into (3.24) we have

µ ≥ lim
n→∞

1

n

n∑
m=1

1

Nm

∑
σ|m−1

log λ =
1

N
log λ (3.31)

3.4 Examples

We simulate a graph laplacians for lines of vertices with boundary nodes at the

ends of the lines. To ensure that our approximation of λ is accurate we repeatedly

renormalize the state variable and use the series of renormalization factors to compute

the exponent.
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Figure 3.1: Convergence of µ, for a line with N = 5 ε = 0.1 n in 1000s

Figure 3.2: µ and bounds vs ε for N = 5
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Figure 3.3: µ and bounds vs ε for N = 15

3.4.1 Remarks on asynchronous computing: Synchrony Vs

Asynchrony

Comparing the rate of convergence in our two systems we have two different time

scales; νS the average interupdate time of the synchronous system and νA
N

the aver-

age interupdate time of the asynchronous system where νA is the average interupdate

time of an individual node in the asynchronous system. Our bounds show that if

VS = VA then we have roughly the same rate of convergence with the asynchronous

system very slightly slower. However if it typically takes a single processor C seconds

to perform the computation associated with a single node updating then a single

processor implementing the synchronous scheme has νS = NC whereas N parallel

processors implementing the asynchronous scheme have νA = C so that the asyn-

chronous system is roughly N times faster.
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3.4.2 Conclusion

Of course our model does not serve as a physically realistic description of any parallel

computation used in practice. There is no accounting for latency in communica-

tion between the processors and the exponential interupdate times where chosen for

mathematical convenience and have no real justification.

It is clear from experimental computer science that under the right circumstances

real life asynchronous parallel schemes can vastly outperform traditional synchronous

approaches, however the exact detail of the implementation is extremely important

[1, 2, 3].

In [1] Dingle et al employ an asynchronous scheme to solve Ax = b using Jacobi’s

method

xi(n) =
1

ai,i
(bi −

∑
j 6=i

ai,jxj(n− 1)) (3.32)

by evaluation xi(n) in parallel for each i. In future work we hope to instrument

this procedure to provide us with statistical information about the update sequences

which we can use to develop a new more realistic, but still tractable model of the

process.

By using a bernoulli update sequences the work in this example serves as a first

approximation to this more complex model.
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Chapter 4

Stochastic production trees as

products of i.i.d. fixed support

componentwise exponential

max-plus matrices

Abstract

We introduce a class of stochastic production tree model, based on Petri nets, which

admit a random matrix product description in the Max-plus algebra. With a kind

of combinatorial change of variables we are able to simplify the form of the matrices

arising from these models. For this class of Componentwise exponential matrix, whose

non-zero components are exponentially distributed, we prove a new result relating

the (Max-plus) spectrum of the product to the principal (classical) eigenvalue of

an associated adjacency matrix by means of a sandwich inequality. This theorem

highlights several important theoretical factors in the dynamics of Max-plus linear

systems generally and gives us some neat insight into the different production tree

models.

55
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Introduction

The Max-plus algebra gives us an alternative way to look at a number of interesting

classically non-linear phenomena [1, 2, 3, 4, 5, 6]. In particular there are many quite

different dynamical systems/mathematical constructions which are quite intractable

with standard algebra but become linear or in some other way simpler when expressed

in Max-plus.

Dynamical systems whose variables are the starting times of different interacting

events fit quite naturally into the Max-plus linear systems framework. If some event

i can only reoccur for the (n+ 1)th time Mi,j seconds after event j has occurred for

the nth time then xi(n+ 1), the time i occurs for the (n+ 1)th time, satisfies

xi(n+ 1) = max
j
Mi,j + xj(n) = [M ⊗ x(n)]i (4.1)

where ⊗ stands for Max-plus multiplication - which for elements of R∪−∞ is simply

addition, for a matrix vector pair is as defined in (4.1) and for a pair of max-plus

matrices [A⊗B]i,j = maxk Ai,k+Bk,j. The theory for Max-plus matrix algebra follows

in analogy to the classical case; there are eigenvalues and eigenvectors, determinants,

the Caley-Hamilton theorem holds and much more besides [6]. For an introduction

to Max-plus algebra see [1].

This chapter focuses on stochastic queuing systems which can also be thought of

as very high dimensional continuous time Markov chains. Although they are classi-

cally linear their dimension makes them intractable and investigating any classical

structure in these models seems to be beyond the scope of standard Markov chain

methods. We are however to describe them completely with much lower dimensional

Max-plus linear models whose underlying structure can be studied more easily.

We show that products of i.i.d. Max-plus matrices are dominated by a Max-plus

exponent whose value can be attributed to the weight of a path through the vertex

set of the matrices. By taking this path-centric viewpoint we are able to give a new

neater proof of the Max-plus multiplicative ergodic theorem and prove a new result

relating the Max-plus exponent to the classical principal eigenvalue of an associated

adjacency matrix.
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In section 1 we introduce petri-nets and explain how stochastically timed event

graphs can be described by products of i.i.d. max-plus matrices. In 1.1 we introduce

the main production line example. In section 2 we prove the max-plus multiplica-

tive ergodic theorem then introduce componentwise exponential max-plus matrices,

which are arguably the simplest possible non-trivial random max-plus matrices with

arbitrary graph topology, and prove my main result; a sandwich of bounds for the

max-plus exponent based on the principal eigenvalue of an associated graph. In

section 3 we generalize the first example to a class of production trees. We show

how these systems can be recast in a componentwise exponential form and then ex-

amine their exponents. Our main theorem allows us to rigourously investigate the

asymptotic behavior of the production tree systems.

4.1 Stochastic timed event graphs

Petri-nets are a modeling language that can be used to describe a wide variety of

distributed systems [7]. Formally a petri-net is a directed bipartite graph in which

the vertices are either transitions (signified by bars, which represent some events

that can occur) or places (signified by circles, which represent some conditions or

processes). Places can contain one or more tokens which should be thought of as units

of information or of some product. Each token can be in a waiting state (signified by

a grey dot in the place) or ready state (signified by a black dot in the place). Waiting

tokens become ready after some waiting-time which is particular to the place that

the token occupies and can be a fixed non-negative number or random variable. The

dynamics of the petri-net move tokens from place to place.

Each transition that succeeds some place-vertices can become enabled. A tran-

sition is enabled if and only if each of its predecessors contains at least one ready

token. When a transition is enabled it is able to fire. When a transition fires a single

ready token is removed from each place it succeeds and a waiting token is added to

each place it is a predecessor of.

Note that since it is possible to have two enabled transitions when firings are
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mutually exclusive, the evolution of a petri net is not necessarily deterministic even

if the place waiting-times are constant. See Fig 1.

Figure 4.1: Evolution of a simple petri-net. a) The token in p1 must wait some time

to become ready, b) Now that there are ready tokens in p1 and p2 the transition T1

is enabled, c) On firing T1 takes the ready tokens from p1 and p2 and adds a waiting

token to p3, d) Now that the token in p3 is ready both transitions T2 and T3 are

enabled, e) In this example we choose T2 to fire taking the token from p3 and adding

a waiting token to p4, f) The token in p4 is now ready.

Definition A stochastic timed event graph is a petri net with the following properties

• Each place has exactly one predecessor and one successor transition.

• The successive waiting times at a place i are an i.i.d. sequence [ti(n)]∞n=1

independent of the waiting times at all other places.

The first condition guarantees that the only non-determinism in the system comes

from the random waiting times and not from some ’higher’ controller as in the example

in Fig 1. The second condition enables us to describe the evolution of the dynamics

with a product of i.i.d max-plus matrices.
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4.1.1 Example - Asynchronous production line

The following stochastic timed event graph can be used to model a fairly general

asynchronous production line. Consider a plant where we have a production line

consisting of N sites where each item being produced must pass from one site to the

next undergoing a different process at each site, each taking a random period of time.

Only one item may occupy a site at a time so that if one site is taking a long time to

process an item a queue may build up behind it.

Therefore whenever an item arrives at a site the processing begins. When it is

processed the item is either instantaneously moved for processing at the next site,

or if the next site is occupied, must wait until the next site is unoccupied when it is

instantaneously moved on.

Figure 4.2: Evolution of asynchronous production line for N = 5. a) Transition T3 is

enabled, b) Transition T3 fires instantaneously enabling T2 which fires instantaneously

enabling T1 which also fires, c) Transition T6 is enabled, d) Transition T6 fires.

To model this queue with a timed event graph we divide the places up into two
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groups {pi} and {qi} with i = 1, 2, ..., N . See fig 2. The {pi} represent the sites in the

production line so that a waiting token in place pi should be thought of as an item

undergoing a process at site i, likewise a ready token at place i should be thought of

as a processed item at site i. The waiting times at pi are a sequence of i.i.d. random

variables [ti(n)]∞n=1 with distribution given by the time that the ith process takes.

The {qi} are used to make sure that only one token occupies each pi at a time, a

token in place qi indicates that the ith site being empty and ready to receive a new

item for processing. The waiting times at qi are all zero so that all tokens in {qi} are

instantaneously ready.

Transitions Ti with i = 2, 3, ..., N − 1 represent a processed item a site i− 1 being

transferred to site i. The initiating transition T1 represents a new item being brought

into the line and the terminal transition TN represents the completion of a finished

product.

This system could be used to model all sorts of different production lines, most

interestingly it gives a very complete description of a bio-molecular process called

mRNA transcription, the process by which ribosomes build proteins coded for in

mRNA. For a thorough analysis of the deterministically timed version of the model

for this application see [8].

4.1.2 Max-plus formulation

Given an initial distribution of tokens (which we call a marking) in a stochastic timed

event graph the evolution of the petri-net’s state can be completely determined by

the sequence of transition firing times. This statement is trivial to prove, suppose

that we start with some initial marking m0 and arrive after some time at a new

marking m′. If we are given the transition firing sequence but not the sequence of

states that the system moves through we can simply apply these transitions to m0

until we arrive at m′.

The state variable for our max-plus model at stage n is then given by the firing

time vector X(n) = [xi(n)] where xi(n) is the time at which transition i fires for the
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n’th time.

All stochastic timed event graphs satisfy a max-plus linear equation which can

easily be obtained [1, 2]. Since all the systems we will consider have the special

property that each place only ever hold zero or one tokens the formulation is slightly

simpler. At each stage the firing time vectors satisfy

X(n) = A(n)⊗X(n)⊕B(n− 1)⊗X(n− 1) (4.2)

Where A(n) and B(n− 1) are max-plus matrices whose components are determined

by the random waiting times associated with the places in the petri net and Mo the

initial marking of tokens.

A(n)i,j = ε⊕
⊕

{k:Tj→pk→Ti,m0(k)=0}

tk(n) (4.3)

B(n)i,j = ε⊕
⊕

{k:Tj→pk→Ti,m0(k)=1}

tk(n) (4.4)

So that A(n)i,j is a random variable given by the maximum of a set of the nth place

waiting times or equal to −∞ if this set is empty. This maximum is taken over all

the places that join Tj to Ti and contain no tokens in the initial marking. Likewise

B(n)i,j is a maximum but taken over places that contain one token in the initial

marking.

Since when we fix the random waiting times our system’s evolution is determin-

istic, it follows that X(n) exists and is unique. It can also be shown that (1) has a

unique solution [6]. Define the Kleene star of A(n) by

A(n)∗ = I ⊕ A(n)⊕ A(n)⊗2 ⊕ A(n)⊗3 ⊕ ... (4.5)

So that A(n)∗i,j should be thought of as the weight of the maximally weighted path

from j to i of any length through A(n)’s associated graph. Unless our petri-net’s

initial marking contains a circuit with no tokens in any of its places A(n)∗ will exist

since A⊗K = ε for all K > N . Any petri-net/initial marking with such a circuit will

have trivial dynamics since none of the transitions will be able to fire. We can use

the Kleene star to construct a solution to (1) by

X(n) = A(n)∗ ⊗B(n− 1)⊗X(n− 1) (4.6)
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which on substitution to the RHS yields

A(n)⊗ A(n)∗ ⊗B(n− 1)⊗X(n− 1)⊕B(n− 1)⊗X(n− 1) (4.7)

= [A(n)⊗ A(n)∗ ⊕ I]⊗B(n− 1)⊗X(n− 1) = A(n)∗ ⊗B(n− 1)⊗X(n− 1)

Therefore this is the unique solution to (1) and provides the unique evolution of

our system. The dynamics of our stochastic timed event graph are governed by the

max-plus linear system

X(n) = A(n)∗ ⊗B(n− 1)⊗X(n− 1) = [
n⊗
k=1

A(k)∗ ⊗B(k − 1)︸ ︷︷ ︸]⊗X(0) (4.8)

And since the components of A(k) and B(k− 1) are drawn from disjoint sets of edge

weights the underbraced terms form a sequence of i.i.d. random max-plus matrices.

4.1.3 Example

We can now construct the max-plus linear system associated with our asynchronous

production line model. We will use the initial making m0 where there are no tokens in

any of the pi and one token in each qi, this corresponds to starting the plant with no

items currently in processing. As outlined we choose to represent max-plus matrices

with their associated weighted graphs rather than as an array of numbers, see fig 3.
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Figure 4.3: Graphs associated with A(n),B(n− 1),A(n)∗ and A(n)∗B(n− 1) respec-

tively for N = 4

We can now simulate our system by choosing an initial condition X(0) then ran-

domly generating a sequence of matrices [A(k)∗B(k−1)]nk=1 and max-plus multiplying

the state with them to obtain X(n), see section 2.1.

4.2 Max-plus Lyapunov exponent

Our max-plus linear systems are evolved according to

X(n) = M(n)⊗X(n− 1) = [
n⊗
k=1

M(k)︸ ︷︷ ︸]⊗X(0) (4.9)

where the [M(k)]∞k=1 are a sequence of i.i.d. random max-plus matrices. Since the

associated graphs for these matrices have the same vertex and edge set each time,

just different edge weights, we can interpret the underbraced matrix product which

we denote P (n) as follows. P (n)i,j is given by the weight of the maximally weighted

path σ of length n through the associated graphs from j to i which accumulates
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weight on its k’th step according to M(k) so that σ’s total weight is given by

W (σ) =
n∑
k=1

M(k)σ(k−1),σ(k) (4.10)

This maximally weighted path perspective is very natural to use in max-plus linear

algebra and is essential to the new theory presented in this chapter. It also enables

us to give a new, simpler proof of the max-plus multiplicative ergodic theorem.

Theorem Provided the graph associated with M is irreducible and aperiodic then

with probability-1 the limit

λ = lim
n→∞

1

n
P (n) = lim

n→∞

1

n

n⊗
k=1

M(k) (4.11)

exists and is a matrix with each element equal to the same constant, the max-

plus Lyapunov exponent which we shall also denote λ. Note that since con-

ventional multiplication acts like taking powers in max plus we are justified in

calling this an exponent.

Proof This proof is a slightly different to the standard treatment which follows from

Kingman’s sub-additive ergodic theorem [2].

Claim 1 λn = 1
n
E{maxi,j[

⊗n
k=1 M(k)]i,j} is a decreasing sequence bounded below

by zero and therefore limn→∞ λn = λ exists.

Proof Consider (n + m)λn+m the expected weight of the maximally weighted path

of length n+m. Now suppose that to further maximize this weight we are able

to jump to any vertex in the graph between the nth and (n+1)th stages - since

we are able to do nothing if we so choose the weight of this new path must be

at least equal to the previous maximum so that

(n+m)λn+m = E{max
i,j

[
n+m⊗
k=1

M(k)]i,j} ≤ E{max
i,j,k,l

[
n⊗
k=1

M(k)]i,k + [
n+m⊗
k=n+1

M(k)]l,j}

(4.12)

= nλn +mλm

and the claim follows from Fekete’s Subadditive Lemma as in 2.1.3
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Claim 2 [
⊗n

k=1M(k)]i,j ≥ maxi′,j′ [
⊗n

k=1 M(k)]i′,j′ − C for some C with bounded

expectation.

proof Consider the path σ that attains the maximum weight in the right hand side

of the inequality. Provided the graph associated with M is irreducible and

aperiodic there exists a path ς from i to j that coincides with σ from the Nth

step to the n − Nth step. C is just the difference in weight between the two

paths whose expectation can easily be bounded by 2Nλ1.

Corollary Our theorem follows by considering a path of length n ×m from i to j.

Suppose that the maximally weighted path is σ then

lim
n,m→∞

1

nm
[
nm⊗
k=1

M(k)]i,j = lim
n,m→∞

1

m
(
1

n
[
n⊗
k=1

M(k)]i,σ(n)+ (4.13)

1

n
[

2n⊗
k=n+1

M(k)]σ(n+1),σ(2n) + ...+
1

n
[

nm⊗
k=n(m−1)+1

M(k)]σ(n(m−1)+1),j)

We can now use claim 2 to replace

1

n
[

n(t+1)⊗
k=tn+1

M(k)]σ(tn+1),σ(n(t+1) (4.14)

with

1

n
max
i′,j′

[

n(t+1)⊗
k=tn+1

M(k)]i′,j′ +
C

n
(4.15)

Taking the limit in m the first part of each term gives us λn by the law of large

numbers. Then taking the limit in n gives us λ and takes the C terms to zero.

If we can not factorize our path length in this way simply include a remainder

which when divided by n goes to zero.

Remark The proof for the special case of deterministic sequences is also simpler

from this maximally weighted path perspective. Consider

λ = lim
n→∞

1

n
A⊗n (4.16)

where A is any irreducible aperiodic max-plus matrix. Now take the cycle

C = c(1), ..., c(m) with maximum average weight and consider the component
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A⊗ni,j which is the weight of the maximally weighted path of length n from i to

j. To construct a path attaining this weight (for large n) simply move from i

to c(1) in fewer than N (the number of vertices) steps, complete the cycle as

many times as possible and finally return to j in less than m+N steps. The

average weight of this and any other maximally weighted path will converge to

C’s average weight.

The dynamics of our max-plus system are therefore dominated by λ. The remainder of

this chapter is devoted to calculating and bounding the exponent for some examples

and developing a theory to link it with the classical eigenvalues of the adjacency

matrix of M ’s associated graph.

4.2.1 Example

Since the max-plus exponent acts in an arithmetic way as opposed to a classical

Lyapunov exponent’s geometric action it is very easy to approximate directly in a

numerically stable way. Returning to our asynchronous production line example we

choose all the waiting times to be i.i.d. mean-1 exponentials and simulate the max-

plus system as outlined in 4.1.3. The Max-plus exponent λ corresponds to the average

time between successive completions of finished products in the production line, it is

the reciprocal of the throughput.
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Figure 4.4: Simulation of asynchronous production line for N = 4. a) Progression of

individual items through system, dashed black lines indicate jamming, b) Evolution

of Xi(n) variable, c) Convergence of X1(n)/n to max-plus Lyapunov exponent λ.

4.2.2 Relation with principal adjacency eigenvalue

The max-plus exponent λ depends on both the waiting-time distributions and the

topology of the matrices associated graphs. By restricting our attention to matrices

whose waiting times are all i.i.d. mean-1 exponentials we can better explore the

relationship between λ and the graph’s topology.

Definition we say that an RN×N
max valued random variable M is componentwise ex-

ponential iff

Mi,j =
⊕

k∈K(i,j)

tk (4.17)
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Where (tk)
L
k=1 is a sequence of i.i.d. mean-1 exponentials andK(i, j) ⊂ {1, 2, ..., L}.

We will also require the second condition that (tK(i,j))
N
j=1 are independent for

each i.

Remark The graph associated with a componentwise exponential max-plus matrix

is therefore a directed weighted graph on N vertices with possibly multiple

edges between any two nodes. The weight of each edge is given by a mean-1

exponential random variable and the different edge’s weights are either inde-

pendent or identical. The second condition guarantees that all edges out of

a particular vertex have independent weights. We can actually relax this con-

dition further to allow the weights to be associated (as defined in the upper

bound proof) provided that for each vertex the edge weights of its out edges

are all independent.

Definition The Adjacency matrix A associated with a componentwise exponential

matrix M is defined by

A(i, j) = |K(i, j)| (4.18)

That is the number of independent time delays that contribute to M(i, j). This

needn’t just be zero or one, it can be any integer, in terms of the graph a value

greater than one corresponds to several parallel edges between two vertices.

Theorem Suppose that [M(n)]∞n=1 is a sequence of i.i.d. componentwise exponential

max-plus matrices. The max-plus exponent

λ = lim
n→∞

1

n

n⊗
k=1

M(k) (4.19)

satisfies

log Λ ≤ λ < α∗ (4.20)

where α∗ is the unique solution to

α = log Λ + log(1 + eα) (4.21)
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with e = 2.817... and Λ the principal (classical) eigenvalue of A(M), the ad-

jacency matrix of M ’s associated graph defied by A(M)i,j = k iff there are k

edges from j to i in M ’s graph.

Note The adjacency eigenvalue Λ tells us the rate at which the number of paths of

length n through the graph grows with n. In particular if χi(n) is the number

of paths of length n that end at vertex i then (in standard algebra!)

χ(n+ 1) = A(M)χ(n) = A(M)n+1χ(0) (4.22)

Where χ(0) = (1, 1, ..., 1) and provided the adjacency matrix is irreducible

and aperiodic there exists a unique maximal eigenvalue Λ (which we call the

principal eigenvalue or Perron root) corresponding to a eigenvector u with non-

zero weight on all components so that

lim
n→∞

1

n
log ‖χ(n)‖ = log Λ (4.23)

Lower Bound Recall that

λn =
1

n
E{max

i,j
[
n⊗
k=1

M(k)]i,j} (4.24)

is the expectation of the step averaged weight of the maximally weighted path of

length n through the graphs associated with [M(n)]∞n=1 and that λ = lim→∞ λn.

The max-plus exponent is therefore the step averaged weight of the maximally

weighted path and we can bound it below with the step averaged weight of any

other path we like. In particular we will devise a method for constructing a

highly weighted path and use the expectation of its step averaged weight as a

lower bound.

Our strategy constructs a path σ by choosing to move from one vertex to the

next at each stage by considering only the edge weights at that stage. Suppose

that at stage n our path is at vertex i so σ(n) = i. The edge weight to

be accumulated on the next step will be taken from the matrix M(n) and

since we must move from vertex i it will be one of M(n)i,j for j = 1, 2, ..., N .
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We will always greedily choose to move along the maximally weighted edge

accumulating the maximum weight so that σ(n + 1) = k where M(n)i,k ≥

M(n)i,j for all j = 1, 2, ..., N .

Since the edges out of each vertex are all i.i.d. the probability that any partic-

ular edge has the maximum weight is the uniform fraction 1/di where di is the

out degree of the vertex i. The sequence of vertices in the path σ is therefore

a Markov chain with

P[σ(n+ 1) = j|σ(n) = i] =
Ai,j
di

(4.25)

and stationary distribution π.

Now consider the weight of the first n edges in the path σ

W |n(σ) = max
k∈K[σ(1)]

tk(1) + max
k∈K[σ(2)]

tk(2) + ...+ max
k∈K[σ(n)]

tk(n) (4.26)

where K[i] = ∪j∈{1,2,...,N}K(j, i) are the indices for all waiting-times associated

with edges leaving vertex i. By the law or large numbers we have

lim
n→∞

1

n
W |n(σ) =

N∑
i=1

πi E[ max
k∈K(i)

tk]︸ ︷︷ ︸ (4.27)

where the underbraced term is the expectation of the maximum of di i.i.d.

mean-1 exponentials.

Claim The expectation of the maximum of d i.i.d. mean-1 exponentials t1, ..., td

equals
∑d

k=1
1
k
.

Proof Suppose that each exponential variable is the waiting-time from t = 0 for some

event to occur. The first event is the minimum of d exponentials, which is a

mean-1
d

exponential. Once this event has occurred we can apply the memory loss

property of the remaining exponential distributions so that the time between the

first and second events is the minimum of d− 1 exponentials, which is a mean-

1
d−1

exponential. Continuing in this way the time of dth event (the maximum

of the d mean-1 exponentials) is the sum of d independent exponentials with
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means 1
d
, 1
d−1

, ..., 1
2
, 1 and by independence the mean of the sum is the sum of

these means.

The step averaged weight of the path is therefore given by

N∑
i=1

πi

di∑
k=1

1

k
≥

N∑
i=1

πi log di (4.28)

where we will use the log approximation as our lower bound.

We now consider a cocycle on the Markov chain σ defined by

C|n(σ) = [
n∏
k=0

dσ(k)]
−1 (4.29)

and by the multiplicative ergodic theorem, with probability one, we have

lim
n→∞

1

n
logC|n(σ) = −

N∑
i=1

πi log di (4.30)

The nth stage entropy of the cocyle is given by

Hn =
−1

n

∑
{σ|n:σ(0)=1}

C|n logC|n (4.31)

where the sum is taken over all paths of length n that begin at vertex 1. Note

that C|n(σ) is the probability of following exactly the path σ from σ(0) to σ(n)

taking the appropriate edge [σ(k + 1), σ(k)] whenever their are multiple edges,

we therefore say that our cocycle is stochastic and

lim
n→∞

Hn = −
∑

{σ|n:σ(0)=1}

C|n(−)
N∑
i=1

πi log di =
N∑
i=1

πi log di (4.32)

The entropy of a probability measure on a set of k objects is maximized when

the measure is uniform. Since C|n can be thought of as a probability measure

on {σ|n : σ(0) = 1} and in the limit n → ∞ Cn becomes, essentially, uniform

we have

lim
n→∞

Hn −
1

n
Ĥn = 0 (4.33)

where Ĥ(n) is the entropy of the uniform probability distribution on {σ|n :

σ(0) = 1} which is given by

Ĥ(n) = −
∑

{σ|n:σ(0)=1}

1

Dn

logDn (4.34)
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where Dn = ‖{σ|n : σ(0) = 1}‖ is the number of paths of length n that start

at vertex 1. Finally we have

N∑
i=1

πi log di = lim
n→∞

1

n
logDn = log Λ (4.35)

which completes the proof of our lower bound

log Λ < λ (4.36)

Remark The use of the approximation

N∑
k=1

1

k
≈ logN (4.37)

is the reason that our bound is not sharp. This is in the sense that we can

construct a sequence of i.i.d. matrices whose maximally weighted path is the

same path chosen by our greedy strategy. If we set

M(n)i,j = ti(n) (4.38)

for i, j = 1, 2, ..., N then the choice of edge weights at each vertex are the same

for all the different vertices at each stage and the optimal strategy for choosing

a maximally weighted path is simply to choose the best available edge at each

stage, as in our greedy strategy. Therefore in this system

λ =
N∑
k=1

1

k
(4.39)

and we can express this in terms of Λ = N (the number of vertices) in the limit

by

lim
N→∞

λ = log Λ + γ + εN (4.40)

where γ is the EulerMascheroni constant and εN → 0 like 1/N .

Upper bound The expected weight of the maximally weighted path of length n

can, of course, be expressed in terms of path weights

λn =
1

n
Emax

i,j
[
n⊗
k=1

M(k)]i,j =
1

n
Emax

σ|n
W |n(σ, [ti(k)]i=N,k=n

i=1,k=1 )︸ ︷︷ ︸ (4.41)
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where the underbraced term is equal to the weight of the length-n path σ with

edge weights determined by the i.i.d. mean-1 exponentials [ti(k)]i=N,k=n
i=1,k=1 . It is

important that in evaluating this expression the same waiting times are used

for each different path. The maximum is then taken over all paths of length n.

The weight of each path of length-n is a sum of n i.i.d. mean-1 exponentials so

that all path weights are identically distributed. However different paths can

share edges which they traverse at the same step, accumulating the same waiting

time. Therefore the path weights are not independent. Since their dependence

arises from edge weight sharing it will only tend to make them more correlated.

We say that the edge weights are associated random variables.

Definition A sequence of random variables (xi)
N
i=1 are said to be associated if for

all f, g : RN 7→ R non-decreasing in each component we have

Cov[f(x1, x2, ..., xN), g(x1, x2, ..., xN)] ≥ 0 (4.42)

To see that the path weights are associated note that each W |n(σ) is a non-

decreasing function of the waiting-times. Thus if f and g are non-decreasing

functions of the path weights they are non-decreasing functions of the waiting-

times which are all independent so the inequality holds.

Since this association means the random variables are positively correlated it

reduces their standard deviation and the expectation of their maximum. We can

therefore bound λ from above by taking the maximum in (4.41) while ignoring

the dependence and treating each path weight as an i.i.d. sum of i.i.d. mean-1

exponentials.

Claim Suppose that (xi)
N
i=1 and (yi)

N
i=1 are identically distributed random variables

and that (xi)
N
i=1 are associated but (yi)

N
i=1 are independent.

E N
max
i=1

xi ≤ E N
max
i=1

yi (4.43)

Proof For any i ∈ {1, 2, ..., N}, any subset J ∈ {1, 2, .., N} and any positive real
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number t define the non-decreasing functions f and g by

f(x1, x2..., xN) =

 −1 if xi < t

0 otherwise
(4.44)

g(x1, x2..., xN) =

 −1 if maxj∈J xj < t

0 otherwise

Now to calculate the covariance of these two functions we need to consider four

events

• xi < t and maxj∈J xj < t occurs with probability P (f, g) = P[xi < t, xj <

t, j ∈ J ]

• xi < t but maxj∈J xj ≥ t occurs with probability P (f) − P (f, g) where

P (f) = P[xi < t]

• maxj∈J xj < t but xi ≥ t occurs with probability P (g) − P (f, g) where

P (g) = P[xj < t, j ∈ J ]

• xi ≥ t and maxj∈J xj ≥ t occurs with probability 1−P (f)−P (g)+P (f, g)

The covariance of f, g is then

Cov[f, g] = P (f, g)[P (f)P (g)−P (f)−P (g)+1]+[P (f)−P (f, g)][P (f)−1]P (g)

(4.45)

+[P (g)− P (f, g)][P (g)− 1]P (f) + [1− P (f)− P (g) + P (f, g)]P (f)P (g) ≥ 0

which simplifies to P (f, g) ≥ P (f)P (g) so that

P[xi < T |xj < T, j ∈ J ] ≥ P[xi < T ] (4.46)

Now consider

P[
N

max
i=1

xi < t] =
N∏
i=1

P[xi < t|xk < t; k = 1, 2, ..., i− 1] (4.47)

and if we set J = {1, 2, ..., i− 1} then our previous result tells us that

P[
N

max
i=1

xi < t] ≥
N∏
i=1

P[xi < t] (4.48)
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which is exactly equal to the probability that the maximum of the yi is less

than t. Finally

E N
max
i=1

xi =

∫ ∞
0

tρx(t)dt =

∫ ∞
0

∫ ∞
z

ρx(t)dtdz (4.49)

=

∫ ∞
0

1− P[
N

max
i=1

xi < z]dz ≤
∫ ∞

0

1− P[
N

max
i=1

yi < z]dz = E N
max
i=1

yi

so that the expectation of the maximum of the associated variables is less than

or equal to the expectation of the maximum of the independent variables as

claimed.

Therefore we have the upper bound

λ ≤ lim
n→∞

1

n
E Dn

max
i=1

Xi(n) (4.50)

where [Xi(n)]Dni=1 is a sequence of i.i.d. sums of n i.i.d. mean-1 exponentials

and Dn is the number of paths of length n through our graph. Unfortunately

we can’t approximate the Xi(n) as Gaussians because the convergence in the

central limit theorem is not sufficiently uniform. Instead we will show directly

that as n → ∞ the ratio of the median to the mean of the maximum tends

to 1 so we can calculate the expectation by calculating the median, which is

naturally easier than the mean for the maximum of several random variables.

Given a sequence of probabilities (pn)∞n=1 we define the sequence of generalized

medians [µn(pn)]∞n=1 for our sequence of random variables [maxDni=1Xi(n)]∞n=1 by

P[
Dn

max
i=1

Xi(n) < µn(pn)] = P[X1(n) < µn(pn)]Dn = pn (4.51)

And using the identity

ex = lim
m→∞

(1 +
x

m
)m (4.52)

with x = log pn and m = Dn we have, approximately but verifiably in the limit

n→∞ for all sequences (pn)∞n=1 we consider

P[X1(n) < µn(pn)] = 1 +
log pn
Dn

(4.53)

P[X1(n) > µn(pn)] = − log pn
Dn
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And since we know the distribution of the sum of n i.i.d. mean-1 exponentials

we can write down an integral for the LHS which we can then integrate by parts

=

∫ ∞
µn(pn)

xn−1e−x

(n− 1)!
dx = e−µn(pn)

n−1∑
k=0

µn(pn)k

k!︸ ︷︷ ︸ (4.54)

where the underbraced term is a truncation of ex’s power series evaluated at

x = µn(pn). We can bound this sum with the inequality

(1 +
x

n
)n ≤

n∑
k=0

xk

k!
≤ (1 +

ex

n
)n (4.55)

which we prove by looking at the coefficient of xk

1

k!

n!

(n− k)!nk
≤ 1

k!
≤ 1

k!

n!ek

(n− k)!nk
(4.56)

Therefore in the limit n→∞ we have the inequality

e−µn(pn)(1 +
µn(pn)

n− 1
)n−1 ≤ − log pn

Dn

≤ e−µn(pn)(1 +
eµn(pn)

n− 1
)n−1 (4.57)

Claim Any sequence of medians µn(pn) satisfying

lim
n→∞

log log pn
n

= 0 (4.58)

including the sequence of proper medians [µn = µn(1
2
)]∞n=1 satisfy, in the limit

n→∞

log Λ ≤ µn
n
≤ log Λ + log(1 +

eµn
n

) ≤ C log Λ +D (4.59)

for some bounded C D that do not depend on Λ.

Proof substituting pn = 1
2

into inequality (4.57) then taking logs and dividing by

n gives the first sandwich inequality. That everything is less than or equal to

C log Λ +D follows from the fact that

F (α) = log Λ + log(1 + eα) (4.60)

is a contraction mapping whose unique fixed point α∗ bounds limn→∞
µn
n

from

above. Now

δα∗

δ log Λ
=

1 + eα∗

1 + e(α∗ − 1)
(4.61)



CHAPTER 4. PRODUCTS OF I.I.D. MAX-PLUS MATRICES 77

So that for any fixed finite Λ′ we have

α∗(Λ) ≤ α∗(Λ′) +
δα∗

δ log Λ
|α∗(Λ′) log Λ (4.62)

Claim For large n almost all the probability mass is close to the median in the sense

that

lim
n→∞

µn(e
−1
n )− µn(e−n)

n
= 0 (4.63)

Proof Substituting pn = e
−1
n and e−n into equation (4.54) then taking logs we have

µn(e
−1
n )

n
= log Λ +

log n

n
+ log(

n−1∑
k=0

µn(e
−1
n )k

k!
) (4.64)

and

µn(e−n)

n
= log Λ− log n

n
+ log(

n−1∑
k=0

µn(e−n)k

k!
) (4.65)

respectively, So that

µn(e
−1
n )− µn(e−n)

n
≤ 2 log n

n
(4.66)

+
µn(e

−1
n )− µn(e−n)

n
max

µn(e−n)≤x≤µn(e
−1
n )

d

dx
log(

n−1∑
k=0

xk

k!
)︸ ︷︷ ︸

using the result of the previous claim we bound the underbraced term by

max
log Λ≤α≤C log Λ+D

1−
(αn)n−1

(n−1)!∑n−1
k=0

(αn)k

k!

(4.67)

which gives

µn(e
−1
n )− µn(e−n)

n
≤ 2 log n

n
max

log Λ≤α≤C log Λ+D

(n− 1)!

(αn)n−1

n−1∑
k=0

(αn)k

k!︸ ︷︷ ︸ (4.68)

where the underbraced term can be bounded above by

max
log Λ≤α≤C log Λ+D

n−1∑
k=0

1

αn−k−1
≤ max

log Λ≤α≤C log Λ+D
(1− 1

α
)−1 (4.69)

So that

µn(e
−1
n )− µn(e−n)

n
<

2 log n

n
(1− 1

log Λ
)−1 → 0 (4.70)

as required.
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We can now express the mean as an integral over a series of intervals bounded

by generalized medians

E Dn
max
i=1

Xi =

∫ µn(e−n)

0

xρ(x)dx+

∫ µn(e
−1
n )

µn(e−n)

xρ(x)dx︸ ︷︷ ︸ (4.71)

+

∫ µn(e
−1
mn )

µn(e
−1
n )

xρ(x)dx+
∞∑
m=2

∫ µn(e
−1

(m+1)n )

µn(e
−1
mn )

xρ(x)dx

Where the underbraced term is equal to µn(1
2
) + o(n). All that remains is to

show that the sum of the remaining terms grows slower than n.

The first integral is easy∫ µn(e−n)

0

xρ(x)dx ≤ e−nµn(e−n) ≤ e−nn(C log Λ +D) (4.72)

We treat the remaining integrals in the same way, bounding them above by the

probability associated with their interval multiplied by an upper bound on the

value of their upper boundary. Using the upper bound in inequality (4.57) we

obtain

µn(e
−1
mn )

n
< log Λ− 1

n
log log e

1
mn + log(1 + e

µn(e
−1
mn )

n
) (4.73)

So that

µn(e
−1
mn )

n
< logmΛ + log(1 + e

µn(e
−1
mn )

n
) (4.74)

and as in (4.62) we have

µn(e
−1
mn )

n
< C logmΛ +D (4.75)

So the sum of the remaining integrals is bounded by

n(e
−1
2n − e

−1
n )(C log 2Λ +D) + n

∞∑
m=3

(e
−1
mn − e

−1
(m−1)n )[C logmK(n) +D] (4.76)

And in the limit n→∞ this expression is bounded above by

(1− e−n)n(C log 2Λ +D) + n

∞∑
m=3

C logm

(m− 1)n
(4.77)

≤ Cn

∞∑
m=3

1

(m− 1)n−1
→ 0

Therefore the mean really does look like the median and we can use the bound

obtained for the median on the mean.
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Corollary Suppose that [MN(n)]∞n=1 is a sequence of i.i.d. componentwise exponen-

tial max-plus matrices parameterized by N ∈ N.

• If maxN ΛN = Λ exists then maxN λN = Λ exists.

• If on the other hand ΛN →∞ then limN→∞
λN

log ΛN
= 1

• Moreover if, as in all our examples, MN(n) can be realized as submatrix

of MN+K(n) for all N,K ≥ 0 then either limN→∞ ΛN exists and so does

limN→∞ λN or limN→∞
λN

log ΛN
= 1

Proof The final item comes from the fact that if MN is a submatrix of MN+K then

any path through its associated graph can also be found in the graph of MN+K

so that ΛN ≤ ΛN+K and λN ≤ λN+K . Everything else follows directly from the

main theorem.

4.3 Examples

Our result relating the max-plus exponent to the adjacency matrix eigenvalue is

restrictive in the sense that it only applies to componentwise exponential matrices.

The max-plus matrix product systems associated with stochastic event graphs are not

typically in this form. For example in 4.1.3 the graph associated with A∗(n)B(n− 1)

has edges with zero weight as well as edges whose weight are conventional sums of

more than one i.i.d. mean-1 exponential.

However we shall see that this and other matrices associated with a generalization

of our original production line model can be modified in such a way that preserves the

max-plus exponent and provides us with a componentwise exponential form. Thus we

can apply our edge weight redistribution procedure to obtain a new system which has

the same asymptotic properties as the original stochastic event graph but is amenable

to our new theory.
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4.3.1 Asynchronous production trees

The production line model outlined in 4.1.1 requires the N different process to be

carried out in the total order 1 > 2 > ... > N to produce a finished product. We

can generalize our production model to allow for a class of partial orders on these

processes.

Definition A tree order�,� is a partial order on {1, 2, ..., N} with a unique maximal

element such that {k � i} ∩ {k � j} = ∅ whenever {i, j} is an anti-chain. We

associate the graph G(�,�) with vertex set {1, 2, ..., N} and an edge (i, j)

whenever j is a maximal element of {k � i}. The graph associated with a tree

metric is therefore a rooted tree and for each rooted tree on {1, 2, ..., N} there

exists a unique partial order associated with it as such.

The requirement that incomparable processes do not share predecessors is necessary

to obtain a stochastic event graph description as otherwise some places will have more

than one succeeding transition. It is also a fairly reasonable assumption for a generic

asynchronous production line, if we interpret each process as taking the products of

its direct predecessors and amalgamating them in some way then there is no reason

why parallel processes should be dependent in any way on each others predecessors.

We construct the stochastic event graph associated with a tree order �,� as

follows. For each i ∈ {1, 2, ..., N} we include a pair of places pi and qi, and a transition

Ti. As before a token in pi represents as an item being processed at site i with i.i.d.

mean-1 exponential waiting times [ti(n)]∞n=1. A token in qi represents site i being

unoccupied with zero waiting times. Transition Ti represents the products of process

i’s predecessors being completed and moved into site i for processing.

We include an edge from qi to Ti and from Ti to pi, in addition we include an edge

from pi to Tj where j is i’s unique direct successor in G(�,�) and an edge from Tj

to qi.

Finally we include a terminal transition TN+1 which represents the completion of

a finished product, we include a edge from TN+1 to qk where k is the root of G(�,�)

and an edge from pk to TN+1. See example 4.3.4.
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4.3.2 Edge weight redistribution

The graphs associated with A(n) and B(n − 1) for the stochastic event graph of an

asynchronous production line with partial order G(�,�) are as follows.

• A(n) is a graph on {1, 2, ..., N + 1} with an edge (i, j) of weight tj(n) whenever

(i, j) is an edge in G(�,�), in addition there is an edge (N + 1, k) of weight

tk(n) where k is the maximal element.

• B(n− 1) has the same vertex set but with the opposite edge set, so that (i, j)

is an edge of weight zero in B(n− 1) whenever (j, i) is an edge in A(n).

• A∗(n)B(n − 1) is a graph on {1, 2, ..., N + 1} where for each i there are self

loops (i, i) of weight tj(n) and zero weight edges (j, i) for each j that is directly

succeeded by i and for each k � i there is an edge of weight tj(n) +Wk,i where

the second term is the weight of the unique path from i to k.

Definition Â(n) is the componentwise exponential matrix whose graph on {1, 2, ..., N+

1} contains for each i edges (j, i) and (i, k) of weight tj(n) for each j a direct

predecessor of i and any k � i. The matrices components are given by

Â(n)i,j =


ti if j is a direct predecessor of i⊕

k∈P (i) tk if j � i

ε otherwise

(4.78)

where P (i) is the set of i’s direct predecessors.

Claim The max-plus exponent of the edge weight redistributed system

λ̂ = lim
n→∞

1

n
[
n⊗
k=1

Â(k)]N+1,N+1 (4.79)

is equal to that of the original stochastic event graph system

λ = lim
n→∞

1

n
[
n⊗
k=1

A∗(k)B(k − 1)]N+1,N+1 (4.80)

Note that we will be calculating these exponents by looking just at the (N +

1, N+1)th component of the product which should be thought of as the averaged
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weight of the maximally weighted path of length n from the maximal vertex to

itself.

Proof Again we can express the exponent in terms of path weights.

λ̂n =
1

n
Emax

i,j
[
n⊗
k=1

Â(k)]i,j =
1

n
Emax

σ̂|n
W |n(σ̂, [t̂i(k)]i=N,k=n

i=1,k=1 )︸ ︷︷ ︸ (4.81)

and since the t̂i(n) and tj(m) are all i.i.d. we can obtain a statistically valid

description of this system by setting t̂i(n) = ti[n+ d(i)] where d(i) is the depth

of i in the partial order, i.e. the length of the longest chain from the maximal

element to i. We shall now show that there is a map between the sets of

paths such that any sequence of edge weights in the original system can be

accumulated by a different path in the redistributed system and that therefore

the two exponents are the same.

Paths from vertex N + 1 to vertex N + 1 in the original system must step

down the tree one vertex at a time and are then able to jump back up. In the

redistributed system paths jump down the tree then step back up. We define

a map R from the paths in the original system to paths in the redistributed

system by reading σ and simultaneously writing R(σ). Let i be the latest step

to be read from σ and j the latest step written to R(σ).

• Start with R(σ)1 = σ1 = N + 1

• Whenever σ steps down the tree so that d(σi) < d(σi+1) < ... < d(σi+k) ≥

d(σi+k+1) we set R(σ)j = σi R(σ)j+1 = σi+k

• whenever σ jumps back up the tree (including when it stays at the same

level) so that d(σi) ≥ d(σi+1) we setR(σ)j = σi, R(σ)j+1 = σ
(1)
i , ...,R(σj+k) =

σ
(k)
i = σi+1 where σ

(t)
i is σi’s unique tth successor.

Therefore if σ is a length n path from N + 1 to N + 1 in the original graph

R(σ) is a length n path from N + 1 to N + 1 in the redistributed graph, and

ŴR(σ) = W (σ) (4.82)
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So that we have a measure preserving map between the t̂i(n) and tj(m) and

a bijection between the paths in the maximum. Therefore when we take the

expectation we can integrate over the tj(m) and have an identical integrand for

each exponent. Thus the exponents are the same as claimed.

4.3.3 Asynchronous production line

We have already calculated A(n), B(n− 1) and A∗(n)B(n− 1) for the asynchronous

production line in section 4.1.3. Following the definition in 4.3.2 we construct the

redistributed componentwise exponential matrix Â for this system

Figure 4.5: Graph associated with Â(n) for N = 4

Ignoring the minimal vertex with no connections the adjacency matrix for this

graph is given by

Ai,j =

 1 if i ≤ j + 1

0 otherwise
(4.83)

where we have identified each vertex with its depth for the index in the adjacency

matrix. Now A is irreducible and aperiodic so Λ exists and is unique. Also there

exists u with ui > 0 for all i such that Au = Λu. Examining the first row of this

equation gives u1 + u2 = Λu1 so that u2 = Λ− 1 the nth row says

n+1∑
j=1

uj = Λun−1 + un+1 = Λun (4.84)

Which gives us a second-order, linear, constant-coefficient recurrence relation on the

un that we use to obtain

un = A+µ
n−1
+ + A−µ

n−1
− (4.85)
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where

µ± =
Λ±
√

Λ2 − 4Λ

2
(4.86)

and

A± =
1

2
± Λ− 2

2
√

Λ2 − 4Λ
(4.87)

We now require uN = uN−1 in order for the eigenvalue/vector pair to be valid.

Suppose that Λ > 4 then both exponents are real and positive with µ+ > µ− also

A+ > |A−| so that un is an increasing function of n and it is impossible to satisfy

the final condition. Therefore Λ ≤ 4 which proves that there is a finite limit in the

exponent as the length of the production line grows N → ∞. In fact Λ → 4 very

quickly and this can be seen in the convergence of the upper and lower bounds with

N .

Figure 4.6: Max-plus exponent of production trees (blue) with bounds (black).

a)Asynchronous production line, b)Asynchronous production binary tree, c)Partially

synchronous production tree
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4.3.4 Asynchronous production binary tree

We can construct an asynchronous production tree around a partial order derived

from a binary tree.

Figure 4.7: Petri-net and initial marking for asynchronous production binary tree for

N = 3.

Calculation of the matrix product system and redistributed componentwise expo-

nential matrix is as outlined previously.
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Figure 4.8: Graphs associated with A, B, A∗B and Â respectively for N = 3.

To compute the adjacency eigenvalue of the graph for Â we first quotient the

vertex set so that we consider sets of depth i vertices. The adjacency matrix for this

quotient is then given by

Ai,j =


1 if i = 1, j = 1, 2

2 if j ≤ i+ 1 ≥ 3

0 otherwise

(4.88)

which will have the same principal eigenvalue as the whole adjacency matrix. Note

that this adjacency matrix is less than (componentwise) the adjacency matrix asso-

ciated with the production line of length N multiplied by 2. Therefore the apparent

asymptotes in the bound and the exponent definitely do exist.
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4.3.5 Partially synchronous production binary tree

We can generalize our production line model further by requiring some anti-chains

of processes to be completed synchronously. In terms of the production line model

this means demanding that some processes that do not share any precursors must

start at exactly the same time, so that one process may have to wait for the other

to be ready in order for it to begin. Formally we take a partition of {1, 2, ..., N} into

disjoint subsets then define a tree order on this set of subsets.

We consider a binary tree system in which all the processes of depth d are synchro-

nized. This is equivalent to defining a total order on the partition taken by grouping

together processes of the same depth in the binary tree.

Figure 4.9: Petri net and initial marking for partially synchronous production binary

tree for N=3.

Within this slightly more general framework the edge weight redistribution process

still works in the same way.
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Figure 4.10: Graphs associated with A, B, A∗B and Â respectively for N = 3, bold

edges represent sets of more than one edge whose weights are listed in the figure.

The adjacency matrix associated with the redistributed system is given by

Ai,j =

 2i−1 for j ≤ i+ 1

0 otherwise
(4.89)

and using
N

min
j=1

N∑
i=1

Ai,j ≤ Λ ≤ N
max
j=1

N∑
i=1

Ai,j (4.90)

we have the inequality

2N−2 + 2N−1 = 3× 2N−2 ≤ Λ ≤
N∑
j=1

2j−1 = 2N − 1 (4.91)

so that

lim
N→∞

λ

N
= log 2 (4.92)
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4.4 Conclusion

4.4.1 Examples

Our simulations and bounds confirm that the asynchronous production tree has

slightly lower throughput than the production line but that individual products are

produced much faster. Enforced synchrony reduces throughput catastrophically but

individual items are produced in a reasonable amount of time. We summarize our

results in the following table which shows throughput and production time in the

limit N →∞, so for very large production trees. [λ1 ≈ 2.5] < [λ2 ≈ 3.5].

Production model Throughput Production time

Asynchronous Line λ−1
1 λ1N

Asynchronous tree λ−1
2 λ2 log2N

Partially synchronous tree (logN)−1 logN log2N

4.4.2 Theory

For smaller values of Λ our bounds are not too sharp which is why we are unable to

use them to approximate λ with much accuracy, however they still prove essential for

proving the existence of the asymptote in λ as N →∞. For the partially synchronous

case where Λ→∞ the bounds gives us an approximation of λ that converges in ratio

as N →∞. The availability of such results is formalized in the corollary to our main

theorem which we recall here.

Corollary Suppose that [MN(n)]∞n=1 is a sequence of i.i.d. componentwise exponen-

tial max-plus matrices parameterized by N ∈ N.

• If maxN ΛN = Λ exists then maxN λN = Λ exists.

• If on the other hand ΛN →∞ then limN→∞
λN

log ΛN
= 1

• Moreover if, as in all our examples, MN(n) can be realized as submatrix

of MN+K(n) for all N,K ≥ 0 then either limN→∞ ΛN exists and so does

limN→∞ λN or limN→∞
λN

log ΛN
= 1
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The ideas used in the proof of the bounds rest heavily on the maximally weighted

path persecutive. In the proof of the lower bound we use a Markovian strategy to

obtain a highly weighted path and in the proof of the lower bound we show exploit

the special Association between different paths weights. These ideas could form the

basis of a similar result for further classes of Max-plus matrices, indeed a similar

upper bound can easily be obtained for Componentwise Gaussian matrices where we

have

λ �
√

log Λ (4.93)

The classical theory of graph eigenvalues gives us a useful toolbox for investigating the

value of Λ in our examples which made its calculation fairly easy. In less structured

systems it could still be obtained numerically with great accuracy much faster than

any Max-plus exponent approximation.

4.4.3 Scope

The Max-plus formulation of a timed even graph will work for any such system with

any sort of waiting time distribution. Our main theorem relied on a Componentwise

exponential form which we obtained through a sort of combinatorial change of vari-

ables, this transformation will clearly not work for any timed event graph but similar

techniques will no doubt be of use in other examples.

4.4.4 Further work

In further work we hope to generalize our result to a more general class of matrices,

clearly the tail characteristics of the waiting time distributions play an important role

here so something like the Pareto distribution whose tail weight can be parameterized

would be particularly interesting. It would also be interesting to investigate what else

can be said about the dynamics of a timed event graph from the maximally weighted

path perspective, in particular the importance of the maximally weighted path’s

path, that is the sequence of vertices it visits. A statistical result would be especially

desirable here.
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Chapter 5

Smoothing non-smooth systems

with the Moving Average

Transformation

Abstract

We present a novel, systematic procedure for smoothing non-smooth dynamical sys-

tems. In particular we introduce the Moving Average Transformation which can

be thought of as a change of variables which transforms discontinuous systems into

dynamically equivalent continuous systems and continuous but non-differentiable sys-

tems into dynamically equivalent differentiable systems. This smoothing gives us a

new way to compute the stability properties of a non-smooth systems and provides

a new theoretical link between smooth and non-smooth systems. The dynamics and

algebraic structure of systems obtained by transforming typical non-smooth systems

are investigated.

5.1 Introduction

Discontinuities in non-smooth models of physical systems are approximations of

highly non-linear smooth processes that take place on very short time scales. The

92
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Newtonian impact of a ball bouncing on the ground is discontinuous in velocity but

in reality the ball and ground are compliant, elastic bodies and discontinuities in

velocity are physically impossible! Introducing compliance gives us a continuous but

non-smooth system. The dynamics are non-smooth because there is only a force

between the ball and ground when they are in contact, but this too is a false as-

sumption. The electric fields of the atoms in the ball and ground are continually

interacting in a smooth way it is just that the forces produced by these interactions

are only significant during the short impacting phase of the dynamics.

Of course we approximate these fast processes by non-smooth discontinuities to

obtain simpler, more manageable models of physical processes. Ironically the piece-

wise smooth nature of the resulting models can make them more difficult to study.

For example non-differentiability makes it impossible to apply many standard numer-

ical techniques to these systems [1, 2, 3, 4, 5]. For a discontinuous system like the

bouncing ball the topology of the state space and any attractors it contains is broken

up by jumps in the evolution so that an attractor will typically appear to be com-

prised of several disconnected parts, if we patch these together by connecting jump

take offs and landings we arrive at a new topological space which can tell us much

more about the system’s dynamics than the topology of the original disconnected

object.

There is therefore some motivation for transforming non-smooth systems (which

as outlined are approximations of smooth systems) back into smooth systems. Several

authors have tried a fairly direct approach, adding a small region where fast, smooth

dynamics replace the non-smooth discontinuity in a process called regularization [5].

Whilst this doesn’t necessarily mean introducing more layers of physically realistic

modeling, since the extra components can be chosen to be as simple as possible, it

still feels like a step in the wrong direction. The non-smooth discontinuities are a

simplification and we should be able to exploit this trade off in realism by studying

more mathematically appealing tractable systems.

In addition to these approximated physical processes there is a huge catalogue

of non-smooth systems in control theory where digital switching between different
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modes really should be thought of as being intrinsically non-smooth [6]. Abstract

non-smooth systems are also of great interest mathematically as they can generically

exhibit bifurcation structures which would be impossible or of high codimension in

the space of smooth systems [7]. Although it is not natural to think of one of these

systems as the limit of some smooth system it can still be advantageous to smooth

them in some way as all the problems associated with the analysis of non-smooth

physical systems are also present here.

In this chapter we introduce the Moving Average Transformation which can be

thought of as a change of variables which transforms discontinuous systems into

continuous systems and continuous but non-differentiable systems into differentiable

systems. For a non-smooth system with evolution φt : X → X the transformation is

defined by

Φ(x) =

∫ 0

−1

φτ (x)dτ (5.1)

Since the evolution of the system is automatically incorporated into the transforma-

tion it is possible to systematically obtain smoothed systems using this technique.

The definition of the transformation is reviewed in 5.1.2.

The transformation provides an explicit link between a non-smooth system and its

smoothed Dynamically Equivalent counterpart. This enables us to better understand

topological aspects of the dynamics and apply standard numerical techniques that

rely on differentiability.

Crucially the technique is totally systematic, introduces no extraneous dynamics

and provides a clear equivalence between the original and transformed (smoothed)

system.

Although dynamical equivalence guaranties that all topological invariants other

than continuity are preserved under the transformation and any standard smooth

technique can be applied to the smoothed systems this chapter focuses on orbit

stability. Small perturbations to an orbit in a non-smooth system evolve in a dis-

continuous way making stability analysis very complicated even in simple systems

[3, 8]. In section 3 we show how the Saltation matrices which capture singular stabil-

ity features of non-smooth discontinuities are naturally integrated into our smoothed
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systems. Their discontinuous action is essentially spread out over a non-zero time

interval of the flow.

In section 5.2 we demonstrate a novel way to calculate the stability of a periodic

orbit in a non-smooth system. We start with a non-smooth system that contains a

periodic orbit which we want to analyze. First we use the transformation to obtain

a dynamically equivalent differentiable system. This smoothed system contains a

periodic orbit corresponding to the orbit in the original system, we can then calculate

the stability of this smoothed orbit in the usual smooth way, by integrating the

derivative of the flow. The dynamical equivalence guarantees that the Lyupanov

spectrum of orbits in the original and smoothed systems are the same. In section 5.4

we use the same idea, that the stability characteristics of the original and transformed

systems are the same, to compute the Lyupanov exponent of a chaotic non-smooth

system from a time-series recording. In principal this technique could be applied to

experimental data.

This chapter is organized as follows. In the remainder of section 5.1 we introduce

the moving average transformation and provide a simple example illustrating the sort

of construction/analysis we hope to achieve using it. In section 5.2 we present a full

and explicit example of applying the transformation twice to a discontinuous system.

In section 5.3 we apply the transformation to the normal forms of some generic

non-smooth discontinuities, this section provides most of the theory in the chapter

and justifies our claim that the transformation smooths non-smooth systems, it also

provides us with an atlas of possible local behaviors for typical smoothed systems.

Finally in section 5.4 we smooth a more complicated system with a numerically

implemented procedure based on a time-series reconstruction.

5.1.1 Simple example of smoothing

Before we formally introduce our method for smoothing we shall first by way of

motivation, present a very simple example. Although the method here is quite ad

hoc it illustrates the desired relationship between the original and smooth systems as
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well as the necessary properties of the transformation between them.

Consider a unit mass attached to a spring with unit stiffness along with a wall

where the mass undergoes Newtonian impacts. The wall is positioned at x = 0 where

the spring is at its natural length . We assume that the spring is light and linear and

that there is no friction so that away from the wall the dynamics are governed by the

linear differential equation

d

dt

 x

ẋ

 =

 0 1

−1 0

 x

ẋ

 (5.2)

When the mass hits the wall there is an impact with restitution c so that whenever

we reach the set In = {(x, ẋ) ∈ R2 : x = 0, ẋ < 0} we instantaneously apply the map

R(x, ẋ) = (x,−cẋ) which maps In to Out = {(x, ẋ) ∈ R2 : x = 0, ẋ > 0}. Since we

are mapped instantaneously from In to Out the state space of the system is given by

M = {(x, ẋ) ∈ R2 : x ≥ 0}/{(x, ẋ) ∈ R2 : x = 0, ẋ < 0}.

The system then evolves by flowing according to (5.2) until hitting In then map-

ping to Out and flowing according to (5.2) again... Define φt : M 7→ M to be the

time t evolution map that takes a point in the state space foreword in time t seconds.

We seek a smoothing transformation T which can be thought of as a change of

variables with the property that the transformed system ϕt = T ◦φt ◦T−1 is smooth.

Claim The transformation T : M 7→ {(y1, y2) ∈ R2} defined in polar coordinates by

T (θ, r) = (2θ, rc
θ
π ) (5.3)

provides an equivalence between our discontinuous system and the linear system

evolved by the ODE

d

dt

 y1

y2

 =

 1
π

log c 2

−2 1
π

log c

 y1

y2

 (5.4)

defined on R2 equipped with the Euclidian metric.
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Figure 5.1: An orbit to the original system (Left) and its image under T (right).

Proof This rests quite heavily on our definition of equivalent! Clearly the two sys-

tems are not topologically equivalent since continuity is a topological invariant.

Definition If φ is the evolution of a non-smooth system which includes some jumps

that are applied instantaneously on reaching a set Σ then we say that the

transformation T provides a Dynamical Equivalence between φ and ϕ via ϕt =

T ◦ φt ◦ T−1 if

• T is continuous

• T−1 exists and is continuous everywhere except T (Σ)

• δT
δx

exists and is non-zero everywhere

This is a relaxation of the usual definition for topological equivalence where

T−1 is required to be continuous everywhere. Clearly our claim holds for this

notion of equivalence.

Definition We define a Cheat Metric d on a discontinuous system to be a continuous

metric which identifies jump take offs and landings so that d(s, R(s)) = 0 for

all s ∈ Σ. To define d everywhere else we could just measure the length of

the shortest path between two points but allow the path to jump over the

discontinues in the same way as φ.

Viewed with the cheat metric all systems have continuous orbits, hence the

cheat. This means that the original system with Euclidian metric is not topo-

logically equivalent to the original system with cheat metric which in tern is

topologically equivalent to the smoothed system with Euclidian metric.
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The second condition for dynamical equivalence that T−1 exists and is contin-

uous everywhere except T (Σ) is equivalent to the condition that T−1 is con-

tinuous w.r.t a cheat metric. Therefore dynamically equivalent systems are

topologically equivalent when viewed with a cheat metric.

The relationship between our original discontinuous system and the dynamically

equivalent smooth system is quite subtle. If we equip M with the Euclidian met-

ric then T−1 is discontinuous so the two systems are not topologically equivalent.

However the evolutions are still interchangeable via ϕτ = T ◦ φτ ◦ T−1 so we can use

the new system to describe the original. Since our new system is linear it is easy to

solve and we can therefore obtain a neat expression for the evolution

φt = T−1 ◦ t
π

log c

 sin 2t cos 2t

− cos 2t sin 2t

 ◦ T (5.5)

Complications caused by the discontinuity have all been captured in the transforma-

tion T . Since the new system is differentiable we can also calculate the stability of the

fixed point at the origin which is determined by by the real part of (5.4)’s eigenvalue

pair λ± = 1
π

log c± 2i. This agrees with the standard non-smooth analysis using the

saltation matrix formulation [2].

We shall see that the moving average transformation has the same properties as T

and can therefore be used to systematically obtain continuous systems on Rn dynam-

ically equivalent to any discontinuous system we like. Moreover the transformation

can be used to obtain differentiable systems topologically equivalent to continuous but

non differentiable systems and so on so that each application of the transformation

gives us an equivalent system one degree smoother.

5.1.2 The moving average transformation

Suppose that φt is the evolution operator of some possibly discontinuous or non

differentiable dynamical system in a state space M which we assume is embedded in

Rn. The moving average transformation is then defined as a map Φ : Rn 7→ Rn with

Φ(x) =

∫ 0

−1

φτ (x)dτ (5.6)
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So that Φ(x)i is the time averaged value of x’s ith component over the last second

of evolution. The averaging period of one second is totally arbitrary and from a

theoretical point of view irrelevant, integrating back in time is also not important in

fact anything of the form

Υ(x) =

∫ b

a

φτ (x)dτ (5.7)

with a < b will work in more or less the same way. We choose 1 for convenance

and integrate backwards so that when applied to time-series we have something that

makes sense from a signal processing point of view. For a discussion of applications

to time-series and the averaging periods numerical importance see section 5.4.

In order for ϕt = Φ ◦ φt ◦Φ−1 to be a dynamical equivalence between our original

system and that obtained through the transformation we require that Φ is contin-

uous and differentiable with non-zero derivative and an inverse that is continuous

everywhere except the image of the jump set Σ.

The differentiability of Φ is a sufficient condition for our procedure to work (al-

though we shall see that sliding systems which violate this condition can still be

treated in this way). For a smooth flow the derivative is defined by considering the

evolution of small perturbations to φ−1(x) over one second. These perturbations obey

the non-autonomous linear ODE

dz

dτ
=
δ2φτ−1(x)

δτδx
z (5.8)

Where the RHS is an n × n matrix of partial derivatives multiplying the n vector

state. This equation has evolution operator J(τ) which is a τ dependent matrix. The

derivative of Φ is then given by

δΦ

δx
=

∫ 1

0

J(τ)dτJ(1)−1 (5.9)

If on the other hand the one second backwards time orbit of x encounters a non-

smooth discontinuity like a jump or switch at φ−t∗(x) with saltation S (see 5.2.1)

then the derivative is given by

δΦ

δx
=

∫ 1−t∗

0

J1(τ)dτ [J1(1− t∗)SJ2(t∗)]−1 +

∫ t∗

0

J2(τ)dτJ2(t∗)−1 (5.10)
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Where J1(τ) is the evolution associated with perturbations about φ−1(x) and J2(τ)

perturbations about φ−t∗(x).

It is important to note that we do not need to know that saltation matrices to

construct Φ, the construction and application of the transformation does not rely

on any higher non-smooth theory. As shown in section 5.2 we can compute Φ by

directly integrating along orbits, if we then differentiate our expression for Φ the

saltation matrices naturally emerge in the analysis.

This is reviewed in section 5.3. That the derivative is non-zero is not guaranteed

but can generically (in the topological sense) be remedied by taking a delay vector

as in section 5.2 [9]. All that remains is to show that Φ−1 is continuous over discon-

tinuities which is simple. If x and F (x) are a preimage/image pair of points under a

discontinuity in the system then φ−ε(x) = φ−ε[F (x)] so the averages will agree.

Therefore we can apply Φ to a discontinuous system to obtain a dynamically

equivalent continuous system. But we can actually Keep going. Since the trans-

formation is able to encode information from the saltation matrices it is also able

to transform continuous but non-differentiable systems (so ODEs with discontinuous

RHSs) into differentiable systems (ODEs with continuous RHSs). Thus if we begin

with a discontinuous system and apply the filter twice we obtain a continuous but

non-differentiable system followed by a differentiable system and so on.

It is important to note that for every non-smooth event in the original system

there will be two smoother but still non-smooth events in the transformed system

one corresponding to the head of the averaging period crossing a discontinuity and

another for the tail.

Definition The Head Discontinuity of a smoothed system corresponds to the head of

the averaging period crossing the discontinuity in our original (untransformed)

system. So that for example a switch at Σ in the original system gives rise to

a head discontinuity in the smoothed system at Φ(Σ).

Definition The Tail Discontinuity of a smoothed system corresponds to the tail of

the averaging period crossing the discontinuity in our original (untransformed)
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system. So that for example a switch at Σ in the original system gives rise to

a tail discontinuity in the smoothed system at Φ ◦ φ1(Σ).

We shall see that for a jump or switch (5.3.1,2,3) the head and tail discontinuities

are characteristically the same but that for slides and grazes (5.3.4,5,6,7) they are

qualitatively different.

5.2 Explicit example

In this section we will explicitly obtain an algebraic form for the moving average

transformation on a simple discontinuous system and apply it to obtain a dynamically

equivalent continuous non-differentiable system. We then repeat the procedure to

obtain an equivalent differentiable system. We shall then compute the stability of a

periodic orbit in the differentiable system by integrating the derivative of the flow

which we compare with a standard analysis of the discontinuous system.

Like in the motivating example our transformation will join jump take offs and

landings in such a way that the new system is differentiable and dynamically equiv-

alent to the original.

It should become clear through this section that the process of applying the fil-

ter and obtaining an induced flow is really intended as an exercise for computers

rather than human beings! The various stages of solving differential equations, inte-

grating solutions and inverting maps makes it difficult to find a non-trivial example

which is still analytically tractable. The hope is that this example gives the reader

a general idea of what happens and how. More complicated systems should be dealt

with numerically either by the same direct method used here or with the time-series

reconstruction approach outlined in section 5.4. Our system evolves according to ẋ

ẏ

 =

 1

ay

 (5.11)

along with the rule that at {(x, y) ∈ R2 : x = π} we apply the map R(x, y) = (x, by).

Note that {(x, y) ∈ R2 : y = 0, x ∈ [0, π)} is a periodic orbit independent of the
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real parameters a and b, see Fig 2,a,i. Before we proceed with the moving average

transformation we will review the calculation of saltation matrices and compute the

stability of the system’s periodic orbit with the standard non-smooth approach.

5.2.1 Calculation of saltation matrices

For a smooth flow ẋ = F (x) the jacobian which governs the evolution of small

perturbations to an orbit {φt(x) : t ∈ R+} is defined as the solution to the linear

non-autonomous ODE

J̇(t) =
δ2φτ (x

′)

δx′δτ
|φt(x)J(t) (5.12)

which evolves continuously. Non-smooth discontinuities give rise to discontinuities in

the evolution of these small perturbations and therefore the jacobian. We can capture

these discontinuities in a linear way with a saltation matrix which is constructed for

a jump as follows. Suppose that the flow is an ODE ẋ = F (x) until reaching a set Σ

where we instantaneously apply the map R then switch to the ODE ẋ = G(x). For

an orbit that hits Σ at a point s it suffices to assume that the flow is locally constant.

Now take the following perturbations about s

• a1 = s− εF (s)

• ai to form a basis for the linearization of Σ at s

which after ε seconds are mapped by the flow to the following perturbations about

R(s) + εG(R(s))

• b1 = −εG[R(s)]

• bi = δR
δx
|sai + εG[R(s)]

This transformation can be described uniquely by a linear map S, the saltation

matrix. See Fig 2,b. For a switch or slide the analysis is exactly the same except

that we set R = I.
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Figure 5.2: a,i) Orbits to original discontinuous system. ii) Continuous once trans-

formed system. iii) Differentiable twice transformed system. b) Configuration of

perturbations for saltation matrix calculation.

5.2.2 Stability of discontinuous system

The evolution of small perturbations along one period of our systems periodic orbit

is given by SJ(π) where J(π) is the jacobian evaluated along the flow from (0, 0) to

(π, 0) in the usual way and S is the saltation matrix associated with the jump at

(π, 0). The jacobian is evolved by

J̇(t) =

 0 0

0 a

 J(t) (5.13)

so that

J(π) =

 1 0

0 eaπ

 (5.14)
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The saltation matrix is given by

S =

 1 0

0 b

 (5.15)

The stability of the orbit is determined by the eigenvalue beaπ which corresponds to

the Lyupanov exponent a+ log b
π

.

5.2.3 Once transformed system

The moving average transformation

Φ(x) =

∫ 0

−1

φt(x)dt (5.16)

is piecewise smooth on two regions A = {0 ≤ x ≤ 1} and B = {1 ≤ x ≤ π}. In A

there is a jump in the 1-second backwards time flow so that

Φ

 x

y

 =

∫ 0

−x

 x+ t

yeat

 dt+

∫ −x
−1

 π + x+ t

yeat

b

 (5.17)

=

 x(1− π) + π − 1
2

y
a
[1− e−a

b
+ e−ax(1

b
− 1)]


In B there is no jump in the 1-second backwards time flow so

Φ

 x

y

 =

∫ 0

−1

 x+ t

yeat

 dt =

 x− 1
2

y
a
(1− e−a)

 (5.18)

If we now set (p, q) = Φ(x, y) and attempt to obtain the induced flow of (p, q) we

run into some difficulties. In particular Φ is not injective so that the new system will

require a hybrid formulation (that is an extra discrete variable to keep track of which

branch of Φ−1 we are using). This situation is easily resolved however by making use

of a delay vector. We add one delay with the map

D

 p

q

 =

  p

q

 ϕ−1

 p

q

  (5.19)

So that the image of D◦Φ is now a 2-dimensional manifold in R4. The transformation

plus delay is an injection so that the new system admits a valid dynamical system
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description. Conveniently the 2-dimensional manifold can be recovered after the

following projection Π in the sense that Π−1 has a bijective branch which maps the

image of Π ◦D ◦ Φ to the image of D ◦ Φ. The projection is given by

Π


p

q

pD

qD


=


p

q

pD

 (5.20)

where pD and qD are the delayed co-ordinates. This means that we only need to take

a delay in the p variable to obtain a valid dynamical systems description and we can

therefore represent everything in R3. Defining the composition ΦD = Π ◦ D ◦ Φ we

have

ΦD

 x

y

 =




x(1− π) + π − 1

2

y
a
[1− e−1

b
+ e−ax(1

b
− 1)]

π + x− 3
2

 in A


x− 1

2

y
a
(1− e−a)

(x− 1)(1− π) + π − 1
2

 in B


x− 1

2

y
a
(1− e−a)

x− 3
2

 in C

(5.21)

Where A is still {0 ≤ x ≤ 1}, B is now {1 ≤ x ≤ 2} and C = {2 ≤ x ≤ π}.

Differentiating (5.21) w.r.t. time using (5.11) then expressing in terms of (p, q, pD) we

obtain the discontinuous RHS for the ODE governing the now continuous transformed
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system


ṗ

q̇

˙pD

 =




1− π

aq(1− e
−a
b

)

1− e−1

b
+e
−a

p+1
2−π

1−π ( 1
b
−1)

1

 in ΦD(A)


1

aq

1− π

 in ΦD(B)


1

aq

1

 in ΦD(C)

(5.22)

Where ΦD(A),ΦD(B),ΦD(C) form the sides of an extruded triangle, see Fig 2,a,ii.

5.2.4 Twice transformed system

Successive applications of the moving average transformation smooths the system

further, so a twice transformed discontinuous system will be differentiable. If the once

transformed system’s evolution operator is ϕ, as opposed to the original discontinuous

systems operator φ then the transformation of the once transformed system is given

by 
P

Q

PD

 = Φ


p

q

pD

 =

∫ 0

−1

ϕt


p

q

pD

 dt = Φ ◦ Π ◦D ◦ Φ︸ ︷︷ ︸
 x

y

 (5.23)

Now Π ◦D commutes with Φ so the underbraced term equals Π ◦D ◦ Φ2 and
P

Q

PD

 = Π ◦D
∫ 0

−1

∫ 0

−1

φt1+t2

 x

y

 dt1dt2 = Π ◦D
∫ 0

−2

φt

 x

y

h(t)dt (5.24)

where

h(t) =

 −t for 0 ≤ t ≤ 1

2 + t for 1 ≤ t ≤ 2
(5.25)
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So that twice transforming the discontinuous system is equivalent to once applying

the smoothing transformation

Φ2(x) = Ψ(x) =

∫ 0

−2

φt(x)h(t)dt (5.26)

which when composed with Π ◦D is piecewise smooth on 4 regions depending on the

3-second backwards time flow. As before depending on which of these regions we are

in the backwards integrals are divided up into up to three separate parts all of which

can easily be evaluated. In this way we obtain

ΨD

 x

y

 =




−π
2
x2 + x+ π − 1

y
a2b

[b− 2e−a + e−2a + e−ax(1− b)(1 + ax)]

π + x− 2

 in A


π
2
x2 + x(1− 2π) + 2π − 1

y
a2b

[b+ e−2a − 2be−a + e−ax[−1 + 2a+ b− 2ab+ x(ab− a)]]

−π
2
x2 + x(π + 1) + π

2
− 2

 in B


x− 1

y
a2

(1 + e−2a − 2e−a)

π
2
x2 + x(1− 3π) + 9π

2
− 2

 in C


x− 1

y
a2

(1 + e−2a − 2e−a)

x− 2

 in D

(5.27)

where A = {0 ≤ x ≤ 1} B = {1 ≤ x ≤ 2} C = {2 ≤ x ≤ 3} and D = {3 ≤ x ≤ π}.

Again we differentiate (5.27) using (5.11) then express in terms of (P,Q, PD) to obtain

the Continuous RHS for the ODE governing the now differentiable dynamics of the
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twice transformed system.


Ṗ

Q̇

ṖD

 =




−πPD + π2 − 2π + 1

aQ+
Qa2e

−a
P+PD+3− 5π

2
2−π (

P+PD+3− 5π
2

2−π −2)(1−b)

b+e−2a−2be−a+e
−a

P+PD+3− 5π
2

2−π [−1+2a+b−2ab+
P+PD+3− 5π

2
2−π (ab−a)]

1

 in ΨD(A)


π

2−π (P + PD + 3− 5π
2

) + 1− 2π

aQ+
a2Qe

−a
PD+P+3− 5π

2
2−π (b−1)(2−PD+P+3− 5π

2
2−π )

b+e−a(1−2b)+e
−a

PD+P+3− 5π
2

2−π [−1+b+(ab−a)(
PD+P+3− 5π

2
2−π −2)]

−π
2−π (P + PD + 3− 5π

2
) + 1 + π

 in ΨD(B)


1

aQ

πP + 1− 2π

 in ΨD(C)


1

aQ

1

 in ΨD(D)

(5.28)

where S = ΨD(A ∪B ∪ C ∪D) forms a differentiable cylinder whose cross section is

formed from three parabolas and one line segment, see Fig 2,a,iii.

5.2.5 Stability of differentiable system

Now we have a differentiable flow on a cylinder S we can calculate the stability of

the periodic orbit in the usual way, by integrating the derivative. This could be a

little tricky since the flow we are interested in lives on a 2-dimensional sub-manifold

of R3 so we would normally have to compute the tangent space at each point on the

orbit then integrate the derivative of the flow restricted to these tangencies. However

the form of (5.28) gives us a perfectly good differentiable extension of the vector field

onto R3 we can therefore integrate the whole derivative along the orbit and pick of

the eigenvalues corresponding to perturbations in S two of which will exist since it is

a 2-dimensional invariant set.
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Perturbations about the point to the periodic orbit evolve according to the ODE
˙δP

˙δQ

˙δPD

 = A(t)


δP

δQ

δPD

 (5.29)

where differentiating (5.28) gives

A(t) =




0 0 −π

0 a+ a2b(b−1)e−att
b−2e−a+e−at(at+1)(1−b) 0

0 0 0

 for 0 ≤ t ≤ 1


−π
π−2

0 −π
π−2

0 a+ a2e−at(b−1)(2−t)
b+e−2a−2be−a+e−at[−a+2a+b−2ab+t(ab−a)]

0

π
π−2

0 π
π−2

 for 1 ≤ t ≤ 2


0 0 0

0 a 0

π 0 0

 for 2 ≤ t ≤ 3


0 0 0

0 a 0

0 0 0

 for 3 ≤ t ≤ π

(5.30)

Perturbations in P and PD evolve in a piecewise autonomous way so we can separate

and solve their evolution easily. The time-t map for this evolution is given by

JP,PD =



 1 −πt

0 1

 for 0 ≤ t ≤ 1 1− πt
π−2

−πt
π−2

πt
π−2

1 + πt
π−2

 1 −π

0 1

 for 1 ≤ t ≤ 2 1 0

πt 1

 −2
π−2

π
π−2

π
π−2

−π2+2π−2
π−2

 for 2 ≤ t ≤ 3 −2
π−2

π
π−2

−π
π−2

2π−2
π−2

 for 3 ≤ t ≤ π

(5.31)

The final matrix has an eigenvalue of 1 corresponding to the eigenvector (1, 1) which
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is tangent to the cylinder S at ΨD(0, 0). It can be verified that the evolution of this

perturbation is always in the tangent space of S.

The evolution of perturbations in the Q co-ordinate can now be posed and solved

as a 1-dimensional non-autonomous linear ODE the time t evolution of which is given

by

JQ =


eat[b−2e−a+e−2a+e−ax(1−b)(1+at)]

1−2e−a+e−2a for 0 ≤ t ≤ 1

eat[b+e−2a−2be−a+e−ax[−1+2a+b−2ab+x(ab−a)]]
1−2e−a+e−2a for 1 ≤ t ≤ 2

beat for 2 ≤ t ≤ π

(5.32)

which has the stability determining eigenvalue of beaπ agreeing with the original

system as claimed.

5.2.6 Remarks

We began with a discontinuous system with evolution operator φ and constructed

a differentiable map ΨD and a differentiable system whose evolution operator we

shall denote ψ. By construction the two systems are dynamically equivalent and the

following commutation holds

φt

 x

y

 = Ψ−1
D ◦ ψt ◦ΨD

 x

y

 (5.33)

which means that via the smoothing transformation ΨD we can substitute one flow

for the other.

Suppose we have some time series data obtained from the discontinuous system

F (t) = 〈

 a

b

 , φt

 x

y

〉 (5.34)

for t ∈ [0, T ] and we apply the smoothing filter to the series

G(t) =

∫ 0

−2

F (t+ τ)h(τ)dτ (5.35)

to obtain a new time series {G(t) : t ∈ [2, T ]}. This time series is identical to the series

we would record if instead of measuring the discontinuous system along some orbit
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we measured the (smoothed) differentiable system along the corresponding smoothed

orbit.

G(t) = 〈

 a

b

 ,

∫ 0

−2

φt+τ

 x

y

h(τ)dτ〉 = 〈


a

b

0

ψtΨD

 x

y

〉 (5.36)

In fact a stronger result holds. Generally we would not just measure ax(t) + by(t) for

our time-series but some possibly unknown smooth non-linear function of the state

f : R2 → R. Suppose that {F (t) = f ◦ φt(x) : t ∈ [0, T ]} is a time-series obtained

from the discontinuous dynamical system then

G(t) =

∫ 0

−1

F (t+ τ)dτ = g ◦ ϕt ◦ ΦD(x) (5.37)

for some continuous function g where ΦD is the moving average transformation (ap-

plied just once) with delay and ϕt is the induced flow of the transformed system. To

prove this we just set g(p) = Φf ◦ Φ−1
D (p) where

Φf

 x

y

 =

∫ 0

−1

f ◦ φt

 x

y

 dt (5.38)

Now Φf is continuous and Φ−1
D is continuous everywhere except the transformation

of the discontinuity surface ΦD(Σ) where Φ−1
D ΦD(σ)− = σ and Φ−1

D ΦD(σ)+ = R(σ)

but Φf (σ) = Φf [R(σ)] so g is continuous everywhere.

Likewise if {F (t) = f ◦ φt(x) : t ∈ [0, T ]} is a time-series obtained from the

discontinuous dynamical system then

G(t) =

∫ 0

−2

F (t+ τ)h(τ)dτ = g ◦ ψt ◦ΨD(x) (5.39)

for some differentiable function g where ΨD is the double moving average transfor-

mation with delay and ψ is the induced flow of the transformed system.

These observations mean we can apply standard time series techniques that rely

on differentiability to non-smooth systems. First record some possibly discontinuous

time series, smooth it with a single or double application of the moving average filter

then treat it as a differentiable recording from the differentiable smoothed system.
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This give us a novel way to compute the stability of the discontinuous systems

periodic orbit. First record a time series {F (t) = f ◦ φt(x) : t ∈ [0, T ]} with some

arbitrary differentiable function f . Now apply the smoothing filter

G(t) =

∫ 0

−2

F (t+ τ)h(τ)dt (5.40)

to obtain a new time series {G(t) = g ◦ψt ◦ΨD(x) : t ∈ [2, T ]} which we can think of

as being obtained directly from the smoothed system by measuring with the differen-

tiable function g. Standard numerical techniques enable us to calculate the lyupanov

exponents of the smoothed system from this data [11] and since the stability of the

discontinuous and smoothed systems are identical we have the lyupanov exponents

of the original system.

On the flip-side we can also use these time-series reconstruction techniques to

study the properties of the smoothed systems in the same way. Simulate the non-

smooth system then smooth the data and treat it as coming directly from the

smoothed system. In section 5.4 we use these ideas to investigate the dynamics

of a more complex sliding oscillator.

5.3 Local analysis

Although it is difficult to obtain an explicit global description of the smoothed system

ϕt = Φ ◦ φtΦ−1 we can obtain local descriptions about some typical non-smooth

discontinuities. By taking the piecewise linear normal form of a discontinuity we can

formulate the smoothed system in the vicinity of the Φ image of the discontinuity

and at the corresponding tail discontinuity. We shall see that the derivative of Φ

captures the information in the saltation matrices and that this is then translated

into the smoothed flow. The action of the filter is shown to transform discontinuous

systems into continuous systems and continuous but non differentiable systems into

differentiable systems further applications continue to smooth the system by one

degree each time. Since the analysis is quite involved we summarize our results in

the following table, see Fig 3.
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Remark The following normal forms are not intended just as a series of simple

examples but as an atlas of possible local behaviors for typical smoothed systems

see 5.4.1.4.
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Figure 5.3: Non-smooth discontinuities and their smoothed counterparts. a) Discon-

tinuous jump → two non-differentiable switches, b) Non-differentiable switch → two

differentiable switches, c) Non-differentiable slide → differentiable switch followed

by differentiable slide, d) Grazing discontinuous jump → grazing non-differentiable

switch followed by non-differentiable switch, e) Grazing non-differentiable switch

→ grazing differentiable switch followed by differentiable switch, f) Grazing non-

differentiable slide → grazing differentiable switch followed by differentiable slide.

Normal forms

We will consider 7 typical non-smooth discontinuities jumps, non-differentiable and

k times differentiable switches, slides, jumping grazes, switching grazes and sliding

grazes. In each case we formulate the simplest and most general non-degenerate form.

For the jump we assume that a differentiable vector field flows into a differentiable

set where we apply a differentiable map, then after applying the map the flow is given

by another differentiable vector field. We can therefore linearize everything in the

vicinity of a point s on the discontinuity surface and its image after the jump R(s),
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however this isn’t the whole story since we also need information about the flow up

to one second before the jump. In order to obtain an appropriate approximation

(piecewise linear plus square root terms) of the transformed system at the image of

the discontinuity Φ(s) we need to additionally know the one second backwards time

position of the point φ−1(s), the integrated jacobian J that maps perturbations about

φ−1(s) to perturbations about s and J̃ the integral of the integrated jacobian along

this orbit. It is worth noting that there is nothing to stop this one second backwards

time flow containing any number of non-smooth discontinuities, everything important

to the transformed system in the vicinity of the image of the discontinuity is contained

in the point φ−1(s) and pair of matrices J, J̃ which can in principal be calculated or

just assumed to be generic as is the case here.

Likewise when we analyze the tail discontinuity, the smoothed system in the

vicinity of Φ ◦ φ+1(s) the image of a point one second after the discontinuity surface,

we will also need to know the point on the discontinuity surface we are flowing

from s, its image under the jump map R(s), the integrated jacobian J which maps

perturbations about R(s) to perturbations about s and its integral J̃ .

The remaining discontinuities are treated in much the same way with the normal

form being outlined briefly at the beginning of each subsection along with some

references for standard analysis and applications.

5.3.1 Jump

A jump is defined as follows. The flow is given by an ODE ẋ = F (x) until reaching a

set Σ where we instantaneously apply a map R, thereafter the flow is a second ODE

ẋ = G(x). Jumps are used to model Newtonian impacts [1] and arise as resets in

some control systems [6] or when periodic variables are embedded as intervals rather

than circles as in section 5.4. We will expand everything about a point s ∈ Σ to

obtain a piecewise linear description of the transformed system

ṗ =
δx

δt

δΦ

δx
◦ Φ−1(p) (5.41)

about the point Φ(s).
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Linearization of Φ before jump

We must differentiate Φ at s. By definition

δΦ

δx
|s = lim

|h|→0

Φ(s+ h)− Φ(h)

|h|
= lim
|h|→0

∫ 0

−1
φt(s+ h)− φt(s)dt

|h|
(5.42)

which can be expressed in terms of the jacobians integrated from φ−1(s) so that the

derivative is given by

[

∫ 1

0

J(t)dt]J(1)−1 = J̃J−1 (5.43)

where J maps perturbations about φ−1(s) to perturbations about s and J̃ maps

perturbations about φ−1(s) to the integral of the perturbation evolving over one

second. The linearization is given by

Φ(x) = Φ(s) + J̃J−1(x− s) (5.44)

Linearization of Φ after jump

The Linearization of Φ at R(s) is a little more complicated. We might try to use

the formula J̃(SJ)−1 for the derivative since S−1 maps perturbations about R(s) to

perturbations about s. However this is not the whole story since

Φ(x) = Φ(s) + J̃(SJ)−1[x−R(s)] (5.45)

does not include any contribution to the integral from after the jump and instead

contains a spurious contribution from the wrong side of the discontinuity surface.

Figure 4 shows the configuration of s, R(s), and x with the various components of

∆Φ.

Figure 5.4: Hatched region represents jacobian approximation J̃(SJ)−1[x − R(s)]

we need to remove the spurious contribution from the wrong side of Σ and add the

contribution to Φ from after the jump (both bold).
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We can correct for these contributions by assuming that the flow is locally constant

at s and R(s). The contribution from after the jump is given by∫ 0

−t∗
(x+G[R(s)]t)dt (5.46)

where t∗ the length of time since the perturbation made the jump is given by

t∗ =
〈x−R(s), n2〉
〈G[R(s)], n2〉

(5.47)

where n2 is normal to R(Σ) at R(s). The spurious contribution from the wrong side

of the jump is given by ∫ 0

t∗
(s+ S−1[x−R(s)] + F (s)t)dt (5.48)

where t∗ the length of time that the perturbation is taken to be on the wrong side of

the jump given by

t∗ =
〈S−1[x−R(s)], n1〉
〈F (s), n1〉

(5.49)

where n1 is normal to Σ at s. It follows from the definition of the saltation matrix

that the two expressions for t∗ are the same. Finally the linearization is given by

Φ(x) = Φ[R(s)] + J̃(SJ)−1[x−R(s)] + t∗[R(s)− s] (5.50)

To invert the transformation we need to express t∗ in terms of Φ(x). First we have

x = R(s) + SJJ̃−1[Φ(x)− Φ[R(s)]− t∗(R[s]− s)] (5.51)

and

t∗ =
〈JJ̃−1[Φ(x)− Φ[R(s)]− t∗(R[s]− s)], n1〉

〈F (s), n1〉
(5.52)

so that

t∗ =
〈JJ̃−1(Φ(x)− Φ[R(s)]), n1〉
〈F (s) + JJ̃−1[R(s)− s], n1〉

(5.53)

Transformed system

To obtain a piecewise linear description of the transformed system we need to be able

to express ṗ as a function of p. This would first require the following expansion

ṗ = [F (s) +
δF

δx
|s(x− s)][

δΦ

δx
|s +

δ δΦ
δx
|x′

δx′
|s(x− s)] (5.54)
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which we could then use the linearization of Φ to put in terms of p rather than x.

However we do not need to compute the complicated second derivative of Φ. Instead

we use the following

ṗ = lim
h→0

p(t+ h)− p(t)
h

= lim
h→0

∫ 0

−1
φτ+h(x)− φτ (x)dt

h
= x− φ−1(x) (5.55)

Which can easily be linearized so that before the jump we have

ṗ = x− φ−1(s)− J−1(x− s) (5.56)

and afterwards we have

ṗ = x− φ−1(s)− J−1S−1[x−R(s)] (5.57)

Thus our transformed system first flows according to the ODE ṗ = F̂ (p) whose

linearization about Φ(s) is given by

ṗ = s− φ−1(s) + (I − J−1)JJ̃−1[p− Φ(s)] (5.58)

Until we reach the set Φ(Σ) whose linearization about Φ(s) is given by

{p : 〈JJ̃−1[p− Φ(s)], n1〉 = 0} (5.59)

where we instantaneously switch to the ODE ṗ = Ĝ(p) whose linearization about

Φ(s) is given by

ṗ = R(s)− φ−1(s) + (SJ − I)J̃−1[p− Φ(s)] (5.60)

+
〈JJ̃−1(Φ(x)− Φ[R(s)]), n1〉
〈F (s) + JJ̃−1[R(s)− s], n1〉

(I − SJ)J̃−1[R(s)− s]

Tail discontinuity

There will be a second non-smooth event associated with the jump in the smoothed

system. One second after crossing the jump the tail of the averaging period will cross

the jump resulting in a second switch in the smooth system on the switching surface

Φ ◦ φ1(Σ). The analysis here is more or less the same as before. To see this consider

the backwards evolution of the jumping system where we flow according to the ODE
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(̇x) = −G(x) until reaching the set R(Σ) where we instantaneously apply the map

R−1 them flow according to the second ODE ẋ = −F (x). The transformation of

this system in the vicinity of the jump will be an ODE of the form ẋ = H(x) which

defines the forewords system at the second switch by ẋ = −H(x).

Since ẋ = H(x) will be of the same form as the transformed system in 3.1.3 the

reversed system at the tail discontinuity ẋ = −H(x) will also be a non-differentiable

switch consisting of a differentiable vector field flowing into a differentiable manifold

at which point we switch to another differentiable vector field.

5.3.2 Non-differentiable switch

A switch is defined as follows. The dynamics are governed by an ODE ẋ = F (x)

which flows into a set Σ where we instantaneously switch to a second ODE ẋ = G(x)

and do not switch back. Switches are used to model discontinuous changes of force

in mechanics [1] and discontinuous changes to control input in closed loop control

systems [6]. We will linearize everything about a point s ∈ Σ to obtain a piecewise

linear description of the transformed system about the point Φ(s). The switch can

therefore be thought of as a special case of the jump with R = I the identity so can

therefore go straight to the transformed system.

The flow is given by the ODE ṗ = F̂ (p) whose linearization at Φ(s) is given by

ṗ = s− φ−1(s) + (J − I)J̃−1[p− Φ(s)] (5.61)

Until we reach the set Φ(Σ) whose linearization at Φ(s) is given by

{p : 〈JJ̃−1[p− Φ(s)], n1〉 = 0} (5.62)

where we switch to the ODE ṗ = Ĝ(p) whose linearization at Φ(s) is given by

ṗ = s− φ−1(s) + (SJ − I)J̃−1[p− Φ(s)] (5.63)

For p ∈ Φ(Σ) we have SJJ̃−1[p − Φ(s)] = JJ̃−1[p − Φ(s)] since JJ̃−1[p − Φ(s)] will

lie on the original switching surface where the saltation matrix acts as the identity.
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Therefore the two expressions (5.61) and (5.63) agree on the switching surface and

the system is differentiable.

Likewise the tail discontinuity is a differentiable switch, which we can prove in

the same way we treated the jump in 5.3.1.4.

5.3.3 k-times differentiable switch

A k-times differentiable switch is a switch as before except that the first k derivatives

of the vector fields F and G agree on the switching manifold Σ. In order to analyze

this system we must introduce some non-linear terms in the analysis which we do

using the exact saltation function S. The inverse of this function maps a point in

the space governed by G to the point that it’s backwards time pre-image in the space

governed by F would have reached had it not switched vector fields on reaching Σ.

Thus is φF and φG are the evolution operators associated with the two flows we have

S−1(x) = φFt(x) ◦ φG−t(x)(x) (5.64)

where t(x) is the least t such that φG−t(x)(x) = Σ(x) ∈ Σ, which exists and is smooth

away from any grazing points. Note that the derivative of S at a point s ∈ Σ is exactly

the saltation matrix S at s, which for a differentiable switch equals the identity. We

will treat only the head discontinuity since as in the non-differentiable switch the

head and tail are essentially the same.

Dynamics before the switch

The transformation of the system before Σ is governed by the ODE

ṗ = F̂ [Φ−1
F (p)] (5.65)

where F̂ (x) = x− φF1 (x) and ΦF (x) =
∫ 0

−1
φFτ (x)dτ is smooth with smooth inverse.

After the switch

The dynamics are now governed by the ODE

ṗ = Ĝ[Φ−1
G (p)] (5.66)
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where

Ĝ(x) = x− φF−1 ◦ S−1(x) (5.67)

and

ΦG(x) = ΦF [S−1(x)] +

∫ t(x)

0

φGτ [Σ(x)]− φFτ [Σ(x)]dτ︸ ︷︷ ︸ (5.68)

Transformed system

The transformed system is a k + 1 times differentiable switch. To prove this we will

show that the first k + 1 derivatives of F̂ and Ĝ agree on Σ as well as the first k + 1

of ΦF and ΦG.

Since the original system is k-times differentiable and therefore has k + 1 times

differentiable orbits we can write

x = Σ(x) + a1t(x) + ...+ ak+1t(x)k+1 + bk+2t(x)k+1 + ... (5.69)

and

S−1(x) = Σ(x) + a1t(x) + ...+ ak+1t(x)k+1 + ck+2t(x)k+1 + ... (5.70)

so that

S−1(x) = x+ (ck+2 − bk+2)t(x)k+2 + ... (5.71)

Therefore on Σ where t(x) = 0 we have

δS−1(x)
δx

= I δmS−1(x)
δxm

= 0,m = 2, 3, ..., k + 1 δk+2S−1(x)
δxk+2 6= 0 (5.72)

Which proves that the first k+1 derivatives of F̂ and Ĝ agree on Σ. All that remains

is to show that the first k + 1 derivatives of the underbraced term in (5.68) are zero

expanding the functions of τ we have∫ t(x)

0

(bk+2 − ck+2)τ k+2 + ...dτ = (bk+2 − ck+2)
τ k+3

k + 3
(5.73)

the first k + 2 derivatives of which will be zero on Σ.
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5.3.4 Slide

A slide is defined as follows. We have a switching surface Σ where the dynamics are

governed by an ODE ẋ = F (x) on one side of Σ and another ODE ẋ = G(x) on the

other side of Σ. For s ∈ Σ to be a sliding point we require 〈F (s), n〉 and 〈G(s), n〉 to

have opposite signs where n is normal to Σ at s. So if we employed something like an

Euler scheme then when we reach (and generically overshoot) Σ evolving according

to xn+1 = xn + τF (xn) we are forced to switch back and forth between the two RHSs

trapped in a small neighborhood of Σ which collapses onto Σ as τ → 0.

In order to properly define the solution of the non smooth ODE we use the Filippov

formalism in which we consider the RHS of our differential equation as being a well

defined set valued function obtained by taking the convex hull of all possible values

of the discontinuous vector field at each point

ẋ ∈


{F (x)} for 〈x, n〉 > 0

{aF (x) + (1− a)G(x) : a ∈ [0, 1]} for 〈x, n〉 = 0

{G(x)} for 〈x, n〉 < 0

(5.74)

where n is normal to Σ at the closest point in Σ to x. It can then be shown that the

solution to this Differential Inclusion is well defined and satisfies the following ODE

on the switching surface [10]

ẋ = H(x) =
F⊥(x)|G‖(x)|+G⊥(x)|F ‖(x)|

|G‖(x)|+ |F ‖(x)|
(5.75)

Where F ‖ and F⊥ are F ’s components parallel and perpendicular to n respectively -

likewise for G‖, G⊥. Slides are used to model systems with static friction, see section

5.4 or [1, 2, 8].

Example

There are some interesting complications here so we will first look at a simple example.

Our system flows according to the non-smooth ODE

 ẋ

ẏ

 =


1 −1 for y > 0

1 for y < 0

 (5.76)
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which defines the flow on {y = 0} as ẋ = 1.

Clearly this system is not time-reversible on y = 0 where Φ will have infinitely

branches. However suppose we take any (x′, y′) ∈ R2 and compute its forward time

orbit {φt(x′, y′) : t ∈ R+} then calculate Φ from this orbit for each (x, y) ∈ {φt(x′, y′) :

t ∈ [1,∞)} calling this new quantity p

q

 = Φ(x′,y′)

 x

y

 (5.77)

Now we can differentiate the above to obtain

 ṗ

q̇

 = lim
h→∞

Φ(x′,y′)

 x+ δ(x)

y + δ(y)

− Φ(x′,y′)

 0

y


h

(5.78)

which is fine since (x + δ(x), y + δ(y)) ∈ {φt(x′, y′) : t ∈ [1,∞)}. So we obtain the

differentiable system

 ṗ

q̇

 =



1

−1 for q > 1
2

−q
1
2

2
for 1

2
≥ q > 0

0 for q = 0

(−q)
1
2

2
for 0 > q ≥ −1

2

1 −1
2
> q


(5.79)

Because of the choice of branch the switching surface is fattened by the transformation

to a higher dimensional object. In this case from a line to a strip. Those points on

the strip but not on the line {q = 0} correspond to points that have joined the sliding

surface less than one second ago, see Fig 3,c. In the discontinuities we have looked

at so far there are two non-smooth events associated with them in the transformed

system, one corresponding to x crossing the discontinuity and another corresponding

to φ−1(x) crossing the discontinuity - the Head and the Tail of our averaged period.

In the jump and switch the two events where essentially the same and therefore didn’t

require any extra analysis but for the slide the two are clearly very different. In this

example the first non-smooth event at q = ±1
2

is a differentiable switch but the second
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at q = 0 is quite different with parabolic solutions converging differentially and in

finite time onto the switching surface. To treat the general case of the switch we

must look at these two discontinuities separately.

Head discontinuity

The flow is given by an ODE ẋ = F (x) until reaching a set Σ where we instantaneously

switch to an ODE ẋ = H(x) as in (5.75). We will linearize everything about a point

s ∈ Σ to obtain a piecewise linear description of the transformed system.

Before reaching the slide the linearization of Φ is as before

Φ(x) = Φ(s) + J̃J−1(x− s) (5.80)

As is the flow

ṗ = s− φ−1(s) + (I − J−1)(x− s) (5.81)

So that the transformed system flows according the ODE ṗ = F̂ whose linearization

about Φ(s) is given by

ṗ = s− φ−1(s) + (I − J−1)JJ̃−1[p− Φ(s)] (5.82)

After reaching the slide things are a little more complex. To represent points on the

sliding surface we use (σ, t) co-ordinates. Here σ ∈ Σ is the current position of the

point and t � 1 is the branching index for the backwards flow, it tells us for how

long the backwards orbit from σ stays on the sliding surface. See Fig 5,a.
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Figure 5.5: Configuration of components in ∆Φ; jacobian approximation (hatched)

and correction terms (bold) for the slide at a) the head and b) tail discontinuities.

The linearized transformation is given by

Φ(σ, t) = Φ(s)+J̃J−1[φ−t(σ, t)− s]︸ ︷︷ ︸+

∫ t

0

φ−t(σ, t)+τH(s)dτ−
∫ t

0

φ1+t(σ, t)+τF [φ−1(s)]dτ

(5.83)

= Φ(s) + J̃J−1[σ − tH(s)− s] + t[s− φ−1(s)]

where the underbraced term is the derivative of Φ applied at the point where (σ, t)

first joins the sliding surface and the two integrals corrects for the short period of

sliding. To invert the transformation we note that σ − tH(s)− s is tangent to Σ at

s so that if n is the corresponding normal vector then taking the dot product with

(JJ̃−1)Tn gives

t =
〈Φ(σ, t)− Φ(s), (JJ̃−1)Tn〉
〈s− φ−1(s), (JJ̃−1)Tn〉

(5.84)

and

σ = s+ JJ̃−1(Φ(σ, t)− Φ(s)− t[s− φ−1(s)]) + tH(s) (5.85)

The flow is given by

ṗ = σ − φ−1(σ, t) = σ − (φ−1(s) + J−1[σ − tH(s)− s]︸ ︷︷ ︸)− tF [φ−1(s)] (5.86)

Where the underbraced term is the one second backwards time image of the point

where (σ, t) first joins the sliding surface and the final term corrects for the fact that
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(σ, t)’s one second backwards time image is actually the (1 − t) second backwards

time image of this point. So that the transformed system flows according to the

ODE ṗ = Ĝ(p) whose linearization about Φ(s) is given by

ṗ = s− φ−1(s) + (J − I)J̃−1(p− Φ(s)) (5.87)

+
〈p− Φ(s), (JJ̃−1)Tn〉
〈s− φ−1(s), (JJ̃−1)Tn〉

(I − J−1)[H(s)− F (s)]

Expressions (5.82) and (5.87) agree on the switching surface where t = 0 so the switch

is differentiable.

Tail discontinuity

The flow is given by an ODE ẋ = F (x) until reaching a set Σ close to a point s

where we instantaneously switch to an ODE ẋ = H(x) as in (5.75). After 1 second

orbits reach the vicinity of φ1(s). From the example we do not expect a linear

description of the transformed system to adequately illustrate the dynamics so we

will include some higher order terms. Also since the system ẋ = H(x) lives on an

n− 1 dimensional manifold we must work with some arbitrary smooth continuation

of H when computing the jacobians - of course the exact nature of the continuation

is unimportant - its existence just means we don’t need to be too careful about what

we say!

Again we will work in (σ, t) co-ordinates with σ ∈ Σ the current position of the

point only this time the branch index t � 1 tells us that the backwards time orbit

of (σ, t) stays on the sliding surface for (1 − t) seconds, see Fig 5,b. Including some

second order terms in t the transformation about φ1(s) is given by

Φ(σ, t) = Φ[φ1(s)]+J̃J−1(σ − φ1(s))︸ ︷︷ ︸+

∫ 0

−t
φ1−t(σ)+τF (s)dτ−

∫ 0

−t
φ1−t(σ)+τH(s)dτ

(5.88)

= Φ[φ1(s)] + J̃J−1(σ − φ1(s)) +
t2

2
[H(s)− F (s)]

Where the underbraced term is the derivative of Φ restricted to the backwards flow

branch that stays on the sliding surface for all time and the two integrals correct for
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the t seconds that we are not on the sliding surface. We invert the transformation in

the same way so that

t2

2
=
〈Φ(σ, t)− Φ[φ1(s)], (JJ̃−1)Tn〉
〈H(s)− F (s), (JJ̃−1)Tn〉

(5.89)

where n is normal to Σ at φ1(s).

σ = φ1(s) + JJ̃−1(Φ(σ, t)− Φ[φ1(s)])− t2

2
[H(s)− F (s)]) (5.90)

The flow is given by

ṗ = σ − φ−1(σ, t) = σ − (s+ J−1[σ − φ1(s)]︸ ︷︷ ︸+t[H(s)− F (s)] (5.91)

where the underbraced term is the one second backwards time image of σ restricted to

the branch where we stay on the sliding surface for all time and the final term corrects

for the t seconds that we are not on the sliding surface. So that the transformed

system flows according to the ODE ṗ = Ĥ(p) whose expansion about Φ[φ1(s)] is

given by

ṗ = a+B(p− Φ[φ1(s)]) + c
√
〈p− Φ[φ1(s)], d〉 (5.92)

where

a+B(p− Φ[φ1(s)]) = φ1(s)− s+ (J − I)J̃−1(p− Φ[φ1(s)]) (5.93)

+
〈Φ(σ, t)− Φ[φ1(s)], (JJ̃−1)Tn〉
〈H(s)− F (s), (JJ̃−1)Tn〉

(J − I)J̃−1[H(s)− F (s)]

and

c
√
〈p− Φ[φ1(s)], d〉 = [H(s)− F (s)]

√
〈Φ(σ, t)− Φ[φ1(s)], (JJ̃−1)Tn〉
〈H(s)− F (s), (JJ̃−1)Tn〉

(5.94)

Thus as in the simple example orbits converge differentially and in finite time to the

transformed sliding surface Φ(Σ) = {〈JJ̃−1(p − Φ[φ1(s)]), n〉 = 0} and the distance

decays like (t− c)2 due to the square root in the equation for the flow.

5.3.5 Grazing a jump

A jump graze is defined as follows. The dynamics are governed by the ODE ẋ = F (x)

which flows into a set Σ where we instantaneously apply a map R, thereafter the
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dynamics are governed by a second ODE ẋ = G(x). For s ∈ Σ to be a grazing

point we require δd(x)
δt
|s = 0 where d(x) measures the distance from x to the switching

surface Σ. Thus arbitrarily small perturbations to s result in large immediate changes

to the evolution. Grazes are typically whenever we have a jump, switch or slide and

are responsible for singular stability properties and novel bifurcations in non-smooth

systems [2, 3, 7].

If we attempt to construct a Saltation Matrix to capture the effects of the jump

at a grazing point we run into trouble. Recall that for a saltation matrix S associated

with a switch we require

• SF (s) = SG(s) where F and G are the value of the flows vector field before

and after the switch.

• S(ai) = δR
δx
|sai where the ai i = 1, 2, ..., n−1 provide a basis for the linearization

of Σ at s.

we do not know what to choose for the vector field after the jump F or G? This

doesn’t really matter tho as either choice leads to disaster. Taking H(s) = (F/G)(s)

gives

S =


· · ·

H(s) δR
δx
|sa1 · · · δR

δx
|san−1

· · ·




· · ·

F (s) a1 · · · an−1

· · ·


−1

(5.95)

and the second matrix is non-invertible since F must be tangential to Σ at s and

therefore in the span of the ai. We can however still obtain a piecewise linear de-

scription of the transformed system - we are just unable to make use of the saltation

formulation in any of the analysis.

In the standard analysis of grazing orbits we make use of some non-linear terms

which come into play as the singularity at the graze elevates them to the linear level

through a characteristic square root action. Likewise we will use the time since hitting

the discontinuity as a co-ordinate which in the switching and sliding case appears in

some non-linear terms. In this jumping case the smoothed system doesn’t contain any
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square root terms but still contains a non-differentiable graze which has the required

singular properties.

Figure 5.6: Configuration of components in ∆Φ; jacobian approximation (hatched)

and correction terms (bold) for the jumping graze at a) the head and b) tail discon-

tinuities.

Before the jump the analysis is exactly the same as with the non-grazing case so

that the transformed system flows according to the ODE ṗ = F̂ (p) whose linearization

about Φ(s) is given by

ṗ = s− φ−1(s) + (I − J−1)JJ̃−1[p− Φ(s)] (5.96)

until we reach the set Φ(Σ) whose linearization about Φ(s) is given by

{p : 〈JJ̃−1[p− Φ(s)], n1〉 = 0} (5.97)

where n1 is normal to Σ at s. Note that Φ(s) is a grazing point of the new system

since Φ(s) + εṗ|Φ(s) lies in Φ(Σ).

JJ̃−1[Φ(s) + εṗ|Φ(s) − Φ(s)] = JJ̃−1εṗ|Φ(s) (5.98)

JJ̃−1ε[s− φ−1(s)] = JεF [φ−1(s)] = εF (s)

and by definition 〈F (s), n1〉 = 0.
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After the jump the linearization of Φ about R(s) is given by

Φ(x) = Φ(s) + J̃J−1(
δR

δx
|s)−1[x− t∗G[R(s)]−R(s)]︸ ︷︷ ︸ (5.99)

+

∫ t∗

0

φ−t∗(x) + τG[R(s)]dτ −
∫ t∗

0

φ1+t∗(x) + τF [φ−1(s)]dτ

= Φ(s) + J̃J−1(
δR

δx
|s)−1[x− t∗G[R(s)]−R(s)] + t∗[R(s)− φ−1(s)]

Where the underbraced term is the derivative of Φ at the point where x hits Σ and

the integrals correct for the t∗ seconds of flow after the jump, see Fig 6,a, where

t∗ =
〈x−R(s), n2〉
〈G[R(s)], n2〉

(5.100)

with n2 normal to R(Σ) at R(s). We invert the transformation as in 5.3.3.2 so that

t∗ =
〈Φ(x)− Φ(s), (JJ̃−1)Tn1〉
〈R(s)− φ1(s), (JJ̃−1)Tn1〉

(5.101)

where n1 is normal to Σ at s.

x = R(s) +
δR

δx
|sJJ̃−1[Φ(x)− Φ(s)− t∗(R[s]− φ−1[s])] + t∗G[R(s)] (5.102)

The flow is given by

ṗ = x− φ−1(x) = x− (φ−1(s) + J−1 δR

δx
|−1
s [x− t∗G[R(s)]−R(s)]︸ ︷︷ ︸+t∗F [φ−1(s)])

(5.103)

Where the underbraced term is the one second backwards time image of the point

where x’s orbit hits Σ and the final term corrects for the fact that x’s one second

backwards time image is this point’s (1− t∗) second backwards time image. So that

the transformed systems flows according to the ODE ṗ = Ĝ(p) whose linearization

about Φ(s) is given by

ṗ = R(s)− φ1(s) + (I − J−1 δR

δx
|−1
s )

δR

δx
|s (5.104)

× JJ̃−1[p− Φ(s)− 〈p− Φ(s), (JJ̃−1)Tn1〉
〈R(s)− φ1(s), (JJ̃−1)Tn1〉

(R[s]− φ−1[s])]︸ ︷︷ ︸
+
〈p− Φ(s), (JJ̃−1)Tn1〉
〈R(s)− φ1(s), (JJ̃−1)Tn1〉

(F [φ−1(s)]−G[R(s)])

where the underbraced term is tangent to Σ at s so there are no problems in applying

R’s derivative or its inverse.
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Tail discontinuity

Again the tail discontinuity requires a slightly different analysis. If we consider the

backwards system as with the jump and switch we have an orbit which grazes the

image of the jumping surface after going over the jump which is not qualitatively the

same as the foreword system. The flow is given by an ODE ẋ = F (x) until we reach

a set Σ where we instantaneously apply a map R then flow according to a second

ODE ẋ = G(x). For s ∈ Σ to be a grazing point we require δd(x)
δt
|s = 0 where d(x)

measures the distance from x to the switching surface Σ. We will linearize everything

about the point φ1(s).

The switching surface for this second discontinuity will be given by Φ[φ1(Σ)] whose

linearization at Φ[φ1(s)] is given by

{p : 〈J̃−1(p− Φ[φ1(s)), n2〉 = 0} (5.105)

where J maps perturbations aboutR(s) to perturbations about φ1(s), J̃ is the integral

along these perturbations evolution as before and n is normal to R(Σ) at R(s).

After flowing for more than one second from the jump the transformed system flows

according to the ODE ṗ = Ĝ(p) whose linearization about Φ[φ1(s)] is given by

ṗ = φ1(s)−R(s) + (1− J−1)JJ̃−1(p− Φ[φ1(s)]) (5.106)

Before crossing the switching surface the linearization of the transformation is given

by

Φ(x) = Φ[φ1(s)] + J̃J−1[x− φ1(s)]︸ ︷︷ ︸ (5.107)

lim
ε→0

∫ 0

−t∗
φ−1+t∗−ε(x) + τF (s)dτ −

∫ 0

−t∗
φ−1+t∗(x) + τG[R(s)]dτ

= Φ[φ1(s)] + J̃J−1[x− φ1(s)] + t∗[s−R(s)] (5.108)

Where the underbraced term is the derivative of Φ assuming no jump has taken palace

and the two integrals account for the jump that occurred (1 − t∗) seconds ago, see

Fig 6,b, where

t∗ =
〈J−1[x− φ1(s)], n2〉
〈G[R(s)], n2〉

(5.109)
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We invert the transformation directly

x = φ1(s) + JJ̃−1[Φ(x)− Φ[φ1(s)]− t∗(s−R[s])] (5.110)

and

t∗ =
〈J̃−1[Φ(x)− Φ[φ1(s)]− t∗(s−R[s])], n2〉

〈G[R(s)], n2〉
(5.111)

so that

t∗ =
〈J̃−1(Φ(x)− Φ[φ1(s)]), n2〉

〈G[R(s)], n2〉(1 + 〈[s−R(s)], n2〉)
(5.112)

The flow is given by

ṗ = x− φ−1(x) = x− [s+ (
δR

δx
|s)−1(J−1[x− φ1(s)] + t∗G[R(s)])]︸ ︷︷ ︸+t∗F (s) (5.113)

Where the underbraced term is the point where x’s orbit hit Σ and the final term

corrects for the t∗ seconds of flow before this. So that before reaching the discontinuity

the transformed system flows according to the ODE ṗ = F̂ (p) whose linearization

about Φ[φ1(s)] is given by

ṗ = φ1(s)− s+ [J − (
δR

δx
|s)−1]J̃−1(p− Φ[φ1(s)]) (5.114)

+
〈J̃−1(p− Φ[φ1(s)]), n2〉

〈G[R(s)], n2〉(1 + 〈[s−R(s)], n2〉)
(F (s)−[J−(

δR

δx
|s)−1]J̃−1[s−R(s)]−(

δR

δx
|s)−1G[R(s)])

Note that there are no grazes associated with this non-differentiable switch. After

one second

〈J̃−1[φ1(s)−R(s)], n2〉 = 〈G[R(s)], n2〉 6= 0 (5.115)

and before [φ1(s) − s] bares no special relationship with J̃−1 so should also yield a

non-zero product.

5.3.6 Grazing a switch

A switching graze is defined as follows. The flow is given by an ODE ẋ = F (x) until

reaching a set Σ where we instantaneously switch to a second ODE ẋ = G(x). For

s ∈ Σ to be a grazing point we require δd(x)
δt
|s = 0 where d(x) measures the distance

from x to the switching surface Σ.
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Grazing a Switch is therefore a special case of Grazing a Jump with R = I. Before

the Switch everything is the same however we cannot use the same analysis after the

switch. The linearized transformation is given by

Φ(x) = Φ(s) + J̃J−1[x− t∗G(s)− s] + t∗[s− φ−1(s)] (5.116)

but s− φ−1(s) = J̃J−1F (s) so

Φ(x) = Φ(s) + J̃J−1[x− t∗G(s)− s+ t∗F (s)︸ ︷︷ ︸] (5.117)

and the underbraced term is tangent to Σ at s which is n − 1 dimensional. The

linearized transformation is therefore not invertible. We expand Φ with some second

order terms in t∗

Φ(x) = Φ(s) + J̃J−1[x− t∗G(s)− s]︸ ︷︷ ︸ (5.118)

+

∫ t∗

0

φ−t∗(x) + τG(s)dτ −
∫ t∗

0

φ1+t∗(x) + τF [φ−1(s)]dτ

= Φ(s) +
︷ ︸︸ ︷
J̃J−1[x− t∗G(s)− s] + t∗[s− φ−1(s)] +

(t∗)2

2
[G(s)− F (φ−1[s])] (5.119)

Where the underbraced term is the derivative of Φ applied at the point where x’s

orbit hits Σ and the two integrals correct for the t∗ seconds of flow after the switch.

To invert the transformation we note that the overbraced term is tangent to Φ(Σ) at

Φ(s) so that taking the dot product with (JJ̃−1)Tn where n is normal to Σ at s gives

(t∗)2

2
=

〈Φ(x)− Φ(s), (JJ̃−1)Tn〉
〈G(s)− F [φ−1(s)], (JJ̃−1)Tn〉

(5.120)

and

x = s+ t∗G(s)+JJ̃−1[Φ(x)−Φ(s)− t∗(s−φ−1[s])− (t∗)2

2
(G[s]−F [φ−1(s)])] (5.121)

The flow is given by

ṗ = x− φ−1(x) = x− (φ−1 + J−1[x− t∗G(s)− s]︸ ︷︷ ︸+t∗F [φ−1(s)]) (5.122)

where the underbraced term is the one second backwards time image of the point

at which x’s orbit hits Σ and the final term corrects for the fact that this φ−1(x) is
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this point’s (1 − t∗) backwards time image. So that the transformed system flows

according the ODE ṗ = Ĝ(p) whose expansion about Φ(s) is given by

ṗ = a+B[p− Φ(s)] + c
√
〈p− Φ(s), d〉 (5.123)

where

a+B[p− Φ(s)] = s− φ−1(s) + (J − I)J̃−1[p− Φ(s)] (5.124)

− 〈p− Φ(s), (JJ̃−1)Tn〉
〈G(s)− F [φ−1(s)], (JJ̃−1)Tn〉

(J − I)J̃−1[G(s)− F (φ1[s])]

and

c
√
〈p− Φ(s), d〉 = [G(s)− F (s)]

√
2

〈p− Φ(s), (JJ̃−1)Tn〉
〈G(s)− F [φ−1(s)], (JJ̃−1)Tn〉

(5.125)

Note that (5.212) agrees with the flow before the switch on t = 0 so the graze is

differentiable.

Tail discontinuity

The analysis follows exactly as in the case of grazing a jump only we set R = I.

The transformed systems flow is an ODE ODE ṗ = F̂ (p) whose linearization about

Φ[φ(s)] is given by

ṗ = φ1(s)− s+ (I − J−1)JJ̃−1(p− Φ[φ1(s)]) (5.126)

+
〈J̃−1(p− Φ[φ1(s)]), n〉

〈G(s), n〉︸ ︷︷ ︸[F (s)−G(s)]

until reaching the set Φ[φ1(Σ)] whose linearization at Φ[φ1(s)] is given by

{p : 〈J̃−1[p− Φ ◦ φ1(s)], n〉 = 0} (5.127)

Where the flow switches to the ODE ṗ = Ĝ(p) whose linearization about Φ[φ(s)] is

given by

ṗ = φ1(s)− s+ (1− J−1)JJ̃−1(p− Φ[φ1(s)]) (5.128)

For a point p on the new switching surface J̃−1(p − Φ[φ1(s)]) lies on the original

switching surface so the second underbraced term is zero and the expressions in

(5.216) and (5.218) agree so that the switch is differentiable.
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5.3.7 Grazing a slide

A Sliding graze is defined as follows. We have a switching surface Σ where the flow

is given by an ODE ẋ = F (x) on one side of Σ and another ODE ẋ = G(x) on the

other side of Σ. For s ∈ Σ to be a sliding point we require 〈F (s), n〉 and 〈G(s), n〉

to have opposite signs where n is normal to Σ at s. As in (5.75) we use the Fillipov

formalism to define the ODE ẋ = H(x) on Σ. For s ∈ Σ to be a grazing point we

require δd(x)
δt
|s = 0 where d(x) measures the distance from x to the switching surface

Σ.

Therefore the set of grazing points form the boundary of the sliding region. If a

point joins the sliding surface and flows along it to some grazing point s′ it will then

leave the sliding surface since at s′ the sliding condition is violated and provided the

derivative of F at s′ is non-degenerate the point will then flow according to ẋ = F (x)

moving away from the switching surface. We can extend our sliding surface Σ to

include all forwards time orbits from the set of grazing points and extend H the

vector field on the sliding surface to this extended set by using F restricted to the

new manifold, see Fig 7. Within this framework we can analyze the sliding graze

in more or less the same way we treated the basic slide. We will expand everything

about a sliding graze point s to obtain an approximation of the transformed system.

Figure 5.7: Extended sliding manifold Σ

Before reaching the discontinuity everything is as before so that the transformed

system flows according to the ODE ṗ = F̂ (p) whose linearization about Φ(s) is given
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by

ṗ = s− φ−1(s) + (I − J−1)JJ̃−1[p− Φ(s)] (5.129)

After reaching the discontinuity surface we are stuck to the extended (n − 1) di-

mensional manifold Σ. Again we use (σ, t) co-ordinates where σ ∈ Σ is the current

position of the point and t� 1 is the branching index which tells us for how long its

backwards orbit stays on the sliding surface. Including second order terms in t the

transformation at s is given by

Φ(σ, t) = Φ(s)+J̃J−1[φ−t(σ, t)− s]︸ ︷︷ ︸+

∫ t

0

φ−t(σ, t)+τH(s)dτ−
∫ t

0

φ1+t(σ, t)+τF [φ−1(s)]dτ

(5.130)

= Φ(s) + J̃J−1[σ − tH(s)− s] + t[s− φ−1(s)] +
t2

2
(H(s)− F [φ−1(s)])

where the underbraced term is the derivative of Φ applied at the point where (σ, t)

first joins the sliding surface and the two integrals correct for the t seconds of sliding.

Note that since F (s) = H(s) the terms that are linear in t cancel

J̃J−1F (s) = s− φ−1(s) (5.131)

hence the need for the second order terms. We invert the transformation as before

so that

t2

2
=
〈Φ(σ, t)− Φ(s), (JJ̃−1)Tn〉
〈F (s)− F [φ−1(s)], (JJ̃−1)Tn〉

(5.132)

where n is normal to Σ at s.

σ = s+ JJ̃−1[Φ(σ, t)− Φ(s)− t2

2
(F (s)− F [φ1(s)])] (5.133)

The flow is given by

ṗ = σ − φ−1(σ, t) = σ − (φ−1(s) + J−1[σ − tF (s)− s]︸ ︷︷ ︸+tF [φ−1(s)]) (5.134)

= s− φ−1 + (I − J−1)(σ − s)

Where underbraced term is the one second backwards time image of the point where

(σ, t) first joins the sliding surface and the final term corrects for the fact that (σ, t)’s

one second backwards time image is actually the (1−t) second backwards time image
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of this point. The transformed system flows according to the ODE ṗ = Ĝ(p) whose

linearization about Φ(s) is given by

ṗ = s− φ−1(s) + (J − I)J̃−1[p− Φ(s)] (5.135)

+
〈p− Φ(s), (JJ̃−1)Tn〉

〈F (s)− F [φ−1(s)], (JJ̃−1)Tn〉
(J − I)J̃−1[F [φ−1(s)]− F (s)]

Expressions (119) and (124) agree on the switching surface t = 0 so the switch is

differentiable.

Tail discontinuity

The flow is given by an ODE ẋ = F (x) until reaching a set Σ where we instantaneously

switch to an ODE ẋ = H(x) as in (5.75). Solutions then flow for 1 second along the

extended sliding surface Σ until reaching the vicinity of φ1(s), where s is a grazing

point. Again we use (σ, t) co-ordinates where σ ∈ Σ is the current position of the

point on the extended sliding surface and t � 1 is the branch index which tells us

that its backwards time orbit stays on the extended sliding surface for (1−t) seconds.

If we attempt to expand Φ about φ1(s) as in the basic slide tail-discontinuity we run

into some difficulties, in particular since H(s) = F (s) the second order terms cancel.

We therefore include third order terms in t

Φ(σ, t) = Φ[φ1(s)] + J̃J−1[σ − φ1(s)]︸ ︷︷ ︸+

∫ t

0

φ−1+τ (x, t)dτ −
∫ t

0

φ−1+τ (x, 0)dτ (5.136)

Where the underbraced term is the derivative of Φ applied to σ restricted to the

backwards flow branch where we stay on Σ for all time and the two integrals correct

for the t seconds that we are not on the extended sliding surface.

In order to expand the first integral to third order in t we approximate the flow

ẋ = F (x) in the vicinity of s by

ẋ = F (s) +
δF

δx
|s︸ ︷︷ ︸(x− s) (5.137)

Where we will denote the underbraced matrix A. This equations solution to second

order in t is given by

x(t) = x(0) + t[A(x(0)− s) + F (s)] +
t2

2
[A2(x(0)− s) + AF (s)] (5.138)
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and for x(0) = φ−1+t(σ) = [s+ J−1(σ − φ1(s)) + tF (s)]∫ 0

−t
x(t)dt = t[s+J−1(σ−φ1(s))+tF (s)]− t

2

2
[A[J−1(σ−φ1(s))+tF (s)]+F (s)] (5.139)

+
t3

6
[A2[J−1(σ − φ1(s)) + tF (s)] + AF (s)]

Likewise we approximate ẋ = H(x) by

ẋ = H(s) +
δH

δx
|s︸ ︷︷ ︸(x− s) (5.140)

for the second integral. To obtain

Φ(σ, t) = Φ(φ1(s)) + J̃J−1[σ − φ1(s)] +
t3

3
(
δH

δx
|s −

δF

δx
|s)F (s) (5.141)

which is invertible in the usual way

t3

3
=
〈Φ(σ, t)− Φ(s), (JJ̃−1)Tn〉
〈( δH

δx
|s − δF

δx
|s)F (s), (JJ̃−1)Tn〉

(5.142)

where n is normal to Σ at φ1(s).

σ = φ1(s) + JJ̃−1[Φ(σ, t)− Φ[φ1(s)]− t3

3
(
δH

δx
|s −

δF

δx
|s)F (s)] (5.143)

The flow is given by

ṗ = σ − φ−1(σ, t) = σ − [s+ J−1[σ − φ1(s)]︸ ︷︷ ︸+
t2

2
(
δF

δx
|s −

δH

δx
|s)F (s)] (5.144)

where the underbraced term is the one second backwards time image of x restricted

to the branch where we stay on the sliding surface for all time and the final term

corrects for the t seconds of flow off the sliding surface. So that the transomed system

flows according to the ODE ṗ = Ĥ(p) whose expansion about Φ[φ(s)] is given by

ṗ = a+B(p− Φ[φ1(s)]) + c
3
2

√
〈p− Φ[φ1(s)], d〉 (5.145)

where

a+B(p− Φ[φ1(s)]) = φ1(s)− s+ (J − I)J̃(p− Φ[φ1(s)]) (5.146)

− 〈Φ(σ, t)− Φ(s), (JJ̃−1)Tn〉
〈( δH

δx
|s − δF

δx
|s)F (s), (JJ̃−1)Tn〉

(J − I)J̃(
δH

δx
|s −

δF

δx
|s)F (s)
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and

c
3
2

√
〈p− Φ[φ1(s)], d〉 =

1

2
(
δF

δx
|s −

δH

δx
|s)F (s)

3
2

√√√√3
〈Φ(σ, t)− Φ(s), (JJ̃−1)Tn〉
〈( δH

δx
|s − δF

δx
|s)F (s), (JJ̃−1)Tn〉

(5.147)

So that as in the basic sliding case orbits converge differentially and in finite time to

the image of the extended sliding surface Φ(Σ, 0) except that in this grazing case the

distance decays like (t− c)3 due to the power of 2
3

in the flow.

5.4 Computer example

The Moving Average Filter can easily be applied to time series data from a computer

simulation of a non-smooth system. Since this data is equivalent to unsmoothed

output from the smoothed system we can use it to study the systems obtained by

applying the Moving Average Transformation to non-smooth systems.

5.4.1 Friction oscillator

Systems with static and dynamic friction can exhibit sliding behavior, there is a (so

far as possible) humorous mismatch in terminology here since mathematical sliding in

the sense of section 3.3 actually corresponds to an object being stuck to a surface by

static friction whilst sliding along experiencing dynamic friction has no mathematical

sliding associated with it at all! In our model we consider a mass on a linear spring

subjected to a periodic force resting on a rough moving belt with a piecewise linear

friction force

Fric(y) =

 ay + b y > 0

−ay − b y < 0
(5.148)

where y is the velocity of the mass relative to the surface of the belt. The force acting

on the block is given by

F (x, ẋ, t) = kx− dẋ+ l sin(ωt) + Fric(ẋ− u) (5.149)

The state space of this dynamical system is three dimensional (position,velocity,forcing-

phase). We will embed the phase variable as an interval [0, 2π] rather than on the
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circle as it enables us to embed the the whole state space in R3 and the jump from

2π to 0 gives us some discontinuities in the flow which we can resolve with the trans-

formation.

Procedure

For a given set of parameter values we simulate the oscillator on a computer and

record a time series in the three dimensional state variable. The recording is just a

long sequence (xi, ẋi, τi)
N
i=1 where we use a time-step of 0.05s. The smoothing filter

is just a summed average applied to the now discrete time data.

Φ(x, ẋ, τ)i =
1

40

i∑
j=i−39

(xj, ẋj, τj) (5.150)

So that we are averaging over a period of 2s. The accuracy of our routine is actu-

ally slightly better than this as we can approximate the average between time steps

during the integration routine which improves the resolution of the sum. To obtain

a differentiable time series we simply apply the same filter a second time to the data.

Data

We use the following parameters k = 1.2, d = 0.0, w = 1.02, l = 1.9, u = 3.4,

a = 0.04 and b = 0.1 whose dynamics exhibit a grazing orbit that gives rise to

chaotic dynamics on what appears to be a fully 2 dimensional attractor. We plot the

time series for the three systems, discontinuous, continuous/non-differentiable and

differentiable, see Fig 8,1.

Results

Both applications of the filter give us useful insight into the original systems dynamics.

When we transform the system from a discontinuous system to a continuous system

we change the topology of the attractor. As outlined in the introduction we claim that

the topology of the continuous system gives a better characterization of the dynamics

and that is the case here. Homologically the discontinuous system is equivalent to
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two points whereas the continuous system is a figure of eight, the two possible loops

in the attractor provide the topological mechanism for chaos, see Fig 8,b.

On the second application of the filter we arrive at a differentiable system which

can be thought of as an ODE with continuous RHS. We can therefore locally approx-

imate this ODE from our data and use this to compute lyupanov exponents along

the flow. The clear positive exponent shows that we have a chaotic system, see Fig

8,c.
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Figure 5.8: a) Time series recorded from i) Original discontinuous system, ii) Once

transformed continuous system, iii) Twice transformed differentiable system, b) Con-

vergence of Lyupanov exponent calculation, c) Topology of invariant set for discon-

tinuous and transformed continuous system.
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Local behavior of transformed systems

The original discontinuous system contains three jumps, three slides (green) and

one sliding graze. Through the averaging these discontinuities are transformed into

smoother discontinuities as in section 3. We can easily identify the discontinuities in

the data during the simulation stage.

Figure 5.9: Original system with discontinuous jumps are highlighted. Data just

before the discontinuity in Green and after in Red

As in section 5.3 the discontinuous jumps in the original system are transformed

into pairs of non-differentiable switches, a second application of the transformation

smoothes these into differentiable switches. See figs 9,10,11.
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Figure 5.10: Once smoothed system with image of discontinuous jumps highlighted.

Data just before the discontinuity in Green and after in Red, Head with dots and tail

with circles.
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Figure 5.11: Twice smoothed system with image of discontinuous jumps highlighted.

Data just before the discontinuity in Green and after in Red, head with dots, mid

with circles and tail with squares.
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Figure 5.12: Original system with non-differentiable slide highlighted. Data just

before the discontinuity in Green and after in Red

As in section 5.3 the non-differentiable slides in the original system are trans-

formed into pairs of non-smooth discontinuities each consisting of a differentiable

switch followed by a differentiable slide where square root terms in the flow give rise

to parabolic orbits which flow into the transformed sliding surface tangentially. See

Figs 12,13,14.

This system contains a sliding graze discontinuity which acts as a separatrix be-

tween the two different loops observed in the orbits. The grazing point itself does

not appear to be in the closure of the attractor.
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Figure 5.13: Once smoothed system with image of non-differentiable slide highlighted.

Data just before the discontinuity in Green and after in Red head with dots, mid with

circles and tail with squares.
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Figure 5.14: Detail of Tail discontinuity for smoothed slide.

Remarks on averaging period

In the theory laid out earlier in the chapter the length of the averaging period really

didn’t matter. If we set

Φα(x) =

∫ 0

−α
φτ (x)dτ (5.151)

then the Φα transformed systems will all be topologically equivalent and admit the

same sort of local descriptions at the images and tail images of discontinuities. In

the practical world of numerics this is obviously not the case. There are two strategic

factors in play. Firstly if we make α to large then we loose a lot of information when

we take the average as Φα will be too contracting, mix this with some natural round

up error and the transformed system will begin to look like a smooth blob with noise

and little resemblance to the original system. On the other hand if α is too small

then smoothed discontinuities will still have very large changes in second derivatives
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which will lead to more numerical errors.

A theoretical basis for choosing α is still a work in progress but for non-smooth

oscillators like this one an averaging period roughly half of a typical orbit period

seems to work well as a rule of thumb. Moving averages of Markov chains with

exponentially decaying memory of the form

Φ(x) =

∫ 0

−∞
φτ (x)eβτdτ (5.152)

are of some interest in approximating the behavior of coupled systems with switching

network architecture. Here the entropy of the Markov chain provides a natural time

scale when considering the choice of β [12], perhaps something like that can be said

here.

Remarks on alternative methods

Of course the results outlined above could be obtained without making use of the

Moving Average Transformation, traditional methods are however quite difficult to

apply in a systematic way. In order to identify the topology of the continuous system

it would be necessary to identify points before and after the time reset jumps as being

connected then add these connections to something like the rips complex of the series.

To compute the lyupanov exponent from the data as the integral of the derivative

along the flow it would be necessary to divide the points in the series up into 5

categories

1. Points that are not sliding and not about to start siding or time reset.

2. Points that are not sliding and are about to start sliding

3. Points that are not sliding and are about to time reset

4. Points that are sliding and are not about to time reset

5. Points that are sliding that are about to time reset

The vector field/saltation matrix can then be adequately approximated at a point

in category i say, by a local approximation using other close by points in that same
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category. This wouldn’t be too difficult from a computer simulation like this where it

would be easy to categorize points as such but would be extremely difficult when deal-

ing with experimental data where it would be impossible to verify the categorization.

Of course it is possible to compute lyupanov exponents from data by constructing a

return map which placed away from the discontinuity would not be too problematic,

however this is very far from systematic doesn’t give us an approximation of the

vector field.

5.5 Conclusion

We have shown that the Moving Average Transformation can be used to transform

discontinuous or non-differentiable systems into dynamically equivalent differentiable

systems. That stability and orbit structure are dynamical equivalence invariants

follows from the fact that away from the discontinuities we have a standard smooth

change of variables and on the discontinues the theory in section 3 shows how in a

quite natural way this information is integrated into the smoothed system. We have

also demonstrated that the transformation can be applied numerically especially well

to time-series data where we can replace the state space transformation with a simple

finite impulse response (FIR) filter on the data. There are several questions left open

all of which I hope to address in future work

5.5.1 Numerical implementation

There are many questions here. Firstly as discussed in 4.1.4 how should we choose

the length of the averaging period? Whilst the time-series based method is very easy

to implement it is not necessarily the best approach, for example we are only able

to collect reasonably dense data from attracting objects. How should one best go

about numerically implementing a method like that used in section 2? Then there

are all the usual questions associated with numerics such as cost, the effect of noise

(FIR filters like the moving average filter is routinely used to remove high frequency

noise in signal processing) and rounding error which could be very important here
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especially if we want to use a longer averaging period where the more contracting

transformation can loose sensitivity.

In section 4 we where able to compute the Lyupanov spectrum of the Friction

Oscillator from a time-series using our new technique. Do the benefits of this ap-

proach which include systematic implementation, use of the whole vector field and

implementation of well tested/reasearched standard smooth methods outweigh the

potential problems such as the introduction of systematic numerical error through

the transformation and increased dimension through use of delay maps?

5.5.2 More applications

This chapter has focused on computing the stability of non-smooth systems by

smoothing them then applying standard techniques that really on differentiability

which would not have been applicable before the smoothing. Of course stability cal-

culations are not the only standard techniques that rely on smoothness. What other

standard techniques can be applied to the smoothed systems to get results that would

have been impossible or more difficult to obtain from the original non-smooth sys-

tem? Numerical continuation for non-smooth systems is very difficult because of the

non-differentiability [4]. Can we use our smoothing technique to do this in a simpler

more systematic way?

5.5.3 Generic Smoothed non-smooth systems

Non-smooth systems can generically exhibit bifurcation structures which would be

impossible or of high codimension in the space of smooth systems. Since dynamically

equivalent systems have the same dynamics and therefore bifurcate in the same way

the Moving Average Transformation provides us with a family of smooth systems

(the smoothed non-smooth systems) which behave in an atypical way. How can

we characterize these systems? What does a generic smoothed system look like

and what insight into non-smooth dynamics does this answer give us, if any? we

conjecture that a generic smoothed system can be expressed as a generic smooth flow
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on special type of branching manifold that splits up and folds back into itself along

non-transverse intersections with grazes and slides respectively responsible for the

two types of irregularity.
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Chapter 6

Future plans

Thanks to an EPSRC doctoral prize award I will be able to continue my work in

Manchester for the 2011/2012 academic year. Principally developing applications of

my smoothing technique I hope to continue much of the work presented in my thesis.

I am particularly keen to collaborate with engineers working on non-smooth systems

as my smoothing method’s numerical stability and ability to deal with data will

hopefully make it useful in ’real life’ applications. I also look foreword to investigating

more realistic models of parallel computation and continue to take a keen interest in

max-plus algebra through the departments tropical mathematics group.

Finally I would like to thank again my wonderful advisors; David Broomhead,

Paul Glendining and Mark Muldoon. I have thoroughly enjoyed my time with them

as a PhD student at Manchester and look forward to continuing to work with them

this coming year.

Thank you for reading!
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