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THE LOCAL LANGLANDS CORRESPONDENCE

FOR INNER FORMS OF SLn

ANNE-MARIE AUBERT, PAUL BAUM, ROGER PLYMEN, AND MAARTEN SOLLEVELD

Abstract. Let F be a non-archimedean local field. We establish the local Lang-
lands correspondence for all inner forms of the group SLn(F ). It takes the form of
a bijection between, on the one hand, conjugacy classes of Langlands parameters
for SLn(F ) enhanced with an irreducible representation of an S-group and, on the
other hand, the union of the spaces of irreducible admissible representations of
all inner forms of SLn(F ). An analogous result is shown in the archimedean case.

To settle the case where F has positive characteristic, we employ the method
of close fields. We prove that this method is compatible with the local Lang-
lands correspondence for inner forms of GLn(F ), when the fields are close enough
compared to the depth of the representations.
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1. Introduction

Let F be a local field and let D be a division algebra with centre F , of dimension
d2 over F . Then G = GLm(D) is an inner form of GLmd(F ) and it is endowed with
a reduced norm map Nrd: GLm(D) → F×. The group G] := ker(Nrd : G → F×)
is an inner form of SLn(F ). In this paper we will complete the local Langlands
correspondence for G].

We sketch how it goes and which part of it is new. Let Irr(H) denote the set
of (isomorphism classes of) irreducible admissible H-representations. If H is a re-
ductive group over a local field, we denote the collection of equivalence classes of
Langlands parameters for H by Φ(H). The local Langlands correspondence (LLC)
for GLn(F ) was established in the important papers [Lan, LRS, HaTa, Hen2, Zel].
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Together with the Jacquet–Langlands correspondence this provides the LLC for in-
ner forms G = GLm(D) of GLn(F ), see [HiSa, ABPS]. For these groups every
L-packet Πφ(G) is a singleton and the LLC is a canonical bijective map

(1) recD,m : Irr(GLm(D))→ Φ(GLm(D)).

The LLC for inner forms of SLn(F ) is derived from the above, in the sense that
every L-packet for G] consists of the irreducible constituents of ResGG](Πφ(G)). Of
course these L-packets have more than one element in general. To parametrize the
members of Πφ(G]) one must enhance the Langlands parameter φ with an irreducible
representation of a suitable component group. This idea originated for unipotent
representations of p-adic reductive groups in [Lus1, § 1.5]. For SLn(F ), φ is a map
from the Weil–Deligne group of F to PGLn(C) and a correct choice is the group
of components of the centralizer of φ in PGLn(C), see [GeKn]. In general a more
subtle component group Sφ is needed, see [Vog, Art].

Let Φe(G]) be the collection of equivalence classes (φ, ρ) of a Langlands parameter
φ for G], enhanced with ρ ∈ Irr(Sφ). The LLC for G] should be an injective map

(2) Irr(G])→ Φe(G]),

which satisfies several naturality properties. The map will almost never be surjective,
but for every φ which is relevant for G] the image should contain at least one pair
(φ, ρ). This form of the LLC was proven for generic representations of G] in [HiSa],
under the assumption that the underlying local field has characteristic zero.

A remarkable aspect of Langlands’ conjectures [Vog] is that it is better to con-
sider not just one reductive group at a time, but all inner forms of a given group
simultaneously. Inner forms share the same Langlands dual group, so in (2) the
right hand side is the same for all inner forms H of the given group. The hope is
that one can turn (2) into a bijection by taking the union of the sets Irr(H) on the
left hand side. Such a statement was proven for unipotent representations of simple
p-adic groups in [Lus2].

Let us make this explicit for inner forms of GLn(F ), respectively SLn(F ). As
Langlands dual group we take GLn(C), respectively PGLn(C). To deal with inner
forms it is advantageous to consider the conjugation action of SLn(C) on these
two groups. It induces a natural action of SLn(C) on the collection of Langlands
parameters for GLn(F ) or SLn(F ). For any such parameter φ we can define

(3)

C(φ) = ZSLn(C)(im φ),

Sφ = C(φ)/C(φ)◦,

Zφ = Z(SLn(C))/Z(SLn(C)) ∩ C(φ)◦ ∼= Z(SLn(C))C(φ)◦/C(φ)◦.

Notice that the centralizers are taken in SLn(C) and not in the Langlands dual
group. The groups in (3) are related to the more usual component group Sφ :=
ZPGLn(C)(im φ)/ZPGLn(C)(im φ)◦ by the short exact sequence

1→ Zφ → Sφ → Sφ → 1.

Hence Sφ has more irreducible representations than Sφ. Via the Langlands corre-
spondence the additional ones are associated to irreducible representations of non-
split inner forms of GLn(F ) or SLn(F ).

For example, consider a Langlands parameter φ for GL2(F ) which is elliptic,
that is, whose image is not contained in any torus of GL2(C). Then Sφ = 1 but
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Sφ = Z(SL2(C)) ∼= {±1}. The pair (φ, trivSφ) parametrizes an essentially square-
integrable representation of GL2(F ) and (φ, sgnSφ) parametrizes an irreducible rep-

resentation of the inner form D×, where D denotes a noncommutative division
algebra of dimension 4 over F .

For general linear groups over local fields we prove:

Theorem 1.1. (see Theorem 2.2)
There is a canonical bijection between:

• pairs (G, π) with π ∈ Irr(G) and G an inner form of GLn(F ), considered up
to equivalence;
• GLn(C)-conjugacy classes of pairs (φ, ρ) with φ ∈ Φ(GLn(F )) and ρ ∈

Irr(Sφ).

For these Langlands parameters Sφ = Zφ and a character of Zφ determines an
inner form of GLn(F ) via the Kottwitz isomorphism [Kot]. In contrast with the usual
LLC, our packets for general linear groups need not be singletons. To be precise,
the packet Πφ contains the unique representation rec−1

D,m(φ) of G = GLm(D) if φ is
relevant for G, and no G-representations otherwise.

A similar result holds for special linear groups, but with a few modifications.
Firstly, one loses canonicity, because in general there seems to be no natural way
to parametrize the members of an L-packet Πφ(G]) (if there are more than one).
Secondly, the quaternion algebra H turns out to occupy an exceptional position.
Our local Langlands correspondence for inner forms of the special linear group over
a local field F can be stated as follows:

Theorem 1.2. (see Theorems 3.2 and 3.3)
There exists a correspondence between:

• pairs (G], π) with π ∈ Irr(G]) and G] an inner form of SLn(F ), considered
up to equivalence;
• SLn(C)-conjugacy classes of pairs (φ, ρ) with φ ∈ Φ(SLn(F )) and ρ ∈ Irr(Sφ),

which is almost bijective, the only exception being that pairs (SLn/2(H), π) correspond
to two parameters (φ, ρ1) and (φ, ρ2).

(a) The group G] determines ρ|Zφ and conversely.

(b) The correspondence satisfies the desired properties from [Bor, §10.3], with respect
to restriction from inner forms of GLn(F ), temperedness and essential square-
integrability of representations.

For p-adic fields F , the above theorem can be derived rather quickly from the
work of Hiraga and Saito [HiSa].

In the archimedean case the classification of Irr(SLm(D)) is well-known, at least
for D 6= H. The main value of our result lies in the strong analogy with the non-
archimedean case. The reason for the lack of bijectivity for the special linear groups
over the quaternions is easily identified. Namely, the reduced norm map for H
satisfies Nrd(H×) = R>0 whereas for all other local division algebras D with centre
F the reduced norm map is surjective, that is, Nrd(D×) = F×. Of course there are
various ad hoc ways to restore the bijectivity in Theorem 1.2, but one may also argue
that for SLm(H) one would actually be better off without any component groups.

By far the most difficult case of Theorem 1.2 is that where the local field F has
positive characteristic. The paper [HiSa] does not apply in this case, and it seems
hard to generalize the techniques from [HiSa] to fields of positive characteristic.
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Our solution is to use the method of close fields to reduce it to the p-adic case. Let
F be a local field of characteristic p, oF its ring of integers and pF the maximal ideal

of oF . There exist finite extensions F̃ of Qp which are l-close to F , which means

that oF /p
l
F is isomorphic to the corresponding ring for F̃ . Let D̃ be a division

algebra with centre F̃ , such that D and D̃ have the same Hasse invariant. Let Kr

be the standard congruence subgroup of level r ∈ N in GLm(oD) and let Irr(G,Kr)
be the set of irreducible representations of G = GLm(D) with nonzero Kr-invariant

vectors. Define K̃r ⊂ GLm(D̃) and Irr(GLm(D̃), K̃r) in the same way.
For l sufficiently large compared to r, the method of close fields provides a bijection

(4) Irr(GLm(D),Kr)→ Irr(GLm(D̃), K̃r)

which preserves almost all the available structure [Bad1]. But this is not enough
for Theorem 1.2, we also need to relate to the local Langlands correspondence. The

l-closeness of F and F̃ implies that the quotient of the Weil group of F by its l-th

ramification subgroup is isomorphic to the analogous object for F̃ [Del]. This yields
a natural bijection

(5) Φl(GLm(D))→ Φl(GLm(D̃))

between Langlands parameters that are trivial on the respective l-th ramification
groups. We show that:

Theorem 1.3. (see Theorems 6.1 and 6.2)

Suppose that F and F̃ are l-close and that l is sufficiently large compared to r. Then
the maps (1), (4) and (5) form a commutative diagram

Irr(GLm(D),Kr) → Irr(GLm(D̃), K̃r)
↓ ↓

Φl(GLm(D)) → Φl(GLm(D̃)).

In the case D = F and D̃ = F̃ this holds for all l > r.

In other words, the method of close fields essentially preserves Langlands param-
eters. The proof runs via the only accessible characterization of the LLC for general
linear groups: by means of ε- and γ-factors of pairs of representations [Hen1].

To apply Henniart’s characterization with maximal effect, we establish a result
with independent value. Given a Langlands parameter φ, we let d(φ) be the smallest
integer such that φ /∈ Φd(φ)(GLn(F )), that is, the smallest integer such that φ is non-
trivial on the d(φ)-th ramification group of the Weil group of F . For a supercuspidal
representation π of GLn(F ), let d(π) be its normalized level, as in [Bus].

Proposition 1.4. (see Proposition 4.5)
The local Langlands correspondence for supercuspidal representations of GLn(F )
preserves depths, in the sense that

d(π) = d(recF,n(π)).

Acknowledgements. The authors wish to thank Ioan Badulescu for some in-
teresting emails about the method of close fields.

After this paper was completed and posted on the arXiv, the authors were in-
formed by Radhika Ganapathy that there is an overlap with the results and methods
of her PhD thesis [Gan]. This concerns Theorems 5.3 and 6.1. R. Ganapathy’s work



THE LOCAL LANGLANDS CORRESPONDENCE FOR INNER FORMS OF SLn 5

was done completely independently of this paper. This is a case of independent
discovery of very similar results. The existence of an overlap should not in any way
deny R. Ganapathy the credit she deserves for her achievement.

2. Inner forms of GLn(F )

Let F be a local field and let D be a division algebra with centre F , of dimension
dimF (D) = d2. The F -group GLm(D) is an inner form of GLmd(F ), and conversely
every inner form of GLn(F ) is isomorphic to such a group.

In the archimedean case there are only three possible division algebras: R,C and
H. The group GLm(H) is an inner form of GL2m(R), and (up to isomorphism) that
already accounts for all the inner forms of the groups GLn(R) and GLn(C). One can
parametrize these inner forms with characters of order at most two of Z(SLn(C)),
such that GLn(F ) is associated to the trivial character and

(6) GLm(H) corresponds to the character of order two of Z(SL2m(C)).

Until further notice we assume that F is non-archimedean. We recall how the
isomorphism classes of inner forms of GLn(F ) can be parametrized. More or less by
definition they are in bijection with the Galois cohomology group H1(F,PGLn(C)).
By [Kot, Proposition 6.4] there exists a natural bijection

(7) H1(F,PGLn(C))→ Irr(Z(SLn(C))) = Irr({z ∈ C× : zn = 1}).
Clearly the map

Irr({z ∈ C× : zn = 1})→ {z ∈ C× : zn = 1} : χ 7→ χ(exp(2π
√
−1/n))

is bijective. The composition of these two maps can be also be interpreted in terms
of classical number theory. For GLm(D) with md = n, the Hasse-invariant h(D)
(in the sense of Brauer theory) is a primitive d-th root of unity. The element of
H1(F,PGLn(C)) associated to GLm(D) has the same image h(D) in {z ∈ C× : zn =
1}. In particular 1 ∈ C× is associated to GLn(F ) and the primitive n-th roots of
unity correspond to multiplicative groups of division algebras of dimension n2 over
their centre F .

Moreover there is a standard presentation of the division algebras D. Let L be
the unique unramified extension of F of degree d and let χ be the character of
Gal(L/F ) ∼= Z/dZ which sends the Frobenius automorphism to h(D). If $F is
a uniformizer of F , then D is isomorphic to the cyclic algebra [L/F, χ,$F ], see
Definition IX.4.6 and Corollary XII.2.3 of [Wei2]. We will call a group of the form

(8) GLm([L/F, χ,$F ])

a standard inner form of GLn(F ).
The local Langlands correspondence for G = GLm(D) has been known to experts

for considerable time, although it did not appear in the literature until recently
[HiSa, ABPS]. We need to understand it well for our later arguments, so we recall
its construction. It generalizes and relies on the LLC for general linear groups:

recF,n : Irr(GLn(F ))→ Φ(GLn(F )).

The latter was proven for supercuspidal representations in [LRS, HaTa, Hen2], and
extended from there to Irr(GLn(F )) in [Zel].

As G is an inner form of GLn(F ), Ǧ = GLn(C) and the action of Gal(F/F )
on GLn(C) determined by G is by inner automorphisms. Therefore we may take as
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Langlands dual group LG = Ǧ = GLn(C). Let φ ∈ Φ(GLn(F )) and let M̌ ⊂ GLn(C)
be a Levi subgroup that contains im(φ) and is minimal for this property. As for all
Levi subgroups,

M̌ ∼= GLn1(C)× · · · ×GLnk(C)

for some integers ni with
∑k

i=1 ni = n. Then φ is relevant for G if and only if M̌
corresponds to a Levi subgroup M ⊂ G. This is equivalent to mi := ni/d being an
integer for all i. Moreover in that case

(9) M ∼= GLmi(D)× · · · ×GLmk(D).

Now consider any φ ∈ Φ(G). Conjugating by a suitable element of Ǧ, we can achieve
that

• M̌ =
∏l
i=1 GLni(C)ei and M =

∏l
i=1 GLmi(D)ei are standard Levi sub-

groups of GLn(C) and GLm(D), respectively;

• φ =
∏l
i=1 φ

⊗ei
i with φi ∈ Φ(GLmi(D)) and im(φi) not contained in any

proper Levi subgroup of GLni(C);
• φi and φj are not equivalent if i 6= j.

Then rec−1
F,ni

(φi) ∈ Irr(GLni(F )) is essentially square-integrable. Recall that the

Jacquet–Langlands correspondence [Rog, DKV, Bad1] is a natural bijection

JL : IrressL2(GLm(D))→ IrressL2(GLn(F ))

between essentially square-integrable irreducible representations of G = GLm(D)
and GLn(F ). It gives

(10)
ωi := JL−1(rec−1

F,ni
(φi)) ∈ IrressL2(GLmi(D)),

ω :=
∏l

i=1
ω⊗eii ∈ IrressL2(M).

We remark that ω is square-integrable modulo centre if and only all rec−1
F,ni

(φi) are
so, because this property is preserved by the Jacquet–Langlands correspondence.
The Zelevinsky classification for Irr(GLni(F )) [Zel] (which is used for recF,ni) shows
that, in the given circumstances, this is equivalent to φi being bounded. Thus ω is
square-integrable modulo centre if and only φ is bounded.

The assignment φ 7→ (M,ω) sets up a bijection

(11) Φ(G)←→ {(M,ω) : M a Levi subgroup of G,ω ∈ IrressL2(M)}/G.

It is known from [DKV, Theorem B.2.d] and [Bad2] that for inner forms of GLn(F )
normalized parabolic induction sends irreducible square-integrable (modulo centre)
representations to irreducible tempered representations. Together with the Lang-
lands classification [Lan, Kon] this implies that there exists a natural bijection be-
tween Irr(G) and the right hand side of (11). It sends (M,ω) to the unique Langlands
quotient L(P, ω) of IGP (ω), where P ⊂ G is a parabolic subgroup with Levi factor
M , with respect to which ω is positive.

The composition

(12) Φ(G)→ Irr(G) : φ 7→ (M,ω) 7→ L(P, ω)

is the local Langlands correspondence for GLm(D).
By construction L(P, ω) is essentially square-integrable if and only if φ is not

contained in any proper Levi subgroup of GLm(D). By the uniqueness part of the
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Langlands classification [Kon, Theorem 3.5.ii] L(P, ω) is tempered if and only if ω is
square-integrable modulo centre, which by the above is equivalent to φ ∈ Φbdd(G).

We note that all the R-groups and component groups are trivial for G, and that all
the L-packets Πφ(G) = {L(P, ω)} are singletons. This means that (12) is bijective,
and that it has an inverse

(13) recD,m : Irr(G)→ Φ(G).

Because both the LLC for IrressL2(GLni(F )), the Jacquet–Langlands correspon-
dence and IGP respect tensoring with unramified characters, recD,m(L(P, ω⊗χ)) and
recD,m(L(P, ω)) differ only by the unramified Langlands parameter for M which
corresponds to χ.

In the archimedean case Langlands [Lan] himself established the correspondence
between the irreducible admissible representations of GLm(D) and Langlands pa-
rameters. The paper [Lan] applies to all real reductive groups, but it completes
the classsification only if parabolic induction of tempered representations of Levi
subgroups preserves irreducibility. That is the case for GLn(C) by the Borel–Weil
theorem, and for GLn(R) and GLm(H) by [BaRe, §12].

The above method to go from essentially square-integrable to irreducible admissi-
ble representations is essentially the same over all local fields, and stems from [Lan].
There also exists a Jacquet–Langlands correspondence over local archimedean fields
[DKV, Appendix D]. Actually it is very simple, the only nontrivial cases are GL2(R)
and H. Therefore it is justified to say that (10)–(13) hold in the archimedean case.

With the S-groups from [Art] we can build a more subtle version of (13). Since
ZGLn(C)(φ) is connected,

(14) Sφ = C(φ)/C(φ)◦ = Z(SLn(C))ZSLn(C)(φ)◦/ZSLn(C)(φ)◦ ∼=
Z(SLn(C))/(Z(SLn(C)) ∩ ZSLn(C)(φ)◦).

Let χG ∈ Irr(Z(SLn(C))) be the character associated to G via (7) or (6).

Lemma 2.1. A Langlands parameter φ ∈ Φ(GLn(F )) is relevant for G = GLm(D)
if and only if kerχG ⊃ Z(SLn(C)) ∩ C(φ)◦.

Proof. This is [HiSa, Lemma 9.1] for inner forms of GLn(F ). Although a standing
assumption in [HiSa] is that char(F ) = 0, the proof of this result works just as well
in positive characteristic. �

We regard

Φe(inn GLn(F )) := {(φ, ρ) : φ ∈ Φ(GLn(F )), ρ ∈ Irr(Sφ)}

as the collection of enhanced Langlands parameters for all inner forms of GLn(F ).
With this set can establish the local Langlands correspondence for all such inner
forms simultaneously. To make it bijective, we must choose one group in each
equivalence class of inner forms of GLn(F ). In the archimedean case it suffices
to say that we use the quaternions, and in the non-archimedean case we take the
standard inner forms (8).

Theorem 2.2. Let F be a local field. There exists a canonical bijection

Φe(inn GLn(F )) → {(G, π) : G standard inner form of GLn(F ), π ∈ Irr(G)},
(φ, χG) 7→ (G,Πφ(G)).
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Proof. The elements of Φe(inn GLn(F )) with a fixed φ ∈ Φ(GLn(F )) are

(15) {(φ, χ) : χ ∈ Irr(Z(SLn(C))), kerχ ⊃ Z(SLn(C)) ∩ C(φ)◦}.

First we consider the non-archimedean case. By Lemma 2.1 and (7), (15) is in
bijection with the equivalence classes of inner forms G of GLn(F ) for which φ is
relevant. Now apply the LLC for G (12).

In the archimedean case the above argument does not suffice, because some char-
acters of Z(SLn(C)) do not parametrize an inner form of GLn(F ). We proceed by
direct calculation, inspired by [Lan, §3].

Suppose that F = C. Then WF = C× and im(φ) is just a real torus in GLn(C).
Hence ZGLn(C)(φ) is a Levi subgroup of GLn(C) and C(φ) = ZSLn(C)(φ) is the cor-
responding Levi subgroup of SLn(C). All Levi subgroups of SLn(C) are connected,
so Sφ = C(φ)/C(φ)◦ = 1. Consequently Φe(inn GLn(C)) = Φ(GLn(C)), and the
theorem for F = C reduces to the Langlands correspondence for GLn(C).

Now we take F = R. Recall that its Weil group is defined as

WR = C× ∪ C×τ , where τ2 = −1 and τzτ−1 = z.

Let M be a Levi subgroup of GLn(C) which contains the image of φ and is minimal
for this property. Then φ(C×) is contained in a unique maximal torus T of M . By
replacing φ by a conjugate Langlands parameter, we can achieve that

M =
∏n

i=1
GLi(C)ni

is standard and that T is the torus of diagonal matrices. Then the projection
of φ(WR) on each factor GLi(C) of M has a centralizer in GLi(C) which does
not contain any torus larger than Z(GLi(C)). On the other hand φ(τ) normalizes
ZM (φ(C×)) = T , so ZGLn(C)(φ) = ZT (φ(τ)). It follows that ni = 0 for i ≥ 2.

The projection of φ(τ) on each factor GL2(C) of M is either
(

0 1
−1 0

)
or
(

0 −1
1 0

)
.

Hence ZGLn(C)(φ) contains the torus

Tφ := (C×)n1 × Z(GL2(C))n2 .

Suppose that n1 > 0. Then the intersection Tφ ∩ SLn(C) is connected, so

Z(SLn(C))/(Z(SLn(C)) ∩ ZSLn(C)(φ)◦) = 1.

Together with (14) this shows that Sφ = 1 if n is odd or if n is even and φ is not
relevant for GLn/2(H).

Now suppose n1 = 0. Then n = 2n2, φ is relevant for GLn2(H) and Tφ =
{(zjI2)n2

j=1 : zj ∈ C×}. We see that Tφ ∩ SLn(C) has two components, determined

by whether
∏n2
j=1 zj equals 1 or -1. Write φ =

∏n2
j=1 φj with φj ∈ Φ(GL2(R)). We

may assume that φ is normalized such that, whenever φj is GL2(C)-conjugate to
φj′ , actually φj′ = φj = φk for all k between j and j′. Then ZMn(C)(φ) is isomorphic
to a standard Levi subalgebra A of Mn2(C), via the ring homomorphism

Mn2(C)→ Mn(C) = Mn2(M2(C)) induced by z 7→ zI2.

Hence ZSLn(C)(φ) ∼= {a ∈ A : det(a)2 = 1}, which clearly has two components. This
shows that |Sφ| = [C(φ) : C(φ)◦] = 2 if φ is relevant for GLn/2(H).

Thus we checked that for every φ ∈ Φ(GLn(R)), Irr(Sφ) parametrizes the equiv-
alence classes of inner forms G of GLn(R) for which φ is relevant. To conclude, we
apply the LLC for G. �
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3. Inner forms of SLn(F )

As in the previous section, let D be a division algebra over dimension d2 over its
centre F , with reduced norm Nrd: D → F . We write

GLm(D)] := {g ∈ GLm(D) : Nrd(g) = 1}

Notice that it equals the derived group of GLm(D). It is an inner form of SLmd(F ),
and every inner form of SLn(F ) is isomorphic to such a group. Thus the classification
and parametrization of inner forms of SLn(F ) is the same as for GLn(F ), as described
by (7) and (6)

As Langlands dual group of G] = GLm(D)] we take

LG] = Ǧ] = PGLn(C).

In particular every Langlands parameter for G = GLm(D) gives rise to one for G].
In line with [Bor, §10], the L-packets for G] are derived from those for G in the
following way. It is known [Wei1] that every φ] ∈ Φ(G]) lifts to a φ ∈ Φ(G). The
L-packet Πφ(G) from (12) consists of a single G-representation, which we will denote

by the same symbol. Its restriction to G] depends only on φ], because a different
lift φ′ of φ] would produce Πφ′(G) which only differs from Πφ(G) by a character of
the form

g 7→ |Nrd(g)|zF with z ∈ C.
We call the restriction of Πφ(G) to G] πφ(G)]. In general it is reducible, and with
it one associates the L-packet

Πφ](G
]) := {π] ∈ Irr(G]) : π] is a constituent of πφ(G)]}.

The goal of this section is an analogue of Theorem 2.2. First we note that every
irreducible G]-representation (say π) is a member of an L-packet Πφ](G

]), because

it appears in a G-representation (for example in IndGG]π). Second, by [HiSa, Lemma
12.1] two L-packets Π

φ]1
and Π

φ]2
are either disjoint or equal, and the latter happens

if and only if φ]1 and φ]2 are PGLn(C)-conjugate. Thus the main problem is the
parametrization of the L-packets. Such a parametrization of Πφ](G

]) was given in
[HiSa] in terms of S-groups, at least when F has characteristic zero and φ is generic.
After recalling this method, we will generalize it. Put

XG(Πφ(G)) = {γ ∈ Irr(G/G]) : Πφ(G)⊗ γ ∼= Πφ(G)}.

Notice that every element of XG(Πφ(G)) is a character, which by Schur’s lemma

is trivial on Z(G). Since G/G]Z(G) is an abelian group and all its elements have
order dividing n, the same goes for XG(Πφ(G)). Moreover XG(Πφ(G)) is finite, as
we will see in (19). On general grounds [HiSa, Lemma 2.4] there exists a 2-cocycle
κφ] such that

(16) C[XG(Πφ(G)), κφ] ]
∼= EndG](Πφ(G)).

By [HiSa, Corollary 2.10] the decomposition of πφ(G)] as a representation of G] ×
XG(Πφ(G)) is

(17) πφ(G)] ∼=
⊕

ρ∈Irr(C[XG(Πφ(G)),κ
φ]

])

HomC[XG(Πφ(G)),κ
φ]

](ρ, πφ(G)])⊗ ρ.
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The isotropy group of φ in C(φ]) is

C(φ) = Z(SLn(C))C(φ)◦ = Z(SLn(C))C(φ])◦.

We also note that

(18)
C(φ])/C(φ) ∼= Sφ]/Zφ] , where

Zφ] = Z(SLn(C))C(φ])◦/C(φ])◦ ∼= Z(SLn(C))/Z(SLn(C)) ∩ C(φ])◦.

Assume for the moment that D 6∼= H, so Nrd: D → F is surjective by [Wei2,
Proposition X.2.6]. Let γ̂ : WF → C× ∼= Z(GLn(C)) correspond to γ ∈ Irr(F×) ∼=
Irr(G/G]) via local class field theory. By the LLC for G, φ is GLn(C)-conjugate to
φγ̂ for all γ ∈ XG(Πφ(G)). As (φγ̂)] = φ], φ and φγ̂ are in fact conjugate by an

element of C(φ]) ⊂ SLn(C). This gives an isomorphism

(19) C(φ])/C(φ) ∼= XG(Πφ(G)),

showing in particular that the left hand side is abelian. Since C(φ])/C(φ) is the com-
ponent group of the centralizer of the subset im(φ]) of the algebraic group PGLn(C),
the groups in (19) are finite. Thus we obtain a central extension of finite groups

(20) 1→ Zφ] → Sφ] → XG(Πφ(G))→ 1.

The algebra (16) can be described with the idempotent

eχG := |Zφ] |−1
∑

z∈Z
φ]

χG(z−1)z ∈ C[Zφ] ].

Theorem 3.1. Let G = GLm(D) with D 6∼= H. There exists an isomorphism

C[XG(Πφ(G)), κφ] ] = C[Sφ]/Zφ] , κφ] ] ∼= eχGC[Sφ] ]
such that for any s ∈ Sφ] the subspaces CsZφ] on both sides correspond. Moreover
any two such isomorphisms differ only by a character of Sφ]/Zφ].

Proof. (of the case char(F ) = 0.)
First we suppose that char(F ) = 0 and that the representation Πφ(G) is tempered.
In the archimedean case the cocycle κφ] is trivial by [HiSa, Lemma 3.1 and page 69].
In the non-archimedean case the theorem is a reformulation of [HiSa, Lemma 12.5].
We remark that this is a deep result, its proof makes use of endoscopic transfer and
global arguments.

Consider a possibly unbounded Langlands parameter φ] ∈ Φ(G]), with a lift φ ∈
Φ(G). Let Y be a connected set of unramified twists φχ of φ, such that C(φχ) = C(φ)

and C(φ]χ) = C(φ]) for all φχ ∈ Y ′. It is easily seen that we can always arrange
that Y contains bounded Langlands parameters. The reason is that for any element
(here the image of a Frobenius element of WF under φ) of a torus in a complex
reductive group, there is an element of the maximal compact subtorus which has
the same centralizer.

The construction of the intertwining operators

(21) Iγ ∈ HomG(Πφ(G),Πφ(G)⊗ γ) for γ ∈ XG(Πφ(G))

is similar to that for R-groups. It determines the cocycle by

IγIγ′ = κφ](γ, γ
′)Iγγ′ .

The Iγ can be chosen independently of χ ∈ Xnr(M), so the κ
φ]χ

do not depend

on χ. For φ]χ tempered we already have the required algebra isomorphisms, and
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now they extend by constancy to all φ]χ ∈ Y ′. This concludes the proof in the case
char(F ) = 0. �

The proof of the case char(F ) > 0 requires more techniques, we complete it in
Section 6.

For a character χ of Zφ] or of Z(SLn(C)) we write

(22) Irr(Sφ] , χ) := Irr(eχC[Sφ] ]) = {(π, V ) ∈ Irr(Sφ]) : Zφ] acts on V as χ}.

We will use this with the characters χG = χG] from Lemma 2.1.
We still assume that D 6∼= H. As shown in [HiSa, Corollary 2.10], the isomorphism

(16) and Theorem 3.1 imply that

(23) π(φ], ρ) := HomS
φ]

(ρ,Πφ(G))

defines an irreducible G]-representation for every ρ ∈ Irr(Sφ] , χG]). In general

π(φ], ρ) is not canonical, it depends on the choice of an algebra isomorphism as
in Theorem 3.1. Hence the map ρ 7→ π(φ], ρ) is canonical up to an action of

Irr(Sφ]/Zφ]) ∼= Irr(XG(Πφ(G)))

on Irr(eχGC[Sφ] ]). Via (17) and Theorem 3.1 this corresponds to an action of

Irr(XG(Πφ(G))) on Πφ](G), which can be described explicitly. Since XG(Πφ(G))

is a subgroup of Irr(G/G]Z(G)), Irr(XG(Πφ(G))) is a quotient of G/G]Z(G), say

G/H for some H ⊃ G]Z(G). This means that every c ∈ Irr(XG(Πφ(G))) determines
a coset gcH in G. Now the formula

(24) c · π = gc · π, where (gc · π)(g) = π(g−1
c ggc)

defines the action of Irr(XG(Πφ(G))) on Πφ](G
]). In other words, the representation

π(φ], ρ) ∈ Πφ](G
]) is canonical up to the action of G on G]-representations.

For D = H some modifications must be made. In that case G = G]Z(G), so
ResGG] preserves irreducibility of representations and XG(Πφ(G)) = 1. Moreover

G/G] ∼= R×>0 6∼= R×, which causes (19) and (20) to be invalid for D = H. However,
(22) still makes sense, so we define

(25) π(φ], ρ) := Πφ(GLm(H)) for all ρ ∈ Irr(Sφ] , χH×).

As mentioned before, Hiraga and Saito [HiSa] have established the local Langlands
correspondence for irreducible generic representations of inner forms of SLn(F ),
where F is a local field of characteristic zero. We will generalize this on the one
hand to local fields F of arbitrary characteristic and on the other hand to all ir-
reducible admissible representations. We will do so for all inner forms of SLn(F )
simultaneously, to obtain an analogue of Theorem 2.2.

Like for GLn(F ) we define

Φe(inn SLn(F )) = {(φ], ρ) : φ] ∈ Φ(SLn(F )), ρ ∈ Irr(Sφ])}.

Notice that the restriction of ρ to Zφ] ∼= Z(SLn(C))/Z(SLn(C))∩C(φ])◦ determines
an inner form Gρ of GLn(F ) (up to isomorphism) via (7) and Lemma 2.1. Its derived

group G]ρ is the inner form of SLn(F ) associated to ρ.
We note that the actions of PGLn(C) on the various Φe(G]) combine to an action

on Φe(inn SLn(F )). With the collection of equivalence classes Φe(inn SLn(F )) we
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can formulate the local Langlands correspondence for all such inner forms simulta-
neously.

First we consider the non-archimedean case. As for GLn(F ), we must fix one group
in every equivalence class of inner forms. We choose the groups GLm([L/F, χ,$F ])]

with [L/F, χ,$F ] as in (8), and call these the standard inner forms of SLn(F ).

Theorem 3.2. Let F be a non-archimedean local field. There exists a bijection

Φe(inn SLn(F )) → {(G], π) : G] standard inner form of SLn(F ), π ∈ Irr(G])}
(φ], ρ) 7→ (G]ρ, π(φ], ρ))

with the following properties:

(a) Suppose that ρ sends exp(2πi/n) ∈ Z(SLn(C)) to a primitive d-th root of unity

z. Then G]ρ = GLm([L/F, χ,$F ])], where md = n and χ : Gal(L/F ) → C×
sends the Frobenius automorphism to z.

(b) Suppose that φ] is relevant for G] and lifts to φ ∈ Φ(G). Then the restriction of
Πφ(G) to G] is

⊕
ρ∈Irr(S

φ]
,χ
G]

) π(φ], ρ)⊗ ρ.

(c) π(φ], ρ) is essentially square-integrable if and only if φ](WF × SL2(C)) is not
contained in any proper parabolic subgroup of PGLn(C)).

(d) π(φ], ρ) is tempered if and only if φ] is bounded.

Proof. Let φ] ∈ Φ(SLn(F )) and lift it to φ ∈ Φ(GLn(F )). Then C(φ])◦ = C(φ)◦ and
Zφ] = Zφ, so by Lemma 2.1 the set of standard inner forms of SLn(F ) for which φ]

is relevant is in natural bijection with

Irr(Zφ]) = Irr(Z(SLn(C))/Z(SLn(C)) ∩ C(φ])◦).

Hence the collection of (φ], ρ) ∈ Φe(inn SLn(F )) with φ] fixed is

(26) {(φ], ρ) : ρ ∈ Irr(Sφ] , χG]) with φ] relevant for G]}.
Thus (a) automatically holds. Part (b) is a consequence of (16) and Theorem 3.1,
see [HiSa, Corollary 2.10]. Together with the remarks at the beginning of the section
this shows that the map from the theorem is bijective.

For part (d), it is clear that the restriction of a tempered G-representation to
G] is still tempered. Hence π(φ], ρ) is tempered if φ] has a bounded lift φ, that
is, if φ] is itself bounded. Conversely, if π(φ], ρ) is tempered, then all its matrix
coefficients are tempered on G]. Lift φ] to φ ∈ Φ(G) such that the central character
of Πφ(G) is unitary. Since π(φ], ρ) generates Πφ(G) as a G-representation, all matrix

coefficients of πφ(G) are tempered on G]Z(G). As G]Z(G) is of finite index in G,
this implies that Πφ(G) is tempered. One of the properties of the LLC for G says

that temperedness of Πφ(G) is equivalent to boundedness of φ. Therefore φ] is also
bounded.

An analogous argument applies to (essentially) square-integrable representations.
These arguments prove parts (c) and (d). �

Let us discuss an archimedean analogue of Theorem 3.2, that is, for the groups
SLn(C),SLn(R) and SLm(H). In view (25) we cannot expect a bijection, and part
(b) has to be adjusted.

Theorem 3.3. Let F be R or C. There exists a canonical surjection

Φe(inn SLn(F )) → {(G], π) : G] standard inner form of SLn(F ), π ∈ Irr(G])}
(φ], ρ) 7→ (G]ρ, π(φ], ρ))
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with the following properties:

(a) The preimage of Irr(SLn(F )) consists of the (φ], ρ) with Zφ] ⊂ ker ρ, and the
map is injective on this domain. The preimage of Irr(SLn/2(H)) consists of

the (φ], ρ) such that ρ is not trivial on Zφ], and the map is two-to-one on this
domain.

(b) Suppose that φ] is relevant for G] = SLm(D) and lifts to φ ∈ Φ(G). Then the
restriction of Πφ(G) to G] is irreducible if D = C or D = H, and is isomorphic

to
⊕

ρ∈Irr(S
φ]
/Z

φ]
) π(φ], ρ)⊗ ρ in case D = R.

(c) π(φ], ρ) is essentially square-integrable if and only if φ](WF ) is not contained
in any proper parabolic subgroup of PGLn(C)).

(d) π(φ], ρ) is tempered if and only if φ] is bounded.

Proof. Theorem 2.2 and the start of the proof of Theorem 3.2 show that (26) is
also valid in the archimedean case. To see that the map thus obtained is canonical,
we will of course use that the LLC for GLm(D) is so. For SLn(F ) the intertwining
operators admit a canonical normalization in terms of Whittaker functionals [HiSa,
pages 17 and 69], so the definition (23) of π(φ], ρ) can be made canonical. For
SLm(H) the definition (25) clearly leaves no room for arbitrary choices.

Part (a) and part (b) for D = R follow as in the non-archimedean case, except that
for D = H the preimage of π(φ], ρ) is in bijection with Irr(Sφ, eH×). To prove part

(b) for D = C and D = H, it suffices to remark that ResGG] preserves irreducibility,

as G = G]Z(G). The proof of part (c) and (d) carries over from Theorem 3.2.
It remains to check that the map is two-to-one on Irr(SLm(H)). For this we have

to compute

(27) Sφ]/Zφ] = C(φ])/C(φ])◦ = C(φ])/C(φ).

Consider φ] ∈ Φ(SLm(H)) with two lifts φ, φ′ ∈ Φ(GLm(H)) that are conjugate
under GL2m(C). The restriction of φ−1φ′ to C× ⊂WR is a group homomorphism
c : C× → Z(GL2m(C)). Clearly φ and φ′ can only be conjugate if c = 1, so φ′ can
only differ from φ on τ ∈WR. Since

φ′(τ)2 = φ′(−1) = φ(−1) = φ(τ)2,

either φ′(τ) = −φ(τ) or φ′ = φ. Recall the standard form of φ exhibited in the proof
of Theorem 2.2, with image in the Levi subgroup GL2(C)m of GL2m(C). It shows
that the Langlands parameter φ′ determined by φ′(τ) = −φ(τ) is always conjugate to
φ, for example by the element diag(1,−1, 1, . . . ,−1) ∈ GL2m(C). Therefore (27) has
precisely two elements. Now eH×C[Sφ] ] is a two-dimensional semisimple C-algebra,
so it is isomorphic to C ⊕ C. We conclude that Irr(Sφ] , eH×) has two elements, for

every φ] ∈ Φ(SLm(H)). �

4. Characterization of the LLC for some representations of GLn(F )

Let K0 = GLn(oF ) be the standard maximal compact subgroup of GLn(F ) and
define, for r ∈ Z>0:

Kr = ker (GLn(oF )→ GLn(oF /p
r
F )) = 1 + Mn(prF ).

We denote the set of irreducible smooth GLn(F )-representations that are generated
by their Kr-invariant vectors by Irr(GLn(F ),Kr). To indicate the ambient group
GLn(F ) we will sometimes denote Kr by Kr,n.
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The aim of this section is an analog of Henniart’s characterization [Hen1] of the
local Langlands correspondence in terms of ε-factors of pairs, for the restriction of
recF,n to supercuspidal representations of GLn(F ) with nonzero Kr-fixed vectors.

We recall some basic properties of generic representations, from [JPS2, Section 2].
Let ψ : F → C× be a character which is trivial on oF but not on $−1

F oF . We note
that ψ is unitary because F/oF is a union of finite subgroups. Let U = Un be the
standard unipotent subgroup of GLn(F ), consisting of upper triangular matrices.
We need a character θ of U which does not vanish on any of the root subgroups
associated to simple roots. Any choice is equally good, and it is common to take

θ((ui,j)
n
i,j=1) = ψ(

∑n−1

i=1
ui,i+1).

Let (π, V ) ∈ Irr(GLn(F )). One calls π generic if there exists a nonzero linear form
λ on V such that

λ(π(u)v) = θ(u)λ(v) for all u ∈ U, v ∈ V.
Such a linear form is called a Whittaker functional, and the space of those has
dimension 1 (if they exist). Let W (π, θ) be the space of all functions W : G→ C of
the form

Wv(g) = λ(π(g)v) g ∈ G, v ∈ V.
Then W (π, θ) is stable under right translations and the representation thus obtained
is isomorphic to π via v ↔Wv. Most irreducible representations of GLn(F ), and in
particular all the supercupidal ones, are generic [GeKa].

Let c−Ind θ = c−Ind
GLn(F )
U (θ) denote the compactly induced representation from

the character θ. The following lemma and its proof are inspired by [JPS1, Lemme 3.5]
which studies the case r = 0, that is, the case of unramified representations of
GLn(F ) (see also [BuHe, Corollary 6.3]).

Lemma 4.1. Let f ∈ (c−Ind θ)Kr . Suppose that∫
U\GLn(F )

f(g)W (g)dg = 0

for every W ∈W (π, θ) and every π ∈ Irr(G,Kr) such that π is generic. Then f = 0.

Proof. Recall that the space of the smooth induced representation Ind θ consists of
all right G-smooth functions ϕ : G→ C such that ϕ(ug) = θ(u)ϕ(g), for u ∈ U and
g ∈ G, and that the space c−Ind θ consists of all such functions which are compactly
supported modulo U . Since the character θ is unitary, c− Ind θ is a pre-unitary
representation. Let (Π,V) be its Hilbert space completion. It is separable because
G is so. According to Théorème 8.6.6 and 18.7.6 of [Dix], Π can be desintegrated

over the unitary dual Ĝ:

(28) Π ∼=
∫
Ĝ
m(x)πx dµ(x).

Here the multiplicity m(x) is either a natural number or countably infinite, and the
isomorphism encompasses the topological vector spaces, the inner products and the

G-action. By construction there exists, for all x ∈ Ĝ, a densely defined linear map
Ax from V to the space Vx of m(x)πx such that

(29) 〈ϕ1, ϕ2〉 =

∫
Ĝ
〈Axϕ1, Axϕ2〉dµ(x) ϕ1, ϕ2 ∈ V.
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Moreover

(30) AxΠ(g)ϕ = πx(g)Axϕ g ∈ G,ϕ ∈ V

whenever both sides are well-defined. In particular (30) holds when ϕ ∈ c−Ind θ.
Hence Ax maps c−Ind θ to the space V∞x of smooth vectors in Vx and

Ax ∈ HomG(c−Ind θ,m(x)π∞x ).

Since f is right Kr-invariant, (30) applied to ϕ = f shows that Axf = 0 unless Vx
contains non-zero Kr-invariant vectors. We assume that this is the case, in other
words, that π∞x ∈ Irr(G,Kr). Recall that the pairing

( , )G : c−Ind θ × Ind θ → C (ϕ,W ) 7→
∫
U\G

ϕ(g)W (g)dg

induces an isomorphism (c−Ind θ)∨ ' IndGUθ, which further induces an isomorphism

(31) HomG(c−Ind θ, π) ' HomG(π̌, Ind θ),

for any smooth representation π of G. Let λx ∈ HomG((m(x)π∞x )∨, Ind θ) denote
the image of Ax under the isomorphism (31). Any v̌x ∈ m(x)π̌∞x ⊂ (m(x)π∞x )∨ can

be written as
∑m(x)

m=1 vm with only finitely many nonzero terms vm ∈ π̌∞x . Then the

function Wx := λx(v̌x) =
∑m(x)

m=1 λx(vm) belongs to W (π̌∞x , θ) and

(Axf, v̌x)G = (f, λx(v̌x))G.

Since π̌∞x ∈ Irr(G,Kr), the assumption of the lemma guarantees that∫
U\G

f(g)Wx(g)dg = 0.

This gives (Axf, v̌x)G = 0 for all v̌x ∈ m(x)π̌∞x , so Axf = 0.

The above holds for almost all x ∈ Ĝ. Using (29), we get f = 0. �

According to [Hen1, Théorème 1.1] every generic π ∈ Irr(GLn(F )) is characterized
by the family of γ-factors γ(s, π × π′, ψ) for generic π′ ∈ Irr(GLn−1(F )). The fol-
lowing result will show that for π ∈ Irr(GLn(F ),Kr,n), it is enough to consider π′ ∈
Irr(GLn−1(F ),Kr,n−1), that is, every generic π ∈ Irr(GLn(F ),Kr,n) is characterized
by the family of γ-factors γ(s, π × π′, ψ) for generic π′ ∈ Irr(GLn−1(F ),Kr,n−1).

Theorem 4.2. Let π1 and π2 be two generic representations in Irr(GLn(F ),Kr,n).
Suppose that for every generic π′ ∈ Irr(GLn−1(F ),Kr,n−1), the following equality
holds:

γ(s, π1 × π′, ψ) = γ(s, π2 × π′, ψ).

Then π1 and π2 are equivalent.

Proof. The proof follows the same lines as in [Hen1, Theorème 1.1]. Let S (resp. Š)
denote the subspace of W (π1, θ)⊕W (π2, θ) (resp. W (π̌1, θ)⊕W (π̌2, θ)) formed by
the pairs (W1,W2) such that

W1

(
g′ 0
0 1

)
= W2

(
g′ 0
0 1

)
, for all g′ ∈ GLn−1(F ).

The subspaces S and Š are not {0} (see [Hen1, Lemme 2.4.1]). Let (W1,W2) ∈ S.
From (53), we have

Ψ(s,W1,W
′) = Ψ(s,W2,W

′)
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for every generic π′ ∈ Irr(GLn−1(F )) and every W ′ ∈W (π′, θ). Then by combining
the functional (54) with the assumption, we obtain that

(32) Ψ(s, W̌1, W̌
′) = Ψ(s, W̌2, W̌

′)

for every generic π′ ∈ Irr(GLn−1(F ),Kr,n−1) and every W ′ ∈W (π′, θ).
For every integer m, let fm denote the function on GLn−1(F ) defined by

fm(g′) =

{
W̌1

(
g′ 0
0 1

)
− W̌2

(
g′ 0
0 1

)
if | det(g′)| = qm,

0 otherwise.

Viewed as an equality between formal Laurent series in q−s, (32) means that∫
Un−1\GLn−1(F )

fm(g′)W̌ ′(g′)dg′ = 0,

for every integer m and every choice of (π′,W ′) as above. Moreover, the function fm
is smooth and compactly supported modulo Un−1. Since π′ ∈ Irr(GLn−1,Kr,n−1) we
have π̌′ ∈ Irr(GLn−1,Kr,n−1), and π̌′ is generic since π′ is. By applying Lemma 4.1

to the function fm, we conclude that fm = 0, that is (W̌1, W̌2) ∈ Š.
Conversely, a similar argument shows that if (W̌1, W̌2) ∈ Š, then (W1,W2) ∈ S,

because the assumption on (π1, π2) is equivalent to the corresponding assumption
on (π̌1, π̌2), thanks to (55). Now exactly the same argument as [Hen1, 3.2] shows
that W (π1, θ) ∼= W (π2, θ) and hence π1

∼= π2. �

Corollary 4.3. Let π1 and π2 be two supercuspidal representations in
Irr(GLn(F ),Kr,n). Suppose that for every integer n′ < n and every supercuspidal
representation π′ ∈ Irr(GLn′(F ),Kr,n′) the equality

ε(s, π1 × π′, ψ) = ε(s, π2 × π′, ψ)

holds. Then π1 and π2 are equivalent.

Proof. Again the proof follows the lines of [Hen1]. The result will follow immediately
from the combination of Theorem 4.2 with the following equalities:

(33) L(s, π1 × τ ′) = L(s, π2 × τ ′) = L(s, π̌1 × τ̌ ′) = L(s, π̌1 × τ̌ ′) = 1,

(34) γ(s, π1 × τ ′, ψ) = γ(s, π2 × τ ′, ψ),

for every generic τ ′ ∈ Irr(GLn′(F ),Kr,n′). The proofs of (33) and (34) are based
on Zelevinsky’s theory of segments. The proof of (33) is identical to that of [Hen1,
(3.3.2)]. In order to check (34), as in the proof of [Hen1, (3.3.4)], we first write
γ(s, πj × τ ′, ψ), for j = 1, 2, as a product of γ(s, πj × 〈∆i〉t, ψ). Next we write
γ(s, πj × 〈∆i〉t, ψ) itself as a product∏

h
γ(s, πj × π′i| |h, ψ),

with π′i supercuspidal. Since τ ′ ∈ Irr(GLn′(F ),Kr,n′), it follows that 〈∆i〉t and π′i
admit fixed vectors by Kr,a for the appropriate a. Hence the result follows from the
assumption made in the statement of the Corollary. �

As in [Hen1, Théorème 4.1], we will apply Corollary 4.3 to the characterization
of LLC for supercuspidal representations.
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Let Fs be a separable closure of F and let Gal(Fs/F )l be the l-th ramification
group of Gal(Fs/F ), with respect to the upper numbering. We define

Φl(G) := {φ ∈ Φ(G) : Gal(Fs/F )l ⊂ ker(φ)}.

Notice that

Φl′(G) ⊂ Φl(G), if l′ ≤ l.
We will say that φ ∈ Φ(GLn(F )) is elliptic if its image is not contained in any proper
Levi subgroup of GLn(C).

Lemma 4.4. Let φ ∈ Φ(GLn(F )) such that φ is elliptic and SL2(C) ⊂ ker(φ). Then
we have

φ /∈ Φd(φ)(GLn(F )) and φ ∈ Φl(GLn(F )) for any l > d(φ),

where

(35) d(φ) :=

{
0 if IF ⊂ ker(φ),
swan(φ)

n otherwise,

and swan(φ) denotes the Swan conductor of φ.

Proof. Let c(φ) denote the greatest integer such that

Gal(Fs/F )c(φ)+1 ⊂ ker(φ),

if IF = Gal(Fs/F )0 is not contained in ker(φ), and −1 otherwise. Recall the Her-
brand function ϕFs/F [Ser, Chap. IV, § 3] that allows us to pass from the lower
number to the upper ones:

Gal(Fs/F )l = Gal(Fs/F )ϕFs/F (l).

Let a(φ) denote the Artin conductor of φ. Because φ is assumed to be elliptic, the
restriction of φ to WF is irreducible. The equality

a(φ) = n
(
ϕFs/F (c(φ)) + 1

)
was shown for n = 1 in [Ser, Chap. VI, § 2, Proposition 5]. The proof for arbitrary
n is similar, see [GrRe, § 2]. By the very definition of the Swan conductor

ϕFs/F (c(φ)) =
a(φ)

n
− 1 =

swan(φ)

n
.

Then it follows from the definition of c(φ) that d(φ) is the greatest integer such that

Gal(Fs/F )d(φ) 6⊂ ker(φ).

Hence we have

φ /∈ Φd(φ)(GLn(F )) and φ ∈ Φd(φ)+1(GLn(F )). �

Let A be a hereditary oF -order A in Mn(F ). Let P denote the Jacobson radical of
A, and let e(A) denote the oF -period of A, that is, the integer e defined by pFA = Pe.
Define a sequence of compact open subgroups of GLn(F ) by

U0(A) = A×, and Um(A) = 1 + Pm, m ≥ 1.

Let m, m′ be integers satisfying m > m′ ≥ bm/2c. There is a canonical isomorphism

Um
′+1(A)/Um+1(A)→ Pm′+1/Pm+1,
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given by x 7→ x − 1. This leads to an isomorphism from p−1P−m/p−1P−m
′

to the

Pontrjagin dual of Um
′+1(A)/Um+1(A), explicitly given by

β + p−1P−m
′ 7→ ψβ β ∈ p−1P−m,

with ψβ(1 + x) = (ψ ◦ trMn(F ))(βx), for x ∈ P−m
′
.

We recall from [BuKu1, (1.5)] that a stratum is a quadruple [A,m,m′, β] consisting
of a hereditary oF -order A in Mn(F ), integers m > m′ ≥ 0, and an element β ∈
Mn(F ) with A-valuation νA(β) ≥ −m. A stratum of the form [A,m,m − 1, β] is
called fundamental [BuKu1, (2.3)] if the coset β + p−1P1−m does not contain a
nilpotent element of Mn(F ). We remark that the formulation in [Bus] is slightly
different because the notion of a fundamental stratum there allows m to be 0.

Fix an irreducible supercuspidal representation π of GLn(F ). According to [Bus,
Theorem 2] there exists a hereditary order A in Mn(F ) such that either

(a) π contains the trivial character of U1(A), or
(b) there is a fundamental stratum [A,m,m−1, β] in Mn(F ) such that π contains

the character ψβ of Um(A).

Moreover, in case (b), if a stratum [A1,m1,m1 − 1, β1] is such that β1 occurs in
the restriction of π to Um1(A1), then m1/e(A1) ≥ m/e(A), and we have equality
here if and only [A1,m1,m1 − 1, β1] is fundamental [Bus, Theorem 2′].

The above provides a useful invariant of the representation, called the depth (or
normalized level) of π. It is defined as

(36) d(π) := min {m/e(A)} ,
where (m,A) ranges over all pairs consisting of an integer m ≥ 0 and a hereditary
oF -order in Mn(F ) such that π contains the trivial character of Um+1(A).

The following result was claimed in [Yu, Theorem 2.3.6.4]. Although Yu did not
provide a proof, he indicated that an argument along similar lines as ours is possible.

Proposition 4.5. Let φ := recF,n(π). Then

d(φ) = d(π).

Proof. We have

(37) ε(s, φ, ψ) = ε(0, φ, ψ) q−a(φ)s with ε(0, φ, ψ) ∈ C×.

Since LLC preserves the ε-factors, in particular

ε(s, φ, ψ) = ε(s, π × 1F , ψ),

where 1F denotes the trivial representation of GL1(F ). We also have

ε(s, π × 1F , ψ) = ε(s, π, ψ),

where ε(s, π, ψ) is the Godement-Jacquet local constant [GoJa]. It takes the form

(38) ε(s, π, ψ) = ε(0, π, ψ) q−f(π)s, where ε(0, π, ψ) ∈ C×.

Recall that f(π) is an integer, called the conductor of π. It follows from (37) and
(38) that

(39) a(φ) = f(π).

On the other hand, let A be a principal oF -order in Mn(F ) such that e(A) =
n/ gcd(n, f(π)), and let K(A) denote the normalizer in GLn(F ) of A. By [Bus,
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Theorem 3] the restriction of π to K(A) contains a nondegenerate (in the sense of
[Bus, (1.21)]) representation % of K(A), and we have [Bus, (3.7)]

(40) d(%) = e(A)

(
f(π)

n
− 1

)
,

where d(%) ≥ −1 is the least integer such that

Ud(%)+1(A) ⊂ ker(%).

Moreover, if the irreducible representation %′ of K(A) occurs in the restriction of π
to K(A), then d(%′) = d(%) if and only if %′ is nondegenerate [Bus, (5.1) (iii)]. Hence
we obtain from (39) and (40) that

(41)
d(%′)

e(A)
=
f(π)

n
− 1 =

a(φ)

n
− 1 = d(φ)

for every nondegenerate irreducible representation ρ′ of K(A) which occurs in the
restriction of π to K(A).

It follows from the definition (36) of d(π), that

(42) d(π) ≤ d(%′)

e(A)
,

for every nondegenerate irreducible representation ρ′ of K(A) which occurs in the
restriction of π to K(A).

We will check that (42) is actually an equality. The case where d(π) = 0 is easy,
so we only consider d(π) > 0.

Let A′ be any hereditary oF -order A′ in Mn(F ), and define mA′(π) to be the
least non-negative integer m such that the restriction of π to Um+1(A′) contains
the trivial character. Then choose A′ so that mA′(π)/e(A′) is minimal, and let
[A′,mA′(π),mA′(π)− 1, β] be a stratum occuring in π. By [Bus, Theorem 2′] this is
a fundamental stratum. By [Bus, (3.4)] we may assume that the integers e(A′) and
mA′(π) are relatively prime. Hence we may apply [Bus, (3.13)]. We find that A′ is
principal and that every irreducible representation % of K(A′) which occurs in the

restriction of π to K(A′), and such that the restriction of % to UmA′ (π)(A′) contains
ψβ, is nondegenerate. In particular we have d(%′) = mA′(π).

It remains to check that the principal order A′ satisfies

(43) e(A′) = n/ gcd(n, f(π)).

Let b = gcd(n, f(π)). Set n = n′b and f(π) = f ′(π)b. By using [Bus, (3.9)], we
obtain that n′ divides e(A′). Let P′ denote the Jacobson radical of A′. Then [BuFr,
(3.3.8)] and [Bus, (3.8)] assert that

qf(π) = [A′ : pF (P′)d(%′)]1/n.

That is, since pFA
′ = (P′)e(A

′),

qf(π) = [A′ : (P′)d(%′)+e(A′)]1/n = qn(d(%′)+e(A′))/e(A′) = qn(1+d(%′)/e(A′)).

Hence we get

f(π) = n(1 + d(%′)/e(A′)),

that is,

d(%′) =
e(A′)f(π)

n
− e(A′) =

e(A′)f ′(π)

n′
− e(A′).
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Hence we have

n′d(%′) = e(A′)f ′(π)− e(A′)n′.
Since e(A′) and d(ρ′) = mA′(π) are relatively prime, we deduce that e(A′) divides
n′. Thus we have e(A′) = n′, which means that (43) holds.

We conclude that (42) is indeed an equality, which together with (41) shows that
d(%′) = d(π). �

Theorem 4.6. Let π be a supercuspidal representation in Irr(GLn(F ),Kr,n), with
r ∈ Z>0, and let φ ∈ Φr(GLn(F )) be an elliptic parameter such that SL2(C) ⊂
ker(φ). Suppose that

ε(s, π × π′, ψ) = ε(s, φ⊗ recF,n′(π
′), ψ)

holds in one of the following cases:

(a) for n′ = n− 1 and every generic π′ ∈ Irr(GLn′(F ),Kr,n′);
(b) for every n′ such that 1 ≤ n′ < n, and for every supercuspidal representation π′

in Irr(GLn′(F ),Kr,n′).

Then φ = recF,n(π).

Proof. Since φ ∈ Φr(GLn(F )), Lemma 4.4 implies that d(φ) ≤ r−1. Then it follows
from Proposition 4.5 that

d
(

rec−1
F,n(φ)

)
= d(φ) ≤ r − 1.

The definition of depth (36) shows that there is a hereditary oF -order A in Mn(F )
such that rec−1

F,n(φ) contains the trivial character of Um+1(A), where

m = e(A) · d
(

rec−1
F,n(φ)

)
≤ e(A) · (r − 1).

We have

(44) Um+1(A) ⊃ U e(A)(r−1)+1 ⊃ Kr,n.

Then (44) implies that

rec−1
F,n(φ) ∈ Irr(GLn(F ),Kr,n).

We have

ε(s, π × π, ψ) = ε(s, φ⊗ recF,n′(π
′), ψ) = ε(s, rec−1

F,n(φ)× π′, ψ).

By applying Theorem 4.2 with π1 = π and π2 = rec−1
F,n(φ), we find that these

two representations are equivalent in case (a). In case (b) we can obtain the same
conclusion by using Corollary 4.3 instead. �

5. The method of close fields

Kazhdan’s method of close fields [Kaz, Del] has proven useful to generalize results
that are known for groups over p-adic fields to groups over local fields of positive
characteristic. It has been worked out for inner forms of GLn(F ) by Badulescu
[Bad1].

Let F and F̃ be two local non-archimedean fields which are close. Let G =
GLm(D) be a standard inner form of GLn(F ) and let G̃ = GLm(D̃) be the standard

inner form of GLn(F̃ ) with the same Hasse invariant as G.
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In this section, an object with a tilde will always be the counterpart over F̃ of an
object (without tilde) over F , and a superscript ] means the subgroup of elements

with reduced norm 1. Then G̃] = G̃der is an inner form of SLn(F̃ ) with the same
Hasse invariant as G] and

χ
G̃

= χ
G̃]

= χG] = χG.

Let oD be the ring of integers of D, $D a uniformizer and pD = $DoD its unique
maximal ideal. The explicit multiplication rules in D [Wei2, Proposition IX.4.11]
show that we may assume that a power of $D equals $F , a uniformizer of F .

Generalizing the notation for GLn(F ), let K0 = GLm(oD) be the standard maxi-
mal compact subgroup of G and define, for r ∈ Z>0:

Kr = ker (GLm(oD)→ GLm(oD/p
r
D)) = 1 + Mm(prD).

We denote the category of smooth G-representations that are generated by their
Kr-invariant vectors by Mod(G,Kr). Let H(G,Kr) be the convolution algebra of
compactly supported Kr-biinvariant functions G → C. According to [BeDe, Corol-
laire 3.9]

(45)
Mod(G,Kr) → Mod(H(G,Kr)),

V 7→ V Kr

is an equivalence of categories. The same holds for (G̃, K̃r).

From now on we suppose that F and F̃ are l-close for some l ≥ r, that is,

(46) oF /p
l
F
∼= o

F̃
/pl
F̃

as rings. As remarked in [Del], for every local field of characteristic p > 0 and every
l ∈ N there exists a finite extension of Qp which is l-close to F .

Notice that (46) induces a group isomorphism o×F /1 + plF
∼= o×

F̃
/1 + pl

F̃
. A choice

of uniformizers $F and $
F̃

then leads to

(47) F×/1 + plF
∼= Z× o×F /1 + plF

∼= Z× ol
F̃
/1 + pl

F̃
∼= F̃×/1 + pl

F̃
.

With [Bad1, Théorème 2.4], (46) also gives rise to a ring isomorphism

(48) λr : oD/p
r
D → o

D̃
/pr
D̃
,

which in turn induces a group isomorphism

GLm(λr) : K0/Kr = GLm(oD/p
r
D)→ K̃0/K̃r = GLm(o

D̃
/pr
D̃

).

Recall that the Cartan decomposition for G says that K0\G/K0 can be represented
by

A+ := {diag($a1
D , . . . , $

am
D ) ∈ GLm(D) : a1 ≤ . . . ≤ am}.

Clearly A+ is canonically in bijection with the analogous set Ã+ of representatives

for K̃0\G̃/K̃0 (which of course depends on the choice of a uniformizer $
D̃

). Since

Kr\G/Kr can be identified with Kr\K0×A+×K0/Kr, that and GLm(λr) determine
a bijection

(49) ζr : Kr\G/Kr → K̃r\G̃/K̃r.

Most of the next result can be found in [Bad1, BHLS].
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Theorem 5.1. Suppose that F and F̃ are sufficiently close, in the sense that the l in
(46) is large. Then the map 1KrgKr 7→ 1ζr(KrgKr) extends to a C-algebra isomorphism

ζGr : H(G,Kr)→ H(G̃, K̃r).

This induces an equivalence of categories

ζGr : Mod(G,Kr)→ Mod(G̃, K̃r)

such that:

(a) ζGr respects twists by unramified characters and its effect on central characters
is that of (47).

(b) For irreducible representations, ζGr preserves temperedness, essential square-
integrability and cuspidality.

(c) Let be P a parabolic subgroup of G with a Levi factor M which is standard, and

let P̃ and M̃ be the corresponding subgroups of G̃. Then

Mod(G,Kr)
ζGr−−→ Mod(G̃, K̃r)

↑ IGP ↑ IG̃
P̃

Mod(M,Kr ∩M)
ζMr−−−→ Mod(M̃, K̃r ∩ M̃)

commutes.
(d) ζGr commutes with the formation of contragredient representations.

(e) ζGr preserves the L-functions, ε-factors and γ-factors of supercuspidal represen-
tations.

Proof. The existence of the isomorphism ζGr is [Bad1, Théorème 2.13]. The equiva-
lence of categories follows from that and (45).
(a) Let G1 be the subgroup of G generated by all compact subgroups of G, that is,

the intersection of the kernels of all unramified characters of G. Since Kr and K̃r

are compact, ζr restricts to a bijection

Kr\G1/Kr → K̃r\G̃1/K̃r.

Moreover, because A+ → Ã+ respects the group multiplication whenever it is de-

fined, the induced bijection G/G1 → G̃/G̃1 is in fact a group isomorphism. Hence
ζr induces an isomorphism

ζ
G/G1

r : Xnr(G) = Irr(G/G1)→ Irr(G̃/G̃1) = Xnr(G̃),

which clearly satisfies, for π ∈ Mod(G,Kr) and χ ∈ Xnr(G):

ζGr (π ⊗ χ) = ζGr (π)⊗ ζG/G
1

r (χ).

The central characters can be dealt with similarly. The characters of Z(G) appearing
in Mod(G,Kr) are those of

Z(G)/Z(G) ∩Kr = F×/1 + prF .

Now we note that ζGr and (47) have the same restriction to the above group.

(b) By [Bad1, Théorème 2.17], ζGr preserves cuspidality and square-integrability
modulo centre. Combining the latter with part (a), we find that it also preserves
essential square-integrability. A variation on the proof of [Bad1, Théorème 2.17.b]
shows that temperedness is preserved as well. Alternatively, one can note that
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every irreducible tempered representation in Mod(G,Kr) is obtained with parabolic
induction from a square-integrable modulo centre representation in Mod(M,M∩Kr),
and then apply part (c).
(c) This property, and its analogue for Jacquet restriction, are proven in [BHLS,
Proposition 3.15]. We prefer a more direct argument. The constructions in [Bad1,
§2] apply equally well to (M,Kr∩M), so ζr induces an algebra isomorphism ζMr and

an equivalence of categories ζMr . By [BuKu2, Corollary 7.12] the parabolic subgroup
P determines an injective algebra homomorphism

tP : H(M,Kr ∩M)→ H(G,Kr).

This in turn gives a functor

(tP )∗ : Mod(H(M,Kr ∩M)) → Mod(H(G,Kr)),
V 7→ HomH(M,Kr∩M)(H(G,Kr), V ),

where H(G,Kr) and V are regarded as H(M,Kr ∩M)-modules via tP . This is a
counterpart of parabolic induction, in the sense that

(50)
Mod(G,Kr) → Mod(H(G,Kr))
↑ IGP ↑ (tP )∗

Mod(M,Kr ∩M) → Mod(H(M,Kr ∩M))

commutes [BuKu2, Corollary 8.4]. The construction of tP in [BuKu2, §7] depends
only on properties that are preserved by ζGr (and its counterparts for other groups),
so

(51)
H(G,Kr) → H(G̃, K̃r)
↑ (tP )∗ ↑ (t

P̃
)∗

H(M,Kr ∩M) → H(M̃, K̃r ∩ M̃)

commutes. Now we combine (51) with (50) for G and G̃.
(d) The contragredient of a H(G,Kr)-module is defined via the involution f∗(g) =
f(g−1). The equivalence of categories (45) commutes with the formation of contra-

gredients because (V ∗)Kr ∼= (V Kr)∗. The map ζGr does so because ζGr commutes
with the involution *.
(e) For the ε- and γ-factors see [Bad1, Théorème 2.19]. By [GoJa, Propositions 4.4
and 5.11] L(s, π) = 1 unless m = 1 and π = χ◦Nrd with χ : F× → C× unramified.

This property is preserved by ζGr , so L(s, ζGr (π)) = 1 if the condition is fulfilled. In
the remaining case

L(s, π) = L(s+ (d− 1)/2, χ) = (1− q−s+(1−d)/2χ($F ))−1.

The proof of part (a) shows that ζGr (π) = χ ◦ ζF×r ◦Nrd, so

L(s, ζGr (π)) = (1− q−s+(1−d)/2χ(ζF
×

r ($
F̃

)))−1 = (1− q−s+(1−d)/2χ($F ))−1. �

In [Bad3] Badulescu showed that Theorem 5.1 has an analogue for G] and G̃],
which can easily be deduced from Theorem 5.1. We quickly recall how this works.
Note that M is a central extension of M ] = {m ∈ M : Nrd(m) = 1}. A few
properties of the reduced norm [Wei2, §IX.2 and equation IX.4.9] entail

Nrd(Kr ∩M) = Nrd(1 + prD) = 1 + prF ,

M ](Kr ∩M) = {m ∈M : Nrd(m) ∈ 1 + prF }.
(52)
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Choose the Haar measures on M and M ] so that vol(Kr ∩M) = vol(Kr ∩M ]). The
inclusion M ] →M induces an algebra isomorphism

H(M ],Kr ∩M ])→ H(M ](Kr ∩M),Kr ∩M)

:= {f ∈ H(M,Kr ∩M) : supp(f) ⊂M ](Kr ∩M)}.

In view of (52) and the isomorphism oF /p
r
F
∼= o

F̃
/pr
F̃
, ζMr yields a bijection

H(M ](Kr ∩M),Kr ∩M)→ H(M̃ ](K̃r ∩ M̃), K̃r ∩ M̃).

Hence it induces an algebra isomorphism

ζM
]

r : H(M ],Kr ∩M ])→ H(M̃ ], K̃r ∩ M̃ ]).

Corollary 5.2. Theorem 5.1 (except part e) also holds for the corresponding sub-
groups of elements with reduced norm 1.

Proof. Using the isomorphisms ζM
]

r , this can be proven in the same way as Theorem
5.1 itself. �

As preparation for the next section, we will show that in certain special cases the

functors ζGr preserve the L-functions, ε-factors and γ-factors of pairs of representa-
tions, as defined in [JPS2]. We consider one irreducible generic representation π of
GLn(F ) and another one, π′, of GLn−1(F ). For W ∈ W (π, θ) and W ′ ∈ W (π′, θ)
one defines Ψ(s,W,W ′) to be the integral

(53)

∫
Un−1\GLn−1(F )

W
(
g 0
0 1

)
W ′(g) |det(g)|s−1/2

F dµ(g),

where µ denotes the quotient of Haar measures on GLn−1(F ) and on Un−1. This
integral is known to converge absolutely when Re(s) is large [JPS2, Theorem 2.7.i].
The contragredient representations π̌ and π̌′ are also generic. We define W̌ ∈W (π̌, θ)
by

W̌ (g) = W (wng
−T ) g ∈ GLn(F ),

where g−T is the transpose inverse of g and wn is the permutation matrix with ones
on the diagonal from the lower left to the upper right corner.

We denote the central character of π′ by ωπ′ . With these notations the L-
functions, ε-factors and γ-factors of the pair (π, π′) are related by

Ψ(s,W,W ′)

L(s, π × π′)
ε(s, π × π′, ψ) = ωπ′(−1)n−1 Ψ(1− s, W̌ , W̌ ′)

L(1− s, π̌ × π̌′)
,(54)

γ(s, π × π′, ψ) = ε(s, π × π′, ψ)
L(1− s, π̌ × π̌′)
L(s, π × π′)

,(55)

see [JPS2, Theorem 2.7.iii]. We regard these equations as definitions of the ε- and
γ-factors.

Suppose that F̃ is l-close to F and that ψ̃ : F̃ → C× is a character which is trivial

on o
F̃

. We say that ψ̃ is l-close to ψ if ψ̃|$−l
F̃

o
F̃
/o
F̃

corresponds to ψ|$−lF oF /oF
under

the isomorphisms

$−l
F̃
o
F̃
/o
F̃
∼= o

F̃
/$l

F̃
o
F̃
∼= oF /$

l
F oF

∼= $−lF oF /oF .
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Theorem 5.3. Assume that F and F̃ are l-close for some l > r and that ψ̃ is l-close
to ψ. Let π ∈ Irr(GLn(F ),Kr,n) be supercuspidal and let π′ ∈ Irr(GLn−1(F ),Kr,n−1)
be generic. Then

L(s, ζ
GLn(F )
r (π)× ζGLn−1(F )

r (π′)) = L(s, π × π′) = 1,

ε(s, ζ
GLn(F )
r (π)× ζGLn−1(F )

r (π′), ψ̃) = ε(s, π × π′, ψ),

γ(s, ζ
GLn(F )
r (π)× ζGLn−1(F )

r (π′), ψ̃) = γ(s, π × π′, ψ).

Remark. It will follow from Theorem 6.1 that the above remains valid with any
natural number instead of n− 1 (except that the L-functions need not equal 1).

Proof. Since π and π̌ are supercuspidal, whereas π′ and π̌′ are representations of
a general linear group of lower rank, [JPS2, Theorem 8.1] assures that all the L-
functions appearing here are 1. By (55) this implies that the relevant γ-factors are
equal to the ε-factors of the same pairs. Hence it suffices to prove the claim for the
ε-factors. We note that by Theorem 5.1

(56) ωπ′(−1)n−1 = ω
ζ
GLn−1(F )
r π′

(−1)n−1,

so from (54) we see that it boils down to comparing the integrals Ψ(s,W,W ′) and

Ψ(1− s, W̌ , W̌ ′) with their versions for F̃ .
Fix a Whittaker functional λ′ for (π′, V ′) and a vector v′ ∈ V Kr,n−1 . Then W ′ :=

Wv′ ∈W (π′, θ) is right Kr,n−1-invariant. Similarly we pick W = Wv ∈W (π, θ), but
now we have to require only that W is right invariant under Kr,n−1 on GLn−1(F ) ⊂
GLn(F ). Because θ is unitary, the function

GLn−1(F )→ C : g 7→W
(
g 0
0 1

)
W ′(g)

is constant on sets of the form Un−1gKr,n−1. Since the subgroup Kr,n−1 is stable

under the automorphism g 7→ g−T , the functions W̌ and W̌ ′ are also right Kr,n−1-

invariant. Both transform under left translations by Un−1 as θ, so

GLn−1(F )→ C : g 7→ W̌
(
g 0
0 1

)
W̌ ′(g)

defines a function Un−1\GLn−1(F )/Kr,n−1 → C. Since det(Kr,n−1) ⊂ o×F and
det(Un−1) = 1, the function | det |F can also be regarded as a map
Un−1\GLn−1(F )/Kr,n−1 → C.

Now the idea is to transfer these functions to objects over F̃ by means of the
Iwasawa decomposition as in [Lem, §3], and to show that neither side of (54) changes.

Let A$F ⊂ GLn′(F ) be the group of diagonal matrices all whose entries are powers
of $F . The Iwasawa decomposition states that

(57) GLn(F ) =
⊔

a∈A$F
UnaK0,n.

This, the canonical bijection A$F → A$
F̃

: a 7→ ã and the isomorphism GLn(λr)

from (48) combine to a bijection

(58)
ζ ′r : Un\GLn(F )/Kr,n → Ũn\GLn(F̃ )/K̃r,n,

Un akKr,n 7→ Ũn ãGLn(λr)(k) K̃r,n.
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Because ψ̃ is l-close to ψ we may apply [Lem, Lemme 3.2.1], which says that there
is a unique linear bijection

(59) ρn : W (π, θ)Kr,n →W (ζ
GLn(F )
r (π), θ̃)K̃r,n

which transforms the restriction of functions to A$FK0,n according to ζ ′r. We will
use (58) and (59) also with n− 1 instead of n.

Put W̃ = ρn(W ) and W̃ ′ = ρn−1(W ′). As (58) commutes with g 7→ g−T ,

(60)
ˇ̃
W = ρn(W̌ ) and

ˇ̃
W ′ = ρn−1(W̌ ′).

These constructions entail that

GLn−1(F̃ )→ C : g̃ 7→ W̃
(
g̃ 0
0 1

)
W̃ ′(g̃)

defines a function Ũn−1\GLn−1(F̃ )/K̃r,n−1 → C, and that

(61) W
(
g 0
0 1

)
W ′(g) = W̃

(
ζ′r(g) 0

0 1

)
W̃ ′(ζ ′r(g)).

It follows immediately from the definition of ζ ′r that

(62) | det(ζ ′r(g))|
F̃

= | det(g)|F .

For the computation of Ψ(s,W,W ′) we may normalize the measure µ such that
every double coset Un−1\Un−1gKr,n−1 has volume 1, and similarly for the measure

on Ũn−1\GLn−1(F̃ ). The equalities (61) and (62) imply

Ψ(s,W,W ′) =
∑

g∈A$FK0,n−1/Kr,n−1

W
(
g 0
0 1

)
W ′(g)|det(g)|s−1/2

F

=
∑

g̃∈A$
F̃
K̃0,n−1/K̃r,n−1

W̃
(
g̃ 0
0 1

)
W̃ ′(g̃)|det(g̃)|s−1/2

F̃
= Ψ(s, W̃ , W̃ ′).

An analogous computation, additionally using (60), shows that

Ψ(s, W̌ , W̌ ′) = Ψ(s,
ˇ̃
W,

ˇ̃
W ′).

The previous two equalities and (56) prove that all terms in (54), expect possibly

the ε-factors, have the same values as the corresponding terms defined over F̃ . To
establish the desired equality of ε-factors, it remains to check that Ψ(s,W,W ′) is
nonzero for a suitable choice of right Kr,n−1-invariant functions W and W ′.

Take v′ as above, but nonzero. Then W ′ = Wv′ is nonzero because V ′ ∼= W (π′, θ).
Choose g0 ∈ GLn−1(F ) with W ′(g0) 6= 0 and define H : GLn−1(F )→ C by H(g) =
W ′(g) if g ∈ Un−1g0Kr,n−1 and H(g) = 0 otherwise. According to [Hen1, Lemme
2.4.1], there exists W ∈ W (π, ψ) such that W

(
g 0
0 1

)
= H(g) for all g ∈ GLn−1(F ).

Notice that such a W is automatically right invariant under Kr,n−1 on GLn−1(F ) ⊂
GLn(F ). Now we can easily compute the required integral:

Ψ(s,W,W ′) =

∫
Un−1\GLn−1(F )

|H(g)|2| det(g)|s−1/2
F dµ(g)

=

∫
Un−1\Un−1g0Kr,n−1

|W ′(g)|2| det(g)|s−1/2
F dµ(g)

= µ(Un−1\Un−1g0Kr,n−1)|W ′(g0)|2|det(g0)|s−1/2
F 6= 0. �
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6. Close fields and Langlands parameters

The section is based on Deligne’s comparison of the Galois groups of close fields.
According to [Del, (3.5.1)] the isomorphism (46) gives rise to an isomorphism of
profinite groups

(63) Gal(Fs/F )/Gal(Fs/F )l ∼= Gal(F̃s/F̃ )/Gal(F̃s/F̃ )l,

which is unique up to inner automorphisms. Since both WF and W
F̃

can be de-
scribed in terms of automorphisms of the residue field oF /pF ∼= o

F̃
/p
F̃

, (63) restricts
to an isomorphism

(64) WF /Gal(Fs/F )l ∼= W
F̃
/Gal(F̃s/F̃ )l.

We fix such isomorphism (63), and hence (64) as well. Another choice would corre-
spond to another separable closure of F , so that is harmless when it comes to Lang-
lands parameters. Take r < l and recall the map WF /Gal(Fs/F )l → F×/1+prF from
local class field theory. By [Del, Proposition 3.6.1] the following diagram commutes:

(65)
F×/1 + prF

ζr−→ F̃×/1 + pr
F̃

↑ ↑
WF /Gal(Fs/F )l −→ W

F̃
/Gal(F̃s/F̃ )l

.

Notice that G and G̃ have the same Langlands dual group, namely GLn(C). Hence
(64) induces a bijection

(66) Φζ
l : Φl(G)→ Φl(G̃).

In fact Φζ
l is already defined on the level of Langlands parameters without conjugation-

equivalence, and in that sense Φζ
l (φ) and φ always have the same image in GLn(C).

We remark that Φζ
l can be defined in the same way for G] and G̃], because these

groups have the common Langlands dual group PGLn(C).

We will prove that Φζ
l describes the effect that

ζGr : Irr(G,Kr)→ Irr(G̃, K̃r)

has on Langlands parameters, when l is large enough compared to r. First we do so
for general linear groups over fields.

Theorem 6.1. Suppose that F and F̃ are l-close and that r < l. Then the following
diagram commutes:

Irr(GLn(F ),Kr)
ζ
GLn(F )
r−−−−−→ Irr(GLn(F̃ ), K̃r)

↓ recF,n ↓ rec
F̃ ,n

Φl(GLn(F ))
Φζl−−→ Φl(GLn(F̃ ))

Proof. The proof will be conducted with induction to n. For n = 1 the diagram
becomes

(67)

Irr(F×/1 + prF )
ζF×r−−−→ Irr(F̃×/1 + pr

F̃
)

↓ recF ↓ rec
F̃

Irr(WF /Gal(Fs/F )l)
Φζl−−→ Irr(W

F̃
/Gal(F̃s/F̃ )l)

,
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which commutes by Deligne’s result (65).
Now we fix n > 1 and we assume the theorem for all n′ < n. Consider a supercus-

pidal π ∈ Irr(GLn(F ),Kr) with Langlands parameter φ = recF,n(π) ∈ Φl(GLn(F )).
By the construction of the local Langlands correspondence for general linear groups,

SL2(C) ⊂ kerφ and φ is elliptic. By Theorem 5.1.b ζ
GLn(F )
r (π) ∈ Irr(GLn(F̃ ), K̃r)

is also supercuspidal. Let φ̃l ∈ Φl(GLn(F̃ )) be its Langlands parameter and write

φl = (Φζ
l )
−1(φ̃l). Clearly SL2(C) ⊂ kerφl and φl is elliptic, so rec−1

F,n(φl) is super-
cuspidal. By Theorem 5.1.e

ε(s, π, ψ) = ε(s, ζ
GLn(F )
r (π), ψ̃) = ε(s, φ̃l, ψ̃).

By [Del, Proposition 3.7.1] the right hand side equals

ε(s, φ̃l, ψ̃) = ε(s, φl, ψ) = ε(s, rec−1
F,n(φl), ψ),

so rec−1
F,n(φl) has the same ε-factor as π. Now we consider any generic

π′ ∈ Irr(GLn−1(F ),Kr,n−1) with Langlands parameter φ′. By Theorem 5.3, the
induction hypothesis and [Del, Proposition 3.7.1]:

ε(s, π × π′, ψ) = ε(s, ζ
GLn(F )
r (π)× ζGLn−1(F )

r (π′), ψ̃)

= ε(s, ζ
GLn(F )
r (π)× rec−1

F̃ ,n−1
(Φζ

l (φ
′)), ψ̃)

= ε(s, φ̃l ⊗ Φζ
l (φ
′), ψ̃)

= ε(s, φl ⊗ φ′, ψ) = ε(s, rec−1
F,n(φl)× π′, ψ).

(68)

Together with Theorem 4.6 this implies π ∼= rec−1
F,n(φl). Hence the diagram of the

theorem commutes for supercuspidal π ∈ Irr(GLn(F ),Kr).
For non-supercuspidal representations in Irr(GLn(F ),Kr) it is easier. As already

discussed in Section 2, the extension of the LLC from supercuspidal representations
to Irr(GLn(F )) is based on the Zelevinsky classification [Zel]. More precisely, the
LLC is determined by:

• the parameters of supercuspidal representations;
• the parameter of the Steinberg representation;
• compatibility with unramified twists;
• compatibility with parabolic induction followed by forming Langlands quo-

tients.

The Steinberg representation St of GLn(F ) is the only irreducible essentially square-
integrable in the unramified principal series, which is tempered and has a real infin-

itesimal central character. By Theorem 5.1 the functor ζ
GLn(F )
r preserves all these

properties, so it matches the Steinberg representations of GLn(F ) and GLn(F̃ ). The
Langlands parameter of St is trivial on WF and its restriction to SL2(C) is the unique
irreducible n-dimensional representation of that group. This holds over any local

non-archimedean field, so Φζ
l matches the Langlands parameters of the Steinberg

representations of GLn(F ) and GLn(F̃ ). By Theorem 5.1 the functor ζ
GLn(F )
r and

its versions for groups of lower rank respect unramified twists, parabolic induction
and Langlands quotients.

To determine the Langlands parameters of elements of Irr(GLn(F ),Kr) via the
above method, one needs only representations (possibly of groups of lower rank) that
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have nonzero Kr-invariant vectors. We checked that in every step of this method the

effect of ζ
GLn(F )
r on the Langlands parameters is given by Φζ

l . Hence the diagram of
the theorem commutes for all representations in Irr(GLn(F ),Kr). �

Because the LLC for inner forms of GLn(F ) is closely related to that for GLn(F )
itself, we can generalize Theorem 6.1 to inner forms.

Theorem 6.2. Let G = GLm(D) and G̃ = GLm(D̃), with the same Hasse invariant.

For any r ∈ N there exists l > r such that, whenever F and F̃ are l-close, the
following diagram commutes:

Irr(G,Kr)
ζGr−−→ Irr(G̃, K̃r)

↓ recD,m ↓ rec
D̃,m

Φl(G)
Φζl−−→ Φl(G̃)

In other words, Theorem 6.1 also holds for inner forms of GLn(F ), but without a
sharp lower bound for l.

Proof. The bijection (12) shows that we can write any π ∈ Irr(G,Kr) as the Lang-
lands quotient L(P, ω) of IGP (ω), where P is a standard parabolic subgroup, M is Levi
factor of P and ω ∈ IrressL2(M). Moreover we may assume that M =

∏
j GLmj (D)

and ω = ⊗jωj . The fact that π has nonzero Kr-invariant vectors implies ωj ∈
Irr(GLmj (D),Kr). By construction (10)

(69) recD,m(π) =
∏

j
recD,mj (ωj) =

∏
j

recF,dmj (JL(ωj)).

The right hand side forces us to compare the Jacquet–Langlands correspondence
with the method of close fields. In fact, this is how Badulescu proved this cor-
respondence over local fields of positive characteristic. It follows from [Bad1, p.

742–744] that there exist l > r′ ≥ r such that, whenever F and F̃ are l-close, the
following diagram commutes for all k ≤ m:

(70)
IrressL2(GLk(D),Kr)

ζ
GLk(D)
r−−−−−→ Irr(GLk(D̃), K̃r)

↓ JL ↓ JL

IrressL2(GLkd(F ),Kr′)
ζ
GLkd(F )
r−−−−−−→ Irr(GLkd(F̃ ), K̃r′)

Enlarge l so that Theorem 6.1 applies to Irr(GLkd(F ),Kr′) for all k ≤ m. By
Theorem 5.1.c

ζGr (π) = L(P̃ , ζMr (ω)) = L(P̃ ,⊗jζ
GLmj (D)
r (ωj)).

Now (70) shows that

(71) JL(ζMr (ω)) = ⊗jJL(ζ
GLmj (D)
r (ωj)) = ⊗jζ

GLdmj (F )

r′ (JL(ωj)).

By (10) and Theorem 6.1

rec
D̃,m

(ζGr (π)) =
∏

j
rec

F̃ ,dmj
(ζ

GLdmj (F )

r′ (JL(ωj))) =
∏

j
Φζ
l (recF,dmj (JL(ωj))).

Comparing this with (69) concludes the proof. �
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Now we are ready to complete the proof of Theorem 3.1, and hence of our main
result Theorem 3.2.

Proof of Theorem 3.1 when char(F ) = p > 0.
Choose r ∈ N such that Πφ(G) ∈ Irr(G,Kr) and choose l ∈ N such that Theorem

6.2 applies. Find a p-adic field F̃ which is l-close to F , fix a representative for φ and

define φ̃ as the map WF ×SL2(C)→ GLn(C) obtained from φ via (64). Thus φ̃ is a

particular representative for Φζ
l (φ) ∈ Φl(G). By Theorem 6.2 Π

φ̃
(G̃) ∼= ζGr (Πφ(G))

and by Theorem 5.1

End
G̃

(Π
φ̃
(G̃)) ∼= EndG(Πφ(G)).

Let φ] ∈ Φ(G]) and φ̃] ∈ Φ(G̃]) be the Langlands parameters obtained from φ and

φ̃ via the quotient map GLn(C) → PGLn(C). By construction φ] and φ̃] have the
same image in PGLn(C), so

(72) S
φ̃]

= Sφ] and Z
φ̃]

= Zφ] .

With (20) this provides natural isomorphisms

XG(Πφ(G)) ∼= Sφ]/Zφ] = S
φ̃]
/Z

φ̃]
∼= XG̃(Π

φ̃
(G̃)).

In view of (67), the composite isomorphism XG̃(Π
φ̃
(G̃)) ∼= XG(Πφ(G)) comes from

F×/1 + prF
∼= F̃×/1 + pr

F̃
. For γ̃ ∈ XG̃(Π

φ̃
(G̃)), choose

Iγ̃ ∈ Hom
G̃

(Π
φ̃
(G̃),Π

φ̃
(G̃)⊗ γ̃)

as in [HiSa, §12]. Then Theorem 5.1 yields intertwining operators
Iγ ∈ HomG(Πφ(G),Πφ(G)⊗ γ). Consequently

(73) κφ](γ, γ
′) = IγIγ′I

−1
γγ′ = Iγ̃Iγ̃′I

−1
γ̃γ̃′ = κ

φ̃]
(γ̃, γ̃′).

Because we already proved Theorem 3.1 for F̃ , this gives

(74) C[Sφ]/Zφ] , κφ] ] = C[S
φ̃]
/Z

φ̃]
, κ

φ̃]
] ∼= eχ

G̃
C[Sφ] ] = eχGC[Sφ] ].

That the isomorphism C[Sφ]/Zφ] , κφ] ] ∼= eχGC[Sφ] ] is of the required form and that
it is unique up to twists by characters of Sφ]/Zφ] follows from the corresponding

statements over F̃ and (72). 2
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[BuFr] C.J. Bushnell, A. Frölich, “Non-abelian congruence Gauss sums and p-adic simple algebras”,

Proc. London Math. Soc. (3) 50 (1985), 207–264.
[BuHe] C.J. Bushnell, G. Henniart, “Generalized Whittaker models and the Bernstein center”,

Amer. J. Math. 125 (2003), 513–547.
[BuKu1] C.J. Bushnell, P.C. Kutzko, The admissible dual of GL(n) via compact open subgroups,

Ann. Math. Study 129, Princeton Univ. Press 1993.
[BuKu2] C.J. Bushnell, P.C. Kutzko, “Smooth representations of reductive p-adic groups: structure

theory via types”, Proc. London Math. Soc. 77.3 (1998), 582–634.
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