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Abstract

Dimensionality reduction helps to identify small numbers of essential
features of stochastic fibre networks for classification of image pixel den-
sity datasets from experimental radiographic measurements of commer-
cial samples and simulations. Typical commercial macro-fibre networks
use finite length fibres suspended in a fluid from which they are continu-
ously deposited onto a moving bed to make a continuous web; the fibres
can cluster to differing degrees, primarily depending on the fluid turbu-
lence, fibre dimensions and flexibility. Here we use information geometry
of trivariate Gaussian spatial distributions of pixel density among first
and second neighbours to reveal features related to sizes and density of
fibre clusters.

Keywords: Dimensionality reduction, fibre networks, fibre clus-
ters, spatial covariance, trivariate Gaussian, radiographic im-
ages, simulations

1 Introduction

Near-planar, non-woven stochastic fibre networks are manufactured for a vari-
ety of applications such as, at the macroscale for printing, textiles, reinforcing,
and filtration and at the nanoscale in medicine. Figure [I| shows a selection of
electron micrographs for networks at different scales. Radiography or optical
densitometry yield areal density images of the kinds shown in Figure

Much analytic work has been done on modelling of the statistical geometry
of such networks and their behaviour in regard to strength, fluid ingress or
transfer [I, 2, B]. Using complete sampling by square cells, their areal den-
sity distribution is typically well represented by a log-gamma or a (truncated)
Gaussian distribution of variance that decreases monotonically with increasing
cell size; the rate of decay is dependent on fibre and fibre cluster dimensions.

*In F. Nielsen and F. Barbaresco (Eds.): Geometric Science of Information
(GSI2013), Lecture Notes in Ccomputer Science 8085, pp. 158-165. Springer, Heidelberg
(2013)



Figure 1: FElectron micrographs of four stochastic fibrous materials. Top left:
Nonwoven carbon fibre mat; Top right: glass fibre filter; Bottom left: elec-
trospun nylon nanofibrous network (Courtesy S.J. Eichhorn and D.J. Scurr);
Bottom right: paper using wood cellulose fibres—typically flat ribbonlike, of
length 1 to 2mm and width 0.02 to 0.03mm.

Clustering of fibres is well-approximated by Poisson processes of Poisson clus-
ters of differing density and size. A Poisson fibre network is a standard refer-
ence structure for any given size distribution of fibres; its statistical geometry
is well-understood for finite and infinite fibres. Note that any skewness as-
sociated with the underlying point process of fibre centres becomes negligible
through the process of sampling by square cells [4].

In the present paper we use information geometry of trivariate Gaussian spa-
tial distributions of pixel density with covariances among first and second
neighbours to reveal features related to sizes and density of fibre clusters,
which could arise in one, two or three dimensions. For isotropic spatial pro-
cesses, which we consider here, the variables are means over shells of first
and second neighbours, respectively, which share the population mean with
the central pixel. For anisotropic networks the neighbour groups would be
split into more, orthogonal, new variables to pick up the spatial anisotropy
in the available spatial directions. What we know analytically is the geodesic
distance between two multivariate Gaussians, A, B, of the same number n of
variables in two particular cases [5]:



Figure 2: Areal density radiographs of three paper networks made from natural
wood cellulose fibres, with constant mean coverage, ¢ =~ 20 fibres, but different
distributions of fibres. Each image represents a square region of side length
5 cm; darker regions correspond to higher coverage. The left image is similar
to that expected for a Poisson process of the same fibres, so typical real samples
exhibit clustering of fibres.
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From the form of Ds(f4,f?) in it may be seen that an approximate
monotonic relationship arises with a more easily computed symmetrized log-
trace function given by

Ax(fA, fB) =

\/log (% (TT(ZA_1/2 LB nATYE L pp(sBT2 nA 23‘1/2))). (3)
This is illustrated by the plot of Dx(f4, f?) from equation (2) on Ax(f4, f7)
from equation (3] in Figure |3|for 185 trivariate Gaussian covariance matrices.
For comparing relative proximity, this is a better measure near zero than the
symmetrized Kullback-Leibler distance [§] in those multivariate Gaussian cases
so far tested and may be quicker for handling large batch processes.

2 Dimensionality reduction of spatial density arrays

We follow the methods described by Carter et al. [0l [7] for datasets of pixel
density arrays from complete sampling of density maps of simulated networks.
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Figure 3: Plot of Ds.(f4, f?) from @ on As(f4, fB) from @ for 185 trivari-

ate Gaussian covariance matrices.

Elsewhere we shall describe the results of such studies on a large collection of
radiographs from commercial networks.

Our three spatial variables are central pixel, mean of its first neighbours, and
mean of its second neighbours. Figure [4] gives analyses for spatial arrays of
pixel density differences from Poisson networks. It shows a plot of Dy ( f A B )
as a cubic-smoothed surface (left), and as a contour plot (right), for geodesic
information distances among 16 datasets of 1mm pixel density differences be-
tween a Poisson network and simulated networks made from 1mm fibres. Each
network has the same mean density but with different scales and densities of
clustering; thus the mean difference is zero in this case. Second row: Dimen-
sionality reduction embedding of the same data grouped by numbers of fibres
in clusters and cluster densities. Using pixels of the order of fibre length is
appropriate for extracting information on the sizes of typical clusters. The
embedding reveals the clustering features as orthogonal subgroups.

Next, Figure 5| gives analyses for pixel density arrays of the clustered networks.
It shows the plot of Dx(f4, fP) as a cubic-smoothed surface (left), and as a
contour plot (right), for trivariate Gaussian information distances among the
16 datasets of 1mm pixel densities for simulated networks made from 1mm
fibres, each network with the same mean density but with different clustering.
In this case the trivariate Gaussians all have the same mean vectors. Second
row: Dimensionality reduction embedding of the same data grouped by num-
bers of fibres in clusters and cluster densities; the solitary point is a Poisson
network of the same fibres.

Figure [6] gives analyses for pixel density arrays for Poisson networks of differ-
ent mean density. It shows the plot of D(f4, fB) = Du(fA7 fB)+Ds(f4, fB)
as a cubic-smoothed surface (left), and as a contour plot (right), for trivariate
Gaussian information distances among 16 simulated Poisson networks made



Figure 4: Pizel density differences from Poisson networks. Top row: plot of
Dx(f4, fB) as a cubic-smoothed surface (left), and as a contour plot (right),
for trivariate Gaussian information distances among 16 datasets of Imm pixel
density differences between a Poisson network and simulated networks made
from Imm fibres, each network has the same mean density but with different
clustering. Second row: Embedding of the same data grouped by numbers of
fibres in clusters and cluster densities.



Figure 5: Pixel density arrays for clustered networks: Top row: plot of
Dx.(f4, fB) as a cubic-smoothed surface (left), and as a contour plot (right),
for trivariate Gaussian information distances among 16 datasets of 1mm pizel
density arrays for simulated networks made from Imm fibres, each metwork
with the same mean density but with different clustering. Second row: Em-
bedding of the same data grouped by numbers of fibres in clusters and cluster
densities; the solitary point is an unclustered Poisson network.



Figure 6: Pizel density arrays for Poisson networks of different mean density:
Top row: plot of D(f4, fB) = Du(fA,fB) + Dx(f4, fB) as a cubic-smoothed
surface (left), and as a contour plot (right), for trivariate Gaussian informa-
tion distances among 16 simulated Poisson networks made from Imm fibres,
with different mean density, using pizels at Imm scale. Second row: Embed-
ding of the same Poisson network data, showing the effect of mean network
density.



from 1mm fibres, with different mean density, using pixels at 1mm scale. Sec-
ond row: Dimensionality reduction embedding of the same Poisson network
data, showing the effect of mean network density.

The benefit from these analyses is the representation of the important struc-
tural features of number of fibres per cluster and cluster density, by almost
orthogonal subgroups in the embedding.
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