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Flanders’ theorem for many matrices under
commutativity assumptions

Fernando de Terán∗, Yuji Nakatsukasa†, and Vanni Noferini‡

Abstract
We analyze the relationship between the Jordan canonical form of products,

in different orders, of k square matrices A1, . . . , Ak. Our results extend some
classical results by H. Flanders. Motivated by a generalization of Fiedler matrices,
we study permuted products of A1, . . . , Ak under the assumption that the graph
of non-commutativity relations of A1, . . . , Ak is a forest. Under such condition,
we show that the Jordan structure of all nonzero eigenvalues is the same for all
permuted products. For the eigenvalue zero, we obtain an upper bound on the
difference between the sizes of Jordan blocks for any two permuted products, and
we show that this bound is attainable. For k = 3 we show that, moreover, the
bound is exhaustive.

AMS subject classification: 05A05, 15A18, 15A21.
Keywords: Eigenvalues, Jordan canonical form, Segré characteristic, product of ma-
trices.

1 Introduction
The Jordan canonical form (JCF) is the canonical form under similarity of square ma-
trices. It consists of direct sum of Jordan blocks associated with eigenvalues, and it is
unique up to permutation of these blocks [7, §3.1]. We assume throughout the paper
that, for a given eigenvalue λ, the Jordan blocks at λ in the JCF are given in non-
increasing order of their sizes. In 1951 Flanders published the following result [3,
Theorem 2]:

Theorem 1.1. If A ∈ Cm×n and B ∈ Cn×m, then the JCFs of AB and BA may
differ only in the sizes of the Jordan blocks at 0. Moreover, the difference between
two corresponding sizes is at most one. Conversely, if the JCFs of M ∈ Cm×m and
N ∈ Cn×n satisfy these properties, then M = AB and N = BA, for some A,B.
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We call such a pair (M,N) as in Theorem 1.1 a Flanders pair, and we say that
there is a Flanders bridge between M and N . Theorem 1.1 has been revisited several
times and re-proved using different techniques [1, 8, 9, 10, 11, 13].

In this paper, we investigate what happens if, instead of two matrices, we have
products of k matrices, A1, A2, . . . , Ak ∈ Cn×n. We refer to products of A1, . . . , Ak,
in any order and with no repetitions of the factors, as permuted products.

We assume A1, . . . , Ak are all n × n to ensure all permuted products are well
defined. An important difference between k = 2 and k > 2 is that, without any
assumption on A1, . . . , Ak, the products of A1, . . . , Ak have, in general, completely
different eigenvalues for different permutations. One exception is the eigenvalue 0, as
if 0 is an eigenvalue of some product of A1, . . . , Ak, then it must be an eigenvalue of
any other product of A1, . . . , Ak. Indeed, in Theorem 1.1 the eigenvalue 0 is treated
exceptionally, with nontrivial results on the sizes of the Jordan blocks at 0. However, by
the simple exampleA = diag(1, 1/2, . . . , 1/n),B = −Jn(−1)T ,C = (AB)−1Jn(0),
where Jn(λ) is the n × n Jordan block at the eigenvalue λ [7, Def. 3.1.1], it can be
seen that the sizes of the Jordan blocks at λ = 0 in ABC and CBA can be arbitrarily
different. Hence, a general statement on the eigenvalues or the sizes of their Jordan
blocks for k ≥ 3 matrices appears to be impossible.

In [2], Fiedler introduced a decomposition of a companion matrix into a product
of n matrices, C =

∏n
i=1Mi, and showed that the product of the matrices Mi in any

order is similar to C, hence all permuted products have the same JCF. For the nonzero
eigenvalues, this is precisely what happens when k = 2. This motivates us to examine
general conditions that allow an extension of Theorem 1.1 for nonzero eigenvalues to
the case k > 2. The Fiedler factors Mi have the following properties:

1. Commutativity: MiMj = MjMi, if |i− j| > 1.

2. Mi are all nonsingular, possibly except for Mn.

Fiedler’s results suggest that Theorem 1.1 might be naturally extended to three or
more matrices when appropriate commutativity conditions on Ai hold. Indeed, we
will show that if the graph of non-commutativity relations is a forest (see Section 4),
then all permuted products have the same Jordan blocks for nonzero eigenvalues. This
commutativity assumption generalizes (1), and imposes no requirement when k = 2,
i.e., the two matrices can be arbitrary, thus recovering Theorem 1.1. We impose no
nonsingularity condition such as (2) above because this imposes similarity, i.e., also
the Jordan blocks at zero must be the same: an undesirable restriction given our goal
of generalizing Flanders’ theorem. Indeed, Theorem 1.1 shows that the difference in
the sizes of Jordan blocks at zero is at most 1 when k = 2. One key result of this paper
is that, for general k, under our commutativity conditions the difference is bounded by
k − 1, and that this bound is attainable.

For k = 3 matrices, our condition reduces to the requirement that one pair com-
mutes, and we prove that the allowable sizes are exhaustive. More precisely, we prove
that given two lists of these allowable sizes, there are matrices A,B,C such that the
Jordan canonical forms of ABC and CBA consist of Jordan blocks at λ = 0 whose
sizes match those in the respective lists.
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Several previous papers have addressed extensions of Flanders’ results to many ma-
trices. For example, [6] examines cyclic permutations, and [4] derives conditions for
the products to have the same trace (and eigenvalues/Jordan form, though their treat-
ment is less complete) with focus on k = 3 or 2 × 2 matrices. Unlike in previous
studies, we deal with any permutation and arbitrary n and k ≥ 3, and work with com-
mutativity conditions guaranteeing that the Jordan structures for nonzero eigenvalues
coincide for all permutations.

The paper is organized as follows. Section 2 reviews basic notions and previous
results. In Section 3 we analyze permuted products of k = 3 matrices. Section 4
discusses the case k > 3, which requires the use of permutations and graphs. We
conclude, in Section 5, with some open problems related to this work.

2 Notation, definitions and previous results
We follow the standard notation In and 0n to denote, respectively, the n × n identity
and null matrices. Given a square matrixM ∈ Cn×n, Λ (M) denotes the spectrum (set
of eigenvalues counting multiplicity) of M ; diag(A1, . . . , Ak) is the block-diagonal
matrix whose diagonal blocks are A1, . . . , Ak, in this order (that is, the direct sum of
A1, . . . , Ak).

For a given λ ∈ C, the Segré characteristic of M at λ, denoted by Sλ(M), is the
list of the sizes of the Jordan blocks associated with λ in the JCF of M . In this paper
we see it as an infinite nonincreasing sequence of nonnegative integers, by attaching
an infinite sequence of zeros at the end. Note that the Segré characteristic at any λ is
uniquely determined, and that this definition includes also those complex numbers that
are not eigenvalues of M , though in this case all entries in the Segré characteristic are
zeroes.

We use boldface for lists of nonnegative integers. Given two (possibly infinite)
sequences of integers µµµ = (µ1, µ2, . . .) and µµµ′ = (µ′1, µ

′
2, . . .), we will often refer to

the standard `∞ and `1 norms, which we denote by, respectively, ‖ · ‖∞ and ‖ · ‖1.
Given k matrices A1, . . . , Ak ∈ Cn×n, by a permuted product of A1, . . . , Ak we

mean any of the products of A1, . . . , Ak in all possible orders, without repetitions.
The set of permuted products of A1, . . . , Ak is denoted by P(A1, . . . , Ak), and we
use the notation Π(A1, . . . , Ak) (or just Π when there is no risk of confusion) for
the elements in P(A1, . . . , Ak). For instance, for three matrices A,B,C, we have
P(A,B,C) = {ABC,ACB,BAC,BCA,CAB,CBA}.

The relation R on Cn×n × Cn×n given by “MRN if and only if (M,N) is a
Flanders pair" is not an equivalence relation, sinceR is not transitive. In Corollary 3.6
we give a characterization of the non-transitivity of this relation for pairs of matrices
with the same size.

The following elementary result can be easily verified:

Lemma 2.1. If M,N ∈ Cn×n are similar, then (M,N) is a Flanders pair.

The converse of Lemma 2.1 is not true in general, as we shall see below. However,
if M,N are nonsingular, then (M,N) is a Flanders pair if and only if M is similar to
N . This is also an immediate consequence of Theorem 1.1.
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Flanders pairs connecting three matrices M,N,Q in the form (M,N), (N,Q) are
closely related to our problem. The following direct consequence of [3, Theorem 2]
establishes some elementary features of these pairs.

Corollary 2.2. If M ∈ Cm×m, N ∈ Cn×n and Q ∈ Cq×q are such that (M,N) and
(N,Q) are Flanders pairs, then

(i) Sλ(M) = Sλ(Q), for all λ 6= 0, and

(ii) ‖S0(M)− S0(Q)‖∞ ≤ 2.

Flanders also shows that, given two lists of nonnegative integers whose distance
is at most 1, there is a Flanders pair whose Segré characteristics at zero coincide with
these two lists (see also [10, Cor. 3.4]). We provide an extension of this result to three
matrices in Theorem 3.4.

3 The case of three matrices
Unlike what happens for two matrices, given three matrices, A,B,C ∈ Cn×n, the
spectra of two different permuted products of A,B,C may be completely different. To
verify this, one may just take three random matrices A,B,C and compute the eigen-
values of ABC and ACB. This is related to the fact that two similar matrices, as BC
and CB are if one of B,C is nonsingular, may give two matrices with completely dif-
ferent spectra when multiplied on the left by a third matrix A. To what extent may the
spectra of different permutation products of three given matrices differ? One restriction
is that the determinants must all be the same, which implies that if 0 is an eigenvalue
then it must be shared by all permuted products. Below is a restatement, with a more
straightforward proof, of [5, Theorem 4], which shows that, without any additional
assumptions, this condition gives the only restriction on the spectra for nonsingular
A,B,C.

Theorem 3.1. Let Λ1 = {λ11, . . . , λn1} and Λ2 = {λ12, . . . , λn2} be two sets of n
nonzero complex numbers, eventually repeated. If λ11 · · ·λn1 = λ12 · · ·λn2, then there
are three matrices A,B,C ∈ Cn×n, such that Λ (ABC) = Λ1 and Λ (ACB) = Λ2.

Proof. By Lemma 2.1, the problem reduces to finding two similar matrices M,N ∈
Cn×n, and a third matrix A ∈ Cn×n, such that Λ (AM) = Λ1 and Λ (AN) = Λ2.
This can be done using only diagonal matrices. More precisely, set r1 6= 0 (arbitrary),
a1 := λ11/r1 and, recursively for i = 2, . . . , n , ri := λi2/ai−1, ai := λi1/ri. Note
that, with these definitions, we have

λn2 =
λ11 · · ·λn1
λ12 · · ·λn−1,2

=
(a1r1)(a2r2) · · · (anrn)

(a1r2)(a2r3) · · · (an−1rn)
= anr1.

Hence, if we set M = diag(r1, r2, . . . , rn), N = diag(r2, r3, . . . , rn, r1), and A =
diag(a1, . . . , an), then M is similar to N , and AM = diag(λ11, . . . , λn1), AN =
diag(λ12, . . . , λn2), as required.
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Under the conditions of the statement of Theorem 3.1, by Theorem 1.1 we have
Λ (ABC) = Λ (CAB) = Λ (BCA) = Λ1, and Λ (ACB) = Λ (BAC) = Λ (CBA) =
Λ2. Moreover, as a consequence of Theorem 1.1, the set of permuted products is parti-
tioned into two classes, namely: C1 = {ABC,BCA,CAB}, and C2 = {ACB,BAC,CBA}.
Any two products in each class are related by a “cyclic permutation", so they form a
Flanders pair. Hence, we can relate the JCFs of these permuted products. The re-
maining question is to relate the JCFs of permuted products in C1 with the ones in C2.
Theorem 3.1 shows that, if A,B,C are nonsingular, there may be no relationship at all
between the spectra of products in different classes.

Motivated by the work of Fiedler, here we require that at least two of A,B,C com-
mute. As we see in Section 4, if we consider symbolic products of an arbitrary number
of matrices, commutativity conditions allow us to characterize those cases where any
two arbitrary permutations are linked by a sequence of Flanders bridges. In this case,
all permuted products have the same Segré characteristic at an arbitrary nonzero com-
plex number.

Proposition 3.2. Let A,B,C ∈ Cn×n be such that at least two of A,B,C commute.
Let Π1,Π2 ∈ P(A,B,C). Then

(i) Sλ(Π1) = Sλ(Π2), for all λ 6= 0, and

(ii) ‖S0(Π1),S0(Π2)‖∞ ≤ 2.

Proof. By Corollary 2.2, it suffices to show that, in the conditions of the statement, one
of the following situations occurs:

1. (Π1,Π2) is a Flanders pair.

2. There exists Π̃ ∈ P(A,B,C) such that (Π1, Π̃) and (Π̃,Π2) are Flanders pairs.

In the conditions of the statement there are, at most, 4 distinct elements inP(A,B,C)
which give, at most, 6 distinct (non-ordered) pairs of permuted products. Let us as-
sume, without loss of generality, that AB = BA. In this case, the elements in
P(A,B,C) (including Π1 and Π2) areABC,ACB,BCA,CAB, and (ABC,BCA),
(ABC,CAB), (ACB,CAB) and (BCA,CAB) are Flanders pairs. Hence, one of
the situations described above holds for Π1 and Π2.

Lemma 3.3, whose proof is straightforward, is used to prove Theorem 3.4:

Lemma 3.3. Let µµµ = (µ1, µ2, . . .), µµµ
′ = (µ′1, µ

′
2, . . .) ∈ `1 be two sequences of

nonnegative integers. Suppose that

(i) ‖µµµ−µµµ′‖∞ = 2, and

(ii) ‖µµµ‖1 = ‖µµµ′‖1 = n.

Then we may rearrange µµµ and µµµ′ in such a way that

µµµ = (µi1 , µi2 , µi3 ;µi4 , µi5 , µi6 ; . . .), µµµ′ = (µ′i1 , µ
′
i2
, µ′i3 ;µ′i4 , µ

′
i5
, µ′i6 ; . . .),

with

µij + µij+1
+ µij+2

= µ′ij + µ′ij+1
+ µ′ij+2

, for all j ≡ 1 (mod 3). (1)
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The main result of this section is an extension of [10, Cor. 3.4] to three matrices
A,B,C under the commutativity condition AC = CA.

Theorem 3.4. Let µµµ = (µ1, µ2, . . . , 0, . . .), µµµ
′ = (µ′1, µ

′
2, . . . , 0, . . .) ∈ `1 be two

nonincreasing sequences of nonnegative integers such that

(i) ‖µµµ−µµµ′‖∞ ≤ 2, and

(ii) ‖µµµ‖1 = ‖µµµ′‖1 = n.

Then, there exist three matrices A,B,C ∈ Cn×n, such that AC = CA and

S0(ABC) = µµµ, and S0(CBA) = µµµ′.

Proof. First, notice that if ‖µµµ − µµµ′‖∞ ≤ 1, then by Theorem 1.1 there exist A,B ∈
Cn×n such that S0(AB) = µµµ and S0(BA) = µµµ′. In this case, we may take C = In
and we are done. Hence, we may assume that ‖µµµ − µµµ′‖∞ = 2. The proof reduces to
showing that the statement is true in the following two cases:

(A1) µµµ = (m,n, 0, . . . ), µµµ′ = (m− 2, n+ 2, 0, . . . )

(A2) µµµ = (m,n, q, 0, . . . ), µµµ′ = (m− 2, n+ 1, q + 1, 0, . . . ),

with m,n, q ≥ 0 and m ≥ 2. Indeed, let us assume that the result is true for both (A1)
and (A2), and let µµµ and µµµ′ be as in the statement. By Lemma 3.3, we can rearrange µµµ
and µµµ′ in such a way that they are partitioned as

µµµ = (µµµ1, . . . ,µµµα, 0, . . . ), and µµµ′ = (µµµ′1, . . . ,µµµ
′
α, 0, . . . ),

where the pairs (µµµi,µµµ
′
i), for i = 1, . . . , α, are such that ‖µµµi‖1 = ‖µµµ′i‖1 =: ni and

they either satisfy ‖µµµi −µµµ′i‖∞ ≤ 1 or are of one the forms (A1), (A2). Now, since the
result is true for both (A1) and (A2), and also for tuples of distance at most 1, there are
matrices A1, B1, C1 ∈ Cn1×n1 , . . . , Aα, Bα, Cα ∈ Cnα×nα , such that AiCi = CiAi,
and S0(AiBiCi) = (µµµi, 0, . . .),S0(CiBiAi) = (µµµ′i, 0, . . .), for i = 1, . . . , α. Then the
matrices A = diag(A1, . . . , Aα), B = diag(B1, . . . , Bα) and C = diag(C1, . . . , Cα)
satisfy AC = CA and S0(ABC) = µµµ,S0(CBA) = µµµ′.

It remains to prove that the result is true in cases (A1) and (A2). Consider (A1)
first. Denote by Eij the matrix, of the appropriate size, whose (i, j) entry is equal to
1 and the remaining entries are zero. Set A = diag(Im−1, 0, In), B = Jm+n(0) +
Em+n,1, and C = diag(0, Im+n−1). Clearly we have AC = CA. Direct computa-
tion gives ABC = diag(Jm(0), Jn(0)), and CBA = diag(0, Jm−2(0), Jn+1(0)) +
Em+n,1. Now, diag(0, Jn+1(0)) + En+2,1 is similar to Jn+2(0), because its only
eigenvalue is 0 and its rank deficiency is one. Consequently, the JCF of CBA is
diag(Jm−2(0), Jn+2(0)), so S0(ABC) = (m,n, 0, . . .) and S0(CBA) = (m−2, n+
2, 0, . . .), as required.

Next consider (A2). Set A = diag(0, Im+n+q−1), C = diag(In+q+1, 0, Im−2),
and B = diag(Jq+1(0), Jm+n−1(0)) +Em+n+q,1, for which AC = CA. Direct com-
putation gives ABC = diag(0, Jq(0), Jn(0), Jm−1(0)) + Em+n+q,1, and CBA =
diag(Jq+1(0), Jn+1(0), Jm−2(0)).Again, we see that diag(0, Jq(0), Jn(0), Jm+1(0))+
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Em+n+q,1 is permutation similar to diag(Jq(0), Jn(0), diag(0, Jm−1(0))+Em,1). Since,
as before, diag(0, Jm−1(0))+Em,1 is similar to Jm(0), we conclude that S0(ABC) =
(m,n, q, 0, . . .) and S0(CBA) = (m− 2, n+ 1, q + 1, 0, . . .), as wanted.

Remark 3.5. If ‖µµµ−µµµ′‖∞ = 2, then the matrices A,B,C constructed in the proof of
Theorem 3.4 have the property that none of the pairs (A,B) and (B,C) commute, so
there is exactly one commutativity relation in this case. In graph theoretical terminol-
ogy (see Section 4), the graph of non-commutativity relations is a tree.

Our last result in this section concerns the “non-trasitivity" of Flanders pairs.

Corollary 3.6. Let M,Q ∈ Cn×n. Then, the following conditions are equivalent:

(a) There exists N ∈ Cn×n such that (M,N) and (N,Q) are Flanders pairs.

(b) Sλ(M) = Sλ(Q), for all λ 6= 0, and ‖S0(M)− S0(Q)‖∞ ≤ 2.

(c) There are three matrices A,B,C ∈ Cn×n such that AC = CA, M is similar to
ABC, and Q is similar to CBA.

Proof. The implication (a) ⇒ (b) is Corollary 2.2. Suppose that (b) holds. With-
out loss of generality, we may assume that M and Q are given in JCF, so that M =
diag(Mr,Ms), and Q = diag(Qr, Qs) where Mr, Qr contain Jordan blocks associ-
ated with nonzero eigenvalues, and Ms, Qs are Jordan blocks for λ = 0. By hy-
pothesis, we have Mr = Qr and ‖S0(Ms) − S0(Qs)‖∞ ≤ 2. Using Theorem 3.4
with µµµ = S0(Ms) and µµµ′ = S0(Qs), we see that there exist As, Bs, Cs such that
AsCs = CsAs, AsBsCs = Ms, and CsBsAs = Qs. The block diagonal matrices
A = diag(Im, As), B = diag(Mr, Bs), C = diag(Im, Cs), where m is the size of
both Mr and Qr, fulfill the conditions in (c).

Finally, suppose that (c) holds. Let N = BCA. Then (M,N) is clearly a Flanders
pair and, by the condition AC = CA, so is the pair (N,Q).

4 More than three matrices
For permutations in Σk, the symmetric group of {1, . . . , k}, we use the cyclic notation
σ = (i1i2 . . . is) to mean that σ(ij) = ij+1, for j = 1, . . . , s − 1, σ(is) = i1, and
σ(i) = i for i 6= i1, . . . , is.

An element in P(A1, . . . , Ak) is related to a permutation σ ∈ Σk in the form
Aσ−1(1)Aσ−1(2) · · ·Aσ−1(k), that is, σ(i) is the position of the factor Ai in the per-
muted product. In this case, we write Πσ := Aσ−1(1)Aσ−1(2) · · ·Aσ−1(k).

Definition 4.1. Given a permutation σ ∈ Σk, a cyclic permutation of σ is another
permutation of the form (12 . . . k)`σ, for some ` ≥ 0. We say that σ, τ are in the same
equivalence class up to cyclic permutations if τ is a cyclic permutation of σ.

Accordingly, given a permuted product Πσ ∈ P(A1, . . . , Ak), a cyclic permu-
tation of Πσ is another permuted product of the form Πτ ∈ P(A1, . . . , Ak), with
τ = (12 . . . k)`σ, for some ` ∈ N. If Πσ is a cyclic permutation of Πτ , then Πσ and
Πτ are cyclically equivalent, and we write Πσ ∼C Πτ .
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We note that ∼C is, indeed, an equivalence relation. Moreover, if Πσ1 ∼C Πσ2 ,
then (Πσ1 ,Πσ2) is a Flanders pair. Conversely, if (Πσ1 ,Πσ2) is a Flanders pair for all
A1, . . . , Ak (that is, “symbolically"), then Πσ1

is a cyclic permutation of Πσ2
.

Definition 4.2. Given two permutations σ, τ ∈ Σk, we say that i1, . . . , ig , with 1 ≤
i1, . . . , ig ≤ k, have the same order in σ1 and σ2 up to cyclic permutations if i1, . . . , ig
appear in the same order in both σ̃1 := (12 . . . k)ασ1 and σ̃2 := (12 . . . k)βσ2, for
some α, β ≥ 0.

Accordingly, given Πσ1
,Πσ2

∈ P(A1, . . . , Ak), we say that Ai1 , . . . , Aig have the
same cyclic order in both Πσ1

and Πσ2
if i1, . . . , ig have the same order in σ1 and σ2

up to cyclic permutations.

4.1 Inverse eigenvalue problem
We start with an observation that characterizes Σk up to cyclic permutations.

Lemma 4.3. Let σ, τ ∈ Σk be two permutations. Then σ and τ are in the same class
up to cyclic permutations if and only if all triples i1, i2, i3, with 1 ≤ i1, i2, i3 ≤ k have
the same order in σ and τ up to cyclic permutations.

Proof. If σ = (12 . . . k)`τ , for some ` ≥ 0, then it is clear that each triple i1, i2, i3 has
the same order up to cyclic permutations in both σ and τ .

Conversely, assume that every triple i1, i2, i3 has the same order up to cyclic permu-
tations in σ and τ . Let α, β ≥ 0 be such that σ̃ := (12 . . . k)ασ and τ̃ := (12 . . . k)βτ
satisfy σ̃(1) = 1 = τ̃(1). Suppose σ̃ 6= τ̃ and let ν = min{i : σ̃(i) 6= τ̃(i)}.
Then 1, σ̃(ν), τ̃(ν) do not have the same order up to cyclic permutations in σ̃ and τ̃ , a
contradiction. Hence, σ and τ are in the same class up to cyclic permutations.

We next show that it is possible that any two permuted products Π1,Π2 have dif-
ferent spectra unless Π1 ∼C Π2.

Proposition 4.4. For each k ≥ 3, there exist matrices, A1, . . . , Ak ∈ Cn×n such that
for any two permuted products Π1 and Π2 belonging to different equivalence classes
of P(A1, . . . , Ak) under ∼C , Λ (Π1) and Λ (Π2) are different.

Proof. First, let us order all the
(
k
3

)
triples (i1, i2, i3), with 1 ≤ i1 < i2 < i3 ≤ k

using, for instance, the lexicographic order. This order induces an ordered list of length
3 ·
(
k
3

)
= k(k−1)(k−2)

2 , denoted by L, after adjoining all triples in the given order.
For instance, for k = 4 we get the list: L = (1, 2, 3; 1, 2, 4; 1, 3, 4; 2, 3, 4). Now, let
γ :

{
1, 2, . . . , k(k−1)(k−2)2

}
→ {1, 2, . . . , k} be the map defined by γ(i) = Li (the

ith number in L). For each j = 1, . . . ,
(
k
3

)
, by Theorem 3.1, there are three matrices

Ã3j−2, Ã3j−1, Ã3j ∈ C2×2, such that Λ (Ã3j−2Ã3j−1Ã3j) 6= Λ (Ã3jÃ3j−1Ã3j−2).

For i = 1, . . . , k, define Ai = diag
(
Ai1, Ai2, . . . , Ai,(k3)

)
∈ C2(k3)×2(

k
3), where

Aij =

{
Ã3(j−1)+r , if there is some 1 ≤ r ≤ 3 such that γ(3(j − 1) + r) = i,

I2 , otherwise.
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For instance, for k = 4 we haveA1 = diag(Ã1, Ã4, Ã7, I2), A2 = diag(Ã2, Ã5, I2, Ã10),
A3 = diag(Ã3, I2, Ã8, Ã11), A4 = diag(I2, Ã6, Ã9, Ã12). Let Πσ1

and Πσ2
be two

permuted products in P(A1, . . . , Ak) that are not cyclically equivalent. By Lemma
4.3, there is a triple (i1, i2, i3), with 1 ≤ i1, i2, i3 ≤ k, such that i1, i2, i3 appear in this
order in σ1, and they appear in the order i3, i2, i1 in σ2, up to cyclic permutations. The
triple (i1, i2, i3) corresponds to a triple (3j−2, 3j−1, 3j) inL for some j = 1, . . . ,

(
k
3

)
,

such that Λ (Ã3j−2Ã3j−1Ã3j) 6= Λ (Ã3jÃ3j−1Ã3j−2). The result follows from the in-
clusions Λ (Ã3j−2Ã3j−1Ã3j) ⊆ Λ (Πσ1

) and Λ (Ã3jÃ3j−1Ã3j−2) ⊆ Λ (Πσ2
).

It is worth noting that, in the construction of the proof of Proposition 4.4, the spectra
of Πσ1

and Πσ2
are not necessarily disjoint. Note also that the size of the matrices,

namely n = k(k−1)(k−2)
2 , depends on k.

All permuted products in P(A1, . . . , Ak) have the same determinant. Equivalently,
the product of their eigenvalues is the same for all permuted products. One may wonder
whether or not this is the only restriction on the eigenvalues of permuted products
belonging to different classes under cyclic permutations, as it was for three matrices.
More generally, we may pose the following problem. Here, for a given set Λ of complex
numbers, we use the notation prod(Λ) to denote the product of all numbers in Λ.

Inverse eigenvalue problem for permuted products of kmatrices: Given
(k − 1)! sets of n nonzero complex numbers, Λ1, . . . ,Λ(k−1)!, such that
prod(Λi) = prod(Λj), for all 1 ≤ i, j ≤ (k−1)!, find matricesA1, . . . , Ak,
with Ai ∈ Cn×n, for i = 1, . . . , k, such that Λ (Πj) = Λj , for j =
1, . . . , (k − 1)!, where Πj ∈ P(A1, . . . , Ak) belongs to the jth equiva-
lence class under ∼C .

In Section 3 we have seen that the “Inverse eigenvalue problem for permuted prod-
ucts of k = 3 matrices" is always solvable. The following result states that, for k large
enough, this is no longer true.

Theorem 4.5. Let n, k be two integers such that (k − 1)!(n − 1) + 1 > kn2. Then,
there exist (k−1)! sets of nonzero complex numbers Λ1, . . . ,Λ(k−1)!, with |Λi| = n and
prod(Λi) = prod(Λj), such that there are no matrices A1, . . . , Ak ∈ Cn×n satisfying
Λ (Πj) = Λj , for j = 1, . . . , (k − 1)!, where Πj ∈ P(A1, . . . , Ak) belongs to the jth
equivalence class under ∼C .

Proof. We first note that prescribing the eigenvalues of a matrix A is equivalent to
prescribing the coefficients of the characteristic polynomial pA(λ) := det(λI − A).
Let A1, . . . , Ak ∈ Cn×n be arbitrary matrices and X be the vector containing the
entries of the matrices A1, . . . , Ak, in some order. Let us denote by Π1, . . . ,Π(k−1)!
the representatives of each of the equivalence classes of P(A1, . . . , Ak) under ∼C .
Define the map P : CM −→ CN given by X 7→ P (X) = (P1(X), . . . , PN (X)),
where P (X) is the vector containing the coefficients of the characteristic polynomials
of Π1, . . . ,Π(k−1)!, in a certain pre-fixed order. P is a polynomial map, since the
coefficients of the characteristic polynomial of a matrix are polynomial functions of
the entries of the matrix. Moreover, we have M = kn2 and N = (k − 1)!(n− 1) + 1.
Indeed, the necessary condition prod(Λi) = prod(Λj), for 1 ≤ i, j ≤ (k − 1)!, is
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equivalent to the fact that the zero-degree coefficient of all characteristic polynomials
of Πj , for j = 1, . . . , (k − 1)!, coincide. We may just slightly modify the definition of
P , in such a way that, instead of n coefficients for each characteristic polynomial, we
just have (n − 1) coefficients. Together with the choice of the determinant, this gives
the (k − 1)!(n− 1) + 1 coordinates in P (X).

Now, the “Inverse eigenvalue problem for permuted products of k matrices with
size n× n" is solvable, for k and n, if and only if P is surjective for these k and n. As
is well known, a polynomial map from CM to CN is not surjective when N > M [12,
Th. 7, Ch. I, §6], so the result follows.

4.2 Commutativity conditions and distance of Segré characteris-
tics

In the following, and unless otherwise stated, when dealing with equivalence relations
in P(A1, . . . , Ak), we consider the elements of P(A1, . . . , Ak) as “formal products",
that is, like words of k letters, A1, . . . , Ak.

As we saw in Proposition 4.4, when there is more than one equivalence class in
P(A1, . . . , Ak) under∼C , it is pointless to ask about the change in the JCF of different
permuted products, since the spectrum can be completely different. On the other hand,
when there is only one equivalence class, all permuted products have the same nonzero
eigenvalues with the same Segré characteristic.

Motivated by Fiedler matrices, we will impose certain commutativity conditions
such that any two elements of P(A1, . . . , Ak) are connected by a sequence of Flan-
ders bridges. Under these conditions, we will also analyze the change in the Segré
characteristic of the eigenvalue zero for different permuted products.

Our commutativity condition involves the associated graph, denoted by G = (V,E),
with V = {v1, . . . , vk} the set of vertices and E the set of edges. Edges are given by
pairs of indices (i, j), with 1 ≤ i 6= j ≤ k, meaning that there is an edge joining vi
with vj . In this case, we say that the edge (i, j) connects vi and vj . We deal only with
undirected graphs, so we identify the pairs (i, j) and (j, i).

A cycle of lengthm ≥ 3 is a sequence of edges {(1, 2), (2, 3), . . . , (m−1,m), (m, 1)},
and a sequence {(1, 2), (2, 3), . . . , (m− 1,m), (m,m+ 1)} is called a path of length
m. We say that a graph has a cycle if a subset of its vertices and edges is a cycle. A
graph G = (V,E) is connected if there is at least one path between any pair of vertices
in V . A forest is a graph that has no cycles, and a tree is a connected forest. The degree
of a vertex vi ∈ V in the graph G = (V,E) is the number of edges connected to this
vertex. A leaf is a vertex of degree one, and the predecessor of a leaf vj is the only
vertex vi such that (i, j) ∈ E.

Definition 4.6. Given a graph G = (V,E) with k vertices, and Πσ ∈ P(A1, . . . , Ak),
a free swap on Πσ is a permuted product of the form Πτσ, where τ is the transposition
(i, i+ 1), with (σ−1(i), σ−1(i+ 1)) 6∈ E.

Given two permuted products Π1,Π2 ∈ P(A1, . . . , Ak), we say that Π1 and Π2

are G-equivalent, and we write Π1 ∼G Π2, if Π2 is obtained from Π1 by a sequence of
cyclic permutations of the factors and free swaps.
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In other words, a free swap exchanges two consecutive factors in Πσ ,
Aσ−1(i)Aσ−1(i+1) 7→ Aσ−1(i+1)Aσ−1(i), provided that (σ−1(i), σ−1(i+ 1)) 6∈ E.

The next result allows us to characterize those commutativity relations inA1, . . . , Ak
that, when added to cyclic permutations in P(A1, . . . , Ak), guarantee that all permuted
products are connected by a sequence of Flanders bridges. The key idea that relates
graphs and products of matrices is that, if Π1 can be obtained from Π2 by a sequence
of cyclic permutations and free swaps, then there is a sequence of Flanders bridges
between Π1 and Π2.

Theorem 4.7. Let G = (V,E) be a graph with k vertices. Then, there is only one
equivalence class in P(A1, . . . , Ak) under ∼G if and only if G is a forest.

Proof. Throughout this proof, we denote the vertices of V by A1, . . . , Ak, to indicate
that the ith vertex corresponds to the matrix Ai.

Let us first assume that there is a cycle of length ` in G. Without loss of generality,
we may assume that this cycle is (1, 2), (2, 3), . . . , (` − 1, `), (`, 1). Now, the prod-
ucts (A1A2 · · ·A`)A`+1 · · ·Ak and (A` · · ·A2A1)A`+1 · · ·Ak are not G-equivalent.
To see this, just note that, since no free swaps can be applied toA1A2 · · ·A`, the cyclic
order A1, A2, . . . , A` is invariant under cyclic permutations and free swaps. It is, in
particular, different from the cyclic order A`, . . . , A2, A1. Hence, there are, at least,
two different classes under ∼G .

Conversely, let us assume that G is a forest. Let us first see that the proof can be
reduced to the case where G is a tree. Suppose that the result is true when G is a tree. If
G has t trees, we may partition the set {A1, . . . , Ak} into t subsets, {A(j)

1 , . . . , A
(j)
ij
},

for j = 1, . . . , t, in such a way that each matrix in a given subset commutes with all
matrices in the remaining subsets. By assumption, the set P(A

(j)
1 , . . . , A

(j)
ij

) has only
one equivalence class under ∼G (although by slight abuse of notation we are writing
∼G , in the jth tree we consider the equivalence relation in P(A

(j)
1 , . . . , A

(j)
ij

) induced
by G). Let us denote by Π1, . . . ,Πt the representatives of these classes. Now, by
using free swaps, we may reorder any permuted product Πσ ∈ P(A1, . . . , Ak) as
Πσ = Π

(1)
σ · · ·Π(t)

σ , where Π
(j)
σ ∈ P(A

(j)
1 , . . . , A

(j)
ij

), for j = 1, . . . , t. After this, we

may use free swaps and cyclic permutations to get Πσ ∼G Π1Π
(2)
σ · · ·Π(t)

σ . To see this,
notice that, after performing the cyclic permutation

(A
(1)
1 · · ·A(1)

s A
(1)
s+1 · · ·A

(1)
i1

)Π(2)
σ · · ·Π(t)

σ ∼G (A
(1)
s+1 · · ·A

(1)
i1

Π(2)
σ · · ·Π(t)

σ )·(A(1)
1 · · ·A(1)

s ),

we may use free swaps to get

(A
(1)
s+1 · · ·A

(1)
i1

Π(2)
σ · · ·Π(t)

σ )·(A(1)
1 · · ·A(1)

s ) ∼G (A
(1)
s+1 · · ·A

(1)
i1
A

(1)
1 · · ·A(1)

s )·Π(2)
σ · · ·Π(t)

σ .

Hence, we may perform cyclic permutations and free swaps on P(A
(1)
1 , . . . , A

(1)
i1

) to

get Π1 on the left and keep the remaining factors Π
(2)
σ · · ·Π(t)

σ to the right. Proceeding
in the same way with Π

(2)
σ , . . . ,Π

(t)
σ , we see that Πσ ∼G Π1 · · ·Πt.

So let us prove the statement when G is a tree with k vertices. The proof is carried
out by induction on k. In particular, we want to prove that every Πσ ∈ P(A1, . . . , Ak)
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is G-equivalent to A1 · · ·Ak. For k = 3, the result follows from the analysis in Section
3.

Suppose that the result is true for k − 1 vertices. Let Π ∈ P(A1, . . . , Ak), and let
Aj be a leaf of G. By using a suitable cyclic permutation, we have Π ∼G Aj · Π̃, for
some Π̃ ∈ P(A1, . . . , Âj , . . . , Ak), where the notation Âj means that this element is
missing. The graph G̃, obtained from G after removing Aj and all the edges that are
connected to Aj , is still a tree. Hence, by induction we have Π̃ ∼G̃ A1 · · · Âj · · ·Ak.
We claim that from this it follows that

Aj · Π̃ ∼G Aj(A1 · · · Âj · · ·Ak). (2)

Indeed, perform on the whole Aj · Π̃ all free swaps and cyclic permutations needed to
take Π̃ into A1 · · · Âj · · ·Ak. After applying a cyclic permutation, we take Aj either
to the first or to the last position of the product, by using only free swaps. This can
be done because Aj is a leaf. By doing this, Aj does not interfere with the free swaps
performed within Π̃ between cyclic permutations.

From (2) we easily get Aj · Π̃ ∼G Aj(A1 · · · Âj · · ·Ak) ∼G A1 · · ·Aj · · ·Ak in
the following way: if the predecessor of Aj in G is Ai, with i ≥ j + 1, then we
use only free swaps in Aj(A1 · · · Âj · · ·Ak). Otherwise, we use a cyclic permutation
Aj(A1 · · · Âj · · ·Ak) ∼G (A1 · · · Âj · · ·Ak)Aj , and then free swaps.

The following example illustrates the construction in the proof of Theorem 4.7

Example 4.8. Let k = 5 and G = (V,E), with V = {1, 2, 3, 4, 5}, be the following
graph:

1

5

42 3

Note that G is a tree. We associate the jth vertex with the matrix Aj , as in the proof
of Theorem 4.7. Set Π = A4A3A5A1A2, and let us apply the procedure described in
the proof of Theorem 4.7 to achieve A1A2A3A4A5 from Π using free swaps and cyclic
permutations. We start by choosing the leaf A5. Using a cyclic permutation, we obtain
Π ∼G A5(A1A2A4A3). Now A3 is a leaf of the graph G̃:

12 4 3

Following the same procedure, we have (A1A2A4)A3 ∼G̃ A3(A1A2A4), using
a cyclic permutation. When we perform this cyclic permutation in the whole prod-
uct obtained in the previous step, we get A5(A1A2A4A3) ∼G A3A5(A1A2A4) ∼G
A5(A3A1A2A4) and, by using free swaps, this is G-equivalent to A5(A1A2A3A4).
Finally, one cyclic permutation on this permuted product gives A1A2A3A4A5.

We note that this is not the only way to get A1A2A3A4A5 from Π. We may, for
instance, start with any other leaf in G instead of A5, and, even starting with A5, we
may also write, in the first step, Π ∼G A5(A4A3A1A2) using free swaps.
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Given k matrices A1, . . . , Ak ∈ Cn×n, the graph of non-commutativity relations
of A1, . . . , Ak is the graph G = (V,E) with k vertices, such that (i, j) ∈ E if and only
if AiAj 6= AjAi, for 1 ≤ i 6= j ≤ k. As a consequence of Theorem 4.7, if the graph
of non-commutativity relations ofA1, . . . , Ak is a forest, then P(A1, . . . , Ak) has only
one equivalence class under ∼C . This is precisely the case in the Fiedler matrices [2],
as mentioned in the Introduction. Indeed, the graph of non-commutativity relations of
M1, . . . ,Mn is just a path from M1 to Mn.

By Theorem 4.7 and Corollary 2.2, when the graph G of non-commutativity rela-
tions of A1, . . . , Ak is a forest, all permuted products in P(A1, . . . , Ak) have the same
nonzero eigenvalues, with the same Segré characteristics. The remaining question is to
analyze what happens to the zero eigenvalue. We now derive an upper bound for the
distance of the Segré characteristics at zero of two permuted products of A1, . . . , Ak
when G is a forest, and show that the bound is attainable.

Theorem 4.9. Let A1, . . . , Ak ∈ Cn×n and G be the graph of non-commutativity
relations of A1, . . . , Ak. Assume that G is a forest and let d be the length of the longest
path in G. Then, given Π1,Π2 ∈ P(A1, . . . , Ak), we have

‖S0(Π1)− S0(Π2)‖∞ ≤ d. (3)

Moreover, this bound is attainable in the following sense: Let G be any forest with k
vertices, and let d ≤ k be the length of the longest path in G. Then there exist k matrices
A1, . . . , Ak such that G is the graph of non-commutativity relations ofA1, . . . , Ak, and
there are Π1,Π2 ∈ P(A1, . . . , Ak) with

‖S0(Π1)− S0(Π2)‖∞ = d. (4)

Proof. For the first part of the statement, we treat the case where G is a tree: the
extension to a forest is straightforward. By Theorem 1.1, it suffices to show that any
two permuted products Π1,Π2 ∈ P(A1, . . . , Ak) are G-equivalent via free swaps and,
at most, d cyclic permutations. We prove this first part of the statement by induction
on k, and through the following steps.
Step 0: For k = 2 the result is Flanders’ theorem, and for k = 3 it is part (ii) in
Proposition 3.2.
Step 1: Let Π1,Π2 ∈ P(A1, . . . , Ak) be two permuted products. By using free
swaps, we group all leaves in Π1 and Π2 in the rightmost and the leftmost place of
the products in the following way: if a given leaf is to the right of its correspond-
ing predecessor, then it is taken to the rightmost position; otherwise, it is taken to
the leftmost one. Then, we have Π1 ∼G (Ai1 · · ·Air )Π′1(Aj1 · · ·Ajs), and Π2 ∼G
(Ai1 · · ·AidAj1 · · ·Aje)Π′2(Aid+1

· · ·AirAje+1 · · ·Ajs), for some 0 ≤ d ≤ r, 0 ≤
e ≤ s, where Ai1 , . . . , Air , Aj1 , . . . , Ajs are all leaves in G, and Π′1,Π

′
2 are permuted

products containing those vertices of G that are not leaves. Note that these two equiv-
alences only involve free swaps. Now, with at most two cyclic permutations, we get
Π2 ∼G Π′2(Aj1 · · ·Ajs)(Ai1 · · ·Air ) ∼G (Ai1 · · ·Air )Π′2(Aj1 · · ·Ajs). Hence,

Π1 ∼G Π̂1 := (Ai1 · · ·Air )Π′1(Aj1 · · ·Ajs), Π2 ∼G Π̂2 := (Ai1 · · ·Air )Π′2(Aj1 · · ·Ajs),

where these two equivalences involve, at most, two cyclic permutations.
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Step 2: We remove all leaves in G to get G̃, where we keep the numbering of the
remaining vertices from G. We also group in both Π̂1 and Π̂2 all leaves with their
corresponding predecessor, to get Π̃1 and Π̃2, respectively. This can be done using
only free swaps. By Step 1, each group of predecessor+leaves has the same inner order
in both Π̃1 and Π̃2. We number each group of predecessor+leaves in both Π̃1 and Π̃2

with the index of the predecessor. We keep the notation Π̃1 and Π̃2 for the permuted
products obtained after doing this.
Step 3 (induction): Since we have removed all leaves from G to get G̃, the longest path
in G̃ has length d − 2. By the induction hypothesis, Π̃1 is G̃-equivalent to Π̃2 using at
most d − 2 cyclic permutations. This G̃-equivalence is also a G-equivalence, because
the leaves in each group commute with all matrices in any other group. Note also that
cyclic permutations in Π̃1 do not affect the relative position of each predecessor in Π1

with its corresponding leaves.
Step 4: After Steps 1–3 we get the equivalences: Π1 ∼G Π̃1 ∼G Π̃2 ∼G Π2, where the
first equivalence involves only free swaps, the second one involves, at most, d−2 cyclic
permutations, and the third one involves, at most, two cyclic permutations. Hence,
Π1 ∼G Π2 with, at most, d cyclic permutations. This concludes the proof of the first
part of the statement.

For the second part, regarding the attainability of the bound (3), we first consider
the case where G is a path of length d, and define the (d+ 1)× (d+ 1) matrices

Ãi = diag(Id−i, J2(0), Ii−1), for i = 1, . . . , d,

Ãd+1 = diag(0, Id).
(5)

The graph of non-commutativity relations of Ã1, . . . , Ãd+1 is a single path of length
d from Ã1 to Ãd+1. Moreover, we have Π1 = Ã1Ã2 · · · Ãd+1 = Jd+1(0), and Π2 =

Ãd+1 · · · Ã2Ã1 = 0d+1, so ‖S0(Π1)− S0(Π2)‖∞ = d.
If G is a tree with k vertices, numbered from 1 to k, let us assume, without loss

of generality, that (1, 2), (2, 3), . . . , (d, d + 1) is a path of length d in G. Now, let
Ã1, . . . , Ãd+1 be as in (5), and Ãd+2 = · · · = Ãk = Id+1. Let us number the edges
in G different from (1, 2), (2, 3), . . . , (d, d+ 1), as e1, . . . , eg . For each of these edges
we build up the following k matrices: for the edge es = (i, j), with 1 ≤ s ≤ g, let
D

(s)
1 , . . . , D

(s)
k be k nonsingular matrices of size 2×2 such thatD(s)

i D
(s)
j 6= D

(s)
j D

(s)
i ,

and D(s)
` = I2 for ` 6= i, j. Now, set Ai = diag(Ãi, D

(1)
i , . . . , D

(g)
i ), for i = 1, . . . , k.

The graph of non-commutativity relations of A1, . . . , Ak is G, by construction. More-
over, since D(s)

i is nonsingular, for all s = 1, . . . , g and i = 1, . . . , k, we have Π1 :=
A1A2 · · ·Ak = diag(Jd+1(0),M1) and Π2 := Ak · · ·A2A1 = diag(0d+1,M2), with
M1,M2 nonsingular, so S0(Π1) = (d+1), and S0(Π2) = (1, . . . , 1) (containing d+1
ones), hence ‖S0(Π1)− S0(Π2)‖∞ = d.

Finally, let G be a forest with t trees. Let k1, . . . , kt be the number of vertices in
each tree, with k1 + · · · + kt = k, and let d1, . . . , dt be the lengths of the longest
path in each tree. By hypothesis, we have max{dj : j = 1, . . . , t} = d. For
each tree, say the jth one, we define matrices A(j)

1 , . . . , A
(j)
kj
∈ Cnj×nj as before,

such that the graph of non-commutativity of A(j)
1 , . . . , A

(j)
kj

is precisely this tree, and
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such that ‖S0(A
(j)
1 A

(j)
2 · · ·A

(j)
kj

)− S0(A
(j)
kj
· · ·A(j)

2 A
(j)
1 )‖∞ = dj . Now, we set Ai =

diag(Â
(i)
1 , . . . , Â

(i)
t ), for i = 1, . . . , k, where Â(i)

j = A
(j)
h , if i = k1+· · ·+kj−1+h, for

some 1 ≤ h ≤ kj (where we set k0 := 0), and Â(i)
j = Inj otherwise. For these matri-

ces, we have ‖S0(A1A2 · · ·Ak)−S0(Ak · · ·A2A1)‖∞ = maxj=1,...,t ‖S0(A
(j)
1 A

(j)
2 · · ·A

(j)
kj

)−
S0(A

(j)
kj
· · ·A(j)

2 A
(j)
1 )‖∞ = d, ‖S0(A1A2 · · ·Ak)−S0(Ak · · ·A2A1)‖∞ = maxj=1,...,t dj =

d, and the graph of non-commutativity relations of A1, . . . , Ak is G, by construc-
tion.

The construction in the proof of Theorem 4.9 does not necessarily give the mini-
mum size of A1, . . . , Ak that satisfy the second part of the statement. Also note that
d ≤ k − 1, and equality holds if and only if G is a path of length k − 1.

Example 4.10. Let G = (V,E), with V = {1, 2, . . . , 9}, be the following graph:

1

2

39 8

5 4

7

6

The length of the longest path in G is d = 4, which corresponds, for instance, to
the path (9, 1)− (1, 3)− (3, 8)− (8, 7).

As in Example 4.8, we identify the jth vertex of G with the matrixAj so that G is the
graph of non-commutativity relations ofA1, . . . , A9. Set Π1 = A9A1A3A8A7A6A2A5A4

and Π2 = A7A8A3A1A9A6A2A5A4, and let us apply the procedure described in the
proof of Theorem 4.9 to achieve Π2 from Π1 via free swaps and cyclic permutations.
Step 1: By free swaps, move all the leaves in Π1 and Π2 to the left and right ends:

Π1 ∼G Π̂1 := (A9)A1A3A8A5(A4A6A2A7), Π2 ∼G (A7)A8A3A1A5(A4A6A2A9).

Using free swaps and two cyclic permutations, we obtain

Π2 ∼G (A9)A8A3A1A5(A4A6A2A7) := Π̂2.

Step 2: By free swaps, we group all leaves with their corresponding predecessor in
each Π̂1 and Π̂2, and then relabel each group using the index of the predecessor:

Π̂1 ∼G (A9A1)(A3A6A2)(A8A7)(A5A4) =: Ã1Ã3Ã8Ã5 (:= Π̃1),

Π̂2 ∼G (A8A7)(A3A6A2)(A9A1)(A5A4) =: Ã8Ã3Ã1Ã5 (:= Π̃2).

This gives us two permuted products associated with the graph G̃:

1 3 8

5
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Step 3: Proceeding as before, with Π̃1, Π̃2, and G̃ instead of Π1,Π2 and G, we get

Π̃1 = (Ã1)Ã3(Ã8Ã5) ∼G Ã3(Ã8Ã5Ã1), Π̃2 = (Ã8)Ã3(Ã1Ã5) ∼G Ã3(Ã8Ã5Ã1),

where each G-equivalences uses one cyclic permutation. Since there is only one prede-
cessor (namely, Ã3), the forward part of the process is finished.
Step 4: Put together the operations in Steps 1–3 to get the chain of G-equivalences:

Π2 ∼G (A7)A8A3A1A5(A4A6A2A9) ∼G (A9)A8A3A1A5(A4A6A2A7)

∼G (A8A7)(A3A6A2)(A9A1)(A5A4) = Π̃2 ∼G (A3A6A2)(A8A7)(A5A4)(A9A1)

∼G (A9A1)(A3A6A2)(A8A7)(A5A4) ∼G A9A1A3A8A7A6A2A5A4 = Π1.

The G-equivalences involving cyclic permutations are the second one, which uses two
cyclic permutations, and the fourth and fifth ones, both of which use one. The total
number of cyclic permutations is four, so ‖S0(Π1) − S0(Π2)‖∞ ≤ 4, and equality is
attained by setting Ai as constructed in the proof of Theorem 4.9.

Theorem 4.7 shows that if the graph of non-commutativity relations of A1, . . . , Ak
has no cycles, then all permuted products in P(A1, . . . , Ak) have the same eigen-
values with their corresponding Segré characteristics. The reverse implication, how-
ever, is not true. For example, take A1, . . . , Ak ∈ Cn×n to be upper triangular such
that no pair commutes and the products of the (i, i) diagonal entries of all matrices,
πi = A1(i, i)A2(i, i) · · ·Ak(i, i), satisfy πi 6= πj for i 6= j. Then, all permuted prod-
ucts have the same eigenvalues, with the same Segré characteristic (they are all simple
eigenvalues). However, the graph of non-commutativity relations is the complete graph
with k vertices, which is far from a forest.

5 Open problems
We conclude with open problems that arise as a natural continuation.

• 1: Is it always possible to prescribe the n eigenvalues of the (k−1)! classes under
cyclic permutations, provided that the product of all eigenvalues is the same, for
k, n satisfying (k − 1)!(n− 1) + 1 ≤ kn2 and k ≥ 4?

• 2: Given d ≥ 0 and two nondecreasing sequences µµµ,µµµ′ of nonnegative integers
such that ‖µµµ,µµµ′‖ ≤ d, is it always possible to find d matrices, A1, . . . , Ad,
such that their graph of non-commutativity relations is a path, and such that
S0(A1 · · ·Ad) = µµµ and S0(Ad · · ·A1) = µµµ′? (The extension of Theorem 3.4 to
n ≥ 4).

• 3: IfM,Q ∈ Cn×n are such that Sλ(M) = Sλ(Q), for all λ 6= 0, and ‖S0(M)−
S0(Q)‖∞ ≤ 2, are there three matrices A,B,C ∈ Cn×n such that M = ABC
and Q = CBA?

• 4: Obtain necessary and sufficient conditions for all products of a given set of
k matrices to have the same nonzero eigenvalues with their corresponding Segré
characteristic (in the notation of the paper: Sλ(Π1) = Sλ(Π2), for all λ 6= 0,
and for all Π1,Π2 ∈ P(A1, . . . , Ak)).
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