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Rapid shallow granular free-surface flows develop in a wide range of industrial
and geophysical flows, ranging from rotating kilns and blenders to rock-falls, snow
slab-avalanches and debris-flows. Within these flows, grains of different sizes often
separate out into inversely graded layers, with the large particles on top of the
fines, by a process called kinetic sieving. In this paper, a recent theory is used to
construct exact time-dependent two-dimensional solutions for the development of
the particle-size distribution in inclined chute flows. The first problem assumes the
flow is initially homogeneously mixed and is fed at the inflow with homogeneous
material of the same concentration. Concentration shocks develop during the flow
and the particles eventually separate out into inversely-graded layers sufficiently
far downstream. Sections with a monotonically decreasing shock height, between
these layers, steepen and break in finite time. The second problem assumes that
the material is normally graded, with the small particles on top of the coarse ones.
In this case, shock waves, concentration expansions, non-centred expanding shock
regions and breaking shocks develop. As the parameters are varied, non-linearity
leads to fundamental topological changes in the solution, and, in simple-shear, a
logarithmic singularity prevents a steady-state solution from being attained.

Keywords: Particle-size segregation, kinetic sieving, inverse-grading, shocks.

1. Introduction

Particle-size segregation is notorious in bulk solids handling. Sometimes it can be
used to our advantage, such as in mineral separation technology (Wills 1979), but
often it presents a major technical hurdle in manufacturing processes, where grains
need to be mixed together, or transported to another location. The scale of granular
materials processing is vast, with applications in the bulk chemical, pharmaceutical,
mining, food and agricultural industries. In many of these processes, such as in
rotational mixers (Shinbrot & Muzzio 1999) and huge continuous feed rotational
kilns (Davidson et al. 2000), segregation occurs in shallow granular avalanches that
develop in the free-surface layer of the flow. A knowledge of the segregation within
these avalanches is therefore vital to understanding the segregation and mixing in
more complex granular flows with solid-liquid phase transitions (Williams 1968,
Gray & Hutter 1997).

There are a number of mechanisms that drive particle-size segregation, but
the dominant one in shallow granular free-surface flows is that of kinetic sieving
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(Bridgwater 1976), with the next most important effects being turbulent remix-

ing, particle-density differences and grain-inertia effects at size ratios greater than
ten (Thomas 2000). The basic kinetic sieving mechanism is simple. As the grains
avalanche downslope there are fluctuations in the void space between the particles.
When a void opens up under a layer of grains, the small particles are more likely
to fall into the gap, because they are more likely to fit into the available space. The
fines, therefore, percolate to the bottom of the flow and mass conservation dictates
that there is a corresponding reverse flow of large particles towards the free surface.
Kinetic sieving is so efficient in dry granular flows that in small scale experiments
a layer of 100% coarse grains develops on top of a layer of 100% fines with a sharp
concentration jump between them (Savage & Lun 1988, Vallance & Savage 2000).
In geology this type of particle-size distribution is termed inverse-grading (Middle-
ton & Hampton 1976). The local size distribution can also have a subtle feedback
onto the bulk flow. For instance, when the large particles are rougher than the
small ones and there is strong shear through the depth of the avalanche, the large
particles tend to congregate at the front and resist the motion. This leads to an
instability in which the large particles are pushed to the sides to form stationary
lateral levees (Pouliquen et al. 1997) that channel the flow and lead to significantly
longer debris-flow run-out distances (Vallance 2000, Iverson & Vallance 2001).

Despite the critical importance of segregation in both industrial and geophysical
granular flows, there has been very little theoretical progress. Savage & Lun (1988)
were the first to derive a steady-state model using statistical mechanics and infor-
mation entropy ideas, but it was overlooked for many years because of its apparent
complexity. It also had the disadvantage that the percolation fluxes were indepen-
dent of gravity, even though gravity is the fundamental driving mechanism for the
kinetic sieving process. Gray & Thornton (2005) used mixture theory to formulate
mass and momentum balances for the large and small particles, which provided
a natural way of introducing gravity into the theory. Assuming a linear velocity
drag between the particles and that the fines carry less of the overburden pressure
as they fall down through the gaps, Gray and Thornton derived an expression for
the segregation flux in terms of the volume fraction of small particles. The result-
ing time-dependent segregation equation is considerably simpler and more general
than that of Savage & Lun (1988), but is still able to quantitatively reproduce
the concentration jumps observed in the laboratory experiments of Savage & Lun
(1988) and Vallance & Savage (2000). This is no coincidence, since the underlying
mathematical structure of the two theories is the same in steady-state, even though
the derivation and the interpretation of the coefficients are quite different. Gray
& Thornton’s (2005) model represents the simplest possible theory for modelling
three-dimensional time-dependent segregation, and its basic structure is inherent
in more complex models that incorporate a dense-fluid in the pore space (Thorn-
ton, Gray & Hogg 2005) and diffusive-remixing (Dolgunin & Ulokov 1995, Gray &
Chugunov 2005).

In this paper, two exact solutions of the Gray and Thornton segregation equation
are constructed; these yield detailed insight into the formation and evolution of some
key segregation features, such as shock waves, expansion fans and inversely graded
layers, that cannot be deduced easily from numerical simulations alone. One virtue
of the two exact solutions is that they are a rigorous check that numerical solutions
of the PDE capture accurately details of the segregation as it evolves.
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2. The segregation equations and the bulk flow

Gray & Thornton’s (2005) theory introduces a volume fraction φ of small particles
per unit mixture volume that lies in the range

0 ≤ φ ≤ 1, (2.1)

with φ = 1 corresponding to 100% small particles and φ = 0 corresponding to 100%
coarse particles. The large particles are of the same density and occupy a volume
fraction 1 − φ. This simple approach implicitly assumes that the interstitial pore
space is incorporated into the bulk density of the large and small particles. A more
complex theory, which accounts for the buoyancy effects of an interstitial fluid of a
different density to the particles (Thornton, Gray & Hogg, 2005) leads to a similar
formulation. In this section, we outline the derivation of the segregation equation,
referring to Gray & Thornton (2005) for the details.

Within the avalanche the bulk pressure p is assumed to be hydrostatic through
the depth h, which is measured normal to the chute, i.e.

p = ρg(h− z) cos ζ, (2.2)

where ρ is the bulk density, g is the constant of gravitational acceleration and ζ is
the inclination angle of the chute. The bulk flow is assumed to be incompressible

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (2.3)

where x, y, z are coordinates in the downslope, cross-slope and normal directions
to the chute, with unit coordinate vectors i, j,k, respectively, and velocity u =
ui+ vj +wk. In shallow granular free-surface flow models the bulk depth-averaged
downslope and cross-slope velocities (ū, v̄) are computed as a function of space and
time, using prescribed velocity profiles. These profiles introduce shape factors into
the momentum transport terms, which are equal to unity for plug flow and 4/3 for
simple shear. The bulk three-dimensional velocity field u(x, t) can be reconstructed
from (ū, v̄) with a knowledge of the shape factors together with the incompressibility
relation and the no normal velocity condition at the base to determine the bulk
normal velocity

w = −
∫ z

0

∂u

∂x
+
∂v

∂y
dξ. (2.4)

Assumptions (2.2) and (2.3) are common to almost all models for granular free-
surface flows from the hydraulic-type avalanches theories (e.g. Grigorian et al. 1967,
Eglit 1983, Gray et al. 2003), to the dry Mohr-Coulomb (e.g. Savage & Hutter 1989,
Gray et al. 1999) and water saturated debris-flow models (Iverson 1997). All of
these theories can be used to compute the bulk velocity field, but, for simplicity it
is prescribed in this paper.

The key element of Gray & Thornton’s (2005) segregation theory is the use of the
normal component of the constituent momentum balances to derive two equations
that govern the percolation of the large and small particles. In non-dimensional
variables these equations are

wl = w + Srφ, (2.5)

ws = w + Sr(1 − φ), (2.6)
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where wl and ws are the normal percolation velocities of the large and small par-
ticles, respectively. The non-dimensional segregation number Sr is defined as

Sr =
LBg cos ζ

cHU
, (2.7)

where c is an inter-particle drag coefficient, the non-dimensional factor B determines
the magnitude of the pressure perturbations that drive the flow and the avalanche
has thickness H, length L and downslope velocity magnitude U . In general the non-
dimensional segregation number Sr may depend on a number of additional factors
such as the local shear, the particle size difference and the particle roughness. In
this paper Sr is assumed to be a constant that can be calibrated from experiment.

The large particle percolation equation (2.5) simply implies that the large par-
ticles move upwards, relative to the bulk, until they separate out into a pure coarse
phase. Equation (2.6) similarly expresses the property that small particles filter
down until they separate out. Substituting the small particle percolation velocity
(2.6) into the small particle mass balance equation

∂φ

∂t
+

∂

∂x
(φus) +

∂

∂y
(φvs) +

∂

∂z
(φws) = 0, (2.8)

together with the assumption that the downslope and cross-slope velocity compo-
nents of the small particles are the same as those of the bulk flow

us = u, vs = v, (2.9)

yields a non-dimensional segregation equation for the volume fraction of small par-
ticles

∂φ

∂t
+

∂

∂x
(φu) +

∂

∂y
(φv) +

∂

∂z
(φw) − ∂

∂z

(

Srφ(1 − φ)
)

= 0. (2.10)

The first four terms together with the bulk incompressibility (2.3) simply express
the fact the volume fraction is advected passively with the flow. Whilst the final
term on the lefthand-side is responsible for the separation of the particles into
inversely graded layers.

Gray & Thornton (2005) and Thornton, Gray & Hogg (2005) showed that
sharp concentration jumps or shocks appear in steady-state flows. A generalized
time-dependent jump condition across such a shock can easily be derived from the
divergence structure of (2.10). Let z = z(x, y, t) be a shock surface, with space-
time normal N = (zt, zx, zy,−1). Observe that equation equation (2.10) has the
divergence form DivG = 0, where Div is the space-time divergence and

G = (φ, φu, φv, φw − Srφ(1 − φ)). (2.11)

Consequently, the normal component of G is continuous across the shock: N. [[G]] =
0, where the jump bracket [[f ]] = f+−f− denotes the jump in a piecewise continuous
function f(x, y, z, t) across the shock. Thus,

zt[[φ]] + zx[[φu]] + zy[[φv]] − [[φw]] + [[Srφ(1 − φ)]] = 0. (2.12)

Dividing by[[φ]], and assuming that the velocity (u, v, w) is continuous, we obtain
the equation

∂z

∂t
+ u

∂z

∂x
+ v

∂z

∂y
− w = Sr(φ

+ + φ− − 1). (2.13)

Article submitted to Royal Society



Particle-size segregation in shallow granular avalanches 5

In the exact solutions derived in this paper, each shock z = zγ(x, y, t) is given an
integer subscript γ = 1, 2, 3, ... to uniquely identify it.

The upper and lower boundaries of the avalanche, the surface z = s(x, y, t) and
the bottom z = b(x, y), are special cases of the jump conditions in which there is
no normal flow of small particles across the boundary. It follows from (2.12) that
the surface and basal boundary conditions are

φ

[

∂s

∂t
+ us ∂s

∂x
+ vs ∂s

∂y
− ws

]

= Srφ(1 − φ), on z = s, (2.14)

φ

[

∂b

∂t
+ ub ∂b

∂x
+ vb ∂b

∂y
− wb

]

= Srφ(1 − φ), on z = b. (2.15)

The square-bracketed term on the lefthand-side of these equations is zero, due to the
kinematic boundary condition at the surface and base of the avalanche (e.g. Gray
et al 1999; Gray et al 2003). The surface and basal boundary conditions therefore
reduce to

φ(1 − φ) = 0, on z = s, b, (2.16)

which is satisfied when either φ = 0 or φ = 1 at the surface and base.

3. Steady-uniform flows

In this paper we restrict attention to steady uniform flow, meaning granular flow
in which the layer has uniform thickness, the bulk downslope velocity depends only
on the depth variable z, and the cross-slope and normal velocity components are
assumed to be zero. In these circumstances, the avalanche depth sets the length
scale in z, so that the avalanche has unit depth in nondimensional variables and
the velocity field is

u = u(z), v = 0, w = 0, in 0 ≤ z ≤ 1. (3.1)

The stretching transformation

x = x̃/Sr, t = t̃/Sr, z = z̃, (3.2)

can be used to rescale the segregation equation (2.10) into a convenient parameter
independent form

∂φ

∂t
+

∂

∂x
(φu) − ∂

∂z

(

φ(1 − φ)
)

= 0, (3.3)

where the tildes are dropped for simplicity, and the associated jump condition is

∂zγ

∂t
+ u

∂zγ

∂x
= (φ+ + φ− − 1). (3.4)

The transformation (3.2) implies that the grains take greater distances to segregate
into inversely graded layers and take longer to do so for smaller Sr. All solutions are
constructed in the stretched coordinate system and mapped back to the physical
coordinate system using the transformation (3.2) if and when necessary.
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4. Segregation in a homogeneous chute flow

For our first problem we will consider the time-dependent version of Gray & Thorn-
ton’s (2005) steady-state problem in which a steady-uniform avalanche that is ini-
tially homogeneously mixed with concentration φ0 is continuously fed at x = 0 with
material of the same concentration φ0. The problem is therefore specified by the
initial and boundary conditions

φ(x, z, 0) = φ0, in 0 ≤ z ≤ 1, 0 ≤ x <∞, (4.1)

φ(0, z, t) = φ0, in 0 ≤ z ≤ 1, 0 ≤ t <∞, (4.2)

φ(1 − φ) = 0, on z = 0, 1, 0 ≤ t <∞, (4.3)

where (4.3) is the no normal flux condition at the boundaries. Within the interior of
the flow the small particles immediately start to percolate down towards the bottom
of the avalanche and the large ones are pushed towards the free-surface. Except near
boundaries the characteristics imply that the small particle concentration stays at
φ0 and is swept downstream. At the lower boundary, however, there are simply
no more large particles to be pushed up and the no normal flux condition (4.3)
implies that the small particles separate out into a pure phase, creating a sharp
concentration jump, or shock, with the initial mixture. Assuming that φ+ = φ0

and φ− = 1 on either side of the shock, (3.4) with γ = 1 reduces to

∂z1
∂t

+ u(z1)
∂z1
∂x

= φ0, (4.4)

The method of characteristics (e.g. Sneddon 1957) expresses differentiable solutions
in the form F (λ, µ) = 0, where F is an arbitrary function of the characteristic
variables λ(x, z, t) and µ(x, z, t), which are integrals of the characteristic equations

dt

1
=

dx

u(z1)
=
dz1
φ0

. (4.5)

We find expressions for λ and µ by solving pairs of these equations. Integrating the
first and third equations, we obtain

z1 = φ0t+ λ. (4.6)

The second and third equations can be integrated for general velocity fields by
introducing a depth-integrated velocity coordinate (Gray & Thornton 2005)

ψ =

∫ z

0

u(z′) dz′, (4.7)

to give
ψ1 ≡ ψ(z1) = φ0x+ µ. (4.8)

(Here and elsewhere, we abbreviate functional dependences; thus, ψ1 = ψ(z1), and
equation (4.8) may be regarded as relating z1 to x along a characteristic.) Note
that the depth-integrated velocity coordinate lies in the range 0 ≤ ψ ≤ 1 provided
the downslope velocity is suitably scaled in the non-dimensionalisation process.

The full solution surface can be expressed as λ = f(µ), where f is an arbitrary
function. In this case the solution is particularly simple. Since (4.6) is independent

Article submitted to Royal Society



Particle-size segregation in shallow granular avalanches 7

of x and the initial shock height z1(x, 0) = 0, it follows that the shock is horizontal
and moves upwards linearly in time:

z1 = φ0t, (4.9)

for the material that was initially in the chute. For the material that enters the
chute, the shock emanates from the origin, ψ1 = 0, so (4.8) implies that the solution
is independent of time

ψ1 = φ0x. (4.10)

The solution therefore consists of a time-dependent horizontal section that propa-
gates upwards linearly in time and is swept downstream to reveal the steady-state
solution adjacent to the inflow.

At the surface of the avalanche a similar jump develops. This time there are
no more small particles available to percolate downwards and the large particles
separate out to form a concentration shock with the bulk mixture. Assuming that
φ+ = 0 and φ− = φ0 the jump condition (3.4) implies

∂z2
∂t

+ u
∂z2
∂x

= −(1 − φ0). (4.11)

This can be solved in the same way as for the bottom jump. It consists of a horizontal
part that propagates linearly downwards with time

z2 = 1 − (1 − φ0)t, (4.12)

and is swept downstream to reveal the steady-state part

ψ2 = 1 − (1 − φ0)x. (4.13)

The concentration jump solutions (4.9), (4.10), (4.12) and (4.13) hold for any
positive velocity field u(z) with an isolated zero at the origin. Specific solutions are
constructed in this paper for the linear velocity field

u = α+ 2(1 − α)z, 0 ≤ z ≤ 1. (4.14)

The parameter α allows the velocity to vary from plug-flow (α = 1) to simple
shear (α = 0) and provides a good leading order approximation to more complex
nonlinear velocity fields (e.g. Gray & Thornton 2005). The corresponding depth
integrated coordinate

ψ = αz + (1 − α)z2, (4.15)

can be inverted to give z = z(ψ), i.e.

z =















ψ, α = 1,

−α+
√

α2 + 4(1 − α)ψ

2(1 − α)
, α 6= 1.

(4.16)

The development of the upper and lower shocks is shown in Fig. 1 for a linear
velocity field with α = 0.1. The position of the transition points between the steady-
state and horizontal time-dependent sections of the lower and upper shocks are
(respectively)

x1 = αt+ (1 − α)φ0t
2, (4.17)

x2 = (2 − α)t− (1 − α)(1 − φ0)t
2, (4.18)
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Figure 1. The evolution of the volume fraction of small particles φ as a function of x and
z. The particles enter the chute at x = 0 and are swept downstream from left to right
by a linear velocity field with a large shear component given by parameter α = 0.1. The
white region corresponds to 100% small particles, the dark region to 100% large particles
and the light grey region to the mixed region with concentration φ0 = 0.2. The circular
markers correspond to the position of the transition points and the ‘⊕’ is the triple-point.

and are shown by the open circular markers in the lefthand panels of Fig. 1. In
plug-flow the two transitions propagate at the same speed, but when there is shear
the upper transition x2 moves faster than the lower transition x1 in response to the
larger velocities at the free-surface; thus, x1 < x2 for t > 0.
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Figure 2. A contour plot of the time tsteady for the two steady-state branches of the shock
to meet at the steady-state triple-point as a function of velocity profile α and the inflow
concentration φ0.

The upper and lower horizontal shocks meet where z1 = z2. From (4.9), (4.12),
this occurs at t = 1, at height z = φ0, and over the range x > xm, where xm is
given by (4.18) at t = 1 :

xm = 1 + (1 − α)φ0. (4.19)

For t > 1 the resulting shock with φ+ = 0 and φ− = 1 evolves according to the
jump condition (3.4), which reduces to the scalar conservation law (resembling the
inviscid Burgers equation)

∂z3
∂t

+ u
∂z3
∂x

= 0, u = u(z3). (4.20)

Given the initial position and time (x0, z0, t0) this has the simple solution

z3 = z0, on x = x0 + u(z0)(t− t0). (4.21)

It follows that when the upper and lower laterally uniform (horizontal) time-
dependent shocks meet, a third laterally uniform shock is formed that is stationary
and advected downstream:

z3 = φ0, x > xm + u(φ0)(t− 1). (4.22)

For plug flow (α = 1), the solution is now at equilibrium, but for shear flow
α < 1, there is subsequent dynamic behavior, so we now discuss only the case
α < 1. In the region x < xm the upper and lower shocks do not intersect. Instead
the lower horizontal shock (4.13) continues to propagate upwards intersecting the
steady branch (4.8) of the top shock at a triple-point between the large, small and
mixed regions:

xtriple =
1 − αφ0t− (1 − α)φ2

0t
2

(1 − φ0)
, ztriple = φ0t. (4.23)
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Figure 3. A contour plot of the time tbreak for the third shock to break as a function of
velocity profile α and the inflow concentration φ0. The shaded region shows the region of
parameter space where the shock breaks before the steady-state triple point forms.

This construction continues until the two steady-state branches meet at time

tsteady =
−α+

√

α2 + 4φ0(1 − α)

2φ0(1 − α)
, (4.24)

at the steady-state triple-point position

xsteady = 1, ψsteady = φ0. (4.25)

The triple-point is illustrated in Fig. 1 using a ‘⊕’ marker. It moves upstream from
the initial point of meeting xm to its final steady-state position xsteady. The time
it takes to reach this point is plotted in Fig. 2, which shows that it takes longer to
develop with decreasing α and φ0.

The solution upstream of the steady triple-point has reached equilibrium, but
downstream, the interface between the large and small particles continues to evolve.
There are three distinct sections whose dynamics are all controlled by the conser-
vation law equation (4.20). As can be seen from the general solution (4.21) the
initial position and time (x0, z0, t0) at which the shock is generated are of crucial
importance. It has already been shown that the shock is horizontal with height φ0

in a region propagating downstream. The remaining parts of the shock are governed
by the upstream motion of the triple-point as it moves to its steady position. At a
given height z ∈ [zm, ztriple] equations (4.23) imply that its initial position is

x0 = [1 − αz − (1 − α)z2]/(1 − φ0), (4.26)

at time t0 = z/φ0. The dynamic part of the shock is therefore given by

x = x0 + u(z)(t− t0). (4.27)

Once the triple-point reaches its steady-state position the initial conditions do not
change and a straight horizontal shock of height

z3 = zsteady, with xsteady < x < xsteady + u(zsteady)(t− tsteady), (4.28)
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is formed. The development of the three sections of the third shock is shown in
the righthand panels of Fig. 1. When there is shear, points that are higher up in
the flow move faster downstream than those below them. As a result the central
dynamic region of z3 steepens and eventually breaks at z = zm (where the interface
is steepest), at time

tbreak =
α+ 2(1 − α)φ0(2 − φ0)

2(1 − α)φ0(1 − φ0)
. (4.29)

This indicates that the breaking-time is singular when α = 1 and the third shock
does not break, consistent with the exact time-dependent solutions for plug-flow
constructed by Gray & Thornton (2005). The breaking-time also tends to infinity
as the initial concentration approaches either zero or unity. This is because the
dynamic region of z3 is confined to a very narrow lateral band in which the ve-
locities become increasingly close to one another as φ0 approaches these limiting
states and it therefore takes an increasingly long time to break. The full parameter
dependence of the breaking-time on α and φ0 is illustrated in Fig. 3. This shows
that there is a small (shaded) region of parameter space for high shear and low
initial concentrations in which the third shock breaks prior to the steady triple-
point forming. Numerical solutions indicate that after the shock breaks a complex
solution is formed that includes dynamic expansion fans and shocks, but a detailed
analysis of this is left to a future paper.

5. Segregation from a normally graded initial state

The second problem also leads to shock wave-breaking and is the time-dependent
version of Thornton, Gray & Hogg’s (2005) normally graded steady-state flows.
Initially the avalanche is assumed to be normally graded, with a layer of small
particles separated from a layer of large particles below by a concentration discon-
tinuity along z = zr. The avalanche is fed at x = 0 with the same normally graded
layered material and satisfies the no normal flux conditions at the surface and the
base of the avalanche, i.e.

φ(x, z, 0) =

{

1, zr ≤ z ≤ 1,

0, 0 ≤ z < zr,
0 ≤ x <∞ (5.1)

φ(0, z, t) =

{

1, zr ≤ z ≤ 1,

0, 0 ≤ z < zr,
0 ≤ t <∞ (5.2)

φ(1 − φ) = 0, z = 0, 1, 0 ≤ x <∞ 0 ≤ t <∞. (5.3)

Thornton, Gray & Hogg (2005) have performed numerical simulations of this prob-
lem, which indicate that there is a region adjacent to the inflow that rapidly attains
steady-state, a downstream region where the flow is time-dependent and laterally
uniform and a transition region between the two, where there is complex spatial
and temporal behaviour. The problem will therefore be solved in the steady-state
and laterally uniform regions before the transition is considered.
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(a) The steady problem

Neglecting the time-derivatives in the segregation equation (3.3) and expanding
the remaining terms yields a first order quasi-linear equation of the form

u
∂φ

∂x
+ (2φ− 1)

∂φ

∂z
= 0, (5.4)

which may be solved by the method of characteristics. The small particle concen-
tration φ is equal to a constant φλ along the characteristic curve given by the
subsidiary equation

dx

u(z)
=

dz

2φλ − 1
. (5.5)

This may be integrated for general positive definite velocity fields with an isolated
zero at the origin, by using the depth-integrated velocity coordinates defined in
(4.7) to give

ψ = ψλ + (2φλ − 1)(x− xλ), (5.6)

where (xλ, ψλ) is the starting position in mapped coordinates. Characteristic curves
on which φλ > 1/2 propagate up through the avalanche, whilst curves with φλ <
1/2 propagate down towards the base of the flow. It follows that at the inflow
concentration discontinuity, which lies at z = zr, or, ψ = ψr in mapped coordinates,
the characteristics diverge from one another and a centred expansion fan is formed
with concentration

φ =
1

2

(

1 +
ψ − ψr

x

)

in |ψ − ψr| < x. (5.7)

The characteristic curve ψ = ψr −x (on which φ = 0) lies along the lower boundary
of the expansion fan and separates it from a pure region of large particles. It repre-
sents the trajectory of the first small particles percolating towards the base of the
avalanche, which they reach at xbottom = ψr. Similarly, the curve ψ = ψr + x (on
which φ = 1) separates the fan from a region of small particles above and represents
the front of the first large particles that are being pushed up to the free-surface.
They reach z = 1 at xtop = 1 − ψr.

Once the small particles reach the base of the flow the no normal flux condition
(5.3) implies that they separate out and a concentration shock is formed between the
expansion fan and the pure phase. The steady-state version of the jump condition
(3.4) with φ+ given by (5.7) and φ− = 1 reduces to

∂ψ

∂x
=

1

2

(

1 +
ψ − ψr

x

)

, (5.8)

in mapped coordinates. This is a linear ODE that can easily be integrated subject
to the initial condition that ψ = 0 at x = ψr to give the height of the bottom shock

ψ1 = ψr + x− 2
√

ψrx. (5.9)

An analogous upper shock

ψ2 = ψr − x+ 2
√

(1 − ψr)x, (5.10)
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forms as the large particles separate out into a pure phase. The upper and lower
shocks meet at

xsteady = (
√

ψr +
√

1 − ψr)
2, ψsteady = 1 − ψr, (5.11)

and a third shock is formed between the inversely graded layers of large and small
particles along the line

ψ3 = ψsteady, in x ≥ xsteady. (5.12)

This solution has been investigated by Thornton, Gray & Hogg (2005) for a range of
linear and non-linear velocity profiles and values of the concentration discontinuity
zr. Readers are referred to this work for a detailed discussion of the steady solution.

(b) The unsteady laterally uniform problem

Sufficiently far downstream the lateral uniformity of the initial conditions im-
plies that the solution is independent of the downslope coordinate x. In this case
the expanded segregation equation (3.3) reduces to

∂φ

∂t
+ (2φ− 1)

∂φ

∂z
= 0, (5.13)

which, rather interestingly, is independent of the assumed velocity profile u(z).
Equation (5.13) has exactly the same form as the mapped steady-state problem
(5.4) except that x is replaced by t and ψ is replaced by z. The full solution may
therefore be written down immediately. It consists of an expansion fan centred at
z = zr within which the concentration is

φ =
1

2

(

1 +
z − zr

t

)

. (5.14)

For small values of t, the expansion fan is confined to the interval |z − zr| < t,
the leading edges (where φ = 0, 1) moving with speed |2φ−1| = 1. After the leading
edges hit the horizontal boundaries z = 0, 1, at times tbottom = zr and ttop = 1−zr,
the fan is contained in the interval z1(t) < z < z2(t) bounded by the two shocks

z1 = zr + t− 2
√
zrt, tbottom ≤ t ≤ t3, (5.15)

z2 = zr − t+ 2
√

(1 − zr)t, ttop ≤ t ≤ t3. (5.16)

Finally, when the two shocks collide, at time t3 =
(√
zr +

√
1 − zr

)2
, the fan

disappears and the solution is a single stationary shock

z3 = 1 − zr, t ≥ t3. (5.17)

(c) The full problem and the fan-interface

Expanding the derivatives in the segregation equation (3.3) yields a first order
quasi-linear equation

∂φ

∂t
+ u

∂φ

∂x
+ (2φ− 1)

∂φ

∂z
= 0, (5.18)
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Figure 4. A series of contour plots showing the evolution of the volume fraction of small
particles φ as a function of the downslope coordinate x and avalanche depth z. The
bulk linear shear flow is from left to right and is given by parameter α = 1/2. The
normally graded particles enter the chute at x = 0 and have a concentration discontinuity
at zr = 0.4. The white circular markers correspond to the position of the transition points
between steady, fully dynamic and unsteady laterally uniform behaviour and the marker
with the plus sign is the triple-point.

Article submitted to Royal Society



Particle-size segregation in shallow granular avalanches 15

that governs the full problem. The method of characteristics implies that the con-
centration is equal to a constant φλ on characteristic curves (parameterized by λ)
given by the subsidiary equations

dt

1
=

dx

u(z)
=

dz

2φλ − 1
. (5.19)

The first and third can be integrated directly to give

z = (2φλ − 1)t+ λ. (5.20)

The first and second can then be integrated using (5.20) and the definition of the
linear velocity field (4.14) to show that

x = αt+ 2(1 − α)λt+ (1 − α)(2φλ − 1)t2 + f(λ) (5.21)

where λ = z − (2φ0 − 1)t.
At t = 0 the line x = 0 separates the material that was initially in the chute

from the material that subsequently enters the chute along x = 0. Material initially
in the chute is swept downstream, and experiences segregation in a time dependent
expansion fan (5.14). On the other hand, material entering the chute is normally
graded as it enters, and then begins to segregate in a steady expansion fan (5.7)
centered at x = 0, z = zr. The interface between the two kinds of material points,
those initially in the chute and those entering the chute, is a curve that we call
the fan-interface; it is shown in the left panels of Fig.4. Points in the interface are
located by tracking the characteristics (5.21) with initial location x = 0. Thus,
f(λ) ≡ 0. Within the time-dependent characteristic fan, φλ is given by (5.14), and
the material on the time-dependent side of the fan-interface therefore lies along the
straight line

x = [α+ (1 − α)(z + zr)]t, (5.22)

at time t. Equating the time-dependent and steady-state fan concentrations (5.14)
and (5.7) also yields (5.22). This shows that the fan-interface (5.22) creates a con-
tinuous match between the steady-state and time-dependent fans. The solution for
small times, therefore, consists of steady-state fan (5.7) upstream of the interface
(5.22) and a time-dependent fan (5.14) downstream of it, which expand with in-
creasing time. Above and below the fan are pure regions of small and large particles,
as shown in the left-hand panels of Fig. 4. The fans continue to expand until the
laterally uniform time-dependent sections intersect with the surface and base of
the flow at times ttop and tbottom. Interaction with the no normal flux boundary
condition (5.3) implies that shocks result from reflection at the boundary.

(d) The fully dynamic bottom shock

The subsequent flow involves horizontal shocks (discontinuities in φ) propa-
gating in from the surface and the base. The structure of the solutions in shown
schematically in Fig.5. As indicated in the figure, the horizontal shocks do not
match up neatly with the steady-state fan. As discussed earlier, the flow down-
stream consists of horizontal shocks, shown as sections CD (propagating upwards)
and GH (propagating down) in Fig.5. Note that the structure of the solution prop-
agating up from the base is significantly different from that of the waves descending
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Figure 5. A sketch of the full solution once the upper and lower shocks have formed.

from the surface, due to the opposite velocity gradients encountered by the waves.
In this subsection, we focus on the lower waves, the fully dynamic bottom shock.

The lower shock has three sections: the steady-state part AB (as in the steady
state solution), the time-dependent laterally uniform section CD, and a fully dy-
namic shock BC joining the two simpler shocks. The curve BC is governed by the
shock condition

∂z

∂t
+ u(z)

∂z

∂x
=

1

2

(

1 +
ψ − ψr

x

)

. (5.23)

Using the method of characteristics to solve (5.23) yields two subsidiary equations

dx

dt
= u(z),

dψ

dx
=

1

2

(

1 +
ψ − ψr

x

)

, (5.24)

The second of these can be integrated to give

ψ = ψr + x+ λ1

√
x. (5.25)

Using the linear velocity profile (4.14) and the inverse mapping (4.16), the first
equation reduces to

dx

dt
=

√

α2 + 4(1 − α)ψ, (5.26)

which can be integrated by substituting for ψ from (5.25), making the substitution
ξ =

√
x to reduce the integral to standard form and hence obtain

t = I1(x, λ1) + µ1, (5.27)

where

I1(x, λ1) =
2

b

√

a+ bx+ c
√
x− c

b3/2
ln

(

c+ 2b
√
x

2
√
b

+

√

a+ bx+ c
√
x

)

, (5.28)

with a = α2 + 4(1 − α)ψr, b = 4(1 − α) and c = 4(1 − α)λ1. These characteristic
curves are sketched in Fig.5 using dashed arrowed lines; they emanate from the
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dot-dash curve AC, which is defined by the trajectory of the intersection between
the fan-interface CF and the laterally uniform shock CD. The location of points on
AC is thus given by

xb = αt+(1−α)(2zr+t−2
√
zrt)t, zb = zr+t−2

√
zrt, tbottom < t < t3. (5.29)

Each characteristic is initiated at some time to from (xb(to), zb(to)), which is shown
by the grey markers on the dot-dash section of AC. On this characteristic the initial
conditions imply that the constants in (5.25), (5.27) are given by

λ1(to) =
ψb(to) − ψr − xb(to)

√

xb(to)
, µ1(to) = to − I1(xb(to), λ1(to)). (5.30)

The fully dynamic part of the shock BC is therefore constructed by parameterizing
the characteristics that are initiated at time to ∈ [tbottom, t] and working out their
current position at time t. Equation (5.27) and the constants (5.30) imply that at
any given time t the downslope position x1(t, to) of the bottom shock that was
initiated at time to, is given by solving for x1 ∈ [xb(to), xb(t)] from the equation

t = to + I1(x1, λ1(to)) − I1(xb(to), λ1(to)). (5.31)

The corresponding height z1(t, to) of the shock is then given implicitly by

ψ1(x1, λ1(to)) = ψr + x1 + λ1(to)
√
x1. (5.32)

While we cannot write explicit formulae for (x1, z1)(t, to), the curve BC is easily
generated numerically from the sequence of equations (5.28) to (5.32). The results
showing the development of the steady-state, fully dynamic and time-dependent
laterally uniform sections of the lower shock appear in the righthand panels of
Fig. 4 for α = 1/2 and zr = 0.4.

In simple shear the behaviour of the characteristic emanating from point A at
(xbottom, 0) is particularly interesting. As α −→ 0, the mapped discontinuity height
ψr −→ z2

r and xb(tbottom) −→ z2
r , which imply that

c+ 2b
√

xb(tbottom) −→ 0, a+ bxb(tbottom) + c
√

xb(tbottom) −→ 0, (5.33)

in (5.28). Since λ1(xb(tbottom)) = −2zr the constant c in (5.28) is negative and

I1(xb(tbottom), λ1(tbottom)) −→ −∞. (5.34)

It follows that (5.31) has a logarithmic singularity as α −→ 0, and, therefore, point
B can not move away from its initial position in simple-shear. As a consequence, it
is not possible to generate a steady-state section of the lower shock, when α = 0,
which is a rather surprising result.

(e) The fully dynamic top shock

The structure of the top shock is slightly different to that of the bottom shock,
as suggested in Fig.5. There is a steady-state section EF, a fully dynamic curve
FG and a laterally uniform time-dependent section GH, but this time the contact
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fan-interface intersects the steady-state shock at F rather than along the laterally
uniform part.

The fully dynamic curve FG is governed by the shock condition

∂z

∂t
+ u(z)

∂z

∂x
=

1

2

(

z − zr

t
− 1

)

, (5.35)

since φ = 1 above the shock, and φ is given by (5.14) below. The method of
characteristics yields two subsidiary equations

dx

dt
= u(z),

dz

dt
=

1

2

(

z − zr

t
− 1

)

, (5.36)

which are easily solved to show that the characteristic curves are described by

z = zr − t+ λ2

√
t, x = I2(t, λ2) + µ2 (5.37)

where

I2(t, λ2) = αt+ 2(1 − α)zrt− (1 − α)t2 +
4

3
λ2t

3

2 . (5.38)

The shocks are initiated along the trajectory of point F , which moves along the
steady-state section of the upper shock EF as shown in Fig. 5. At any given time
t the position of F is found by solving the simultaneous equations (5.10), (5.22).
This is achieved in practice by solving

t =
xs

α+ (1 − α) (z(ψ2(xs)) + zr)
, (5.39)

for xs, where the function z = z(ψ) is given by (4.16) and ψ2 is the steady-state
solution (5.10). The expanding fan of characteristic curves emanating from EF can
then be parameterized by xo ∈ [xtop, xs(t)]. For a given characteristic xo the initial
height and time of creation are

zo = z(ψ2(xo)), to =
xo

α+ (1 − α)(zo + zr)
, (5.40)

which imply that the constants in (5.37) are given by

λ2(xo) = (zo − zr + to)/
√
to, µ2(xo) = xo − I2(to, λ2(xo)). (5.41)

The current position of the fully dynamic part of the top shock is therefore

z2 = zr − t+ λ2(xo)
√
t,

x2 = xo + I2(t, λ2(xo)) − I2(to, λ2(xo))

}

xtop < xo < xs(t), ttop < t < t3.

(5.42)
The evolution of the three sections of the top shock are illustrated in the righthand
panels of Fig. 4 for α = 1/2 and zr = 0.4.

(f ) Interaction of the dynamic top shock and the time-dependent bottom shock

At time t3 the upper and lower time-dependent laterally uniform shocks meet
to form a third laterally uniform shock z3 given by (5.17) over their common region
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Figure 6. A series of contour plots showing the evolution of the volume fraction of small
particles φ as a function of the downslope coordinate x and avalanche depth z for the
same case as in Fig. 4 at later times. The bulk linear shear flow is from left to right and is
given by parameter α = 1/2. The normally graded particles enter the chute at x = 0 and
have a concentration discontinuity at zr = 0.4. The white circular markers correspond to
the position of the transition points between steady, fully dynamic and unsteady laterally
uniform behaviour and the marker with the plus sign is the triple-point.
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of intersection. The top-left panel of Fig.6, continuing on from Fig.4, shows the
solution for α = 1/2 and zr = 0.4. The position of the triple-point between the
three shocks (shown with a ‘⊕’ in Fig.6) can be found by iterating to find the
characteristic xotriple ∈ [xtop, xs(t)] whose corresponding shock position, given by
(5.42), has the same height as the bottom shock (5.15) using

λ2(xotriple) − 2
√
t+ 2

√
zr = 0, (5.43)

and then substituting the result back into (5.42). The fully dynamic part of the
upper shock generated by characteristics xo ∈ [xotriple, xs(t)] continues to evolve as
before. However, the section generated by xo ∈ [xtop, xotriple] has already intersected
with the bottom shock at time

to2 = (λ2(xo)/2 +
√
zr )2 (5.44)

and at position

zo2 = zr − to2 + λ2(xo)
√
to2, (5.45)

xo2 = xo + I2(to2, λ2(xo)) − I2(to, λ2(xo)). (5.46)

At these points, the shock is a jump from φ = 0 to φ = 1, and consequently now
form part of the third shock z3 which is governed by the conservation law (4.20),
and has the simple solution

x3 = xo2 + u(zo2)(t− to2), z3 = zo2. (5.47)

As can be seen from the first three lefthand panels of Fig. 6 the triple-point moves
upstream from its initial position as it generates the non-uniform section of the
third shock, which is swept downstream.

(g) Destruction of the fan-interface

At t = tfan the steady-upper and dynamic-lower shocks come together for the
first time, eliminating the time-dependent fan (5.14), destroying the fan-interface
(5.22) and ceasing the interaction between the unsteady-uniform bottom shock and
the top-dynamic shock. The fan-interface destruction time tfan, therefore, marks
a fundamental switch in behaviour of the solution. It is solved for by an iterative
procedure. For an initial guess for tfan ∈ [t3, (1 +

√
zr )2] the position of the in-

tersection between the top-steady shock (5.10) and the bottom unsteady laterally
uniform shock (5.32) is found by calculating

zfan = zr + tfan − 2
√

zrtfan, xfan =

(

√

1 − ψr +
√

1 − ψ(zfan)

)2

, (5.48)

and then iterating tfan until it lies on the fan-interface (5.22) and satisfies

xfan = [α+ (1 − α)(zfan + zr)]tfan. (5.49)

The upper bound on the interval for tfan follows from the condition that the time-
dependent laterally uniform bottom shock must intersect with the steady top shock
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Figure 7. A contour plot of the fan-interface destruction time tfan as a function of
velocity profile α and the inflow discontinuity height zr.

before z = 1. The shock configuration at tfan = 2.14 is shown in Fig. 6 and the
complete parameter dependence of the solution is plotted in Fig. 7. This shows that
for fixed α, the fan-destruction time has a local maximum close to zr = 1/2, whilst
for fixed zr the time tfan increases with increasing shear. In plug-flow (α = 1) the
fan-destruction time tfan = t3, which is the same time that the upper and lower
laterally uniform shocks initially meet.

(h) Interaction of the dynamic bottom shock and the steady top shock

For the vast majority of parameter values the dynamic bottom shock and
the steady-top shock first intersect for t > tfan to create another section of the
third shock z3. The resulting triple-point is found iteratively by searching for
the characteristic totriple ∈ [tbottom, tcontact], whose current bottom shock position
x1(t, totriple) intersects with the steady-top shock (5.10), i.e. when

x1(t, totriple) = (
√

1 − ψr − λ1(totriple)/2)
2. (5.50)

The triple-point coordinates are then given by (5.31) and (5.32). The fully dynamic
part of the bottom shock generated by the characteristics to ∈ [tbottom, totriple]
continues to evolve as before. But, the part generated by the characteristics to ∈
[totriple, tfan] intersected with the steady-top shock at point

xo1 = (
√

1 − ψr − λ1(to)/2)
2, ψo1 = ψr − xo1 + 2

√

(1 − ψr)xo1, (5.51)

at time
to1 = to + I1(xo1, λ1(to)) − I1(xb(to), λ1(to)). (5.52)

These points now generate a new section of z3. This is governed by the inviscid
Burgers equation (4.20) and has the simple solution

x3 = xo1 + u(zo1)(t− to1), z3 = zo1, (5.53)
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Figure 8. A contour plot of the time tsteady for the steady-state fan fully develop as a
function of velocity profile α and the inflow discontinuity height zr.

where zo1 = z(ψo1). The final point of this unsteady third shock is generated as
point B reaches the steady-state triple-point (5.11) at (xsteady, ψsteady). This point
lies on the characteristic with label tbottom and (5.31) implies that it reaches xsteady

at time

tsteady = tbottom + I1(xsteady, λ1(tbottom)) − I1(xb(tbottom), λ1(tbottom)). (5.54)

This time is important because it marks the point at which the steady-state con-
centration fan becomes fully developed. The parameter dependence of tsteady on
α and zr is illustrated in Fig. 8. In simple shear point B does not move from its
initial position because of the logarithmic singularity (5.34). As a result the steady-
state fan does not develop and there is a logarithmic singularity in tsteady along the
α = 0. For plug-flow, the steady-state fan becomes fully developed at the same time
the upper and lower laterally uniform shocks meet, i.e. tsteady = t3 when α = 1.
Between these two extremes there is a maximum in tsteady, for each α, that becomes
progressively skewed to higher discontinuity heights zr as α decreases.

As we warned at the beginning of section, the bottom dynamic shock does not
always intersect with the top shock after tfan. For a small range of parameter values
in the bottom lefthand corner of Fig. 8, i.e. for α and zr small, the dynamic bottom
shock develops a pronounced peak as shown in Fig. 9. This can intersect with the
steady top shock prior to tfan, dividing the fan in two, and changing the topology of
the problem. Numerical simulations of a similar-cut off phenomenon by Thornton,
Gray & Hogg (2005) suggest a detached section of z3 forms, which expands and
merges with the rest of z3 as the enclosed part of the fan is destroyed.

For the majority of parameter values, however, a laterally uniform steady-state
shock ψ3, that was defined in (5.12), is generated for t > tsteady. The full structure
and development of z3 is illustrated in the remaining panels of Fig. 6. It consists of
four sections. A laterally uniform region at height 1 − zr generated by the initial
data, a section formed from the interaction of the dynamic top shock and the
laterally uniform bottom shock (5.47), a section generated by the interaction of the
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Figure 9. Two contour plots showing a zoomed in view of the small particle concentration
for α = 0.01 and zr = 0.16. At high shear and low zr the dynamic bottom shock develops
a peak (left) that intersects (right) with the top steady shock before t = tfan. Note, the
vertical and horizontal scales have changed.

steady-state top shock and the dynamic bottom shock (5.53), and, a steady-state
region at height 1−ψr. The markers in Fig. 6 indicate the transitions between these
regions. As in the first problem in §4 the fully dynamic parts of the third shock z3
steepen and break in finite time tbreak, which may be either before or after tsteady.
Although the subsequent breaking is complex, this region is swept downstream,
and locally a steady-state is rapidly attained provided the logarithmic singularity
in simple-shear is avoided. This is illustrated in the last panel of Fig. 6, where
the local solution in the domain of interest has reached steady-state at t = 4. In
this fully developed region, large particles enter from the lower left and move up
through the expansion fan, before separating out, whilst the small particles enter
from the upper left move down through the fan and separate into a pure phase. In
this way an inversely graded layer is formed, which is the basic building block for
many pattern formation processes.

6. Discussion and conclusions

In this paper two exact solutions to the segregation theory of Gray & Thornton
(2005) have been derived for steady uniform chute flows. These graphically illus-
trate some of the key physical effects that develop during the segregation process,
including:- concentration shocks, concentration expansions, non-centred expanding
shock regions, the creation of inversely-graded layers and the steepening and ulti-
mate breaking of monotonely decreasing sections of the shock between these layers.
The non-dimensional segregation number Sr determines the strength of the segre-
gation and may be calibrated from experiment. In steady-uniform flows a spatial
and temporal stretching transformation (3.2) can be used to reduce the segregation
equation to a convenient parameterless form. The resulting solutions are dependent
only on the assumed velocity profile with depth and the boundary and initial condi-
tions. By constructing exact solutions we have, therefore, been able to map out the
entire parameter space for the two problems. This not only provides important test
cases for numerical shock-capturing methods to solve more general problems, but,
yields implicit and explicit formulae for the key times and locations at which the
behaviour of the solution fundamentally changes. Of particular interest is the fact
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that in simple shear the logarithmic singularity in (5.34) prevents the formation
of a steady-state lower shock. This is qualitatively different to solutions with slip
at the base, where a steady-state lower shock is formed in finite time. In addition,
we have also identified a region of parameter space, where the non-linearity leads
to the pinching off of a section of the expansion fan, changing the topology of the
solution. Regardless of the precise nature of the initial and boundary conditions,
or the topology changes that occur during the flow, particles separate out into
inversely-graded layers sufficiently far downstream and the complex shock breaking
behaviour in monotonely decreasing regions is advected downstream.
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