
Avoiding communication through a multilevel LU
factorization

Donfack, Simplice and Grigori, Laura and Khabou, Amal

2012

MIMS EPrint: 2013.13

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Avoiding communication through a multilevel
LU factorization

Simplice Donfack (simplice.donfack@lri.fr), Laura Grigori
(laura.grigori@inria.fr), and Amal Khabou (amal.khabou@inria.fr).

INRIA Saclay-Ile de France, Laboratoire de Recherche en Informatique, Université
Paris-Sud

Abstract. Due to the evolution of massively parallel computers towards
deeper levels of parallelism and memory hierarchy, and due to the ex-
ponentially increasing ratio of the time required to transfer data, either
through the memory hierarchy or between different compute units, to
the time required to compute floating point operations, the algorithms
are confronted with two challenges. They need not only to be able to ex-
ploit multiple levels of parallelism, but also to reduce the communication
between the compute units at each level of the hierarchy of parallelism
and between the different levels of the memory hierarchy.

In this paper we present an algorithm for performing the LU factorization
of dense matrices that is suitable for computer systems with two levels
of parallelism. This algorithm is able to minimize both the volume of
communication and the number of messages transferred at every level of
the two-level hierarchy of parallelism. We present its implementation for
a cluster of multicore processors based on MPI and Pthreads. We show
that this implementation leads to a better performance than routines
implementing the LU factorization in well-known numerical libraries.
For matrices that are tall and skinny, that is they have many more rows
than columns, our algorithm outperforms the corresponding algorithm
from ScaLAPACK by a factor of 4.5 on a cluster of 32 nodes, each node
having two quad-core Intel Xeon EMT64 processors.

Keywords: LU factorization, communication avoiding algorithms, multiple lev-
els of parallelism

1 Introduction

Due to the evolution of massively parallel computers towards deeper levels of
parallelism and memory hierarchy, and due to an exponentially increasing ratio
of the time necessary to transfer data, either through the memory hierarchy or
between different compute units, to the time required to perform floating point
operations, the algorithms are confronted with two challenges. They need to be
able to exploit multiple levels of parallelism, and they also need to minimize
communication and synchronization at each level of the hierarchy of parallelism

and memory. The particularity of a computer system with multiple levels of par-
allelism is that a compute unit at a given level can be formed by several smaller
compute units connected together. A machine formed by nodes of multicore pro-
cessors can be seen as an example of a machine with two levels of parallelism.
An approach to exploit such an architecture for an existing algorithm consists of
identifying functions which are executed sequentially on a node, and then replac-
ing them by a call to their multithreaded version. This approach, based mainly
on combining MPI and threads, is easy to implement and has been used in many
applications, but can have several drawbacks. It can lead to more communication
and synchronization between MPI processes or between threads, load imbalance,
and in general a simple adaptation of an existing algorithm can cause an impor-
tant degradation of the overall performance on this type of architectures. For
such a computer system, there are two levels of communication: inter-node com-
munication, that is communication between two or more nodes, and intra-node
communication, that is communication performed inside each node. For both
types, an algorithm that takes into account at the design level the two levels of
parallelism can be able to reduce communication at every level.

Motivated by the increased cost of communication with respect to the cost
of computation [11], a new class of algorithms has been introduced in the recent
years for dense linear algebra, referred to as communication avoiding algorithms.
These algorithms, first proposed for dense LU factorization (CALU) [12] and QR
factorization (CAQR) [6], allow to minimize communication on a computer sys-
tem with one level of parallelism (or between two levels of fast and slow memory)
and are as stable as classic algorithms as for example implemented in LAPACK
[2] and ScaLAPACK [3]. They were shown to lead to good performance on dis-
tributed memory machines [6, 12], on multicore processors [7], and on grids [1]. In
the distributed version of CALU and CAQR, blocks of the input matrix are dis-
tributed among processors, and data is communicated via MPI messages during
the factorization. In the approach used for multicore processors [7], operations
on a block are performed as tasks, which are scheduled statically or dynamically
to the available cores. However, none of these algorithms has addressed the more
realistic model of today’s hierarchical parallel computers.

In this paper we introduce an algorithm for performing the LU factorization
of a dense matrix that is suitable for computer systems with two levels of par-
allelism, and that can be further extended to multiple levels of parallelism. We
refer to this algorithm as multilevel CALU. It can be seen as a generalization of
CALU [13, 12]. At each iteration of the initial 1-level CALU algorithm, a block
column, referred to as a panel, is factored and then the trailing matrix is up-
dated. A classic algorithm as Gaussian elimination with partial pivoting (GEPP)
is not able to minimize the number of messages exchanged during the factoriza-
tion. This is because of partial pivoting, which requires to permute the element of
maximum magnitude to the diagonal position at each step of the panel factoriza-
tion. To minimize communication, CALU uses tournament pivoting, a different
strategy shown to be very stable in practice [12]. With this strategy, the panel
factorization is performed in two steps. In the first step, tournament pivoting

uses a reduction operation to select a set of pivot rows from different blocks of
the panel distributed among different processors or different cores, where GEPP
is the operator used at each node of the reduction tree. In the second step, these
pivot rows are permuted to the top of the panel, and then the LU factorization
without pivoting of the panel is performed.

Multilevel CALU uses the same approach as CALU, and it is based on tour-
nament pivoting and an optimal distribution of the input matrix among compute
units to reduce communication at the first level of the hierarchy. However, each
building block of CALU is itself a recursive function that allows to be optimal
at the next level of the hierarchy of parallelism. For the panel factorization, at
each node of the reduction tree of tournament pivoting, CALU is used instead of
GEPP to select pivot rows, based on an optimal layout adapted to the current
level of parallelism. We present this algorithm in section 2. We also model the
performance of our approach by computing the number of floating-point opera-
tions, the volume of communication, and the number of messages exchanged on
a computer system with two levels of parallelism. We show that our approach
is optimal at every level of the hierarchy and attains the lower bounds on com-
munication of the LU factorization (modulo polylogarithmic factors). The lower
bounds on communication for the multiplication of two dense matrices were in-
troduced in [14, 15] and were shown to apply to LU factorization in [6]. We
discuss how these bounds can be used in the case of two levels of parallelism.
Due to the multiple calls to CALU, multilevel CALU performs additional flops
compared to 1-level CALU. It is known in the literature that in some cases,
these extra flops can degrade the performance of a recursive algorithm (see for
example in [8]). However, for two levels of parallelism, the choice of the opti-
mal layout at each level of the hierarchy allows to keep the extra flops as a
lower order term. Furthermore, multilevel CALU may also change the stability
of the 1-level algorithm. We argue in section 3 through numerical experiments
that 2-level CALU specifically studied here is stable in practice. We also show
that multilevel CALU is up to 4.5 times faster than the corresponding routine
PDGETRF from ScaLAPACK tested in multithreaded mode on a cluster of
multicore processors.

2 CALU for multiple levels of parallelism

In this section we introduce a multilevel communication avoiding LU factor-
ization, presented in Algorithm 1, that is suitable for a hierarchical computer
system with L levels of parallelism. Each compute unit at a given level i is formed
by Pi+1 compute units of level i + 1. Correspondingly, the memory associated
with a compute unit at level i is formed by the sum of the memories associated
with the Pi+1 compute units of level i+ 1. Level 1 is the first level and level L is
the last level of the hierarchy of parallelism. Later in this section we model the
communication cost of the algorithm for a computer system with two levels of
parallelism.

The goal of multilevel CALU is to minimize communication at every level
of a hierarchical system. It is based on a recursive approach, where at every
level of the recursion optimal parameters are chosen, such as optimal layout
and distribution of the matrix over compute units, optimal reduction tree for
tournament pivoting. Algorithm 1 receives as input the matrix A of size m× n,
the number of levels of parallelism in the hierarchy L, and the number of compute
units P1 that will be used at the first level of the hierarchy and that are organized
as a two-dimensional grid of compute units of size P1 = Pr1 × Pc1 . The input
matrix A is partitioned into blocks of size b1 × b1,

A =

A11 A12 . . . A1N

A21 A22 . . . A2N

...
...

...
AM1 AM2 . . . AMN

 ,

where M = m/b1 and N = n/b1. The block size b1 and the dimension of the grid
Pr1×Pc1 are chosen such that the communication at the top level of the hierarchy
is minimized, by following the same approach as for the 1-level CALU algorithm
[12]. That is, the blocks of the matrix are distributed among the P1 compute units
using a two-dimensional block cyclic distribution over the two-dimensional grid
of compute units P1 = Pr1 × Pc1 (we will discuss later in this section the values
of Pr1 and Pc1) and tournament pivoting uses a binary reduction tree. At each
step of the factorization, a block of b1 columns (panel) of L is factored, a block
of b1 rows of U is computed, and then the trailing submatrix is updated. Each
of these steps is performed by calling recursively functions that will be able to
minimize communication at the next levels of the hierarchy of parallelism. Note
that Algorithms 1 and 2 do not detail the communication performed during
the factorization, which is triggered by the distribution of the data. By abuse
of notation, the permutation matrices need to be considered as extended by
identity matrices to the desired dimensions. For simplicity, we also consider that
the number of processors are powers of 2.

We describe in more detail now the panel factorization (line 8 of Algorithm 1)
computed by using mTSLU, described in Algorithm 2. It is a multilevel version
of TSLU, the panel factorization used in the 1-level CALU algorithm [13]. Let
B denote the first panel of size m × b1, which is partitioned into Pri blocks.
As in TSLU, mTSLU is performed in two steps. In the first step, a set of b1
pivot rows are selected by using tournament pivoting. In the second step, these
rows are permuted into the diagonal positions of the panel, and then the LU
factorization with no pivoting of the panel is computed. Tournament pivoting
uses a reduction operation, where at the leaves of the tree b1 candidate pivot rows
are selected from each block BI of B. Then a tournament is performed among
the Pri sets of candidate pivot rows to select the final pivot rows that will be
used for the factorization of the panel. At each node of the reduction tree, a new
set of candidate pivot rows is selected from the sets of candidate pivot rows of
the children nodes in the reduction tree. The initial 1-level TSLU uses GEPP
to select a set of candidate pivot rows. However this means that at the second

level of parallelism, the compute units involved in one GEPP factorization will
need to exchange O(b1) messages for each call to GEPP due to partial pivoting,
and hence the number of messages will not be minimized at the second level
of the hierarchy of parallelism. Differently from 1-level TSLU, multilevel TSLU
selects a set of rows by calling multilevel CALU, hence being able to minimize
communication at the next levels of parallelism. That is, at each phase of the
reduction operation every compute unit from the first level calls multilevel CALU
on its blocks with adapted parameters and data layout. At the last level of the
recursion, 1-level CALU is called (referred to in the algorithms as CALU).

Once the panel factorization is performed, the trailing submatrix is updated
using a multilevel solve for a triangular system of equations (referred to as dtrsm)
and a multilevel algorithm for multiplying two matrices (referred to as dgemm).
We do not detail here these algorithms, but one should use recursive versions of
Cannon [4], or SUMMA [10], or a cache oblivious approach [9] if the transfer of
data across different levels of the memory hierarchy is to be minimized as well
(with appropriate data storages).

Algorithm 1 mCALU: multilevel communication avoiding LU factorization

1: Input: m×n matrix A, level of parallelism i in the hierarchy, block size bi, number
of compute units Pi = Pri × Pci

2: if i == L then
3: [Πi, Li, Ui] = CALU(A, bi, Pi)
4: else
5: M = m/bi, N = n/bi
6: for K = 1 to N do
7: [ΠKK , LK:M,K , UKK] = mTSLU(AK:M,K , i, bi, Pri)
8: /* Apply permutation and compute block row of U */
9: AK:M,: = ΠKKAK:M,:

10: for each compute unit at level i owning a block AK,J , J = K + 1 to N do
in parallel

11: UK,J = L−1
KKAK,J /* call multilevel dtrsm on Pi+1 compute units */

12: end for
13: /* Update the trailing submatrix */
14: for each compute unit at level i owning a block AI,J of the trailing submatrix,

I, J = K + 1 to M,N do in parallel
15: AI,J = AI,J−LI,KUK,J /* call multilevel dgemm on Pi+1 compute units

*/
16: end for
17: end for
18: end if

2.1 Performance model

In this section we present a performance model of the 2-level CALU factorization
of a matrix of size n × n in terms of the number of floating-point operations
(#flops), the volume of communication (#words moved), and the number of
messages exchanged (#messages) during the factorization. Let P1 = Pr1×Pc1 be
the number of processors and b1 be the block size at the first level of parallelism.

Algorithm 2 mTSLU: multilevel panel factorization

1: Input: matrix B, level of parallelism i in the hierarchy, block size bi, number of
compute units Pri

2: Partition B on Pri blocks /* Here B = (BT
1 , B

T
2 , ..., B

T
Pri

)T */

3: /*Each compute unit owns a block BI*/
4: for each block BI do in parallel
5: [ΠI , LI , UI] = mCALU(BI , i+ 1, bi+1, Pi+1)
6: Let BI be formed by the pivot rows, BI = (ΠIBI)(1 : bi, :)
7: end for
8: for level = 1 to log2(Pri) do
9: for each block BI do in parallel

10: if ((I − 1) mod 2level−1 == 0) then
11: [ΠI , LI , UI] = mCALU([BI ;BI+2level−1], i+ 1, bi+1, Pi+1)
12: Let BI be formed by the pivot rows, BI = (ΠI [BI ;BI+2level−1])(1 : b, :)
13: end if
14: end for
15: end for
16: Let ΠKK be the permutation performed for this panel
17: /* Compute block column of L */
18: for each block BI do in parallel
19: LI = BIU1(1 : bi, :)

−1 /* using multilevel dtrsm */
20: end for
21: end if

Each compute unit at the first level is formed by P2 = Pr2×Pc2 compute units at
the second level of parallelism. The total number of compute units at the second
level is P = P1 · P2. Let b2 the block size at the second level of parallelism. We
note CALU(m, n, P, b) the routine that performs 1-level CALU on a matrix of
size m× n with P processors and a panel of size b.

We first consider the arithmetic cost of 2-level CALU. It is formed by the
factorization of the panel, the computation of a block row of U, and the update
of the trailing matrix, at each step k of the algorithm. To factorize the panel k
of size b1, we perform 1-level CALU on each block of the reduction tree, using
a grid of P2 smaller compute units and a panel of size b2. The number of flops
performed to factor the k-th panel is,

#flops(CALU(
nk

Pr1
, b1, P2, b2)) + logPr1 ·#flops(CALU(2b1, b1, P2, b2)),

where nk denotes the number of columns of the k-th panel. To perform the
rank-b1 update, first the input matrix of size n × n is divided into P1 blocks
of size n

Pr1
× n

Pc1
. Then each block is further divided among P2 compute units.

Hence each processor from level two computes a rank-b1 update on a block of
size n

Pr1×Pr2
× n

Pc1×Pc2
. It is then possible to estimate the flops count of this step

as a rank-b1 update of a matrix of size n× n distributed into Pr1.Pr2 × Pc1.Pc2

processors. The same reasoning holds for the arithmetic cost of the computation
of block row of U.

We estimate now the communication cost at each level of parallelism. At the
first level we consider the communication between the P1 compute units. This
corresponds to the communication cost of the initial 1-level CALU algorithm,
which is presented in detail in [12]. The size of the memory of one compute
unit at the first level is formed by the sum of the sizes of the memories of the
compute units at the second level. We consider here that this size is of O(n2/P1),
that is each node stores a part of the input and output matrices, and this is
sufficient for determining a lower bound on the volume of communication that
needs to be performed during our algorithm. However, the number of messages
that are transferred at this level depends on the maximum size of data that can
be transferred from one compute unit to another compute unit in one single
message. We consider here the case when the size of one single message is of
the order of n2/P1, which is realistic if shared memory is used at the second
level of parallelism. However, if the size of one single message is smaller, and it
can be as small as n2/P when distributed memory is used at the second level
of parallelism, the number of messages and the lower bounds presented in this
section need to be adjusted for the given memory size.

At the second level we consider in addition the communication between the
P2 smaller compute units inside each compute unit of the first level. We note that
we consider Cannon’s matrix-matrix multiplication algorithm [4] in our model.
Here we detail the communication cost of the factorization of a panel k at the
second level of parallelism. Inside each node we first distribute the data on a grid
of P2 processors, then we apply 1-level CALU using P2 processors and a panel
of size b2:

#messagesk = #messages(CALU(nk
Pr1

, b1, P2, b2))

+ logPr1 ·#messages(CALU(2b1, b1, P2, b2)) + logP2 × (1 + logPr1),
#wordsk = #words(CALU(nk

Pr1
, b1, P2, b2))

+ logPr1 ·#words(CALU(2b1, b1, P2, b2)) + b21 logP2 × (1 + logPr1).

We estimate now the performance model for a square matrix using an op-
timal layout, that is we choose values of Pri, Pci, and bi at each level of the
hierarchy that allow to attain the lower bounds on communication. By following
the same approach as in [12], for two levels of parallelism these parameters can
be written as Pr1 = Pc1 =

√
P1, Pr2 = Pc2 =

√
P2, b1 = n√

P1
log−2 P1, and

b2 = b1√
P2

log−2P2 = n√
P1P2

log−2P1log
−2P2. We note that P = P1 · P2. Table 1

presents the performance model of 2-level CALU. It shows that 2-level CALU at-
tains the lower bounds on communication of dense LU, modulo polylogarithmic
factors, at each level of parallelism.

2.2 Implementation on a cluster of multicore processors

In the following we describe the specific implementation of these algorithms on
a cluster of nodes of multicore processors. At the top level, we have used a static
distribution of the data on the nodes, more specifically the matrix is distributed
using a two-dimensional block cyclic partitioning on a two-dimensional grid of

Table 1. Performance estimation of parallel (binary tree based) 2-level CALU with
optimal layout. The matrix factored is of size n×n. Some lower-order terms are omitted.

Communication cost Lower bound Memory size
at the first level of parallelism

messages O(
√
P1 log3 P1) Ω(

√
P1) O(n2

P1
)

words O(n2
√
P1

logP1) Ω(n2
√
P1

) O(n2

P1
)

Communication cost
at the second level of parallelism

messages O(
√
P log6 P1 +

√
P log3 P1 log3 P2) Ω(

√
P) O(n2

P
)

words O(n2
√
P

log3 P1 logP2) Ω(n2
√
P

) O(n2

P
)

Arithmetic cost of 2-level CALU

flops 1
P

2n3

3
+ 3n3

2P log2 P
+ 5n3

6P log3 P
1
P

2n3

3

processors. This is similar to the distribution used in 1-level CALU [13], and
hence the communication between nodes is performed as in the 1-level CALU
factorization. For each node, the blocks are again decomposed using a two-
dimensional layout, and the computation of each block is associated with a task.
A dynamic scheduler is used to schedule the tasks to the available threads as
described in [7].

Fig. 1. Multilevel TSLU on a computer system with two levels of parallelism.

Figure 1 shows an example of execution of multilevel TSLU algorithm on a
cluster of 4 nodes, each node being formed by a 4 cores processor. The white
squares represent the nodes and the blue circles represent the cores inside a
node. We consider that a binary tree is used at each level of the hierarchy of
parallelism. The figure shows two levels of reduction tree. The red lines represent
communication between different nodes during one panel factorization, and the
blue lines represent synchronization between the different cores during one step
of a smaller panel factorization performed at the second level of parallelism.

3 Experimental results

In this section we discuss first the stability of 2-level CALU, and then we evaluate
its performance on a cluster of multicore processors.

3.1 Stability

It was shown in [12] that CALU is as stable as GEPP in practice. Since 2-
level CALU is based on a recursive call to CALU, its stability can be different
from 1-level CALU. We present here a set of experiments performed on random
matrices and a set of special matrices that were also used in [12] for discussing
the stability of 1-level CALU, where a detailed description of these matrices
can be found. The size of the test matrices is varying from 1024 to 8192. We
use different combinations of the number of processors P1 and P2 and of the
panel sizes b1 and b2. We study both the stability of the LU decomposition
and of the linear solver, in terms of growth factor and three different backward
errors, the normwise backward error, the componentwise backward error, and
‖PA− LU‖/‖A‖. For all the test matrices, the worst growth factor obtained is
smaller than 102. Figure 2 shows the ratios of 2-level CALU’s backward errors to
those of GEPP. For almost all test matrices, 2-level CALU’s normwise backward
error is at most 3× larger that GEPP’s normwise backward error. However, for
special matrices the other two backward errors of 2-level CALU can be larger by
a factor of the order of 102 than the corresponding backward errors of GEPP. We
note that for several test matrices, at most two steps of iterative refinement are
used to attain the machine epsilon. These experiments show that 2-level CALU
exhibits a good stability, however further investigation is required if more than
two levels of parallelism are to be used.

Fig. 2. The ratios of 2-level CALU’s backward errors to GEPP’s backward errors.

3.2 Performance of 2-level CALU

We perform our experiments on a cluster composed of 32 nodes based on Intel
Xeon EMT64 processors running on Linux, each node is a two-socket, quad-core
processor. Each core has a frequency of 2.50 GHz. The cluster is part of Grid 5000
[5]. Both ScaLAPACK and multilevel CALU are linked with BLAS from MKL
10.1. We compare the performance of our algorithm with the corresponding rou-
tine from ScaLAPACK. Our algorithm is implemented using MPI and Pthreads.
In the experiments, P refers to the number of nodes (which corresponds to the
number of compute units P1 at the first level of parallelism described in section
2), T refers to the number of threads per node (which corresponds to the number
of compute units P2 at the second level of parallelism described in section 2),
and b1 and b2 are the block sizes used respectively at the first and the second
level of the hierarchy. The choice of the block size at each level depends on the

architecture, the number of levels in the hierarchy, and the input matrix size. In
our experiments, we empirically tune the block sizes b1 and b2. This tuning is
simple because we only have two levels of parallelism, but it should be replaced
by an automatic approach for multiple levels of parallelism.

At the second level of parallelism, 2-level CALU uses a grid T = Tr × Tc of
threads, where Tr is the number of threads on the vertical dimension working
on the panel, and Tc is the number of threads on the horizontal dimension. Here
we evaluate the performance of three different parametric choices, T = 8 × 1,
T = 4 × 2, and T = 2 × 4. We note that ScaLAPACK is executed over P MPI
processes, and in each node we call multithreaded BLAS routines with T threads.

Figure 3 shows the performance of 2-level CALU and GEPP as implemented
in ScaLAPACK for tall and skinny matrices with varying number of rows. We
observe that 2-level CALU is scalable and faster than ScaLAPACK. For a matrix
of size 106×1200, 2-level CALU is twice faster than ScaLAPACK. Furthermore,
an important loss of performance is observed for ScaLAPACK when m = 104,
while all the variants of 2-level CALU lead to good performance.

9 10 11 12 13 14 15 16 17
0

5

10

15

20

log2(m)

G
F

lo
ps

/s

Tall Skinny Matrix, CALU, n=1200, b=150, P = 4x8, T=8

scalapack_pdgetrf
calu (T=2x4)
calu (T=4x2)
calu (T=8x1)

Fig. 3. Performance of 2-level CALU
and ScaLAPACK on P = 4× 8 nodes,
for matrices with n=1200, m varying
from 103 to 106, b1 = 150, and b2 =
MIN(b1, 100).

Fig. 4. Performance of 2-level CALU
and ScaLAPACK on P = Pr×1 nodes,
for matrices with n = b1 = 150, m =
105, and b2 = MIN(b1, 100).

Figure 4 shows the performance of 2-level CALU on tall and skinny matrices
with varying number of processors working on the panel factorization. Since
the matrix has only one panel, recursive TSLU is called at the top level of the
hierarchy and the adapted multhithreaded CALU is called at the second level.
We observe that for Pr = 4, 2-level CALU is 4.5 times faster than ScaLAPACK.
When Pr > 4, ScaLAPACK’s performance is at most 10 GFlops/s, while 2-level
CALU’s performance is up to 30 GFlops/s, that is twice faster. We note that for
Pr = 8, the variant T = 8× 1 is slightly better than the others. This shows the
importance of determining a good layout at runtime.

Figure 5 shows the performance of 2-level CALU on a square matrix when
the number of processors varies. For each value of P , we use the same layout
for ScaLAPACK and at the top level of parallelism of 2-level CALU. The layout

Fig. 5. Performance of 2-level CALU and ScaLAPACK on P = Pr × Pc nodes, for
matrices with m = n = 104, b1 = 150, and b2 = MIN(b1, 100).

at the second level is one of the three variants discussed previously. We observe
that all the variants of 2-level CALU are faster than ScaLAPACK. The variant
T = 2×4 is usually better than the others. This behavior has also been observed
for multithreaded 1-level CALU [7]. We recall that the matrix is partitioned into
Tr × N/b blocks. Thus increasing Tr increases the number of tasks and the
scheduling overhead, and this impacts the performance of the entire algorithm.

4 Conclusion

In this paper we have introduced a communication avoiding LU factorization
adapted for a computer system with two levels of parallelism, which minimizes
communication at each level of the hierarchy of parallelism in terms of both vol-
ume of data and number of messages exchanged during the decomposition. On
a cluster of multicore processors, that is a machine with two levels of parallelism
based on a combination of both distributed and shared memories, our exper-
iments show that our algorithm is faster than the corresponding routine from
ScaLAPACK. On tall and skinny matrices, a loss of performance is observed for
ScaLAPACK when the number of rows increases, while 2-level CALU shows an
improving speedup. Our performance model shows that 2-level CALU increases
the number of flops, words, and messages just by a polylogarithmic factor.

As future work, we plan to model and to evaluate the performance of our
algorithm for multiple levels of parallelism, and to extend the same approach to
other factorizations as QR. It will also be important to evaluate the usage of
autotuning for computing the optimal layout and the optimal block size at each
level of parallelism.

References

[1] E. Agullo, C. Coti, J. Dongarra, T. Herault, and J. Langem. QR factoriza-
tion of tall and skinny matrices in a grid computing environment. In Parallel
Distributed Processing Symposium (IPDPS), pages 1–11. IEEE, 2010.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ Guide. SIAM, Philadelphia, PA, USA, 1999.

[3] L.S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker,
and R.C. Whaley. Scalapack: A linear algebra library for message-passing
computers. In In SIAM Conference on Parallel Processing, 1997.

[4] L. E. Cannon. A cellular computer to implement the Kalman filter algo-
rithm. PhD thesis, Montana State University, 1969.

[5] F. Cappello, F. Desprez, M. Dayde, E. Jeannot, Y. Jegou, S. Lanteri,
N. Melab, R. Namyst, P.V.B. Primet, O. Richard, et al. Grid5000: a nation
wide experimental grid testbed. International Journal on High Performance
Computing Applications, 20(4):481–494, 2006.

[6] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou. Communication-
optimal parallel and sequential QR and LU factorizations. Technical Re-
port UCB/EECS-2008-89, University of California Berkeley, EECS Depart-
ment, LAWN #204., 2008.

[7] S. Donfack, L. Grigori, and A. K. Gupta. Adapting communication-avoiding
LU and QR factorizations to multicore architectures. In IEEE International
Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2010.

[8] E. Elmroth and F. Gustavson. New serial and parallel recursive QR fac-
torization algorithms for SMP systems. Applied Parallel Computing Large
Scale Scientific and Industrial Problems, pages 120–128, 1998.

[9] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-
oblivious algorithms. In 40th Annual Symposium on Foundations of Com-
puter Science, pages 285–297, 1999.

[10] R. A. Van De Geijn and J. Watts. SUMMA: Scalable Universal Matrix
Multiplication Algorithm. Concurrency Practice and Experience, 9(4):255–
274, 1997.

[11] S. L. Graham, M. Snir, and C. A. Patterson. Getting up to speed: The future
of supercomputing. National Academies Press, 2005.

[12] L. Grigori, J. Demmel, and H. Xiang. CALU: A communication optimal
LU factorization algorithm. SIAM Journal on Matrix Analysis and Appli-
cations, 32:1317–1350, 2011.

[13] L. Grigori, J.W. Demmel, and H. Xiang. Communication avoiding Gaussian
elimination. In Proceedings of the 2008 ACM/IEEE conference on Super-
computing, page 29. IEEE Press, 2008.

[14] J.-W. Hong and H. T. Kung. I/O complexity: The red-blue pebble game.
In Proceedings of the thirteenth annual ACM symposium on Theory of com-
puting. ACM, 1981.

[15] D. Irony, S. Toledo, and A. Tiskin. Communication lower bounds for
distributed-memory matrix multiplication. Journal of Parallel and Dis-
tributed Computing, 64(9):1017–1026, 2004.

