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Abstract

The University of Manchester
Daniel Mark Robinson
Doctor of Philosophy
The Homotopy Exponent Problem For Certain Classes of Polyhedral
Products
28 September 2012

Given a sequence of n topological pairs Ai ⊆ Xi for i = 1, . . . , n and a
simplicial complex K on n vertices, there is a topological space (X,A)K by a
construction of Buchstaber and Panov. Such spaces are called polyhedral prod-
ucts and they generalize the central notion of the moment-angle complex in toric
topology. In this thesis, we study certain classes of polyhedral products from a
homotopy theoretic point of view.

The boundary of the 2-dimensional n-sided polygon, where n ≥ 3, may be
viewed as a 1-dimensional simplicial complex with n vertices and n faces which
we call the n-gon. When K is an n-gon for n ≥ 5, (D2, S1)

K
is a hyperbolic

space, by a Theorem of Debongnie. We show that there is an infinite basis of the
rational homotopy groups π∗((D

2, S1)
K

) ⊗ Q represented by iterated Samelson
products.

When K is an n-gon, for n ≥ 3, and Pm(pr) is a Moore space with m ≥ 3, r ≥
1, we show that the order of the elements in the p-primary torsion component of
the homotopy groups π∗((Cone ΩPm(pr),ΩPm(pr))K) is bounded above by pr+1,
adding new evidence to a conjecture of Moore. Moreover, this bound is the best
possible. In fact, if a certain conjecture of M.G. Barratt is assumed to be true,
then this bound is also valid, and is the best possible, when K is an arbitrary
simplicial complex.
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General Notation

Throughout this thesis, unless stated otherwise, all spaces are assumed to be

simply connected, based topological spaces which have the homotopy type of

finite type CW-complexes, and all maps are basepoint preserving.

The identity map on X is denoted by 1X or just by 1 if it is clear which

space we are referring to. In homotopy commutative diagrams, X X is

also used for the identity. A left homotopy inverse for a map f : X −→ Y is a

map g : Y −→ X such that the composite X
f−→ Y

g−→ X, denoted by g ◦ f ,

is homotopic to the identity on X. Similarly, a right homotopy inverse for f is

a map g : Y −→ X such that f ◦ g is homotopic to the identity map on Y . If

g is both a left and right homotopy inverse for f , then f is called a homotopy

equivalence, and X is said to be homotopy equivalent to Y . The notation ' is

used to denote both a homotopy of maps f ' g as well as homotopy equivalent

spaces X ' Y .

Let X, Y be spaces. The wedge sum X ∨ Y is the disjoint union of X and Y

modulo the identification of the basepoints ∗X ∼ ∗Y . The smash product X ∧ Y

is the quotient space X × Y/ ∼ where (x, ∗) ∼ (∗, y) for each x ∈ X and y ∈ Y .

The wedge sum of n copies of X is denoted nX, the smash product of n copies

of X is denoted X∧n, and the product of n copies of X is denoted Xn.

Let n ≥ 1 be an integer. For an H-space X, the n-power map defined by the

multiplication on X is denoted by n : X −→ X. For a co-H-space Y , the degree

10



11

n map defined via the co-multiplication is denoted [n] : Y −→ Y .

The n-dimensional disc {x ∈ Rn | |x| ≤ 1} is denoted by Dn. The boundary

of Dn+1 is called the n-dimensional sphere and is denoted by Sn. A related space

of particular interest in this thesis is the (mod pr) Moore space Pm(pr) which

is defined for m ≥ 2 and r ≥ 1 as the homotopy cofibre of the degree map

[pr] : Sm−1 −→ Sm−1.

Let I = [0, 1] be the unit interval. The reduced suspension of X is the quotient

space ΣX = X × I/ ∼ where (x, 0) ∼ (x, 1) ∼ (∗, t) for x ∈ X and t ∈ I. The

reduced cone of X is the quotient space ConeX = X × I/((X ×{1})∪ (∗X × I)).

The join of spaces X, Y is the quotient space X ∗ Y = X × I × Y/ ∼ where

(x, 0, y) ∼ (x, 0, y′) and (x, 1, y) ∼ (x′, 1, y) for each x ∈ X and y ∈ Y . There is a

natural homotopy equivalence X ∗ Y ' ΣX ∧ Y . The (right) half-smash product

is the quotient space XoY = (X×Y )/ ∗×Y and similarly, the (left) half smash

product is the space X n Y = (X × Y )/X × ∗.

Let X, Y be topological manifolds of dimension n, and choose a point x ∈

X and y ∈ Y . Let Bx be an open neighbourhood in X, centered at x, and

denote the closure by Bx. Similarly, let By be an open neighbourhood of y ∈

Y , with closure By. Then the connected sum of X, Y is the space X#Y =

(X\Bx

∐
Y \By)

∐
(I×Sn−1)/ ∼ where {0}×Sn−1 is identified with the boundary

of Bx, and {1} × Sn−1 is identified with the boundary of By. It is a standard

result that upto homeomorphism, the connected sum does not depend on the

choice of the points x, y, the choice of the open neighbourhoods Bx, By, or the

identification of the boundaries Bx, By with the ends of the cylinder I × Sn−1.

Let X be a space. The diagonal map ∆: X −→ X ×X is defined by ∆(x) =

(x, x) and the fold map ∇ : X ∨ X −→ X is the map whose restriction to each

wedge summand is the identity map on X.
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Let f : X −→ Y , g : A −→ B be maps. We use the notation

X ∨ A f∨g
// Y ∨B, X ∧ A f∧g

// Y ∧B, X × A f×g
// Y ×B,

where (f ∨ g)(z) is f(z) if z ∈ X or g(z) if z ∈ A; (f ∧ g)(x ∧ a) = f(x) ∧ g(a);

and (f × g)(x, a) = (f(x), g(a)).

The unbased pathspace of X, denoted XI , is the set of all (unbased) continuous

maps I −→ X, with the compact-open topology. The (based) path space of

X, denoted PX is the set of all based maps I −→ X, with the compact-open

topology. The subspace ΩX = {f : I −→ X ∈ PX | f(0) = f(1)} is called the

(based) loopspace of X.

Given spaces X, Y , the set of homotopy classes of maps [X, Y ] is called the

homotopy set of X, Y . If either X is a co-H-group or Y is an H-group, then

[X, Y ] can be given a natural group structure. In the case that both X is a

co-H-group and Y is an H-group, the group structures coincide and the group

[X, Y ] is Abelian. For arbitrary spaces X, Y , there is an isomorphism of groups

[ΣX, Y ] ∼= [X,ΩY ], since Σ and Ω are adjoint functors.

The Whitehead product of maps f : ΣX −→ Z, g : ΣY −→ Z is denoted

by [f, g] : ΣX ∧ Y −→ Z and the Samelson product of maps f : X −→ ΩZ,

g : Y −→ ΩZ is denoted by 〈f, g〉 : X ∧ Y −→ ΩZ. We define these products in

Section 2.2.2.

Finally, Z/n denotes the cyclic group of order n and for a prime p, X(p) is the

localization of X at p.



Chapter 1

Introduction

The calculation of the homotopy groups of topological spaces is a notoriously

difficult problem in general. The homotopy groups of spheres for example, despite

much progress over the past century still remain a great mystery. In his PhD

thesis, Serre showed that the homotopy groups of simply connected finite CW-

complexes are finitely generated Abelian groups and showed in [27] that πk(S
n)

is a finite group except for πn(Sn) ∼= Z, and π4n−1(S2n) ∼= Z, modulo torsion, for

all n ≥ 1. In particular, it is the torsion in the homotopy groups of spheres which

has been so problematic to calculate.

This situation led topologists to take a more qualitative approach. In the

50’s, James [17], [18] introduced what are now known as James-Hopf invariants

and using associated fibrations was able to determine that the 2-primary torsion

in π∗(S
2n+1) is annihilated by 4n. Toda [29],[30] quickly built on the work of

James and extended his result to odd primes by defining analogous invariants. In

particular, Toda showed that p2n annihilates the p-torsion in π∗(S
2n+1).

It took twenty years for further improvements on the work of James and Toda

to appear. In 1978, Selick [23] showed that for odd primes, the p-torsion in

π∗(S
3) is annihilated by p, improving on Toda’s result of p2, and this was almost

13



CHAPTER 1. INTRODUCTION 14

immediately extended by Cohen, Moore and Neisendorfer [7] who showed that

pn annihilates the p-torsion in π∗(S
2n+1) for each n ≥ 1 when p is odd. Gray [12]

had earlier shown that for odd primes, and n ≥ 1, π∗(S
2n+1) contains elements of

order pn. Thus the result of Cohen, Moore and Neisendorfer is the best possible.

For the prime 2, it is known that James’ result is not the best possible. See for

example [24]. In fact the best possible bound in this case is still unknown.

In modern parlance, results such as those outlined above are known as expo-

nent results. The homotopy exponent of a space X, (at the prime p), denoted

expp(X), is the least pr which annihilates the p-torsion in the homotopy groups

of X.

As well as determining the homotopy exponent for all odd primes of odd

dimensional spheres, Cohen, Moore and Neisendorfer [6] were also able to deter-

mine the homotopy exponent of another very interesting family of spaces. For

n ≥ 1 and p a prime, the cofibre of the pr degree map on the m − 1 sphere

[pr] : Sm−1 −→ Sm−1 is called the mod pr Moore space of dimension m and de-

noted Pm(pr). For odd primes, and r ≥ 1, they proved that expp(P
m(pr)) = pr+1.

At the end of the 70’s, Moore made an intriguing conjecture relating the

existence of finite homotopy exponents for a space X to the dimension of the

rational homotopy groups π∗(X)⊗Q as a vector space over Q.

Conjecture 1.1 (Moore’s Conjecture). Let p be a prime and let X be a simply

connected finite CW-complex. Then π∗(X)⊗Q is finite-dimensional if and only

if X has a finite homotopy exponent at p.

Spaces which have finite-dimensional rational homotopy are called elliptic

spaces and spaces which are not elliptic are called hyperbolic. Interestingly,

Moore’s Conjecture is independent of the prime p, and so if correct, the implica-

tion is that the finiteness of the homotopy exponent at a specific prime, implies
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the finiteness of the homotopy exponent at all primes. Moore did not publish this

conjecture officially, but for some historical background and illuminating discus-

sion of this conjecture, the reader is advised to consult Selick’s expository article

[25].

Another conjecture of interest was put forward by Barratt regarding the ho-

motopy exponents of double suspensions, and emerged out of the work in [3]. An

expository discussion is also given in the aforementioned article of Selick [25]. We

state the weak form of Barratt’s Conjecture here:

Conjecture 1.2 (Weak form of Barratt’s Conjecture). Suppose that the pr degree

map [pr] : ΣY −→ ΣY is null-homotopic. Then expp(Σ
2Y ) ≤ pr+1.

Moore spaces are one of very few families of spaces which are known to satisfy

Barratt’s Conjecture.

In this thesis, we study a family of topological spaces called polyhedral prod-

ucts. Given a sequence of pairs of spaces {(Xi, Ai)}ni=1 with Ai a subspace of

Xi for each i, and a simplicial complex K, the associated polyhedral product,

denoted (X,A)K , is the homotopy colimit ∪σ∈KY σ over the face category of K,

where Y σ = {(x1, . . . , xk) ∈
∏n

i=1 Xi | xj ∈ Aj if j /∈ σ}. Polyhedral products

generalize a construction, due to Buchstaber and Panov [4], of the moment-angle

complex ZK and Davis-Januszkiewicz space DJK , which were first introduced in

[8] and are central objects of study in the field of toric topology. In this thesis,

inspired by the conjectures of Moore and Barratt, we study certain sub-classes of

polyhedral products, and obtain results related to their rational homotopy and

their homotopy exponents.



CHAPTER 1. INTRODUCTION 16

1.1 Summary of the main results

Our first result concerns the classical moment-angle complex ZK , which is the

polyhedral product obtained by taking (Xi, Ai) = (D2, S1) for each i.

Theorem A. Suppose n ≥ 5 and let K be the n-gon. Then there is a subspace

W of (D2, S1)
K

, where W is a wedge of spheres, and the homotopy fibre of the

inclusion W ↪−→ (D2, S1)
K

is homotopy equivalent to a wedge sum of infinitely

many spheres.

As a consequence of Theorem A we prove:

Theorem B. Suppose n ≥ 5 and let K be the n-gon. Then π∗((D
2, S1)

K
) ⊗ Q

has an infinite basis of iterated Samelson products as a vector space over Q.

One conclusion of Theorem B is that (D2, S1)
K

is hyperbolic for such K.

Actually this was already known by a special case of a theorem of Debongnie [9],

who showed that (D2, S1)
K

is elliptic if and only if K is a join of simplices and

boundaries of simplices. However, our result complements that of Debongnie by

providing extra information about the basis.

Our next results concern the polyhedral products (Cone ΩX,ΩX)K where Xi

is a Moore space for each i.

Theorem C. Let n ≥ 3 and let K be the n-gon. Let p be an odd prime and

take Xi = Pmi(pri) where mi ≥ 3 and ri ≥ 1 for each i. Then

expp((Cone ΩX,ΩX)K) = pR+1.

where R = max{ri}ni=1.

Our final result extends the statement of Theorem C, under the hypothesis

that Barratt’s Conjecture is true, to mi = m ≥ 4, ri = r ≥ 1, and all simplicial
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complexes K, except the full simplex, in which case the associated polyhedral

product is contractible.

Theorem D. Let K be a simplicial complex on n ≥ 1 vertices, K 6= ∆n−1, and

let P = Pm(pr) where m ≥ 4 and r ≥ 1. If Barratt’s Conjecture holds, then

expp((Cone ΩP ,ΩP )K) = pr+1.

1.2 Outline of the thesis

A brief description of the organization of this thesis is as follows.

Chapter 2: We introduce basic homotopy theoretic definitions and consider

various classical results and methods concerning decompositions of spaces up to

homotopy.

Chapter 3: In this chapter we introduce our main of objects of study, poly-

hedral products, and record some basic facts and useful properties.

Chapter 4: We introduce homotopy exponents and discuss the conjectures

of Moore and Barratt. We also review some of the work of Cohen, Moore and

Neisendorfer and others on the homotopy exponents of spheres and Moore spaces.

Chapter 5: In this chapter, we begin to discuss our main results. We re-

view what is known about the ellipticity/ hyperbolicity problem, and homotopy

exponents, for polyhedral products, and conclude by proving Theorems A and B.

Chapter 6: In the final chapter we study the polyhedral product (Cone ΩX,ΩX)K

where X is a Moore space Pm(pr) for m ≥ 3, r ≥ 1. In the case that K is an n-

gon we obtain the value pr+1 for the p-primary homotopy exponent, and we show

that if Barratt’s conjecture holds, then the exponent is also pr+1 for arbitrary

K 6= ∆n, when m ≥ 4. This proves Theorems C and D.



Chapter 2

Preliminaries

2.1 Basic homotopy theory and definitions

In this chapter we introduce our basic homotopy theoretic definitions, construc-

tions and philosophies related which permeate the work in this thesis.

2.1.1 Homotopy pullbacks and pushouts

Two fundamental constructions which appear throughout this thesis are homo-

topy pushouts and homotopy pullbacks. First of all, we recall the definitions of

the standard topological pullback and pushout. Given maps f : X −→ Z and

g : Y −→ Z, the topological pullback of f and g is the space P = {(x, y) ∈

X × Y | f(x) = g(y)}. Moreover, the maps P −→ X and P −→ Y induced by

the projection maps fit into a commutative diagram called a pullback diagram

P //

��

Y

g
��

X
f
// Z.

18
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The pullback satisfies the following universal property. If α : A −→ X and

β : A −→ Y are maps such that f ◦ α = g ◦ β, then there exists a unique

map A −→ P such that α equals the composite A −→ P −→ X and β equals

A −→ P −→ Y .

Dually the topological pushout of maps f : X −→ Y and g : X −→ Z is the

adjunction space Q = (Y t Z)/ ∼, where f(x) ∼ g(x). The inclusion maps

Y −→ Q and Z −→ Q fit into a commutative diagram called a pushout diagram,

and we have the following universal property. If α : Y −→ A and β : Z −→ A are

maps, such that α ◦ f = β ◦ g, then there exist a unique map Q −→ A such that

α is the composite Y −→ Q −→ A and β is the composite Z −→ Q −→ A.

In the homotopy category, that is, the category of simply-connected CW-

complexes with homotopy classes of maps, we have the notion of homotopy pull-

back and homotopy pushout.

Definition 2.1. The homotopy pullback of two maps f : X → W , g : Y → W is

given by

P = {(x, ω, y) ∈ X ×W I × Y |f(x) = ω(0), g(y) = w(1)}

where W I is the unbased pathspace on W . The projection maps π1 : P → X,

π2 : P → Y produce a homotopy commutative square

P
π2 //

π1

��

Y

g
��

X
f
//W.

P is universal in the sense that for any two maps h : A → X, k : A → Y there

exists a map m : A → P , unique upto homotopy, such that π1 ◦ m ' h and

π2 ◦m ' k.
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Example 2.2. The product X × Y is both the topological pullback, and the

homotopy pullback of the trivial maps X −→ ∗ and Y −→ ∗. Moreover, the

induced maps X × Y −→ X and X × Y −→ Y are the projection maps.

The notion of homotopy pushout is dual to that of the homotopy pullback.

Definition 2.3. The homotopy pushout of two maps f : X → Y , g : X → Z is

given by the double mapping cylinder

W = Y t Z t (X × I)/ ∼

where the equivalence relation ∼ is defined by (x, 0) ∼ f(x), and (x, 1) ∼ g(x).

The inclusion maps of Y an Z into Y ∪Z∪ (X×I) induce inclusions i1 : Y → W ,

i2 : Z → W respectively which fit into a homotopy commutative square

X
g
//

f
��

Z

i2
��

Y
i1
//W.

W is universal in the dual sense to Definition (2.1).

A very simple example of a pushout is the wedge of two spaces.

Example 2.4. The topological pushout of the two maps f : ∗ −→ X and g : ∗ −→

Y which include the basepoint, is given by the disjoint union X t Y with the

basepoints identified ∗X ∼ ∗Y . This is by definition the wedge X ∨ Y . The

homotopy pushout of f and g on the other hand, is the disjoint union X t Y t I

modulo the identification of 0 ∈ I with ∗X and the identification of 1 ∈ I with

∗Y . This is clearly homotopy equivalent to the wedge X ∨ Y .

In general, homotopy pullbacks and homotopy pushouts do not coincide with

their topological counterparts upto homotopy. In fact, the topological pushout Q
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of maps f : X −→ Y , g : X −→ Z is not well-defined in the homotopy category,

and similarly for the topological pullback. That is, if we replace f, g with homo-

topy equivalent maps f, g, it needn’t be the case that the topological pushout of

f, g is homotopy equivalent to Q.

The classic example of this is the following:

Example 2.5. The diagram

D2 ←↩ S1 ↪→ D2

is equivalent upto homotopy to the diagram

∗ ←↩ S1 ↪→ ∗.

However, the topological pushout defined by the first diagram is homotopy equiv-

alent to S2, whereas the topological pushout defined by the second diagram is

contractible.

On the other hand, if we replace X, Y, Z by homeomorphic spaces X ′, Y ′, Z ′,

and replace f, g by maps f ′ : X ′ −→ Y ′ and g′ : X ′ −→ Z ′ such that there are

commutative diagrams

X
f
//

∼=
��

Y

∼=
��

Y
g
//

∼=
��

Z

∼=
��

X ′
f ′
// Y ′, Y ′

g′
// Z ′

then the topological pushout of the maps f ′, g′ is in fact homeomorphic to Q, so

the topolgical pushout, is well-defined in the category of topological spaces and

continuous maps. Similarly topological pullbacks are well defined in this category.
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The homotopy pushout and homotopy pullback are the correct modification re-

quired to the definition of their topological counterparts in order to ensure that

pushouts and pullbacks exist in the homotopy category.

2.1.2 Homotopy fibrations and cofibrations

Homotopy fibrations and cofibrations are extremely important in homotopy the-

ory and will feature heavily in our work.

Definition 2.6. A map p : E → B is called a topological fibration, (or fibration),

if the following homotopy lifting property is satisfied. For all spaces W and maps

g0 : W −→ B, h0 : W −→ E, and a homotopy gt : W −→ B of g0 such that

p ◦ h0 = g0, there exists a homotopy ht : W −→ E of h0 such that p ◦ ht = gt.

If p is a topological fibration, we call p−1(∗) the topological fibre of p. We

generally write fibrations as sequences F
i

↪−→ E
p−→ B to indicate that p is a

fibration with topological fibre F , with i being the inclusion.

A homotopy fibration is a sequence of maps which is a fibration up to homo-

topy:

Definition 2.7. A homotopy fibration is a sequence of maps X −→ Y −→ Z

such that there is a homotopy commutative diagram

X //

��

Y //

��

Z

��

F // E // B

in which the vertical maps are homotopy equivalences and the bottom row is a

topological fibration.

The following construction shows that any map may be viewed as a homotopy

fibration.
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Construction 2.8 (Replacing a map by a homotopy fibration). Let f : X → Y

be a map and let

X̃ = {(x, ω) ∈ X × Y I | f(x) = ω(1)}.

Then there is a homotopy commutative diagram

X

'
��

f

��

X̃ ev0

// Y

where ev0 is the evaluation map defined by (x, ω) 7→ ω(0). The homotopy equiv-

alence X
'−→ X̃ is given by the inclusion x 7→ (x, ∗x) where ∗x is the constant

path at x.

The map ev0 in Construction 2.8 is a topological fibration, with topological

fibre {(x,w) ∈ X × PY | f(x) = w(1)}. This leads us to define the homotopy

fibre of a map.

Definition 2.9. Let f : X −→ Y be a map. The homotopy fibre of f is the space

{(x,w) ∈ X × PY | f(x) = w(1)}.

Notice that if F is the homotopy fibre of f : X −→ Y , and p : F −→ X is the

projection (x,w) 7→ x, then there is a homotopy commutative diagram

F
p
// X

f
//

'
��

Y

F // X̃ ev0

// Y

in which the bottom row is a topological fibration, and thus by Definition 2.7,

the sequence F
p−→ X

f−→ Y is a homotopy fibration.
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Next we state some useful properties exhibited by homotopy fibrations.

Proposition 2.10. Let F −→ E
p−→ B be a homotopy fibration, and f : X −→ E

be any map which becomes null-homotopic after composing with p. Then, there

exists a lift of f to a map f̃ : X → F . Thus, there is a homotopy commutative

diagram,

X
∃f̃

~~

f
��

∗

  

F // E // B.

Proof. Trivial.

We now go on to prove a useful fibre square property, which is useful for

constructing new fibrations. First we need a lemma.

Lemma 2.11. Let

P
p1
//

q1
��

B

q2
��

A
p2
// C

be a homotopy commutative square and let F1, F2 be the homotopy fibres of q1, q2

respectively and let G1, G2 be the homotopy fibres of p1, p2 respectively. Then the

following are equivalent:

1. there exists an induced map F1 −→ F2 which is a homotopy equivalence,

2. the square is equivalent in the homotopy category to a topological pullback

in which q1 and q2 are topological fibrations

3. there exists an induced map G1 −→ G2 which is a homotopy equivalence,

4. the square is equivalent in the homotopy category to a topological pullback

in which p1 and p2 are topological fibrations.

Proof. See [26], Proposition 7.6.1.
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Now we can prove the fibre square property. The proof we give follows [6].

Proposition 2.12. Any homotopy commutative square

A //

��

B

��

C // D

can be extended to a homotopy commutative diagram of the following form

H //

��

F1
//

��

F2

��

G1
//

��

A
g
//

f
��

B

i
��

G2
// C

j
// D

in which all rows and columns are homotopy fibrations.

Proof. Construction 2.8 allows us to replace the original square by the following

homotopy commutative square

A
f
//

g
��

B̃

π1

��

C̃ π2

// D

(2.1)

in which the πi are topological fibrations, homotopy equivalent to i, j respectively.

In particular, π1 satisfies the homotopy lifting property and so f can be replaced,

if necessary, by a homotopic map which makes the diagram (2.1) strictly commute.

Let P be the topological pullback of π1 and π2. By universality, there is a unique
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map A −→ P is defined, making the following diagram commute.

A
f

''
g

��

��

P //

��

B̃

π1

��

C̃ π2

// D

(2.2)

After replacing the map A −→ P with a topological fibration, Ã −→ P , as in

construction 2.8, all maps in diagram (2.2) are now topological fibrations.

Let H be the fibre of Ã −→ P . Extending the maps in the commutative

square

Ã
f
//

g
��

B̃

π1

��

C̃ π2

// D

to fibration sequences, there is a commutative diagram

F1
//

��

F2

��

G1
//

��

Ã //

��

B̃

��

G2
// C̃ // D.

(2.3)

Since P is a pullback, the map P −→ C̃ in diagram (2.2) has the same fibre as
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π1. Thus there is a commutative diagram

F1
//

��

F2

��

F2

��

Ã //

��

P //

��

B̃

��

C̃ C̃ // D,

in which all columns are fibration sequences. Since the map C̃ −→ C̃ is the

identity, the upper left square is a pullback. Thus, F1 −→ F2 is a fibration with

the same fibre as Ã −→ P , namely H. A similar argument also shows that

G1 −→ G2 is a fibration with fibre H.

Hence diagram (2.3) can be completed to give a commutative diagram

H //

��

F1
//

��

F2

��

G1
//

��

Ã //

��

B̃

��

G2
// C̃ // D

in which all rows and columns are fibrations. Replacing Ã, B̃, C̃ with the homo-

topy equivalent spaces A,B,C gives the result.

We now briefly discuss homotopy cofibrations which are defined dually to

homotopy fibrations. First we define topological cofibrations.

Definition 2.13. A map f : A −→ X is called a (topological) cofibration if for

any space Z, maps g0 : A −→ Z and h0 : X −→ Z and a homotopy gt : A −→ Z

of g0 such that h0 ◦ f = g0, there exists a homotopy ht : X −→ Z of h0 such that

ht ◦ f = gt.
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If f : A −→ X is a cofibration, we call the space X/ im(f) the topological

cofibre of f . The sequence A
f−→ X

q−→ C is also referred to as a cofibration,

where q is the quotient map.

Definition 2.14. A homotopy cofibration is a sequence of maps X −→ Y −→ Z

such that there is a homotopy commutative diagram

X //

��

Y //

��

Z

��

A // B // C

in which the vertical maps are homotopy equivalences and the bottom row is a

topological cofibration.

We remark that by a constructon dual to Construction 2.8, any map may be

replaced by a homotopy cofibration. This construction leads to the definition of

the homotopy cofibre of a map.

Definition 2.15. Let f : A −→ X be a map. The homotopy cofibre of f is

defined as (X t ConeA)/ ∼ where f(a) ∼ (a, 0) for each a ∈ A.

We omit the details here but it is straightforward to dualize Proposition 2.10,

Lemma 2.11 and Proposition 2.12 to the corresponding results for homotopy

cofibrations.

An important family of spaces we shall consider in this thesis are Moore

spaces. Let m ≥ 2 and let r ≥ 1. Denote the homotopy cofibre of the pr degree

map [pr] : Sm−1 −→ Sm−1 by Pm(pr). We call Pm(pr) the mod pr Moore space

of dimension m. Moore spaces are to homology as Eilenberg-Maclane spaces are

to homotopy, in the sense that they have only one non-trivial integral homology

group Hm−1 (Pm(pr);Z) ∼= Zpr .
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From now on all fibrations will be homotopy fibrations, unless stated other-

wise.

2.1.3 Homotopy actions and principal fibrations

A useful property possessed by certain homotopy fibrations is that there is an

action of the fibre on the base.

Definition 2.16. A homotopy fibration F
i−→ E

p−→ B is called a principal

fibration if there is a space X, a map f : B −→ X and a homotopy pullback

diagram

E //

p
��

PX
ev1

��

B
f
// X

It follows from the definition that if F
i−→ E

p−→ B is a homotopy fibration

and ∂ : ΩB −→ F is the connecting map, then ΩB
∂−→ F

i−→ E is principal.

Next we define the notion of a left and right homotopy action of an H-space X

on a space Y .

Definition 2.17. Let X be an H-space with multiplication µ : X×X −→ X, and

let f : X −→ Y be a map. A left homotopy action for f is a map θl : X×Y −→ Y

such that the diagram

X ×X µ
//

1×f
��

X

f
��

X × Y θl // Y

is homotopy commutative.

Similarly, a right homotopy action for f is a map θr : Y ×X −→ Y which fits
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into a homotopy commutative diagram

X ×X µ
//

f×1
��

X

f
��

Y ×X θr // Y.

Given a principal fibration ΩB
∂−→ F

i−→ E, it is a classical and well known

result that ∂ has a left homotopy action θl : ΩB × F −→ F , and similarly, a

right homotopy action. Represent a loop in ΩB by a map α : I −→ B such that

α(0) = α(1). The action of α on f ∈ F is given by lifting α to a path α̃ : I −→ E

such that α̃(0) = f . The endpoint α̃(1) belongs to F and we set θ(α, f) = α̃(1).

Homotopy actions associated to principal fibrations are natural in the follow-

ing sense. Suppose there is a morphism of homotopy fibrations

F1
//

f1

��

E1
//

f2

��

B1

f3

��

F2
// E2

// B2

with associated homotopy actions ψ1 : ΩB1×F1 −→ F1 and ψ2 : ΩB2×F2 −→ F2

respectively. Then there is a homotopy commutative diagram

ΩB1 × F1
ψ1
//

(Ωf3)×f1

��

F1

f1

��

ΩB2 × F2 ψ2

// F2.

The following proposition gives conditions for recognizing when a principal

fibration splits.

Proposition 2.18. For any homotopy fibration sequence ΩB
∂−→ F

i−→ E
p−→

B. The following are equivalent:
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1. p is null-homotopic,

2. i admits a right homotopy inverse r : E −→ F ,

3. there is a homotopy equivalence ΩB ×E 1×r−→ ΩB ×F θ−→ F where r is the

right homotopy inverse in (2) and θ is the standard homotopy action for ∂,

4. ∂ admits a left homotopy inverse l : F −→ ΩB,

5. there is a homotopy equivalence F
∆−→ F × F l×i−→ ΩB × E where l is the

left homotopy inverse in (4).

Proof (1) ⇒ (2). If p is null-homotopic then the identity map on E lifts to a

map r : E −→ F and so i ◦ r is homotopic to the identity.

Proof (2) ⇒ (3). Suppose r is a right homotopy inverse for i. Let θ : ΩB×F −→

F denote the homotopy action for ∂ and let µ be the loop multiplication on ΩB.

Then there is a homotopy commutative diagram

ΩB × ∗ 1×∗
//

1×∗
��

ΩB × ΩB
µ
//

1×∂
��

ΩB

∂
��

ΩB × E 1×r
//

∗×1
��

ΩB × F θ //

∗×i
��

F

i
��

∗ × E ∗ × E E

(2.4)

which yields a morphism of homotopy fibrations

ΩB

inc
��

ΩB

∂
��

ΩB × E θ◦(1×r)
//

proj
��

F

i
��

E E.
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Looking at the induced long exact sequences of homotopy groups, the Five Lemma

shows that θ is a weak homotopy equivalence and hence by Whitehead’s Theorem

is a homotopy equivalence.

Proof (4) ⇒ (5). Let l : F −→ ΩB be a left homotopy inverse for ∂. Then there

is a homotopy commutative diagram

ΩB ∆ //

∂
��

ΩB × ΩB
1×∗

//

∂×∂
��

ΩB × ∗
1×∗
��

F
∆ //

i
��

F × F l×i
//

∗×i
��

ΩB × E
∗×1
��

E // ∗ × E ∗×1
// ∗ × E

which yields a morphism of homotopy fibrations

ΩB

∂
��

ΩB

inc
��

F
(l×i)◦∆

//

i
��

ΩB × E
proj
��

E E

Appealing to the Five Lemma and Whitehead’s Theorem establishes that (l×i)◦∆

is a homotopy equivalence.

We conclude this section by noting without giving explicit details that Def-

inition 2.16 dualizes to give the notion of a principal cofibration, and moreover,

for any homotopy cofibration A −→ B −→ C, the extended cofibration sequence

B −→ C −→ ΣA is principal. There is also a notion of homotopy coaction, dual

to that of the homotopy action and for any homotopy cofibration A −→ B −→ C,

there is an associated coaction C −→ ΣX ∨ C. See for example [1] for details.

Then Proposition 2.18 dualizes as follows:
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Proposition 2.19. For any homotopy cofibration sequence X
f−→ Y

i−→ C
j−→

ΣX. The following are equivalent:

1. f is null-homotopic,

2. i admits a left homotopy inverse l : C −→ Y ,

3. there is a homotopy equivalence C
ψ−→ ΣX ∨ C 1∨l−→ ΣX ∨ Y where ψ the

standard coaction for j.

4. j admits a right homotopy inverse r : ΣX −→ C,

5. there is a homotopy equivalence ΣX ∨ Y r∨i−→ C ∨ C fold−→ C.

2.2 Homotopy decompositions

In this section we introduce various methods for decomposing spaces upto ho-

motopy. Usually we are interested in decomposing a space as a product or as a

wedge of simpler spaces. Such decompositions are especially desirable owing to

fact that the homology of wedge sum splits as a direct sum of the homology of the

summands, and similarly the homotopy groups of a product splits as the direct

sum of homotopy groups of the factors. So such decompositions of a space can be

helpful in understanding and calculating their algebraic invariants. Conversely,

being able to decompose the homology or homotopy groups of a space can oc-

casionally be a good indication that the space admits an analogous homotopy

decomposition.

2.2.1 Mather’s Cube Lemma

In [19], Mather studied various properties of the homotopy pullback and pushout.

One result which will recur in our work is the following cube lemma.
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Lemma 2.20 (Mather’s Cube Lemma). Suppose there is a homotopy commuta-

tive diagram

E //

��

��

F

��

  

G //

��

H

��

A //

��

B

  

C // D

such that

1. the bottom square A−B − C −D is a homotopy pushout;

2. and each of the four vertical squares E − G − A − C, G − H − C − D,

F −H −B −D and E − F − A−B is a homotopy pullback.

Then the top square E − F −G−H is a homotopy pushout.

Proof. See [19], Theorem 25.

An interesting special case of Lemma 2.20 can often be helpful in order to

calculate the homotopy fibres of certain maps by decomposing the fibre as a

homotopy pushout of simpler spaces. Suppose there is a space Z, and maps from

each corner of the homotopy pushout A−B−C−D into Z making the diagram

A //

f1

��

��

B

f2

��

  

C //

f3

��

D

f4

��

Z Z

Z Z

(2.5)
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homotopy commutative. Let Fi be the homotopy fibre of the map fi for each

i = 1, . . . , 4. If we consider the face A − B − Z − Z, we have a morphism of

homotopy fibrations

F1
//

��

A
f1
//

��

Z

F2
// B

f2

// Z

and since the map on the base space is the identity, the left hand square is a

homotopy pullback. Thus by extending each of the fi to homotopy fibrations,

we obtain a homotopy commutative cube

F1
//

��

  

F2

��

  

F3
//

��

F4

��

A //

!!

B

!!

C // D

which satisfies both conditions 1 and 2 of Lemma 2.20. Therefore there is a

homotopy pushout of the homotopy fibres

F1
//

��

F2

��

F3
// F4.

2.2.2 The Hilton-Milnor Theorem

Proposition 2.21. For spaces X, Y there is a homotopy equivalence

Σ(X × Y ) ' ΣX ∨ ΣY ∨ (ΣX ∧ Y )



CHAPTER 2. PRELIMINARIES 36

Proof. Using the group structure in [Σ(X × Y ),ΣX ∨ ΣY ∨ Σ(X ∧ Y )] we can

add together the maps

Σ(X × Y )
Σπ1 // ΣX �

�
// ΣX ∨ ΣY ∨ Σ(X ∧ Y )

Σ(X × Y )
Σπ2 // ΣY �

�
// ΣX ∨ ΣY ∨ Σ(X ∧ Y )

Σ(X × Y )
Σq
// Σ(X ∧ Y ) �

�
// ΣX ∨ ΣY ∨ Σ(X ∧ Y )

(2.6)

where the πi are the projections and q is the quotient map. This map induces

isomorphisms in homology at every degree and since we are working with simply

connected CW complexes, it is therefore a homotopy equivalence by Whitehead’s

theorem.

Definition 2.22. An H-group is an H-space with homotopy associative multi-

plication and homotopy inverse.

In particular, loop spaces are H-groups. Let X, Y, Z be spaces and let X
f−→

ΩZ, Y
g−→ ΩZ be maps. Since ΩZ is an H-group there is a well defined commu-

tator map ΩZ × ΩZ
c−→ ΩZ defined by the following commutative diagram

ΩZ × ΩZ c //

∆
��

ΩZ

(ΩZ × ΩZ)× (ΩZ × ΩZ)
1×1×ι×ι

// (ΩZ × ΩZ)× (ΩZ × ΩZ)
µ×µ

// ΩZ × ΩZ

µ

OO

Since the restriction of c to ΩZ∨ΩZ is nullhomotopic, there exists a factorization

ΩZ × ΩZ c //

��

ΩZ

ΩZ ∧ ΩZ
ĉ

99

where the map ΩZ × ΩZ −→ ΩZ ∧ ΩZ is the quotient map and the map ĉ is
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unique up to homotopy. The composite

〈f, g〉 : X ∧ Y f∧g−→ ΩZ ∧ ΩZ
ĉ−→ ΩZ

is called the Samelson product of the maps f, g.

A closely related construction is that of the Whitehead product. Now suppose

that X, Y, Z are spaces and ΣX
f−→ Z, ΣY

g−→ Z are maps. Let X
f̃−→

ΩZ and Y
g̃−→ ΩZ be the adjoints of f and g. Then the Whitehead product

[f, g] : ΣX∧Y −→ Z of the maps f, g is defined to be the adjoint of the Samelson

product 〈f̃ , g̃〉.

A Whitehead product of special interest is the universal Whitehead product.

Let X, Y be spaces and let iX : X −→ X ∨ Y and iY : Y −→ X ∨ Y be the

inclusions of X, Y into the wedge sum, and for each of A = X, Y , define ζA to be

the composite ΣΩA
ev−→ A

iA−→ X ∨ Y . The Whitehead product

[ζX , ζY ] : ΣΩX ∧ ΩY −→ X ∨ Y

is called the universal Whitehead product for X ∨ Y .

One of the most celebrated decomposition results in homotopy theory is the

Hilton-Milnor Theorem which shows that after looping, a wedge of suspension

spaces splits as a weak infinite product of the domains of certain iterated White-

head products.

Let i1, i2 be the inclusions of ΣX and ΣY into ΣX ∨ ΣY respectively. Let

L(i1, i2) be the free Lie algebra genereated by i1, i2 and suppose that B is a vector

space basis for L(i1, i2). For a given iterated Lie bracket b ∈ B, suppose that i1

occurs n1 times and i2 occurs n2 times. Then we can form the corresponding

iterated Whitehead product wb : ΣX∧n1 ∧ Y ∧n2 −→ ΣX ∨ ΣY .
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Theorem 2.23 (Hilton-Milnor). There is a homotopy equivalence

ΩΣ(X ∨ Y ) '
∏
b∈B

Ω(ΣX∧n1 ∧ Y ∧n2)

such that the restriction to the factor ΩΣ(X∧n1 ∧ Y ∧n2) is given by the corre-

sponding looped Whitehead product Ωwb.

2.2.3 James’ Splitting

In this section we recall James’ classical result on loop suspensions. Namely, after

suspension, the loop suspension ΩΣX of a space X decompses upto homotopy

as a wedge sum of spaces of the form ΣX∧k. First of all, let us recap the James

construction which gives a combinatorial model for loop suspensions.

Let X be a space, and define J(X) to be the free monoid generated by X,

with unit given by the basepoint. Intuitively, J(X) is the set of formal products

{x1x2 . . . xk | k ≥ 1, xi ∈ X}, subject to the follwing equivalence relations. First

of all, an elementary equivalence is defined by replacing the product x1x2 . . . xk

with x1x2 . . . xi−1 ∗ xi . . . xk for any 1 ≤ i ≤ k + 1, or vice versa. Two products

x1 . . . xk and y1 . . . yl are then equivalent in J(X) if one can be obtained from the

other by a finite sequence of elementary equivalences. The multiplication of two

elements x1 . . . xk and y1 . . . yl in J(X) is given by juxtaposition x1 . . . xky1 . . . yl.

Alternatively, J(X) can be defined as a certain colimit. Let Jk(X) be the
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quotient of the k-fold product Xk by the equivalence relations

(x1, x2, . . . , xk−1, ∗) ∼ (x1, x2, . . . , xk−2, ∗, xk−1)

∼ . . .

∼ (x1, ∗, x3, . . . , xk−2, xk−1)

∼ (∗, x1, x2, . . . , xk−2, xk−1).

Then there are well defined maps Jk−1(X) −→ Jk(X) induced by the inclusions

Xk−1 −→ Xk, sending (x1, . . . , xk−1) to (x1, . . . , xk−1, ∗). Taking the colimit of

the sequence of inclusions

∗ = J0(X) ⊆ J1(X) ⊆ . . . ⊆ Jk(X) ⊆ . . .

defines J(X).

Theorem 2.24. If X is path-connected, there is a weak homotopy equivalence

J(X) ' ΩΣX.

Proof. The original source is [17]. A proof is also given in [16], Chapter 4.J.

Recall from the proof of Proposition 2.21 there is a homotopy cofibration

Σ(X ∨ Y )
Σi−→ Σ(X × Y )

Σq−→ Σ(X ∧ Y ) (2.7)

where i is the inclusion and q is the quotient map. The cofibration splits to yield

the homotopy decomposition Σ(X × Y ) ' ΣX ∨ ΣY ∨ Σ(X ∧ Y ), for connected

spaces X, Y . In particular, Σq admits a right homotopy inverse s. This situation

generalizes easily to give the following proposition.
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Proposition 2.25. For connected spaces X1, . . . , Xk, the quotient map X1 ×

. . . Xk −→ X1 ∧ . . . ∧Xk admits a right homotopy inverse after suspending.

Proof. The quotient map decomposes as

(X1 × . . .×Xk−1)×Xk
qk−1−→ (X1 × . . .×Xk−1) ∧Xk

qk−2−→ (X1 × . . .×Xk−2) ∧Xk−1 ∧Xk

−→ . . .

q1−→ X1 ∧ . . . ∧Xk

where qi is the map

q∧1: (X1×. . .×Xi)∧(Xi+1∧. . .∧Xk) −→ (X1×. . .×Xi−1)∧Xi∧(Xi+1∧. . .∧Xk).

Since Σq has a right homotopy inverse s, then Σqi also has a right homotopy

inverse si, for each i, given by s ∧ 1. The composite sk−1 ◦ . . . ◦ s1 then gives a

right homotopy inverse for Σ(q1 ◦ . . . ◦ qk−1).

Lemma 2.26. For each k ≥ 1 there is a homotopy equivalence

ΣJk(X) ' ΣJk−1(X) ∨ ΣX∧k.

Proof. Notice that there is a homotopy cofibration

Jk−1(X)
i

↪−→ Jk(X)
q−→ X∧k. (2.8)

The map q : Jk(X) −→ X∧k, preceeded by the quotient map p : Xk −→ Jk(X)

is the quotient map Xk −→ X∧k. Applying the suspension functor we see that

the composite ΣXk Σp−→ ΣJk(X)
Σq−→ ΣX∧k has a right homotopy inverse s by
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Proposition 2.25. It follows therefore that (Σp) ◦ s is a right homotopy inverse

for Σq. Thus the homotopy cofibration (2.8) splits, after suspending, giving the

desired homotopy equivalence.

Iterating Lemma 2.26 produces the well known James spliiting.

Theorem 2.27 (James, [17]). For any space X, there are homotopy equivalences

a) ΣJn(X) '
∨n
k=1 ΣX∧k, for each n ≥ 1,

b) ΣJ(X) ' ΣΩΣX '
∨∞
k=1 ΣX∧k.

2.2.4 Porter’s Theorem

Now we introduce some notation. Let X1, . . . , Xn be path-connected spaces and

for 1 ≤ k ≤ n− 1 define T nk to be the following subspace of X1 × . . .×Xn

T nk = {(x1, . . . , xn) ∈ X1 × . . .×Xn | at least k co-ordinates are the basepoint}.

(2.9)

The space T n0 is the product X1 × . . . × Xn. Denote the homotopy fibre of the

inclusion T nk −→ T n0 by F n
k . Porter [22] determined that there is a homotopy

decomposition of F n
k into a wedge of suspensions of various smash products:

Theorem 2.28 (Porter [22], Theorem 1). Suppose X1, . . . , Xn are path-connected

spaces and suppose 1 ≤ k ≤ n− 1. Then there is a homotopy equivalence

F n
k '

n∨
j=n−k+1

 ∨
1≤i1<...<ij≤n

(
j − 1

n− k

)
Σn−kΩXi1 ∧ . . . ∧ ΩXij

 .

where
(
j−1
n−k

)
is the binomial coefficient.
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2.2.5 More homotopy decompositions

We conclude this chapter by recording some useful results which follow from the

material in this chapter, and will be needed later in the thesis.

Proposition 2.29. The homotopy pushout of the projection maps π1 : X×Y −→

X and π2 : X×Y −→ Y is homotopy equivalent to ΣX∧Y . Moreover the induced

maps X −→ ΣX ∧ Y and Y −→ ΣX ∧ Y are null-homotopic.

Proof. Denote the homotopy pushout of π1, π2 by Q. By extending π1 and the

induced map Y −→ Q to homotopy cofibration sequences, we obtain a homotopy

commutative diagram

X × Y π1 //

π2

��

X //

��

C // Σ(X × Y )
Σπ1 //

��

ΣX

Y // Q // C
f

// ΣY.

By Proposition 2.21 there is a homotopy splitting Σ(X×Y ) ' ΣX∨ΣY ∨Σ(X∧

Y ), and so Σπ1 admits a right homotopy inverse given by Σi1 : ΣX −→ Σ(X×Y ),

where i1 is the inclusion of the first factor. By Proposition 2.19 it follows that

Σ(X × Y ) ' C ∨ ΣX and consequently, C ' ΣY ∨ Σ(X ∧ Y ).

From the diagram, f is homotopic to the composite C
'−→ ΣY ∨Σ(X∧Y ) ↪−→

ΣX ∨ (ΣY ∨ Σ(X ∧ Y ))
pinch−→ ΣY and thus has a right homotopy inverse given

by the inclusion of the ΣY summand. It follows that C ' Q ∨ ΣY and hence

Q ' ΣX ∧ Y . The fact that Y −→ Q is null-homotopic follows from Proposition

2.19 and the existence of the right homotopy inverse for f . The same reasoning

shows that X −→ Q is null-homotopic.

As a consequence of Proposition 2.29 we can give an alternative proof of the

following classical result which is a special case of Porter’s Theorem.
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Proposition 2.30. a) The homotopy fibre of the inclusion map i : X ∨ Y −→

X × Y is homotopy equivalent to ΣΩX ∧ ΩY .

b) The inclusion of the homotopy fibre is homotopic to the Whitehead product

[ζX , ζY ] : ΣΩX ∧ΩY −→ X ∨Y , where ζW is the composite ΣΩW
evW−→ W ↪−→

X ∨ Y , for W = X, Y .

Proof. a) By Proposition 2.4 there is a homotopy pushout square

∗ //

��

Y

i2
��

X
i1
// X ∨ Y.

where i1, i2 are the canonical inclusion maps. Mapping each corner of the diagram

into X×Y by inclusion and taking homotopy fibres produces a homotopy pushout

ΩX × ΩY
π2 //

π1

��

ΩX

��

ΩY // F

where π1, π2 are the projection maps and F is the homotopy fibre of i. It follows

from Proposition 2.29 that F ' ΣΩX ∧ ΩY .

b) See [26], Theorem 7.7.4a’.

Corollary 2.31. For spaces X, Y , there is a homotopy equivalence

Ω(X ∨ Y ) ' ΩX × ΩY × Ω(ΣΩX ∧ ΩY ).

Proof. Consider the homotopy fibration ΣΩX ∧ΩY −→ X ∨ Y ↪−→ X × Y from

Proposition 2.30. Let i1 : X −→ (X ∨Y ) and i2 : Y −→ (X ∨Y ) be the canonical

inclusion maps and let µ be the loop multiplication on Ω(X ∨ Y ). Then the
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composite

m : ΩX × ΩY
Ωi1×Ωi2 // Ω(X ∨ Y )× Ω(X ∨ Y )

µ
// Ω(X ∨ Y )

is a right homotopy inverse for Ωi : Ω(X ∨ Y ) −→ Ω(X × Y ) where i is the

inclusion. To see this, let α ∈ ΩX, β ∈ ΩY . Then Ωi ◦m(α, β) = β ◦ α. Under

the homotopy equivalence Ω(X×Y )
'−→ ΩX×ΩY given by γ 7→ (πX ◦γ, πY ◦γ),

we see that β ◦ α is mapped to (α, β).

Thus by Proposition 2.18, the fibration

Ω(ΣΩX ∧ ΩY ) −→ Ω(X ∨ Y )
Ωi−→ Ω(X × Y )

splits giving the desired homotopy equivalence.

We conclude the chapter by stating a splitting for the suspension of the half-

smash product (ΣX) o Y . Recall that the (right) half-smash product A o B is

defined as (A×B)/B.

Proposition 2.32. For spaces X, Y there is a homotopy equivalence

(ΣX) o Y ' ΣX ∨ (ΣX ∧ Y ).

Proof. See [22], Lemma 9.



Chapter 3

Polyhedral Products

Polyhedral products arose as a natural generalization of the moment angle com-

plex introduced in 1991 by Davis and Januszkiewicz [8]. In this influential paper,

which provided the impetus for the birth of toric topology as a field of mathemat-

ics, they introduced a class of 2n-dimensional manifolds admitting an action of

the torus T n = (S1)n, called quasitoric manifolds. Quasitoric manifolds serve as a

purely topological analogue of the algebraic non-singular projective toric varieties

of algebraic geometry.

In the course of their research into the cohomology of these manifolds, Davis

and Januszkiewicz were led to the construction of two very important spaces.

Firstly, for any given simple polytope P n with m facets, they constructed

a Tm-manifold ZP called the moment-angle complex associated to P . The ex-

plicit construction can be found in [8] or [4]. In the same paper, Davis and

Januskiewicz also went on to generalize their construction of the moment angle

complex to work not only for polytopes, but for all simplicial complexes. In this

more general context, the space ZK associated to a simplicial complex K, is no

longer necessarily a manifold.

Davis and Januszkiewicz were led to the construction of a second space DJK ,

45
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for any simplicial complex K, which is very closely related to ZK . It turns

out that the integral cohomology ring H∗ (DJK ;Z) is isomorphic to the Stanley-

Reisner ring Z[K], (for the definition, see for example [4] Chapter 3). Davis

and Januszkiewicz went on to show that the integral cohomology ring of a given

quasitoric manifold over the polytope P is a certain quotient of H∗ (DJKP ;Z),

where KP is the boundary of the polar dual of P .

Although the original motivations behind their construction were merely as

tools for understanding the cohomology of quasitoric manifolds, the moment angle

complex and it’s counterpart DJK have since become objects of great interest in

their own right, providing interesting interconnections between fields as diverse as

combinatorics and subspace arrangements, to robotics and configuration spaces.

In their survey [4], Buchstaber and Panov gave an alternative construction

of the spaces ZK and DJK as unions of certain product spaces indexed by the

faces of K. Their construction is much more intuitive than that of Davis and

Januszkiewicz and is the construction we shall work with throughout this the-

sis. As observed by Neil Strickland, Buchstaber and Panov’s construction of

the spaces ZK , DJK has a very natural generalization to a class of spaces which

we call polyhedral products. We shall spend this chapter looking at polyhedral

products and some of the useful properties they possess.

3.1 Simplicial complexes

Before jumping into the construction of polyhedral products, we take the chance

here to set some notation and recall some basic definitions related to simplicial

complexes. The standard n-simplex is the set

∆n = {(t0, . . . , tn) ∈ Rn+1 |
n∑
i=0

ti = 1, ti ≥ 0 for all i}.
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A co-ordinate hyperplane in Rn+1 is a set of the form

{{t0, . . . , tn} ⊆ Rn+1 | ti1 = tik = 0, {i1, . . . , ik} ⊆ {0, . . . , n}}

Definition 3.1. A subset σ ∈ ∆n is called a face if it is given by the intersection

of ∆n with a collection of co-ordinate hyperplanes in Rn+1.

Definition 3.2. A geometric simplicial complex K is a union of sets, called

simplices, each homeomorphic to a standard simplex, such that the following

conditions are satisfied:

1. If σ is a simplex in K, then each of its faces is also a simplex of K,

2. The intersection of any two simplices in K is a face of each simplex.

Definition 3.3. An abstract simplicial complex on a set S is a collection K of

subsets of S such that for each σ ∈ K, all subsets of σ belong to K, including

the empty set ∅.

The one element subsets are called vertices and if K contains all possible one

element subsets we say that K is a simplicial complex on the vertex set S. In the

case that S is a finite set of cardinality n, it is convenient to fix an ordering of S

and identify it with the set of natural numbers [n] = {1, . . . , n}.

We shall use ∆n synonomously, to denote the standard n-simplex, the ge-

ometic simplicial complex which is the union of the standard n-simplex together

with all of its faces, and the abstract simplicial complex which is the power set

of [n + 1]. In this way, a geometric simplicial complex may be viewed as an

abstract simplicial complex, and vice versa, and from now on we simply use the

term simplicial complex to cover both definitions.

A subset of a simplicial complex K which is also a simplicial complex is called

a subcomplex of K. Let L be a simplicial complex on n vertices and let K ⊆ L



CHAPTER 3. POLYHEDRAL PRODUCTS 48

be a subcomplex on k vertices. Suppose the vertices of L are ordered such that

the first k vertices are the vertices of K. Then K is called a full subcomplex of L

if K = {σ ∩ {1, . . . , k} | σ ∈ L}. A face σ ∈ K is called maximal if there is no

face τ ∈ K such that σ ⊂ τ . When listing the faces of a simplicial complex, it

suffices to list only the maximal faces.

Definition 3.4. Let K,L be simplicial complexes on [n] and [m] respectively.

A map f : K −→ L is called a simplicial map if it sends [n] to [m] and if σ =

(i1, . . . , ik) is a simplex of K, then f(σ) = (f(i1), . . . , f(ik)).

Some special examples of simplicial complexes

Here we introduce some constructions of simplicial complexes which we shall make

use of in this thesis. Let K be a simplicial complex on [n] and let σ ∈ K be a

face.

The star of σ is the subcomplex of K, denoted starK(σ), consisting of those

faces τ ∈ K such that σ ∪ τ is a face of K.

The link of σ is the subcomplex of K, denoted linkK(σ), consisting of those

faces τ ∈ K such that σ ∪ τ is a face of K, and σ ∩ τ = ∅.

The restriction of K to a subset S ⊆ [n] is the subcomplex resK(S) = {τ ∩

S | τ ∈ K}. In the case that S = {1, . . . , i} for i ≤ n, we shall write resK(i).

If L is another simplicial complex on [m]. Identify the vertices of K with

{1, . . . , n} ⊆ [n + m] and the vertices of L with {n + 1, . . . , n + m} ⊆ [n + m].

The join of K and L, is the simplicial complex on [n + m], with faces σ ∪ τ for

σ ∈ K and τ ∈ L.

Example 3.5. Let K be the simplicial complex {{1, 2}, {1, 3}, {2, 3, 4}}, and let

L = {5}. Then

• linkK({1}) = {{2}, {3}} and linkK({4}) = {{2, 3}}.
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• starK({1}) = {{1, 2}, {1, 3}} and starK({4}) = {{2, 3, 4}}.

• resK(3) = {{1, 2}, {1, 3}, {2, 3}}.

• K ∗ L = {{1, 2, 5}, {1, 3, 5}, {2, 3, 4, 5}}.

3.2 The moment angle complex ZK, and DJK

We shall not use the original construction of the spaces ZK , DJK due to Davis

and Januszkiewicz in this thesis. From a homotopy-theoretic point of view, the

following construction due to Buchstaber and Panov [4] is much more effective.

Let D2 denote the 2-dimensional disk {x ∈ C | |x| ≤ 1} and let T denote the

subspace S1 = {x ∈ C | |x| = 1}. For a group G, let BG denote the classifying

space of G.

Definition 3.6. Let K be a simplicial complex on n vertices. For each face

σ ∈ K, let Bσ = {(x1, . . . , xn) ∈ (D2)n | xi ∈ S1 if i /∈ σ} and let BTσ =

{(x1, . . . , xn) ∈ (BT )n | xi = ∗ if i /∈ σ}. The moment angle complex associated

to K is defined to be the union ZK = ∪σ∈KBσ, and the space DJK = ∪σ∈KBTσ.

Example 3.7. 1. If K is the full simplex ∆n−1, then ZK = (D2)n and DJK =

BT n.

2. ForK = ∂∆n−1, we get ZK = (D2×. . .×D2×S1)∪. . .∪(S1×D2×. . .×D2) =

∂D2n = S2n−1.

An interesting result that Buchstaber and Panov were able to derive is that

the homotopy fibre of the inclusion map DJK ↪−→ BT n is homotopy equivalent

to ZK . Thus there is a homotopy fibration

ZK −→ DJK −→ BT n. (3.1)
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3.3 Polyhedral products

A very straightforward generalization of the moment-angle complexes, due to

Neil Strickland, leads to an interesting class of spaces called polyhedral products.

These polyhedral products form much of the focus of our thesis.

Definition 3.8. Let K be a simplicial complex on the vertex set [n], and for

i = 1, . . . , n, let (Xi, Ai) be a pair of topological spaces such that Ai is a subspace

of Xi. Denote by (X,A), the sequence of pairs {(Xi, Ai)}ni=1. Now for each face

σ ∈ K define (X,A)σ to be the subspace
∏n

i=1 Yi ⊆
∏n

i=1Xi where

Yi =

 Xi, if i ∈ σ,

Ai, if i /∈ σ.

The colimit ∪σ∈K (X,A)σ over all faces in K is called the polyhedral product

determined by the sequence (X,A) and the simplical complex K, and is denoted

by (X,A)K . In the case that Xi = X and Ai = A for all i = 1, . . . , n we remove

the underlines and write simply (X,A)K .

Example 3.9. 1. The polyhedral product (D2, S1)
K

is precisely the moment

angle complex ZK .

2. (BT, ∗)K = DJK .

3. Let Kn
k be the k-skeleton of the the simplex ∆n−1 for 0 ≤ k ≤ n − 1.

Then (X, ∗)K
n
k is the space T nk as defined in equation (2.9). In particular,

(X, ∗)K
n
n−1 = X1 ∨ . . . ∨Xn and (X, ∗)K

n
1 is the fat wedge FW (X).

A slight generalization of Definition 3.8 can be made to allow for simplicial

complexes whose set of vertices V is a proper subset of [n]. An element i ∈ [n]

which is not a vertex is called a ghost vertex of K and the resulting polyhedral
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product is homeomorphic to (X,A)resK(V ) ×
∏

i/∈V Ai. Usually we shall assume

that K has no ghost vertices, but they will make a one off appearance in Chapter

6 in which we review the work of Félix and Tanré [11].

Maps between polyhedral products

There are two main ways to construct maps between polyhedral products. Firstly,

a map f : (X,A) −→ (Y ,B) is a set {fi} of maps of pairs fi : (Xi, Ai) −→ (Yi, Bi).

Given such a map, the product map
∏

i fi :
∏

iXi −→
∏

i Yi restricts to a map

(X,A)K −→ (Y ,B)K .

Let f : K −→ L be a simplicial map which is the inclusion of a full subcomplex.

Then for any face σ ∈ K, (X,A)σ includes into (X,A)L. Passing to the colimit

gives an induced map (X,A)K −→ (X,A)L. We shall make use of the following

useful result, taken from [10], later in the thesis.

Proposition 3.10 (See [10]). Let L be a simplicial complex on [m] and sup-

pose K is a full subcomplex of L on n ≤ m vertices. Then the induced map

f : (X,A)K −→ (X,A)L has a strict left inverse.

Proof. Relabelling the vertices of L if necessary, we may assume that K is a

simplicial complex on the vertex set [n] ⊆ [m]. By definition, f is the restriction

of the inclusion map
∏n

i=1 Xi ↪−→
∏m

i=1 Xi. On the other hand, the projection

map
∏m

i=1 Xi −→
∏n

i=1Xi restricts to a surjective map l : (X,A)L −→ (X,A)K

and l ◦ f is clearly the identity map on (X,A)K .
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3.4 Some useful properties of polyhedral prod-

ucts

We record some useful properties of polyhedral products in this section which

crop up again and again in our main results.

Proposition 3.11. Let K,L be simplicial complexes on vertices {1, . . . , n} and

{n+ 1, . . . ,m} respectively. Let (X,A) = {(Xi, Ai)}n+m
i=1 be any sequence of pairs

of spaces, and let (X,A)n = {(Xi, Ai)}ni=1 and (X,A)m = {(Xi, Ai)}mi=n+1. Then

there is a homeomorphism

(X,A)K∗L ∼= (X,A)Kn × (X,A)Lm .

Proof. Note that (X,A)Kn is a subspace of
∏n

i=1Xi, (X,A)Lm is a subspace of∏n+m
i=n+1Xi and (X,A)K∗L is a subspace of

∏n+m
i=1 Xi. The desired homeomorphism

is given by the obvious restriction of the homeomorphism

n+m∏
i=1

Xi

∼=−→

(
n∏
i=1

Xi

)
×

(
n+m∏
i=n+1

Xi

)
.

Proposition 3.12 (See Denham and Suciu [10]). Let pi : (Ei, E
′
i) −→ (Bi, B

′
i) be

a map of pairs for i = 1, . . . n such that pi : Ei −→ Bi has homotopy fibre Fi and

pi|E′i : E
′
i −→ B′i has homotopy fibre F ′i . If either

1. Fi = F ′i for all i = 1, . . . , n,

2. Bi = B′i for all i = 1, . . . , n,
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then the product fibration
∏n

i=1 Fi −→
∏n

i=1 Ei −→
∏n

i=1 Bi restricts to a homo-

topy fibration

(F , F ′)
K −→ (E,E ′)

K −→ (B,B′)
K
.

Proof. We include a proof using Mather’s Cube Lemma in the case that Bi = B′i

for all i = 1, . . . , n. In this case (B,B′)
σ

=
∏n

i=1Bi for any simplex σ ∈ K.

Now, the polyhedral product (E,E ′)
K

is the colimit ∪σ∈K (E,E ′)
σ
. The map

of pairs induces a product map (E,E ′)
σ −→ (B,B′)

σ
, for each σ ∈ K, and the

homotopy fibre is given by (F , F ′)
σ
. Mather’s Cube Lemma now shows that the

map (E,E ′)
K −→ (B,B′)

K
has homotopy fibre (F , F ′)

K
.

A generalization of Buchstaber and Panov’s fibration

Using Proposition 3.12 we are able to construct a certain homotopy fibration

which generalizes the classical fibration (3.1) of Buchstaber and Panov. Let K

be a simplicial complex on n vertices and let X = {X1, . . . , Xn} be a sequence of

spaces. The fact that there is a homotopy commutative diagram

Cone ΩXi
// Xi

1 // Xi

ΩXi
//

?�

OO

∗ //?�

OO

Xi

for each i = 1, . . . , n, in which the horizontal rows are homotopy fibrations,

shows that there is an induced map of pairs (X, ∗) −→ (X,X), and that there is

a homotopy fibration

(Cone ΩX,ΩX)K −→ (X, ∗)K −→
n∏
i=1

Xi. (3.2)
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Putting Xi = BT for all i, recovers the the homotopy fibration (3.1). We record

here the result that this homotopy fibration splits after looping. The proof gen-

eralizes that of Proposition 2.31 and can also be found in [15] in the special case

that K = ∂∆n−1.

Proposition 3.13. The inclusion map i : (X, ∗)K −→
∏n

i=1Xi admits a right

homotopy inverse after looping.

Proof. Denote the inclusion
∨n
i=1Xi −→ (X, ∗)K by j and let αk denote the

inclusion Xk ↪−→
∨n
i=1Xi. Let µ denote the loop multiplication on Ω (

∨n
i=1 Xi).

Then the following composite gives the desired right homotopy inverse,

r :
n∏
i=1

ΩXi

∏
Ωαi−→

n∏
i=1

Ω

(
n∨
i=1

Xi

)
µ−→ Ω

(
n∨
i=1

Xi

)
Ωj−→ Ω (X, ∗)K .

To see that this is the case, an easy generalization of Corollary 2.31 shows that

the composite

n∏
i=1

ΩXi
r−→ Ω (X, ∗)K Ωi−→ Ω(

n∏
i=1

Xi)
'−→

n∏
i=1

ΩXi

is homotopic to the identity. Restricting to Ω (X, ∗)K gives the result.

Corollary 3.14. Let K be a simplicial complex on n vertices and let X =

{X1, . . . , Xn} be a sequence of spaces. Then there is a homotopy equivalence

Ω (X, ∗)K ' Ω (Cone ΩX,ΩX)K ×
n∏
i=1

ΩXi.

Proof. By Proposition 3.13, the homotopy fibration

Ω (Cone ΩX,ΩX)K −→ Ω (X, ∗)K −→
n∏
i=1

ΩXi,
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obtained by looping (3.2), splits giving the desired homotopy equivalence.



Chapter 4

Homotopy Exponents

Serre [28], famously showed that the homotopy groups of a simply connected

finite CW-complex are finitely generated Abelian groups. In particular πi(X) is

isomorphic to a direct sum F⊕T , where F = Z⊕. . .⊕Z is the free part, and T , the

torsion part, is a direct sum of a finite number of cyclic groups. This is not true

for non-simply-connected finite complexes. For example π2(S1 ∨S2) is generated

by the Laurent polynomials Z[t, t−1] where t is a choice of a generator for π1(S1∨

S2) ∼= Z. Due to the intractability of the calculation of homotopy groups in

general, even for spaces as fundamentally simple as the sphere, homotopy theory

inevitably branched off into two distinct fields: rational homotopy theory and

primary homotopy theory. We discuss these two fields next.

Rational homotopy theory

It is an over simplification to say so in general, but in many important examples at

least, it tends to be the torsion which makes the problem of computing homotopy

groups so difficult. In many cases, the free part can often be much simpler to

calculate. In rational homotopy theory, the main objects of study are the rational

homotopy groups π∗(X) ⊗ Q of a space X. Tensoring π∗(X) with the rationals

56
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kills all of the torsion and in doing so isolates the information about the free

part. Interestingly, π∗(ΩX) ⊗ Q comes equipped with a Lie algebra structure

with the bracket given by the Samelson product. Various techniques involving

commutative differential graded algebras, and the Sullivan minimal model for

example, have been successfully developed over time in order to gain insight

into spaces after rationalization. A nice result is the Dichotomy Theorem which

shows that the rational homotopy of simply-connected CW-complexes can behave

in one of two ways. Either π∗(X)⊗Q is finite dimenional as a vector space over

Q in which case X is called elliptic. Or else the sequence
∑n

i=0 dim(πi(X) ⊗ Q)

grows exponentially with n. Such spaces are called hyperbolic. A few important

examples of elliptic spaces are the following:

Example 4.1. 1. Serre [27] showed that the sphere Sn is elliptic. Specifically,

he showed that πn(Sn) ⊗ Q ∼= Q, with generator the identity map, and if

n = 2k then additionally π4k−1(S2k)⊗Q ∼= Q, generated by the Whitehead

product of the identity 1 : S2k −→ S2k with itself. All other rational

homotopy groups of the n-sphere are trivial. Thus π∗(S
n) ⊗ Q is either

1-dimensional, over Q, when n is odd, or 2-dimensional when n is even.

2. A product of finitely many elliptic spaces is elliptic. This is immediate since

π∗(X × Y )⊗Q ∼= (π∗(X)⊗Q)⊕ (π∗(Y )⊗Q).

3. The wedge of two spheres Sn ∨ Sk is hyperbolic. To see this, apply the

Hilton-Milnor Theorem to see that Ω(Sn ∨Sk) is homotopy equivalent to a

product of infinitely many looped spheres. Iterated use of the Hilton-Milnor

Theorem shows similarly that the wedge sum of more than two spheres is

hyperbolic.

4. The Moore space Pm(pr) is a rationally trivial space, that is, π∗(P
m(pr))⊗
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Q = 0. Thus Pm(pr) is clearly an elliptic space.

Primary homotopy theory

In primary homotopy theory, it is the torsion in π∗(X) that is of interest. Usually

it is too difficult to calculate the torsion subgroup of π∗(X) completely. Even for

spaces as simple as the sphere Sn, which as we saw in example (4.1), is completely

understood from the perspective of rational homotopy theory, has highly complex

torsion. The calculation of the integral homotopy groups of spheres remains one

of the most important and long-standing unsolved problems in homotopy theory.

Taking a more qualitative approach in our study of homotopy groups can often be

fruitful in gaining new insight. One such approach is encapsulated in the notion

of homotopy exponents, which forms the main subject matter of this chapter of

the thesis.

Definition 4.2. Let G be an Abelian group. We say that n ∈ N is an exponent

for G if ng = 0 for all g ∈ G. If G has an exponent, we denote the least such by

exp(G).

Definition 4.3. Let X be a simply connected space and let p be a prime. We

say that pr is the homotopy exponent for X at p, (or the p-primary homotopy

exponent of X), if exp(Tp) = pr where Tp is the the p-torsion subgroup of π∗(X).

We write expp(X) for exp(Tp).

We shall often abuse notation by omitting the prime p and writing simply

exp(X), when it is safe that no confusion can arise, or in the case that the choice

of a specific prime p is unimportant.

Example 4.4. Suppose X is a simply connected space such that

π∗(X) = Z⊕ Z/2⊕ Z/24 ⊕ Z/52 ⊕ Z/116.
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Then exp2(X) = 24, exp5(X) = 52 and exp11(X) = 116. On the other hand,

suppose there is a space Y such that

π∗(Y ) = Z⊕

(
∞⊕
k=1

Z/2k
)
⊕ Z/3.

Then the 2-primary homotopy exponent of Y does not exist, but exp3(Y ) = 3.

Often the exact value of the homotopy exponent expp(X) at a particular

prime may be too difficult to calculate. Sometimes looping a space can unlock

new information about the homotopy exponents of a space since the isomorphism

π∗(ΩX) ∼= π∗+1(X) implies that expp(ΩX) = expp(X) for all primes p. In cases

where the homotopy exponent refuses to be pinned down precisely, it is desirable

to determine good upper and lower bounds. One of the simplest methods we

have for calculating upper bounds for the homotopy exponents of a space X is to

construct a homotopy fibration Y −→ X −→ Z for spaces Y, Z whose homotopy

exponents, or upper bounds thereof, are already known.

Proposition 4.5. Let Y
i−→ X

f−→ Z be a homotopy fibration and p a prime.

Then expp(X) ≤ expp Y · expp Z.

Proof. The result follows from the long exact sequence of homotopy groups as-

sociated to the fibration. Suppose α ∈ π∗(X) and suppose expp(Y ) = ps and

expp(B) = pt. Then f∗(p
t · α) = pt · f∗(α) = 0. Thus by exactness, there exists

β ∈ π∗(B) such that i∗(β) = pt·α. As a result we have 0 = ps·i∗(β) = (pspt)·α.

The upper bound given in Proposition 4.5 is generally quite a rough estimate.

In the case of the trivial fibration X −→ X × Y −→ Y for example, it gives

the upper bound expp(X × Y ) ≤ expp(X) · expp(Y ). However, for products, the

homotopy exponent can be determined precisely in terms of the exponents of it’s

factors.
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Proposition 4.6. For spaces X, Y we have expp(X×Y ) = max{expp(X), expp(Y )}.

Proof. Suppose expp(X) = ps and expp(Y ) = pt. Since there is an isomorphism

π∗(X × Y ) ∼= π∗(X) ⊕ π∗(Y ), it is trivial that for α ∈ π∗(X) and β ∈ π∗(Y ) we

have pk(α, β) = 0 if and only if pr · α = pr · β = 0.

Before proceeding to look at the homotopy exponents of some fundamental

spaces, we discuss the related ideas of H-exponents and co-H-exponents.

H-exponents and co-H-exponents

Throughout this section, we use the notation X(p) to denote the localization of

X at a prime p.

Suppose X is an H-group, for example a loop space, with multiplication

µ : X × X −→ X. Then the set [X,X] of homotopy classes of self maps of

X has the structure of a group with addition given by

f + g : X
∆−→ X ×X f×g−→ X ×X µ−→ X.

The pr power map on X, denoted pr : X −→ X, is the map pr(1) where 1 is the

identity map on X.

Definition 4.7. Let X be an H-group and let p be a prime. Then pr is called

an H-exponent for X if pr(1) = 0 in [X(p), X(p)]. We shall call the least such pr,

the H-exponent for X.

A useful result is the following:

Proposition 4.8. Suppose X is an H-group and suppose that pr is an H-

exponent for X. Then expp(X) ≤ pr.
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Proof. Since pr is an H-exponent for X, then by definition, the pr power map on

X(p) is null-homotopic. But the pr power map induces multiplication by pr on

π∗(X(p)), and hence prπ∗(X(p)) = 0.

Similarly, suppose X is a co-H-group, for example a suspension, with co-

multiplication ψ : X −→ X ∨X. Then the set [X,X] of homotopy classes of self

maps of X has the structure of a group with addition given by

f + g : X
ψ−→ X ∨X f∨g−→ X ∨X ∇−→ X

For a prime p, the map pr(1) : X −→ X is called the pr-degree map, and is

denoted [pr].

Definition 4.9. Let X be a co-H-group and and let p be a prime. Then pr is

called the co-H-exponent of X at p if [pr] : X(p) −→ X(p) is null-homotopic.

4.1 Homotopy exponents of spheres and Moore

spaces

Inspired by a conjecture of Barratt, which we shall discuss in Section 4.2.2, Cohen,

Moore and Neisendorfer began searching in the 70’s for elements of order pr+1 in

the homotopy groups of Pm(pr) with m ≥ 3 and p an odd prime. They believed

such elements could be detected by certain Bockstein maps. Their work in [7] and

[6] led them to the following homotopy exponent results for spheres and Moore

spaces.

Theorem 4.10 (Cohen, Moore, Neisendorfer). For p an odd prime and n ≥ 1,

expp(S
2n+1) = pn.
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Theorem 4.11 (Cohen, Moore, Neisendorfer). For p an odd prime, m ≥ 3 and

r ≥ 1, expp(P
m(pr)) = pr+1. In fact, the pr+1 power map on Ω2Σ2Pm(pr) is

nullhomotopic.

In the next section we show that Cohen, Moore and Neisendorfers exponent

result for Moore spaces can be used to deduce the homotopy exponents of wedges

of Moore spaces.

4.1.1 Wedges of Moore spaces

It is interesting to note that the p-primary homotopy exponent of Pm(pr) is

unaffected by the dimension m. This is in marked contrast to the behaviour of

the spheres where the homotopy exponent of S2n+1 increases exponentially as n

increases. It is this interesting fact which belies the reason, as we see in this

section, why a wedge of at least two spheres has no homotopy exponent at any

prime, yet a wedge of at least two mod pr Moore spaces has a finite homotopy

exponent at p. We prove this result in this section. First of all we will need to

show that the pr degree map [pr] : Pm(pr) −→ Pm(pr) is null-homotopic, and to

show this we need the following lemma.

Lemma 4.12. The degree map is natural with respect to co-H-maps. That is, if

f : X −→ Y is a co-H-map then [k] ◦ f is homotopic to f ◦ [k].

Proof. Consider the diagram

X
ψX //

f

��

∨
kX

∇ //

∨f
��

X

f

��

Y
ψY
//
∨
k Y ∇

// Y.

The right hand square is clearly homotopy commutative, and since f is a co-H-

map, the left hand square also homotopy commutes. Since the composite ∇◦ψX
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is precisely the degree k map on X, and ∇ ◦ ψY is the degree k map on Y , the

result follows.

Consider the homotopy cofibration sequence

Sm−1 [pr]−→ Sm−1 i−→ Pm(pr)
pinch−→ Sm

which defines Pm(pr). For m ≥ 2, we have that [pr] : Sm −→ Sm is homotopic

to S1 ∧ Sm−1 1∧[pr]−→ S1 ∧ Sm−1 which is by definition the co-H-map Σ[pr]. If

m ≥ 3, then similarly, i is homotopic to S1 ∧ Sm−2 1∧i′−→ S1 ∧ Pm−1(pr), where

i′ is the inclusion of the bottom cell, which by definition is the co-H-map Σi′.

Additionally, for m ≥ 3 the pinch map Pm(pr) −→ Sm is homotopic to the co-

H-map Σ(pinch) : S1 ∧ Pm−1(pr)
1∧pinch−→ S1 ∧ Sm−1. This observation, combined

with Lemma 4.12 leads to the following co-H-exponent result:

Proposition 4.13. For m ≥ 3 and p 6= 2, the Moore space Pm(pr) has co-H-

exponent pr.

Proof. Since m ≥ 3, each of the maps in the homotopy cofibration sequence

Sm−1 [pr]−→ Sm−1 i−→ Pm(pr)
pinch−→ Sm are co-H-maps. Thus by Lemma 4.12, we

obtain a homotopy commutative diagram

Sm−1 [pr]
//

[pr]
��

Sm−1 i //

[pr]
��

Pm(pr)

[pr]

��

pinch
// Sm

[pr]

��

Sm−1

[pr]
// Sm−1 // Pm(pr) // Sm.

The restriction of [pr] to the bottom cell of Pm(pr) is given by the composite

Sm−1 i−→ Pm(pr)
[pr]−→ Pm(pr) which is homotopic to [pr] ◦ i and therefore trivial.

Consequently there is a lift of the pinch map Pm(pr) −→ Sm to a map l : Sm −→
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Pm(pr), giving a factorization of the pr degree map on Pm(pr)

Pm(pr)
pinch

//

[pr]

��

Sm

l
{{

Pm(pr).

Since p 6= 2, πm(Pm(pr)) = 0. See for example [21]. Thus l is null-homotopic and

consequently so too is the degree map [pr] : Pm(pr) −→ Pm(pr).

Lemma 4.14. Let p be an odd prime and let n,m ≥ 2 and r ≥ 1. Then there is

a homotopy equivalence Pm(pr) ∧ P n(pr) ' Pm+n(pr) ∨ Pm+n−1(pr).

Proof. The degree map [pr] : P 3(pr) −→ P 3(pr) can be defined by [pr] ∧ 1: S1 ∧

P 2(pr) −→ S1 ∧ P 2(pr). since there is a homotopy cofibration sequence S1 [pr]−→

S1 −→ P 2(pr), then taking the smash product with P 2(pr) gives a homotopy

cofibration sequence

S1 ∧ P 2(pr)
[pr]∧1=[pr]−→ S1 ∧ P 2(pr) −→ P 2(pr) ∧ P 2(pr).

On the other hand, the map [pr] : P 3(pr) −→ P 3(pr) is nullhomotopic by Propo-

sition 4.13 and so by Proposition 2.19, we see that

P 2(pr) ∧ P 2(pr) ' P 3(pr) ∨ P 4(pr).

By suspending, we may obtain the required decomposition for any n,m ≥ 2.

A nice corollary of Lemma 4.14 which we shall also make use of in Chapter 6

is the following:
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Corollary 4.15. Let p be an odd prime and let m,n ≥ 3. Then the p-primary

homotopy exponent of the wedge of Moore spaces Pm(pr)∨P n(pr) is equal to pr+1.

Proof. By Corollary 2.31 there is a homotopy decomposition

Ω(Pm(pr) ∨ P n(pr)) ' ΩPm(pr)× ΩP n(pr)× Ω(ΣΩPm(pr) ∧ ΩP n(pr)).

Consider the final factor Ω(ΣΩPm(pr) ∧ ΩP n(pr)). By iterated use of the James

splitting, there is a sequence of homotopy equivalences:

ΣΩPm(pr) ∧ ΩP n(pr) ' Σ

(
∞∨
k=1

(Pm−1(pr))∧k

)
∧ ΩP n(pr)

'

(
∞∨
j=1

(Pm−1(pr))∧j

)
∧ ΣΩP n(pr)

'

(
∞∨
j=1

(Pm−1(pr))∧j

)
∧ Σ

(
∞∨
k=1

(P n−1(pr))∧k

)

'
∞∨

j,k=1

Σ(Pm−1(pr))∧j ∧ (P n−1(pr))∧k

By iterating Proposition 4.14 the space Pm−1(pr))∧j ∧ (P n−1(pr))∧k decomposes

as wedge of mod pr Moore spaces, and suspending just raises the dimension of the

wedge summands. Hence the factor Ω(ΣΩPm(pr)∧ΩP n(pr)) is actually homotopy

equivalent to ΩX where X is a wedge of mod pr Moore spaces of dimension at

least 3. By iterated application of Corollary 2.31 we obtain a decomposition

ΩX ' ΩA × ΩB, where A is a product of mod pr Moore spaces and B is a

wedge of mod pr Moore spaces. By induction, it follows that Ω(Pm(pr)∨P n(pr))

decomposes upto homotopy as a product of mod pr Moore spaces, and since the

homotopy exponent of a product is equal to the greatest homotopy exponent of

its factors, we see that expp(P
m(pr) ∨ P n(pr)) = pr+1.
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4.2 Two conjectures of Moore and Barratt

To close this chapter we discuss two conjectures related to homotopy exponents.

4.2.1 Moore’s Conjecture

On the face of it, despite sharing the common goal of bettering our understanding

of the integral homotopy groups, the rational homotopy groups of a space appear

to have little in common with it’s primary homotopy. But during the academic

year 1977-78, John Moore proposed the following remarkable conjecture which

suggests that for simply connected finite CW-complexes, the two are intimately

intertwined.

Conjecture 4.16 (Moore’s Conjecture). Let p be a prime and X be a simply

connected finite CW-complex. Then X is elliptic if and only if X has a finite

homotopy exponent at p.

It is interesting to note that a nice consequence of this conjecture, should it be

true, is that since the statement is independent of the prime p, then the existence

of the homotopy exponent at a particular prime is equivalent to the existence of

the homotopy exponent at all primes.

Not many examples of spaces are known for which Moore’s Conjecture has

been verified. Two important examples which do fit the bill are the sphere Sn

for n ≥ 1, and the Moore space Pm(pr) for all p, r except when p = 2 and r = 1.

Spheres and Moore spaces are elliptic spaces, and the results of Cohen, Moore

and Neisendorfer show that their homotopy exponents are known to exist at all

primes, except in the case of Pm(2).



CHAPTER 4. HOMOTOPY EXPONENTS 67

4.2.2 Barratt’s Conjecture

Barratt initiated the study of suspension spaces with finite co-H exponents, which

he termed finite characteristic, in [3]. The [pr] degree map on a suspension space

ΣX is by definition homotopic to the composite

ΣX
ψ−→
∨
pr

ΣX
∇−→ ΣX

where ψ is the coproduct and ∇ is the fold map. Barratt was able to find bounds

on the order of elements in π∗(ΣX) for suspensions ΣX with finite co-H exponent

pr. He did this by applying the Hilton-Milnor Theorem to decompose Ω(
∨
pr ΣX)

as a weak product which has pr factors ΩΣX and other terms of the form ΩΣX∧r

for r ≥ 2.

If X is n − 1 connected and ΣX has characteristic pr, then X∧r is rn − 1

connected and the co-H-exponent of ΣX∧r divides pr. It follows that after looping

the null homotopic degree map [pr], there is a homotopy commutative diagram

Ω[pr] : ΩΣX
Ωψ
//

((

Ω(
∨
pr ΣX) Ω∇ //

'
��

ΣX

∏
α ΩΣX∧nα

99

which factors the nullhomotopic map Ω[pr] via
∏

α ΩΣX∧nα . Barratt was able

to deduce that multiplication by pr annihilates the p-torsion in πq(ΩΣX) for

q ≤ 2n − 1, and by an inductive argument found that multiplication by psr

annihilates the p-torsion in πq(ΩΣX) for q ≤ 2sn. In particular, the homotopy

groups πq(ΣX) have a finite exponent for each q, but Barratt’s bound is dependent

on q.

Barratt conjectured that if X is itself a suspension ΣY , with co-H-exponent
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pr, then π∗(ΣX) is annihilated by pr+1.

Conjecture 4.17 (Barratt’s Conjecture). a) (Weak Form) Suppose that ΣY has

co-H-exponent pr. Then expp(Σ
2Y ) ≤ pr+1.

b) (Strong Form) Suppose that ΣY has co-H-exponent pr. Then pr+1 is an H-

exponent for Ω2Σ2Y .

Notice that if ΩΣ2Y has H-exponent pr+1 then it follows that expp(Σ
2Y ) ≤

pr+1, so the strong form of Barratt’s Conjecture implies the weak form. The

standard example of a space satisfying Barratt’s Conjecture is the Moore space

Pm+1(pr) ' ΣPm(pr) for m ≥ 3. We saw in 4.13 that ΣPm(pr) has co-H-

exponent pr. The fact that Ω2Σ2Pm(pr) has H-exponent pr+1 is precisely the

result of Cohen Moore and Neisendorfer from Theorem 4.11.



Chapter 5

Polyhedral Products For n-gons

The motivating questions behind the work in this thesis are the following:

Question 1: Are there conditions on (X,A) andK which guarantee that (X,A)K

is elliptic/hyperbolic?

Question 2: Are there conditions on (X,A) and K which guarantee the exis-

tence, (or not), of the homotopy exponent of (X,A)K at a given prime p? And

if the homotopy exponent exists, can we get an upper bound?

Question 3: Can we add to the existing evidence in support of Moore’s Conjec-

ture, by exhibiting some sub-collection of polyhedral products which are either

elliptic and admit a homotopy exponent at every prime, or else hyperbolic and

do not admit a homotopy exponent at any prime?

Background - What is already known

Suppose we fix the pair (D2, S1). One of the first non-trivial contributions in the

direction of Question 1 came in 2004 when Grbić and Theriault [13] showed that

if K is a disjoint union of n vertices, then (D2, S1)
K

is homotopy equivalent to

a wedge of spheres
∨n
j=2

(
n
j

)
(j − 1)Sj+1. In particular, (D2, S1)

K
is elliptic when

n = 2 and hyperbolic and when n ≥ 3.

69
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In 2007, Grbić and Theriault [14] extended their previous result to show that

(D2, S1)
K

is homotopy equivalent to a wedge of spheres whenever K belongs to

a class of simplicial complexes called shifted complexes.

Definition 5.1. A simplicial complex K is called shifted if there exists an order-

ing of the vertices of K such that whenever σ ∈ K, and v, w are vertices of K

such that v < w and w ∈ σ, then (σ\w) ∪ v ∈ K.

Example 5.2. 1. The k-dimensional skeleton of the simplex ∆n is shifted for

0 ≤ k ≤ n− 1.

2. The simplicial complex {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}} is shifted.

In fact Grbić and Theriault were able to further extend the family of simplicial

complexes for which (D2, S1)
K

has the homotopy type of a wedge of spheres

beyond the class of shifted complexes by including also disjoint unions of shifted

complexes, and complexes K1∪σK2 obtained from gluing shifted complexes along

a common face, ([14]).

In 2008, Géry Debongnie [9] gave a complete and very aesthetically pleasing

answer to Question 1 in the case of the pair (D2, S1) by showing that there is

a very simple condition on K which determines whether (D2, S1)
K

is elliptic or

hyperbolic.

Theorem 5.3 (Debongnie). The following statements are equivalent:

a) (D2, S1)
K

is elliptic,

b) K is a join of simplices and boundaries of simplices,

c) (D2, S1)
K

is homotopy equivalent to a product of spheres.

Proof. See [9]. Note that the implications b) ⇒ c) is trivial by Proposition 3.11,

and also the implication c) ⇒ a) is trivial since spheres are elliptic.
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In fact, Debongnie’s result was stated in the language of complements of co-

ordinate subspaces but his result is equivalent to that stated above. The methods

employed by Debongnie were therefore very combinatorial, using various rational

models and techniques of rational homotopy theory, which are very particular to

the polyhedral product (D2, S1)
K

but are not very adaptable to general polyhe-

dral products. It would be desirable to obtain a purely homotopy theoretic proof

of Theorem 5.3 with the hope that the techniques used may be adaptable to the

case of pairs (X,A) other than (D2, S1).

For example, we conjecture that a very similar result to Theorem 5.3 should

hold for the pair (Dm, Sm−1) for m ≥ 2.

Conjecture 5.4. The following statements are equivalent:

a) (Dm, Sm−1)
K

is elliptic,

b) K is a join of simplices and boundaries of simplices,

c) (Dm, Sm−1)
K

is homotopy equivalent to a product of spheres.

A proof of Conjecture 5.4 would would in turn have immediate implications

for polyhedral products constructed from the pair (Pm(pr), Sm−1), where the

inclusion of Sm−1 in Pm(pr) is the inclusion of the bottom cell. Because there

is a rational homotopy equivalence of pairs (Pm(pr), Sm−1) 'Q (Dm, Sm−1), and

the polyhedral product functor preserves rational homotopy equivalences, then

(Pm(pr), Sm−1)
K 'Q (Dm, Sm−1)

K
. Thus we have

Proposition 5.5. If Conjecture 5.4 holds then the polyhedral product (Pm(pr), Sm−1)
K

is elliptic if and only if K is a join of simplices and boundaries of simplices.

Proof. Since there is a rational homotopy equivalence (Pm(pr), Sm−1)
K 'Q (Dm, Sm−1)

K
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it follows that there is an isomorphism of the rational homotopy groups

π∗(
(
Pm(pr), Sm−1

)K
)⊗Q ∼= π∗(

(
Dm, Sm−1

)K
)⊗Q.

Thus (Pm(pr), Sm−1)
K

is elliptic if and only if (Dm, Sm−1)
K

is.

Polyhedral products associated to n-gons

In this thesis, the main family of polyhedral products we study are those of the

form (X,A)K , where K is an n-gon.

Definition 5.6. For a positive integer n ≥ 3, the n-gon is the 1-dimensional sim-

plicial complex on n vertices consisting of the faces {1, 2}, . . . , {n− 1, n}, {1, n}.

In the case of the pair (D2, S1), the polyhedral products for n-gons have a

very nice form. For example, the 3-gon is the simplicial complex ∂∆2 and we

have seen that (D2, S1)
∂∆2

' S5. Also, the 4-gon is the join ∂∆1 ∗ ∂∆1 and

(D2, S1)
∂∆1∗∂∆1

' S3×S3 by Proposition 3.11. In particular, the n-gon for n ≤ 4

is a join of boundaries of simplices and the associated polyhedral products are

elliptic, as stated in Theorem 5.3. For n ≥ 5, the n-gon is not a join of simplices

and boundaries of simplices and so Proposition 5.3 tells us that (D2, S1)
K

is

hyperbolic in these cases.

In this chapter we study a certain homotopy fibration over (D2, S1)
K

, which

exists when K is an n-gon, with the intention of understanding more about its

rational homotopy groups. We show that π∗((D
2, S1)

K
)⊗Q has a basis realized

by an infinite set of iterated Samelson products.

It is worth noting that for n ≥ 4 the n-gon is not a shifted complex, and

consequently the corresponding polyhedral product for the pair (D2, S1) is not

covered by the result of Grbić and Theriault.
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Proposition 5.7. For n ≥ 4, the n-gon is not shifted.

Proof. Let n ≥ 4 and let K be the n-gon. Every vertex in K is connected to

precisely two other vertices in K. Fix an ordering on the vertices. Now there

are precisely two integers p, q with 1 < p < q ≤ n such that {1, p} and {1, q}

belong to K. Furthermore, since n 6= 3, there exists an integer s with 1 < s ≤ n

with s 6= p, q such that {s, p} ∈ K. But {1, s} is not a face in K, so K is not

shifted.

It is therefore not unreasonable to suspect that for n ≥ 5, the polyhedral

product (D2, S1)
K

despite being hyperbolic, is not in fact homotopy equivalent

to a wedge of spheres. In fact, this is indeed the case. In 1979, Mcgavran showed

that for n ≥ 4, (D2, S1)
K

is homotopy equivalent to a connected sum of various

products of spheres. We shall make use of this result in our calculations.

Theorem 5.8 (Mcgavran [20]). Let K be the n-gon for n ≥ 4. Then there is a

homotopy equivalence

(
D2, S1

)K ' #n−3
j=1

(
#j(n−2

j+1)
(Sj+2 × Sn−j)

)
.

5.1
(
D2, S1

)K
when K is the 5-gon

We begin our work by considering the polyhedral product (D2, S1)
K

in the case

that K is the 5-gon. By Theorem 5.8, (D2, S1)
K

is homotopy equivalent to the

connected sum #5(S3 × S4). With the obvious cell structure, the 4-skeleton is

given by the wedge
∨

5(S3 ∨ S4). Let i denote the inclusion
∨

5(S3 ∨ S4) ↪−→

#5(S3 × S4).

Our aim in this section is to show that there is a basis for the rational homo-

topy of (D2, S1)
K

realized by an infinite set of iterated Samelson products. The



CHAPTER 5. POLYHEDRAL PRODUCTS FOR N -GONS 74

method of attack we adopt is to determine the homotopy type of the fibre F5 in

the homotopy fibration

F5 −→
∨
5

(S3 ∨ S4)
i

↪−→ #5(S3 × S4). (5.1)

In particular, we prove that F5 is homotopy equivalent to a wedge sum of infinitely

many spheres. Moreover, we prove that the homotopy fibration sequence splits

after looping, and by considering the homotopy equivalence given by the Hilton-

Milnor Theorem, we are able to conclude π∗(#5(S3 × S4)) ⊗ Q is isomorphic to

an infinite dimensional vector sub space of π∗(
∨

5(S3 ∨ S4)). In section 5.3 we

generalize our results to n-gons where n ≥ 5.

5.2 A simplified version of the problem

In order to keep the calculations tidy, we shall in fact study a simplified but anal-

ogous version of the problem outlined above, and show that the same techniques

applied in the simplified version carry over to the main problem.

Instead of studying the fibre of the inclusion
∨

5(S3 ∨ S4)
i−→ #5(S3 × S4),

we shall instead determine the homotopy fibre F2
5 in the homotopy fibration

F2
5 −→

∨
2

(S3 ∨ S4) ↪−→ #2(S3 × S4).

Let i1, i2 : S3 −→
∨

2(S3 ∨ S4) be the inclusions of the first and second S3

summand respectively, and let j1, j2 : S4 −→
∨

2(S3∨S4) be the inclusions of the

first and second S4 summand. For the sake of brevity we write 2(S3∨S4) for the

wedge sum
∨

2(S3 ∨ S4). Forming the Whitehead products w1 = [i1, j1] : S6 −→

2(S3 ∨ S4), and w2 = [i2, j2] : S6 −→ 2(S3 ∨ S4) and taking their sum, we obtain
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a map

w : S6 ψ−→ S6 ∨ S6 w1∨w2−→ 2(S3 ∨ S4) ∨ 2(S3 ∨ S4)
∇−→ 2(S3 ∨ S4),

where ψ is the standard co-H-space structure on S6. The following proposition

shows that the homotopy cofibre of w is the connected sum #2(S3 × S4.)

Proposition 5.9. In the following homotopy pushout

S6 w //

��

2(S3 ∨ S4)

��

∗ // Q,

(5.2)

Q is homotopy equivalent to the connected sum (S3 × S4)#(S3 × S4).

Proof. The Whitehead product [i1, j1] is the attaching map of the top cell in

(S3×S4)∨S3∨S4. Likewise, the Whitehead product [i2, j2] is the attaching map

of the top cell in S3 ∨ S4 ∨ (S3 × S4). Denote the two hemispheres of S6 by S6
+

and S6
−. The map w is by definition homtotopic to the composite

S6 ψ−→ S6 ∨ S6 [i1,j1]∨[i2,j2]−−−−−−−→ (S3 ∨ S4) ∨ (S3 ∨ S4)

where ψ is the standard coproduct on the co-H-space S6. That is, ψ restricted

to S6
+ is homotopic to the composite S6

+

pinch−→ S6 ↪−→ S6 ∨ S6 where the first

map pinches the boundary of the hemisphere to a point, and the second map is

the inclusion of the first wedge summand. Similarly, the restriction of ψ to S6
− is

homotopic to the composite S6
−

pinch−→ S6 ↪−→ S6 ∨ S6 where the first map again

pinches the boundary of the hemisphere to a point and the second map this time

is the inclusion of the second wedge summand.

Since the Whitehead product [i1, j1] is the attaching map of the top cell in in
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(S3 × S4) ∨ S3 ∨ S4, there is a cofibration S6 [i1,j1]−→ 2(S3 ∨ S4) −→ (S3 × S4) ∨

S3 ∨ S4. By restricting [i1, j1] to the hemisphere S6
+ we obtain the cofibration

S6
+ −→ 2(S3 ∨ S4) −→ ((S3 × S4)\D7) ∨ S3 ∨ S4. Similarly, the cofibre of

the restriction of [i2, j2] to the hemisphere S6
− is homotopy equivalent to S3 ∨

S4 ∨ ((S3 × S4)\D7). Now, gluing S6
+ and S6

− back along the common boundary

we see that the homotopy cofibre of w is homotopy equivalent to two copies of

(S3 × S4)\D7 identified along the common boundary.

Notation 5.10. For the remainder of this chapter, let C denote the connected

sum (S3 × S4)#(S3 × S4).

In the next section, we consider a certain map χ which we shall call the

collapse map. Let X, Y be manifolds of the same dimension n. By definition, the

connected sum of X, Y is the adjunction space obtained by removing the interior

of a disc from each of X, Y and identifying X\Dn with Y \Dn along the common

boundary sphere Sn−1. The quotient map which collapses this copy of Sn−1 to a

point defines a map χ : X#Y −→ X ∨ Y .

Definition 5.11. We call the map χ : X#Y −→ X ∨ Y the collapse map.

For the sake of completeness, we include a direct proof that C is hyperbolic.

Proposition 5.12. The connected sum C is a hyperbolic space.

Proof. To see that C is hyperbolic, consider the map α : S3 ∨ S3 −→ C defined

as the composite S3 ∨ S3 ↪−→ 2(S3 ∨ S4) −→ C, and the map β : C −→ S3 ∨ S3

defined by the composite C
χ−→ (S3 × S4) ∨ (S3 × S4)

π∨π−→ S3 ∨ S3, where χ is

the collapse map and π is the projection S3 × S4 −→ S3. Clearly the composite

S3 ∨ S3 α−→ C
β−→ S3 ∨ S3
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is the identity map, and thus α is a right homotopy inverse for β. Let G be

the homotopy fibre of Ωβ. Then there is a homotopy decomposition ΩC '

G× Ω(S3 ∨ S3), and therefore an isomorphism of rational homotopy groups

π∗(ΩC)⊗Q ∼= (π∗(G)⊗Q)⊕ π∗(Ω(S3 ∨ S3)⊗Q).

Since π∗(Ω(S3 ∨ S3)⊗Q) is a free Lie algebra on two generators, it follows that

π∗(ΩC)⊗Q is infinite dimensional over Q. That is, C is hyperbolic.

5.2.1 Construction of a certain cofibration

The collapse map χ : #2(S3×S4) −→ (S3×S4)∨(S3×S4) induces maps from each

corner of the homotopy pushout (5.2) into (S3×S4)∨ (S3×S4), by composition.

Notation 5.13. For the remainder of this chapter, let P denote the space (S3×

S4) ∨ (S3 × S4), denote χ by ϕ4, and let

S6 ϕ1
// P, ∗ ϕ2

// P, 2(S3 ∨ S4)
ϕ3
// P, (5.3)

denote the maps induced by ϕ4 and homotopy pushout (5.2), giving the homotopy

commutative cube

S6 //

ϕ1

��

��

2(S3 ∨ S4)

ϕ3

��

%%∗ //

ϕ2

��

C

ϕ4

��

P P

P P.
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Proposition 5.14. There is a homotopy pushout

S6 × ΩP
f
//

π
��

N

��

ΩP //M

(5.4)

where

1. N is the homotopy fibre of ϕ3,

2. M is the homotopy fibre of ϕ4,

3. π is the projection map,

4. the restriction of f to ΩP is null-homotopic,

5. and f is homotopic to the composite

S6 × ΩP
(f |S6 )×1
−−−−→ N × ΩP

θ−−−−→ N

where f |S6 is the restriction of f to S6 and θ is the homotopy action of ΩP

on N , defined via the homotopy fibration N −→ 2(S3 ∨ S4)
ϕ3−→ P .

Before proving Proposition 5.14 we need a lemma.

Lemma 5.15. Given spaces A,B,C and D, the inclusion map i : A ∨ B ∨ C ∨

D −→ (A×B) ∨ (C ×D) has a right homotopy inverse after looping.

Proof. Recall from Proposition 2.30 that for spaces X, Y there is a homotopy

fibration ΩX ∗ΩY −→ X ∨Y j−→ X ×Y , where j is the inclusion. Moreover, by

Corollary 2.31, there is a right homotopy inverse r : Ω(X×Y ) −→ Ω(X∨Y ) of the

map Ωj, and hence a homotopy equivalence Ω(X∨Y ) ' ΩX×ΩY×ΩΣ(ΩX∧ΩY ).
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Now for spaces A,B,C,D, there are homotopy equivalences

Ω(A ∨B ∨ C ∨D) ' Ω(A ∨B)× Ω(C ∨D)× ΩΣ(Ω(A ∨B) ∧ Ω(C ∨D))

and

Ω((A×B) ∨ (C ×D)) ' Ω(A×B)× Ω(C ×D)× ΩΣ(Ω(A×B) ∧ Ω(C ×D)).

Furthermore, the map Ωi decomposes as the product of the three maps

Ωi1 : Ω(A ∨B) −→ Ω(A×B)

Ωi2 : Ω(C ∨D) −→ Ω(C ×D)

ΩΣ(i1 ∧ i2) : ΩΣ(Ω(A ∨B) ∧ Ω(C ∨D)) −→ ΩΣ(Ω(A×B) ∧ Ω(C ×D)).

where i1, i2 are the inclusion maps. Clearly Ωi1,Ωi2 admit right homotopy in-

verses r1 : Ω(A×B) −→ Ω(A∨B) and r2 : Ω(C ×D) −→ Ω(C ∨D) respectively.

To see that the third map admits a right homotopy inverse, first notice that the

product of the composite maps

Ω(A×B)
r1−→ Ω(A ∨B)

Ωi1−→ Ω(A×B)

Ω(C ×D)
r2−→ Ω(C ∨D)

Ωi2−→ Ω(C ×D)

is homotopic to (r1 ◦Ωi1)× (r2 ◦Ωi2) which is the identity. Therefore there is an

induced homotopy commutative diagram

Ω(A×B) ∧ Ω(C ×D)
r1∧r2 //

(r1◦Ωi1)∧(r2◦Ωi2)
��

Ω(A ∨B) ∧ Ω(C ∨D)

i1∧i2
��

Ω(A×B) ∧ Ω(C ×D) Ω(A×B) ∧ Ω(C ×D)

(5.5)
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and thus r1 ∧ r2 is a right homotopy inverse of i1 ∧ i2.

Secondly, applying the functor ΩΣ to all maps in diagram (5.5), we see that

ΩΣ(i1∧ i2)◦ΩΣ(r1∧ r2) ' ΩΣ((i1∧ i2)◦ (r1∧ r2)), which of course is the identity.

Thus the product of these three right homotopy inverses r1 × r2 ×ΩΣ(r1 ∧ r2) is

a right homotopy inverse for Ωi.

In particular, Lemma 5.15 shows that the map ϕ3 has a right homotopy inverse

after looping, a fact we shall use now as we go back and prove Proposition 5.14.

Proof of Proposition 5.14. Taking homotopy fibres of the maps ϕ1, . . . , ϕ4, in

(5.3), we obtain four homotopy fibrations:

F −→ S6 ϕ1−→ P, (5.6)

G −→ ∗ ϕ2−→ P, (5.7)

N −→ 2(S3 ∨ S4)
ϕ3−→ P, (5.8)

M −→ C
ϕ4−→ P. (5.9)

The map ϕ1 is by definition homotopic to the composite S6 −→ ∗ ϕ2−→ P and

is therefore null-homotopic. So we can express ϕ1 as the product S6 × ∗ ∗×∗−→

∗ × P from which it follows that F is homotopy equivalent to the product of

the individual homotopy fibres S6×ΩP . The homotopy fibration (5.7) is simply

the path-loop fibration and thus G is homotopy equivalent to ΩP . As for the

homotopy types of N and M , we leave these undetermined for now.

By mapping each corner of homotopy pushout (5.2) into P , we see from

Mather’s cube lemma, (Lemma 2.20), that there is a homotopy pushout of the
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fibres

S6 × ΩP
f
//

π
��

N

��

ΩP //M

for some maps π and f . This proves parts (1) - (2). Next we prove part (3).

Since ϕ1 is homotopic to the composite S6 −→ ∗ ϕ2−→ P , there is an induced

morphism of homotopy fibrations

S6 × ΩP //

π
��

S6 ϕ1
//

��

P

ΩP // ∗ ϕ2

// P

which defines π. Since the map on the common base space P , is the identity, the

left hand square is a homotopy pullback diagram. By example 2.2 π is homotopic

to the projection map.

Now we prove part (4). Since ϕ1 is homotopic to the composite S6 w−→

2(S3 ∨ S4)
ϕ3−→ P , there is a morphism of homotopy fibration sequences

ΩP // S6 × ΩP //

f

��

S6 ϕ1
//

w
��

P

ΩP // N // 2(S3 ∨ S4) ϕ3

// P.

(5.10)

By Lemma 5.15, the map ϕ3 has a right homotopy inverse after looping and so

it follows that the map ΩP −→ N is null-homotopic. Furthermore, since ϕ1 is

null-homotopic, the map ΩP −→ S6 × ΩP is homotopic to the inclusion of the

second factor and so the square on the far left of the diagram shows precisely

that the restriction of f to ΩP is null-homotopic.

Now we prove part (5). Consider again the morphism of homotopy fibrations

in diagram (5.10). Associated to the homotopy fibration on the bottom row there
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is a homotopy action θ : N×ΩP −→ ΩP , and similarly, there is a homotopy action

θ′ : (S6 × ΩP ) × ΩP −→ S6 × ΩP associated to the homotopy fibration in the

top row. By the naturality property of homotopy actions there is a homotopy

commutative diagram

(S6 × ΩP )× ΩP θ′ //

f×1

��

S6 × ΩP

f

��

N × ΩP
θ

// N.

Since the homotopy fibration S6 × ΩP −→ S6 × ∗ −→ ∗ × P on the top row

of diagram (5.10) is a product of homotopy fibrations, the associated homotopy

action θ′ is homotopic to θ′′ × µ where θ′′ : S6 −→ S6 is the homotopy action

associated to the trivial fibration S6 −→ S6 −→ ∗ and µ : ΩP × ΩP −→ ΩP is

the homotopy action associated to the path-loop fibration ΩP −→ ∗ −→ P . It

follows directly from the definition of the homotopy action that θ′′ is the identity

map and µ is the loop multiplication.

Let i denote the map S6×∗×ΩP
1×∗×1−−−→ S6×ΩP ×ΩP . Since the restriction

of µ to ∗ × ΩP is homotopic to the identity, then the composite

S6 × ΩP
i−→ S6 × ΩP × ΩP

θ′−→ S6 × ΩP.

is homotopic to the identity. So we now see that

f ' f ◦ (θ′ ◦ i)

' (θ ◦ (f × 1)) ◦ i

' θ ◦ (f |S6 × 1)

as required.
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The homotopy type of N

We will need to identify the map N −→ M appearing in diagram (5.4). Our

first step is to determine the homotopy type of N and show that it is homotopy

equivalent to a wedge of infinitely many spheres
∨
α∈I S

nα by appealing to the

Hilton-Milnor Theorem. We will need the following lemma which determines the

homotopy type of the homotopy fibre of the pinch map A ∨ B −→ B which

collapses the wedge summand A to a point.

Proposition 5.16. The homotopy fibre of the pinch map A∨B −→ B is homo-

topy equivalent to Ao ΩB.

Proof. See [5], Proposition 2.3.

The homotopy type of N follows as a special case of the following more general

proposition. For spaces X1, . . . , Xn, and a subset σ = {i1, . . . , ik} of [n], let Xi1...ik

denote the smash product Xi1 ∧ . . . ∧Xik .

Proposition 5.17. The homotopy fibre of the inclusion

X1 ∨X2 ∨X3 ∨X4 −→ (X1 ×X2) ∨ (X3 ×X4)

is homotopy equivalent to Go ΩG where

a) G ' ΣΩ(X1 ×X2) ∧ Ω(X3 ×X4),

b) and G ' Σ(ΩX)12∨Σ(ΩX)34∨Σ(ΩX)123∨Σ(ΩX)124∨Σ(ΩX)134∨Σ(ΩX)234∨

2Σ(ΩX)1234.

Proof. Let H be the homotopy fibre of the inclusion
∨4
i=1Xi −→ (X1 × X2) ∨
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(X3 ×X4). Then there is a homotopy commutative diagram

H //

��

F //

��

G

��

H //

��

X1 ∨X2 ∨X3 ∨X4
//

��

(X1 ×X2) ∨ (X3 ×X4)

��

∗ // X1 ×X2 ×X3 ×X4 X1 ×X2 ×X3 ×X4

(5.11)

where all rows and columns are homotopy fibrations. By Proposition 2.30 there

is a homotopy equivalence G ' ΣΩ(X1 × X2) ∧ Ω(X3 × X4). Then using the

decomposition of a product after suspending ΣA × B ' ΣA ∨ ΣB ∨ ΣA ∧ B in

Proposition 2.21 we obtain a sequence of homotopy equivalences

G ' Σ(ΩX1 × ΩX2) ∧ (ΩX3 × ΩX4)

' Σ(ΩX1 ∨ ΩX2 ∨ (ΩX)12) ∧ (ΩX3 ∨ ΩX4 ∨ (ΩX)34)

' Σ(ΩX)13 ∨ Σ(ΩX)14 ∨ Σ(ΩX)23 ∨ Σ(ΩX)24

. . .Σ(ΩX)123 ∨ Σ(ΩX)124 ∨ Σ(ΩX)134 ∨ Σ(ΩX)234

. . .Σ(ΩX)1234.

In particular, G is the wedge sum of the domains of the following iterated universal

Whitehead products:

1. [ζj, ζk] for all pairs 1 ≤ j < k ≤ 4 except [ζ1, ζ2] and [ζ3, ζ4]. Call this

collection of Whitehead products W2.

2. [ζj, [ζk, ζl]] where 1 ≤ j < k < l ≤ 4, and [ζk, ζl] belongs to W2. Call this

collection L3.

3. [[ζj, ζk], ζl] where 1 ≤ j < k < l ≤ 4, and [ζj, ζk] belongs to W2. Call this

collection R3 and let W3 = L3 ∪R3.
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4. [ζj, [ζk, [ζl, ζm]]] and [ζj, [[ζk, ζl], ζm]] where (j, k, l,m) = (1, 2, 3, 4) and [ζk, [ζl, ζm]]

and [[ζk, ζl], ζm] belong to W3.

5. [[ζj, [ζk, ζl]], ζm] and [[[ζj, ζk], ζl], ζm] where (j, k, l,m) = (1, 2, 3, 4) and [ζj, [ζk, ζl]]

and [[ζj, ζk], ζl] belong to W3.

On the other hand, Porter’s Theorem tells us that there is a homotopy equiv-

alence

F ' Σ(ΩX)12 ∨ Σ(ΩX)13 ∨ Σ(ΩX)14 ∨ Σ(ΩX)23 ∨ Σ(ΩX)24 ∨ Σ(ΩX)34

. . . 2(Σ(ΩX)123 ∨ Σ(ΩX)124 ∨ Σ(ΩX)134 ∨ Σ(ΩX)234)

. . . 3Σ(ΩX)1234.

which is the wedge sum of the domains of the set of all the iterated universal

Whitehead products as constructed in W together with those new Whitehead

products obtained by adding [ζ1, ζ2] and [ζ3, ζ4] to the list W2.

So G is the wedge sum of those iterated universal Whitehead products in F

which are not generated by [ζ1, ζ2] and [ζ3, ζ4], namely F ' G ∨G where

G ' Σ(ΩX)12 ∨ Σ(ΩX)34 ∨ Σ(ΩX)123 ∨ Σ(ΩX)124

. . . ∨ Σ(ΩX)134 ∨ Σ(ΩX)234 ∨ 2Σ(ΩX)1234

and the map F −→ G in diagram 5.11 is homotopic to the pinch mapG∨G −→ G.

Thus by Proposition 5.16, there is a homotopy equivalence H ' Go ΩG.

As an immediate corollary of proposition 5.17 we obtain the homotopy type

of N
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Corollary 5.18. There is a homotopy equivalence

N ' Go Ω(ΣΩ(S3 × S4) ∧ Ω(S3 × S4))

where G ' (ΣΩS3∧ΩS4)∨ (ΣΩS3∧ΩS4)∨ (ΣΩS3∧ΩS4∧ΩS3)∨ (ΣΩS3∧ΩS4∧

ΩS4)∨ (ΣΩS3∧ΩS3∧ΩS4)∨ (ΣΩS4∧ΩS3∧ΩS4)∨ (2ΣΩS3∧ΩS4∧ΩS3∧ΩS4).

Proof. The result follows from Proposition 5.17 by putting X1 = X3 = S3 and

X2 = X4 = S4.

In order to further decompose N into a wedge of spheres, the following two

lemmas will be useful.

Lemma 5.19. Suppose that X = ΣX and Y = ΣY are suspension spaces. Then

ΣΩX ∧ ΩY is homotopy equivalent to the wedge
∨∞
j,k=1 ΣX∧j ∧ Y ∧k.

Proof. The result follows from iterated use of the James splitting. In particular,

applying the James splitting there is a homotopy equivalence

ΣΩΣX ∧ ΩΣY ' (Σ
∞∨
j=1

X∧j) ∧ ΩΣY.

Taking the suspension through the smash product, this is homotopy equivalent to

(
∨∞
j=1X

∧j)∧ΣΩΣY which by another application of the James splitting decom-

poses as (
∨∞
j=1 X

∧j) ∧ (Σ
∨∞
k=1 Y

∧k). Since the smash product distributes over

the wedge, this gives the required result.

Lemma 5.20. Let n,m, k, l ≥ 2. Then (Sn ∨ Sm) o Ω(Sk ∨ Sl) is homotopy

equivalent to a wedge of spheres.

Proof. Since (Sn ∨ Sm) is a suspension space, then by Proposition 2.32, there is
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a homotopy equivalence

(Sn ∨ Sm) o Ω(Sk ∨ Sl) ' Sn ∨ Sm ∨ ((Sn ∨ Sm) ∧ Ω(Sk ∨ Sl))

' Sn ∨ Sm ∨ (Sn ∧ Ω(Sk ∨ Sl)) . . . (5.12)

. . . ∨ (Sm ∧ Ω(Sk ∨ Sl))

By the Hilton-Milnor Theorem Ω(Sk ∨ Sl) is homotopy equivalent to the prod-

uct
∏

B Ω(Σ(Sk)∧n1 ∧ (Sl)∧n2) indexed by a basis B for the free Lie algebra

on 2 elements. Notice that Σ(Sk)∧n1 ∧ (Sl)∧n2 ' Skn1+ln2+1. It follows that

the wedge summand Sn ∧ Ω(Sk ∨ Sl) in equation (5.12) is homotopy equiva-

lent to Σn
∏

B ΩSkn1+ln2+1. Proposition 2.21 says that there is a decomposition

Σ(X × Y ) ' ΣX ∨ ΣY ∨ ΣX ∧ Y for arbitrary spaces X, Y . Iterating this de-

composition shows that Σn
∏

B ΩSkn1+ln2+1 is homotopy equivalent to a wedge of

spaces of the form ΣnΩX1∧ . . .∧ΩXt where each Xi is a sphere, and iterated use

of the James splitting, as in Lemma 5.19 shows that each of these summands is

a wedge of spheres.

The same argument shows that the summand Sm ∧ Ω(Sk ∨ Sl) in equation

(5.12) is also homotopy equivalent to a wedge of spheres, and this gives the desired

result.

We therefore obtain the following corollary.

Corollary 5.21. N has the homotopy type of an infinite wedge of spheres.

Proof. By Corollary 5.18, N is homotopy equivalent to

Go Ω(ΣΩ(S3 × S4) ∧ Ω(S3 × S4))

where G is a wedge sum of spaces of the form ΣΩX1 ∧ . . . ∧ΩXk, where each Xi
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is a sphere. By Lemma 5.19 it follows that G decomposes as a wedge of spheres.

On the other hand, by Proposition 2.21, there is a homotopy decomposition

ΣΩ(S3
1 × S4

2) ∧ Ω(S3
3 × S4

4) ' (ΣΩS3
1 ∨ ΣΩS4

2 ∨ Σ(ΩS3
1 ∧ ΩS4

2))

∧(ΩS3
3 ∨ ΩS4

4 ∨ (ΩS3
3 ∧ ΩS4

4)).

Since the smash product distributes over the wedge, this is homotopy equivalent

to a wedge of spaces of the form ΣΩX1∧ . . .∧ΩXk where each Xi is a sphere. By

Lemma 5.19 each of these wedge summands is homotopy equivalent to a wedge

of spheres.

It follows that N ' G o ΩG, where G and G are both wedges of spheres.

By generalizing the argument in the proof of Lemma 5.20 we obtain the desired

result that N is homotopy equivalent to a wedge of infinitely many spheres.

5.2.2 An extension of f : S6 × ΩP −→ N

Suppose f : X × Y −→ Z is a map such that the restriction of f to Y is null-

homotopic. Then since there is a homotopy cofibration Y ↪−→ X×Y −→ XoY ,

there is an extension of f to a map f : X o Y −→ Z.

In particular, the map f : S6 × ΩP −→ N from Proposition 5.14 has an

extension f : S6 o ΩP −→ N .

Proposition 5.22. The sequence

S6 o ΩP
f−→ N −→M.

is a homotopy cofibration.
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Proof. Consider the homotopy pushout from Proposition 5.14

S6 × ΩP
f
//

π
��

N

��

ΩP //M.

Since π is the the projection, it has a right homotopy inverse, given by the

inclusion i : ΩP −→ S6×ΩP , we see that the map ΩP −→M factors as ΩP
f |ΩP−→

N −→M . But the restriction of f to ΩP is trivial by Proposition 5.14 and hence

the map ΩP −→ M is null-homotopic. Furthermore, the extension f : S6 o

ΩP −→ N , of f , induces a monomorphism in homology. To see this, notice

that since S6 is a suspension, there is a splitting S6 o ΩP ' S6 ∨ (S6 ∧ ΩP ) by

Proposition 2.32. It is enough to check that f induces a monomorphism on each

wedge summand.

It follows from the homotopy decomposition of N found in Proposition 5.18

and Proposition 5.21 that N is a wedge of spheres of dimension at least 6, and

in particular, N is 5-connected. It therefore follows from the Hurewicz Theorem,

that the Hurewicz homomorphism gives an isomorphism π6(S6) −→ π6(N). In

particular, the homomorphism induced in homology by the restriction of f to S6,

induces an isomorphism onto it’s image.

For the second summand S6 ∧ ΩP , recall that in Proposition 5.14 we found

that f is homotopic to the composite

S6 × ΩP
(f |S6 )×1
−−−−→ N × ΩP

θ−−−−→ N

In particular, the restriction of f to S6 ∧ ΩP is defined via the homotopy action
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θ, associated to the fibration N −→ 2(S3 ∨ S4)
ϕ3−→ P . That is,

f |(S6∧ΩP ) ' S6 ∧ ΩP
(f |S6 )∧1
−→ N ∧ ΩP

θ−→ N.

The map S6 ∧ ΩP
(f |S6 )∧1
−→ N ∧ ΩP induces a monomorphism in homology since

f |S6 does, and therefore so too does f |(S6∧ΩP ).

Since f induces a monomorphism in homology we may therefore pinch out the

factor ΩP in the homotopy pushout diagram to obtain a new homotopy pushout

S6 o ΩP
f
//

π

��

N

��

∗ //M.

In particular, S6 o ΩP
f−→ N −→M is a homotopy cofibration.

5.2.3 The homotopy type of F2
5

We are now ready to return to our main aim for this section, the determination

of the homotopy type of F2
5 , and of a basis for π∗(ΩC)⊗Q.

Proposition 5.23. The homotopy fibre F2
5 is homotopy equivalent to (S6oΩP )o

ΩM .

Proof. Recall that from the proof of Proposition 5.14, there is a homotopy com-

mutative diagram

F2
5

��

F2
5

��

N //

��

2(S3 ∨ S4)
ϕ3
//

i
��

P

M // C ϕ4

// P

(5.13)
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in which all rows and columns are homotopy fibrations. In particular, F2
5 is

homotopy equivalent to the homotopy fibre of the map N −→M .

By Proposition 5.22 there is a homotopy cofibration S6 o ΩP
f−→ N −→

M , where f induces a monomorphism in homology. By Proposition 5.21, N is

homotopy equivalent to a wedge of spheres, and by a similar argument, it is clear

to see that so is S6 o ΩP . It follows that f is the inclusion of a wedge summand

and consequently, there is a homotopy equivalence N ' (S6 oΩP )∨M , and the

map N −→M is homotopic to the pinch map (S6 o ΩP ) ∨M −→M .

Finally, Proposition 5.16 shows that there is a homotopy equivalence F2
5 '

(S6 o ΩP ) o ΩM .

Corollary 5.24. F2
5 is homotopy equivalent to a wedge of infinitely many spheres.

Proof. This follows from Proposition Lemma 5.20 since S6 oΩP and M are both

homotopy equivalent to a wedge of infinitely many spheres.

We are now ready to state our main theorem of this section.

Theorem 5.25. The rational homotopy groups π∗(ΩC)⊗Q are generated by an

infinite set of Samelson products.

Proof. By loooping all spaces and maps in diagram 5.13 there is a homotopy

commutative diagram

ΩF2
5

Ωf

��

ΩF2
5

Ωj
��

ΩN
Ωg
//

��

Ω2(S3 ∨ S4)
Ωϕ3

//

��

ΩP

ΩM // ΩC
Ωϕ4

// ΩP.

(5.14)

in which all rows and columns are homotopy fibrations. Since Ωϕ3 admits a right

homotopy inverse, it follows by Proposition 2.18, that Ωg admits a left homotopy
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inverse g′. Similarly, the map ΩM −→ ΩN has a right homotopy inverse given

by looping the inclusion of the wedge summand M into N . Hence Ωf has a left

homotopy inverse f ′. It follows that the composite Ω2(S3∨S4)
f ′−→ ΩN

g′−→ ΩF2
5

is a left homotopy inverse for Ωj and consequently, Proposition 2.18 implies there

are homotopy equivalences

Ω2(S3 ∨ S4) ' ΩF2
5 × ΩC (5.15)

Ω2(S3 ∨ S4) ' ΩN × ΩP (5.16)

ΩN ' ΩF2
5 × ΩM (5.17)

Let S(n1, n2, n3, n4) denote the smash product (S3)n1 ∧ (S4)∧n2 ∧ (S3)∧n3 ∧

(S4)∧n4 . Then by the Hilton-Milnor Theorem, Ω2(S3∨S4) '
∏

b∈B ΩΣS(n1, n2, n3, n4)

where B is a basis for the free Lie algebra on 4 elements, and π∗(Ω2(S3∨S4))⊗Q

is generated by the set of iterated Samelson products

S(n1, n2, n3, n4)
E−→ ΩΣS(n1, n2, n3, n4)

Ωwb−→ Ω2(S3 ∨ S4)

where E : X −→ ΩΣX is the adjoint of the identity on ΣX and wb is the White-

head product indexed by b.

Combining decompositions (5.16) and (5.17), there is a homotopy equivalence

Ω(2(S3 ∨ S4)) ' ΩF2
5 × ΩM × ΩP.

It is clear that under the Hilton-Milnor equivalence, ΩM and ΩP correspond
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to subproducts
∏

b∈B′⊂B ΩΣS(n1, n2, n3, n4) and
∏

b∈B′′⊂B ΩΣS(n1, n2, n3, n4) re-

spectively, for disjoint B′ and B′′. It follows that ΩF2
5 corresponds to the sub-

product ∏
b∈B⊂B

ΩΣS(n1, n2, n3, n4)

where B = B\(B′ ∪ B′′). Finally, decomposition (5.15) confirms that ΩC corre-

sponds under the Hilton-Milnor equivalence to the subproduct
∏

b∈B\B ΩΣS(n1, n2, n3, n4)

and so π∗(ΩC)⊗Q is generated by those Samelson products in π∗(Ω2(S3∨S4))⊗Q

which do not belong to π∗(ΩF2
5 )⊗Q.

5.3 Generalization to n-gons for n ≥ 5

In this section we show how to generalize our result, proved in Theorem 5.25,

which shows that the rational homotopy groups of the looped connected sum ΩC

has an infinite basis given by iterated Samelson products, to (D2, S1)
K

where K

is an n-gon and n ≥ 5.

Fix n ≥ 5 and let K be the n-gon. Recall that by Theorem 5.8 there is a

homotopy equivalence

(
D2, S1

)K ' #n−3
j=1 #(n−2

j+1)
(Sj+2 × Sn−j). (5.18)

Denote this connected sum by C and let W be the wedge sum
∨n−3
j=1

(
n−2
j+1

)
(Sj+2∨

Sn−j). Let Fn denote the homotopy fibre of the inclusion W −→ C. We claim

that all the results of Section 5.1 have analogues in the current setting.

To begin with, for fixed j, set an ordering of the
(
n−2
j+1

)
copies of Sj+2 ∨ Sn−j.

Then for j < j′ set (Sj+2 ∨ Sn−j) < (Sj
′+2 ∨ Sn−j′). This defines an ordering of

the Σn−3
j=1

(
n−2
j+1

)
wedge sums of pairs of spheres appearing in W .
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For k = 1, . . . ,Σn−3
j=1

(
n−2
j+1

)
let

ik : Sj+2 ↪−→ (Sj+2 ∨ Sn−j)k ↪−→ W

jk : Sn−j ↪−→ (Sj+2 ∨ Sn−j)k ↪−→ W

be the the inclusion maps into W and let w be the sum of the Whitehead products

(
Σ

Σn−3
j=1 (n−2

j+1)
k=1 [ik, jk]

)
: Sn+1 −→ W.

This map is the attaching map of the top cell in C and so there is a homotopy

pushout diagram

Sn+1 w //

��

W

��

∗ // C.

(5.19)

Now let P =
∨n−3
j=1

(
n−2
j+1

)
(Sj+2×Sn−j). The collapse map χ : C −→ P induces

maps from each corner of the homotopy pushout (5.19) into P , and so Mather’s

Cube Lemma yields a homotopy pushout of homotopy fibres

Sn+1 × ΩP
f
//

π
��

N

��

ΩP //M.

By analogy with the results of Section 5.2, we may there is a homotopy cofibration

Sn+1 o ΩP
f−→ N −→ M where N ' (Sn+1 o ΩP ) ∨M is an infinite wedge of

spheres, M is the wedge of an infinite subcollection of the spheres in N , and

the map N −→ M is homotopic to the pinch map. Therefore Fn is homotopy

equivalent to (Sn+1 o ΩP ) −→ ΩM , and by analogy with Theorem 5.25 we are

able to state our main result for this chapter:
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Theorem 5.26. If K is an n-gon with n ≥ 5, then (D2, S1)
K

is hyperbolic and

π∗(Ω (D2, S1)
K

)⊗Q is generated by an infinite set of iterated Samelson products.



Chapter 6

Homotopy exponents for

(Cone ΩPm(pr),ΩPm(pr))K

Throughout this chapter, let P denote a Moore space Pm(pr), where p is an odd

prime and m ≥ 3. As we saw in Chapter 3, Cohen, Moore and Neisendorfer

found that expp(P ) = pr+1. In this chapter we study the homotopy exponent of

the polyhedral product (Cone ΩP ,ΩP )K , and show that when K is an n-gon, the

value of the exponent is also pr+1. For general K, we do not definitively obtain

the value of the exponent, but we believe it is also pr+1. In fact we show that

under the assumption that Barratt’s Conjecture is true, then this is indeed the

case.

Note that by Corollary 3.14 there is a homotopy decomposition

Ω (P, ∗)K ' Ω (Cone ΩP ,ΩP )K ×
n∏
i=1

ΩPi.

and so our results are also valid for (P, ∗)K by Proposition 4.6.

Before getting to our main results, we first need to review some work of Félix

and Tanré [11].

96
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6.1 Review of the work of Félix and Tanré

In [11], Félix and Tanré studied the rational homotopy theory of polyhedral

products. One of the constructions arising in their work is the existence of a

particular sequence of fibrations, for any polyhedral product (X,A)K , which can

be viewed as a decomposition of the fibration F −→ (X,A)K −→
∏n

i=1Xi.

Theorem 6.1 ([11], Theorem 2). Let K be a simplicial complex on n vertices.

For i = 1, . . . , n, suppose that Ai is a subspace of Xi and define

Ki = resK(i) ∗ {i+ 1, . . . , n},

Yi = (X,A)linkresK (i)({i}) ,

Zi = (X,A)resK(i−1) .

Let F ′i denote the homotopy fibre of Yi −→ Zi and F ′′i denote the homotopy fibre

of the inclusion Ai −→ Xi. Then there is a sequence of homotopy fibrations

F2 −→ (X,A)K2 −→
∏n

i=1Xi,

F3 −→ (X,A)K3 −→ (X,A)K2

...

Fn −→ (X,A)K −→ (X,A)Kn−1 .

where Fi is homotopy equivalent to F ′i ∗ F ′′i .

Proof. Any simplicial complex can be expressed as a homotopy pushout

linkK({n}) //

��

starK({n})

��

resK(n− 1) // K.
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Notice that starK({n}) is the join linkK({n})∗{n}. Since (X,A)K∗L = (X,A)K×

(X,A)L, then (X,A)starK({n}) = (X,A)linkK({n}) ×Xn.

By considering linkK({n}) as a simplicial complex on {1, . . . , n− 1} it can be

expressed as a join linkK({n}) ∗ ∅, and similarly resK(n− 1) can be expressed as

resK(n− 1) ∗ ∅. Thus there is an induced homotopy pushout

Yn × An //

��

Yn ×Xn

��

Zn × An // (X,A)K .

(6.1)

where Yn = (X,A)linkK({n}) and Zn = (X,A)resK(n−1).

Now set Kn−1 = resK(n−1)∗{n} so that (X,A)Kn−1 = Zn×Xn. The inclusion

of K in Kn−1 induces a map (X,A)K −→ (X,A)Kn−1 . Denote the homotopy fibre

of this map by Fn. By mapping the four corners of the homotopy pushout in (6.1)

into Zn ×Xn and taking homotopy fibres, we obtain by Mather’s Cube Lemma

a homotopy pushout

F ′n × F ′′n
π1 //

π2

��

F ′n

��

F ′′n // Fn.

where F ′n is the homotopy fibre of the map Yn −→ Zn and F ′′n is the homotopy

fibre of the inclusion An −→ Xn, and the maps π1, π2 are the projection maps. It

follows by Proposition 2.29 that Fn is homotopy equivalent to the join F ′n ∗ F ′′n .

For the inductive step, let Ki = resK(i) ∗ {i+ 1, . . . , n}. Then

(X,A)Ki+1 = (X,A)resK(i+1) ×Xi+2 × . . .×Xn,

(X,A)Ki = (X,A)resK(i) ×Xi+1 ×Xi+2 . . .×Xn,

and the homotopy fibre Fi+1 of the map (X,A)Ki+1 −→ (X,A)Ki is homotopy
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equivalent to the homotopy fibre of

(X,A)resK(i+1) −→ (X,A)resK(i)×Xi+1 (6.2)

But since resK(i) can be expressed as the restriction of resK(i + 1) to the first i

vertices, then the same argument as before shows that Fi+1 is homotopy equivalent

to the join F ′i+1 ∗F ′′i+1 where F ′i+1 is the homotopy fibre of Yi+1 −→ Zi+1 and F ′′i+1

is the homotopy fibre of Ai+1 −→ Xi+1.

One of the main results of [11] shows that for most choices of X and K, the

polyhedral product (Cone ΩX,ΩX)K is hyperbolic.

Proposition 6.2 ([11], Corollary 2). Suppose X is a CW -complex, and is nilpo-

tent of finite type, and let K be a simplicial complex on n vertices. If

1. K is not the full simplex ∆n−1 and

2. H̃∗ (X;Q) 6= 0 and

3. and if the rational cohomology algebra H∗(X;Q) is not a polynomial algebra

Q[α] on one generator α of even degree,

then (Cone ΩX,ΩX)K is hyperbolic.

We omit the defintion of nilpotent space here, but we note that the class of

nilpotent spaces of finite type includes simply-connected spaces of finite type.

Notice that in the case X = BT we have (Cone ΩX,ΩX)K = (D2, S1)
K

,

and since H∗ (BT ;Q) ∼= Q[α] where α is of degree 2, then Proposition 6.2 is not

applicable and thus does not contradict Debongnie’s result stated in Theorem 5.3.

Another family of polyhedral products which is not covered by the hypotheses

of Proposition 6.2 is that of (Cone ΩP ,ΩP )K , since H̃∗ (P ;Q) = 0. In the next

section, we study the homotopy exponents of precisely this family.
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6.2 Homotopy exponents for n-gons

First of all we consider the special case where K is an n-gon and we determine

the value of the p-primary homotopy exponent for (Cone ΩPm(pr),ΩPm(pr))K .

We see that the value of the exponent is independent of both n and m, and is in

fact equal to pr+1. For n = 3, 4, the result is straightforward:

Proposition 6.3. Let K be the 3-gon. Then expp((Cone ΩP ,ΩP )K) ≤ pr+1.

Proof. By equation (3.2), there is a homotopy fibration

(Cone ΩP ,ΩP )K −→ (P, ∗)K −→
3∏
i=1

Pi,

and since K = ∂∆2, we have that (P, ∗)K = T 3
1 in the notation of equation (2.9).

Thus Porter’s Theorem shows that (Cone ΩP ,ΩP )K ' Σ2ΩP1∧ΩP2∧ΩP3. By ap-

pealing to the James’ splitting together with Lemma 4.14, this is homotopy equiv-

alent to a wedge of mod pr Moore spaces and hence expp((Cone ΩP ,ΩP )K) ≤ pr+1

by Proposition 4.15.

Proposition 6.4. Let K be the 4-gon. Then expp((Cone ΩP ,ΩP )K) ≤ pr+1.

Proof. By Corollary 3.14 there is a homotopy decomposition

Ω (P, ∗)K ' Ω (Cone ΩP ,ΩP )K ×
4∏
i=1

ΩPi.

Since K is the join ∂∆1 ∗ ∂∆1, there is a homeomorphism (P, ∗)K ' (P1 ∨ P2)×

(P3 ∨ P4) by Proposition 3.11. Thus expp((P, ∗)
K) is equal to

max{expp(P1 ∨ P2), expp(P3 ∨ P4)} = pr+1.
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The 5-gon is the first non-trivial case, which we consider in Section 6.2.1. We

then consider the case of n ≥ 5 in Section 6.2.2.

6.2.1 The 5-gon

To keep our proofs tidy we shall initially work in the more general setting, working

with (Cone ΩX,ΩX)K for an arbitrary choice of spaces Xi. Once we have laid

some necessary groundwork we shall then specialize to the case Xi = P for all i

in order to obtain our homotopy exponent results for (Cone ΩP ,ΩP )K .

First of all we consider the 5-gon and subsequently generalize our results to

all n-gons for n ≥ 5. Recall that by Theorem 6.1 there is a sequence of four

homotopy fibrations:

F2 −→ (Cone ΩX,ΩX)K2 −→
∏5

i=1 Cone ΩXi,

F3 −→ (Cone ΩX,ΩX)K3 −→ (Cone ΩX,ΩX)K2

F4 −→ (Cone ΩX,ΩX)K4 −→ (Cone ΩX,ΩX)K3

F5 −→ (Cone ΩX,ΩX)K −→ (Cone ΩX,ΩX)K4 .

(6.3)

where

K2 = resK(2) ∗ {3, 4, 5} = {1, 2} ∗ {3, 4, 5}

K3 = resK(3) ∗ {4, 5} = {{1, 2}, {2, 3}} ∗ {4, 5}

K4 = resK(4) ∗ {5} = {{1, 2}, {2, 3}, {3, 4}} ∗ {5}

K5 = resK(5) = K

and Fi ' F ′i ∗F ′′i for each i. In this case F ′′i is the homotopy fibre of the inclusion

ΩXi −→ Cone ΩXi and therefore Fi is homotopy equivalent to F ′i ∗ΩXi. We wish

to determine the homotopy type of each of the Fi, and as we have just reasoned,
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to do so, it is enough to calculate the homotopy type of the F ′i .

Proposition 6.5. The homotopy fibre F ′2 is contractible.

Proof. Recall that F ′i is the homotopy fibre of the inclusion map Yi −→ Zi where

Yi = (Cone ΩX,ΩX)linkresK (i)({i}) and Zi = (Cone ΩX,ΩX)resK(i−1). When i = 2

we have linkresK(2)({2}) = {1} = resK(1) and hence the map Y2 −→ Z2 is the

identity map on Cone ΩX1. Therfore F ′2 is contractible.

Proposition 6.6. There is a homotopy equivalece F ′3 ' ΩX1.

Proof. We have resK(3) = {{1, 2}, {2, 3}} and thus linkresK(3)({3}) is the simpli-

cial complex with a single 0-simplex {2}. Taking into account the ghost vertex

{1} we see that Yi ' ΩX1 × Cone ΩX2. On the other hand, resK(2) is the full

1-simplex {1, 2} and so Z3 = Cone ΩX1×Cone ΩX2. Thus the map Y3 −→ Z3 is

homotopic to the trivial map ΩX1 −→ ∗ and hence F ′3 ' ΩX1.

For the calculation of the homotopy type of F ′4 and F ′5, the following Lemma

will be needed.

Lemma 6.7. The homotopy fibre of the inclusion map A ↪−→ A∨B is homotopy

equivalent to ΩB × Ω(ΣΩA ∧ ΩB).

Proof. Consider the homotopy commutative diagram

G // ΩB
j
//

��

ΣΩA ∧ ΩB

��

G // A //

��

A ∨B

��

A×B A×B

in which all rows and columns are homotopy fibrations. The map j is null-

homotopic by Proposition 2.29, and hence G ' ΩB × Ω(ΣΩA ∧ ΩB).
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Now we may calculate the homotopy type of F ′4.

Proposition 6.8. There is a homotopy equivalence

F ′4 ' ΩX1 × ΩX2 × Ω(ΩX1 ∗ ΩX3).

Proof. Let L = linkresK(4)({4}) and R = resK(3). Then L is the simplicial com-

plex with a single vertex {3} and ghost vertices {1}, {2}, and R is the simplicial

complex {{1}, {3}} ∗ {2}. Let L′ be the simplicial complex {3} obtained from L

by forgetting the ghost vertices. Then (Cone ΩX,ΩX)L = (Cone ΩX,ΩX)L
′
×

ΩX1 × ΩX2 and (X, ∗)L = (X, ∗)L
′
× ∗ × ∗.

There is a homotopy commutative diagram

F ′4 // (ΩX1 × ΩX2)× (Cone ΩX,ΩX)L
′

//

��

(Cone ΩX,ΩX)R

��

F ′4 // (X, ∗)L
′ f

//

��

(X, ∗)R

��∏3
i=1 Xi

∏3
i=1Xi

in which all rows and columns are homotopy fibrations. In particular, F ′4 is

homotopy equivalent to the map f : (X, ∗)L
′
−→ (X, ∗)R induced by the inclusion

of L′ into R. But f is homotopic to the inclusion map X3 ↪−→ (X1 ∨X3) ×X2.

And hence F ′4 ' G × ΩX2 where G is the homotopy fibre of X1 −→ (X1 ∨X3).

By Lemma 6.7, G is homotopy equivalent to ΩX1 × Ω(ΣΩX1 ∧ ΩX3).

Before calculating the homotopy type of F ′5 we state a further lemma, proven

by Grbić and Theriault in [14], which is very useful for calculating the homotopy

type of (Cone ΩX,ΩX)K where K is obtained by gluing two sub-complexes along

a common face.



CHAPTER 6. HOMOTOPY EXPONENTS FOR
(
CONE ΩPM(PR),ΩPM(PR)

)K
104

Lemma 6.9 ([14], Theorem 10.2). Let K be a simplicial complex on n vertices

and suppose there are sub-complexes K1, K2 and a face σ ∈ K such that K =

K1 ∪σ K2. List the vertices of K1 as {1, . . . , l, . . . ,m} and the vertices of K2 as

{l + 1, . . . ,m, . . . , n}, with {l + 1, . . . ,m} being the vertices of the common face

σ. Let

a) M =
∏l

i=1 ΩXi, and N =
∏n

i=m+1 ΩXi,

b) A1 = (Cone ΩX,ΩX)K1, and A2 = (Cone ΩX,ΩX)K2.

Then there is a homotopy equivalence

(Cone ΩX,ΩX)K ' (ΣM ∧N) ∨ (M n A2) ∨ (A1 oN).

Proof. See [14].

Now we calculate the homotopy type of F ′5.

Proposition 6.10. There is a homotopy equivalence

F ′5 ' (ΩX2 × ΩX3)× ΩB × Ω(ΣΩA ∧ ΩB)

where A = ΣΩX1 ∧ ΩX4 and

B = (ΣΩX1∧ΩX3)∨(ΣΩX2∧ΩX4)∨(ΣΩX1∧ΩX2∧ΩX4)∨(ΣΩX1∧ΩX3∧ΩX4).

Proof. Let L = linkresK(5)({5}) and R = resK(4). Then L is the simplicial

complex {{1}, {4}} and ghost vertices {2}, {3}, and R is the simplicial complex

{{1, 2}, {2, 3}, {3, 4}}.

Let L′ be the simplicial complex {{1}, {4}} obtained from L by forgetting the

ghost vertices. Then (Cone ΩX,ΩX)L = (Cone ΩX,ΩX)L
′
× ΩX2 × ΩX3 and



CHAPTER 6. HOMOTOPY EXPONENTS FOR
(
CONE ΩPM(PR),ΩPM(PR)

)K
105

(X, ∗)L = (X, ∗)L
′
× ∗ × ∗.

Now, the homotopy commutative diagram

F ′5 // (Cone ΩX,ΩX)L × (ΩX2 × ΩX3) //

g1

��

(Cone ΩX,ΩX)R

h1

��

F ′5 // (X, ∗)L //

g2

��

(X, ∗)R

h2

��∏4
i=1 Xi

∏4
i=1Xi

in which all rows and columns are homotopy fibrations shows that the homo-

topy fibre of the map (X, ∗)L −→ (X, ∗)R induced by the inclusion L −→ R is

also homotopy equivalent to F ′5. Thus there is a second homotopy commutative

diagram

Ω (X, ∗)R Ωi //

��

∏4
i=1 ΩXi

��

G
ψ

//

��

F ′5 //

��

ΩX2 × ΩX3

��

(Cone ΩX,ΩX)L
′

//

��

(X, ∗)L
′

//

��

X1 ×X4

��

(Cone ΩX,ΩX)R // (X, ∗)R i //
∏4

i=1Xi

(6.4)

in which all rows and columns are homotopy fibrations. By Proposition 3.13,

Ωi admits a right homotopy inverse r :
∏4

i=1 ΩXi −→ Ω (X, ∗)R. Let r′ be the

restriction of r to ΩX2×ΩX3 and let θ be the homotopy action associated to the

middle vertical fibration in diagram (6.4). Then it follows that

(ΩX2 × ΩX3)×G r′×ψ−→ Ω (X, ∗)R × F ′5
θ−→ F ′5

is a homotopy equivalence.
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To determine the homotopy type of G, consider the homotopy fibration

G −→ (Cone ΩX,ΩX)L
′
−→ (Cone ΩX,ΩX)R . (6.5)

Clearly, (Cone ΩX,ΩX)L
′

is homotopy equivalent to ΣΩX1 ∧ ΩX4. Now since

R = R1 ∪σ R2 where R1 is the simplicial complex {{1, 2}, {2, 3}}, R2 is the

simplicial complex {3, 4} and σ = {3}, then by Lemma 6.9, there is a homotopy

equivalence

(Cone ΩX,ΩX)R ' (ΣM ∧N) ∨ (M n A2) ∨ (A1 oN).

where

ΣM ∧N ' Σ(ΩX1 × ΩX2) ∧ ΩX4

' (ΣΩX1 ∨ ΣΩX2 ∨ ΣΩX1 ∧ ΩX2) ∧ ΩX4

' (ΣΩX1 ∧ ΩX4) ∨ (ΣΩX2 ∧ ΩX4) ∨ (ΣΩX1 ∧ ΩX2 ∧ ΩX4),

M o A2 ' (ΩX1 × ΩX2) o (Cone ΩX3 × Cone ΩX4)

' ∗,

A1 oN ' (ΣΩX1 ∧ ΩX3) o ΩX4

' (ΣΩX1 ∧ ΩX3) ∨ (ΣΩX1 ∧ ΩX3 ∧ ΩX4).

Thus the fibration in equation (6.5) can be written

G −→ A ↪−→ A ∨B (6.6)
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where A = ΣΩX1 ∧ ΩX4 and B = (ΣΩX1 ∧ ΩX3) ∨ (ΣΩX2 ∧ ΩX4) ∨ (ΣΩX1 ∧

ΩX2 ∧ ΩX4) ∨ (ΣΩX1 ∧ ΩX3 ∧ ΩX4).

Finally, by Lemma 6.7 we see that G is homotopy equivalent to ΩB×Ω(ΣΩA∧

ΩB).

The Exponent Bound

Before proceeding to calculate the p-primary homotopy exponent for the poly-

hedral product (Cone ΩP ,ΩP )K in the case that K is the 5-gon, we first need a

couple of lemmas.

Lemma 6.11. Let K be a simplicial complex on n vertices, and let Ki be defined

as in Proposition 6.1, and suppose that (X,A) is a sequence of pairs such that

Xi is a contractible space for each i = 1, . . . , n. Then, for i = 2, . . . , n the map

fi : (X,A)Ki −→ (X,A)Ki−1 induced by the inclusion Ki −→ Ki−1, admits a right

homotopy inverse.

Proof. Recall that for 1 ≤ l ≤ n, Kl is defined as the simplicial complex resK(l) ∗

{l + 1, . . . , n}. By Proposition 3.11 (X,A)Kl is homeomorphic to the product

(X,A)resK(l) ×
∏n

j=l+1 Xj, and it follows that fi is homotopic to the map

(X,A)resK(i) ×Q f̂i×1−−→
(

(X,A)resK(i−1) ×Xi

)
×Q

where Q =
∏n

j=i+1Xj and f̂i is the restriction of fi. Note that since Q is con-

tractible fi is actually homotopic to f̂i.

Finally, sinceXi is contractible, the projection (X,A)resK(i−1)×Xi −→ (X,A)resK(i−1)

is a homotopy equivalence and so fi may be expressed as the composite

(X,A)resK(i) f̂i−→ (X,A)resK(i−1) ×Xi

'
−� (X,A)resK(i−1)
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Since we have simply restricted fi to the first i co-ordinates and then projected

to the first i − 1 co-ordinates, this composite is clearly homotopic to the map

(X,A)resK(i) −→ (X,A)resK(i−1) induced by the projection
∏i

j=1 Xj −�
∏i−1

j=1Xj.

It follows that the map (X,A)resK(i−1) −→ (X,A)resK(i) induced by the inclusion

resK(i− 1) −→ resK(i) is a right homotopy inverse for fi.

Lemma 6.12. Suppose Y is a space of the form ΣΩPm(pr) ∧ Ω(
∏

iAi) where

each Ai is either a product of mod pr Moore spaces, or a wedge sum of mod pr

Moore spaces. Then Y is homotopy equivalent to a wedge of mod pr Moore spaces

Proof. The proof follows by iterated use of the James splitting and the decom-

position Σ(X × Y ) ' ΣX ∨ ΣY ∨ Σ(X ∧ Y ) of Proposition 2.21.

Now we turn our attention to the polyhedral product (Cone ΩP ,ΩP )K where

K is the 5-gon, and use the results of this chapter to obtain an upper bound for

its homotopy exponent.

Theorem 6.13. Let K be the 5-gon. Then

expp((Cone ΩP ,ΩP )K) = pr+1.

Proof. From Equation (6.3) we have a sequence of homotopy fibrations

F2 −→ (Cone ΩP ,ΩP )K2 f2−→
∏5

i=1 Cone ΩPi,

F3 −→ (Cone ΩP ,ΩP )K3 f3−→ (Cone ΩP ,ΩP )K2

F4 −→ (Cone ΩP ,ΩP )K4 f4−→ (Cone ΩP ,ΩP )K3

F5 −→ (Cone ΩP ,ΩP )K
f5−→ (Cone ΩP ,ΩP )K4 .

By Proposition 6.6, F3 is homotopy equivalent to ΣΩP1 ∧ ΩP3 which by Lemma

6.12 is homotopy equivalent to a wedge of mod pr Moore spaces. The homotopy

exponent of a wedge of Moore spaces was calculated in Proposition 4.15 and
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we see that expp(F3) = pr+1. In fact, since (Cone ΩP ,ΩP )K2 is contractible,

we see that there is a homotopy equivalence (Cone ΩP ,ΩP )K3 ' F3 and so too

expp((Cone ΩP ,ΩP )K3) = pr+1.

Now, by checking the homotopy decomposition of F ′4 given in Proposition

6.8, Lemma 6.12 shows that F4 is homotopy equivalent to a wedge of Moore

spaces and so expp(F4) = pr+1. Since f4 admits a right homotopy inverse by

Lemma 6.11, there is a homotopy decomposition Ω (Cone ΩP ,ΩP )K4 ' ΩF4 ×

Ω (Cone ΩP ,ΩP )K3 . Thus, comparing exponents we have expp((Cone ΩP ,ΩP )K4) =

max{expp(F4), expp((Cone ΩP ,ΩP )K3)} = pr+1.

Similarly, Proposition 6.10, and Lemma 6.12 together show that F5 is ho-

motopy equivalent to a wedge of mod pr Moore spaces. Thus expp(F5) = pr+1.

Since f5 admits a right homotopy inverse, there is a homotopy decomposition

Ω (Cone ΩP ,ΩP )K ' ΩF5 × Ω (Cone ΩP ,ΩP )K4 and therefore comparing expo-

nents as before, gives the result expp((Cone ΩP ,ΩP )K) = pr+1.

6.2.2 Generalization to n ≥ 5

In this section we generalize Theorem 6.13 to show that the p-primary homotopy

exponent for (Cone ΩP ,ΩP )K where K is an n-gon for n ≥ 5, is also bounded

above by pr+1.

In the proof of Theorem 6.13 we could actually have obtained the result by

considering only the final fibration in the sequence F5 −→ (Cone ΩP ,ΩP )K
f5−→

(Cone ΩP ,ΩP )K4 and showing directly that expp((Cone ΩP ,ΩP )K4) = pr+1. We

shall follow this approach in this section. Specifically, fix n ≥ 5 and let K be the
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n-gon. Then we have a sequence of homotopy fibrations

F2 −→ (Cone ΩP ,ΩP )K2 f2−→
∏n

i=1 Cone ΩXi,

F3 −→ (Cone ΩP ,ΩP )K3 f3−→ (Cone ΩP ,ΩP )K2

...

Fn −→ (Cone ΩP ,ΩP )K
fn−→ (Cone ΩP ,ΩP )Kn−1 .

We consider the fibration Fn −→ (Cone ΩP ,ΩP )K
fn−1−→ (Cone ΩP ,ΩP )Kn−1 and

show that (Cone ΩP ,ΩP )Kn−1 has the homotopy type of a wedge of Moore spaces.

Recall that Kn−1 is the join resK(n−1)∗{n}, where resK(n−1) = {{1, 2}, . . . , {n−

2, n − 1}}. This restricted complex has the nice property that it is built induc-

tively by gluing 1-simplices, one at a time, along a common 0-simplex. The

following useful lemma shows that there is an analogous iterative construction of

(Cone ΩP ,ΩP )Kn−1 .

Lemma 6.14. Let n ≥ 3 and let A(n) denote the simplicial complex

A(n) = {{1, 2}, . . . , {n− 1, n}}.

Let X = {Xi}ni=1 be a sequence of n arbitrary spaces. Then there is a homotopy

equivalence

(Cone ΩX,ΩX)A(n) ' (ΣM ∧N) ∨ ((Cone ΩX,ΩX)A(n−1) oN)

where M =
∏n−2

i=1 ΩXi and N = ΩXn.

Proof. The simplicial complex A(n) is obtained by gluing A(n− 1) and the sim-

plicial complex L = {n− 1, n} along the common vertex {n− 1}. It follows from
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Lemma 6.9 that there is a homotopy equivalence

(Cone ΩX,ΩX)A(n) ' (ΣM∧N)∨(Mn(Cone ΩX,ΩX)L)∨((Cone ΩX,ΩX)A(n−1)oN).

But since (Cone ΩX,ΩX)L = Cone ΩXn−1×Cone ΩXn is contractible, the result

follows.

Proposition 6.15. Let n ≥ 4 and let A(n) be the simplicial complex of Lemma

6.14. Then (Cone ΩP ,ΩP )A(n) has the homotopy type of a wedge of mod pr Moore

spaces.

Proof. We proceed by induction. For the case n = 4, refer to the proof of Propo-

sition 6.10. There it was shown that for an arbitrary space X, (Cone ΩX,ΩX)A(4)

decomposes as a wedge sum of spaces of the form Σ(ΩX)∧k with k ≤ 3. When X

is a Moore space P , it is seen by iterating the James splitting that each of these

wedge summands splits as a wedge of mod pr Moore spaces.

Now suppose that (Cone ΩP ,ΩP )A(n−1) has the homotopy type of a wedge

of mod pr Moore spaces. Then Lemma 6.14 shows that (Cone ΩP ,ΩP )A(n) '

(ΣM ∧ N) ∨ (Cone ΩP ,ΩP )A(n−1) o ΩP where M = (ΩP )n−2 and N = ΩP .

The summand ΣM ∧ N splits as a wedge of mod pr Moore spaces by Lemma

6.12. Furthermore, (Cone ΩP ,ΩP )A(n−1) is a suspension space and so there is a

homotopy splitting of the wedge summand

(Cone ΩP ,ΩP )A(n−1) oΩP ' (Cone ΩP ,ΩP )A(n−1) ∨ (Cone ΩP ,ΩP )A(n−1) ∧ΩP

by Proposition 2.32. The induction hypothesis tells us that the polyhedral prod-

uct (Cone ΩP ,ΩP )A(n−1) decomposes as a wedge of mod pr Moore spaces and

therefore so does the summand (Cone ΩP ,ΩP )A(n−1) ∧ ΩP . In other words

(Cone ΩP ,ΩP )A(n) decomposes as a wedge of mod pr Moore spaces, as required.
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Now we can calculate the homotopy type of F ′n where Fn ' F ′n ∗ F ′′n is

the homotopy fibre in the homotopy fibration Fn −→ (Cone ΩP ,ΩP )K −→

(Cone ΩP ,ΩP )Kn−1 , as in the notation of Theorem 6.1.

Proposition 6.16. There is a homotopy equivalence F ′n ' ΩA1 × ΩA2 where

A1, A2 are both homotopy equivalent to a wedge of mod pr Moore spaces.

Proof. By definition, F ′n is the homotopy fibre of the map (Cone ΩP ,ΩP )L −→

(Cone ΩP ,ΩP )R where L = linkK({n}) and R = resK(n − 1) = A(n − 1). Note

that L is the simplicial complex {{1}, {n−1}} with ghost vertices {2}, . . . , {n−2}.

Let L′ be the simplicial complex {{1}, {n−1}} obtained from L by forgetting the

ghost vertices. Then (Cone ΩP ,ΩP )L
′
' ΣΩP1 ∧ ΩPn−1 and (Cone ΩP ,ΩP )L '

(Cone ΩP ,ΩP )L
′
×
∏n−2

i=2 ΩPi.

Similarly to the proof of Proposition 6.10, there is a homotopy commutative

diagram

Ω (P, ∗)R Ωi //

��

∏n−1
i=1 ΩPi

��

G
ψ

//

��

F ′n //

��

∏n−2
i=2 ΩPi

��

(Cone ΩP ,ΩP )L
′

//

��

(P, ∗)L
′

//

��

P1 × Pn−1

��

(Cone ΩP ,ΩP )R // (P, ∗)R i //
∏n−1

i=1 Pi

in which all rows and columns are homotopy fibrations. By Proposition 3.13

the map Ωi has a right homotopy inverse r :
∏n−1

i=1 ΩPi −→ Ω (P, ∗)R, and so it

follows that there is a homotopy equivalence

(
n−2∏
i=2

ΩPi

)
×G r′×ψ−→ Ω (P, ∗)R × F ′n

θ−→ F ′n
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where r′ is the restriction of r to
∏n−2

i=2 ΩPi and θ is the homotopy action associated

with the middle vertical fibration.

It remains to calculate the homotopy fibre G of the inclusion map

f : (Cone ΩP ,ΩP )L
′
−→ (Cone ΩP ,ΩP )R

induced by the inclusion of simplicial complexes L′ −→ R. By Lemma 6.14,

(Cone ΩP ,ΩP )R ' (ΣM ∧ N) ∨ B where B = (Cone ΩP ,ΩP )A(n−2) o N , M is

the product
∏n−3

i=1 ΩPi, and N = ΩPn−1. By Proposition 2.21 there is a homotopy

decomposition Σ(Y1 × Y2) ' ΣY1 ∨ ΣY2 ∨ ΣY1 ∧ Y2 for arbitrary spaces Y1, Y2.

Iterating this decomposition, we see that

ΣM ∧N = Σ(ΩP1 × . . .× ΩPn−3) ∧ ΩPn−1

' (ΣΩP1 ∧ ΩPn−1) ∨ C

where C is a wedge of spaces of the form ΣΩPi1 ∧ . . . ∧ΩPik with 1 ≤ i1 < . . . <

ik ≤ n− 1.

The map f is homotopy equivalent to the inclusion of the wedge summand

ΣΩP1 ∧ ΩPn−1 ↪−→ (ΣΩP1 ∧ ΩPn−1) ∨ D where D = C ∨ B. Thus by Lemma

6.7 the homotopy fibre G is homotopy equivalent to

ΩD × Ω(ΣΩ(ΣΩP1 ∧ ΩPn−1) ∧ ΩD).

Let A1 = D and A2 = ΣΩ(ΣΩP1∧ΩPn−1)∧ΩD. A1 is clearly homotopy equivalent

to a wedge of Moore spaces since both B and C are. To see that A2 is homotopy

equivalent to a wedge of mod pr Moore spaces, notice first that the space Z =

ΣΩP1∧ΩPn−1 decomposes as a wedge of Moore spaces by Lemma 6.12. Therefore
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A2 ' ΣΩZ ∧ ΩD where both Z, D are homotopy equivalent to a wedge of mod

pr Moore spaces. Thus iterated use of the James splitting shows that A2 is in

fact homotopy equivalent to a wedge of mod pr Moore spaces.

Theorem 6.17. Let n ≥ 3 and let K be the n-gon. Then

expp((Cone ΩP ,ΩP )K) = pr+1.

Proof. The cases n < 5 were proven independently in Proposition 6.3 and Propo-

sition 6.4. For n ≥ 5, consider the homotopy fibration

Fn −→ (Cone ΩP ,ΩP )K
fn−→ (Cone ΩP ,ΩP )Kn−1 .

Since fn admits a right homotopy inverse by Proposition 6.11, there is a homotopy

equivalence Ω (Cone ΩP ,ΩP )K ' ΩFn × Ω (Cone ΩP ,ΩP )Kn−1 and hence

expp((Cone ΩP ,ΩP )K) = max{expp(Fn), expp((Cone ΩP ,ΩP )Kn−1)}. (6.7)

Now, the fibre Fn ' ΣF ′n ∧ F ′′n is by Proposition 6.16 homotopy equivalent to

Σ(ΩA1 ×ΩA2) ∧ΩP where A1, A2 both decompose as a wedge of mod pr Moore

spaces. By Lemma 6.12 it follows that Fn is also homotopy equivalent to a

wedge of Moore spaces. Moreover, by Proposition 6.15, (Cone ΩP ,ΩP )Kn−1 is

homotopy equivalent to a wedge of mod pr Moore spaces. Therefore expp(Fn) =

expp((Cone ΩP ,ΩP )Kn−1) = pr+1 and as a consequence, equation (6.7) shows

that expp((Cone ΩP ,ΩP )K) = pr+1, as required.

Finally, we conclude this section with a couple of observations. Throughout

this chapter, we we were concerned with polyhedral products (Cone ΩX,ΩX)K

where Xi = P = Pm(pr) for all i, and m ≥ 3 is fixed. However, the results
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we have proven will work equally well in the case that Xi = Pmi(pr), where

mi ≥ 3 for each i. Since the homotopy exponent of Pm(pr) is independent of the

dimension, the methods used in this chapter can be applied equally well to show

that the homotopy exponent is also pr+1 in this more general case.

Moreover, our methods can be further extended to sequencesX = {X1, . . . , Xn}

where Xi is a mod pri Moore space of dimension mi ≥ 3, with ri ≥ 1. There is

only one aspect of our methods in this chapter which needs some extra care in this

situation. Throughout this chapter we have made extensive use of Proposition

4.14 which says that a smash product Pm(pr) ∧ P k(pr) of mod pr Moore spaces

decomposes as a wedge sum Pm+k(pr)∨Pm+n−1(pr). In fact this is a special case

of a more general result which says that for t ≥ s there is a homotopy equivalence

Pm(ps) ∧ P k(pt) ' Pm+k(pt) ∨ Pm+k−1(pt).

These observations mean that we can immediately extend Theorem 6.17 to

the following more general result:

Theorem 6.18. Let n ≥ 3 and let K be the n-gon. For i = 1, . . . , n let Xi =

Pmi(pri) where mi ≥ 3 and ri ≥ 1. Then

expp((Cone ΩX,ΩX)K) = pR+1.

where R = max{ri}ni=1.

6.3 An application of Barratt’s Conjecture

As in the previous section we use P to denote a mod pr Moore space Pm(pr) where

r ≥ 1, but this time we must take m ≥ 4. In this concluding section of the thesis

we show that if Barratt’s Conjecture is true, then we may actually determine the

p-primary homotopy exponent of the polyhedral product (Cone ΩP ,ΩP )K , for
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any simplicial complex K. In fact the value of the homotopy exponent does not

depend on K and is given by pr+1 in all cases.

In section 6.2.2, where K was taken to be an n-gon, we were able to prove

Proposition 6.12 which said that for certain spaces X, the join ΣΩPm(pr) ∧ X

always decomposes as a wedge of mod pr Moore spaces. As it turned out, we were

able to show that each of the homotopy fibres F ′i for i = 2, . . . , n always have this

property, and as such, we saw that for each i = 2, . . . , n, the fibre Fi ' ΣF ′i ∧ F ′′i

decomposes as a wedge of Moore spaces.

When we turn our consideration to the case of arbitrary K, it is not clear

whether the corresponding statement is true about the Fi. If we assume the

truth of Barratt’s Conjecture, then we have the following lemma which provides

an analogous result to Proposition 6.12.

Lemma 6.19. Let X be a space and suppose m ≥ 4. If Barratt’s Conjecture

holds, then

expp(ΣΩPm(pr) ∧X) ≤ pr+1.

Proof. By the James splitting, together with Proposition 4.14 we have

ΣΩPm(pr) ∧X ' (ΣΩΣPm−1(pr)) ∧X

' (∨αP nα(pr)) ∧X

' Σ(∨αP nα−1(pr)) ∧X.

Since ∨αP nα−1(pr) has co-H-exponent pr, then so does (∨αP nα−1(pr))∧X. Thus,

if Barratt’s conjecture holds then it follows that expp(Σ(∨αP nα−1(pr)) ∧ X) ≤

pr+1. But since Σ(∨αP nα−1(pr)) ∧X ' ΣΩPm(pr) ∧X, the result follows.

IfK is the full simplex ∆n−1 on n vertices then (Cone ΩP ,ΩP )K =
∏n

i1
Cone ΩPi

is contractible. For allother simplicial complexes we have the following result:
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Theorem 6.20. Let K be a simplicial complex on n ≥ 1 vertices, K 6= ∆n−1,

and let P = Pm(pr) where m ≥ 4 and r ≥ 1. If Barratt’s Conjecture holds, then

expp((Cone ΩP ,ΩP )K) = pr+1.

Proof. The proof is similar to that of Theorem 6.13. Consider the sequence of

homotopy fibrations

F2 −→ (Cone ΩP ,ΩP )K2 f2−→
∏n

i=1 Cone ΩPi,

F3 −→ (Cone ΩP ,ΩP )K3 f3−→ (Cone ΩP ,ΩP )K2

...

Fn −→ (Cone ΩP ,ΩP )K
fn−→ (Cone ΩP ,ΩP )Kn−1 .

where Ki = resK(i) ∗ {i+ 1, . . . , n}, as defined in Theorem 6.1. Since K 6= ∆n−1,

then K contains at least one missing face, that is, there exists a subset σ ⊆ [n]

such that σ /∈ K but all proper subsets of σ belong to K. Let τ be a missing face

of least dimension, k − 1 say, and relabel the vertices of K if necessary so that

τ = {1, . . . , k}.

Now, for i = 2, . . . , k − 1 we have resK(i) = ∆i−1 and it follows that each of

the spaces in the fibrations

F2 −→ (Cone ΩP ,ΩP )K2 f2−→
∏n

i=1 Cone ΩPi,

...

Fk−1 −→ (Cone ΩP ,ΩP )Kk−1
fk−1−→ (Cone ΩP ,ΩP )Kk−2 .

is contractible. The first non-trivial fibration in the sequence is

Fk −→ (Cone ΩP ,ΩP )Kk
fk−→ (Cone ΩP ,ΩP )Kk−1 .
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Since Kk = ∂∆k−1 ∗{k+1, . . . , n} then (Cone ΩP ,ΩP )Kk is homotopy equivalent

to (Cone ΩP ,ΩP )∂∆k−1

. To determine the homotopy type of (Cone ΩP ,ΩP )∂∆k−1

,

notice that equation (3.2) gives a fibration

(Cone ΩP ,ΩP )∂∆k−1

−→ (P, ∗)∂∆k−1

−→
k∏
i=1

Pi.

The space (P, ∗)∂∆k−1

is the fat wedge, which is by definition the space T k1 in the

notation of equation (2.9). Thus Porter’s Theorem shows that (Cone ΩP ,ΩP )Kk

is homotopy equivalent to a wedge of spaces of the form Σk−1ΩPi1 ∧ . . . ∧ ΩPij ,

and therefore by the James splitting, is homotopy equivalent to a wedge of Moore

spaces. In particular, expp((Cone ΩP ,ΩP )Kk) = pr+1. This concludes the base

step of our induction.

Now, let k ≤ l < n and suppose that expp((Cone ΩP ,ΩP )Kl) ≤ pr+1. By

Theorem 6.1, Fl+1 ' ΣF ′l+1 ∧ F ′′l+1 where F ′′l+1 ' ΩPl+1. Thus by Lemma 6.19,

under our assumption that Barratt’s Conjecture holds, we have expp(Fl+1) ≤

pr+1.

Now, by Proposition, 6.11, fl+1 has a right homotopy inverse and so there is

a homotopy decomposition Ω (Cone ΩP ,ΩP )Kl+1 ' ΩFl+1 ×Ω (Cone ΩP ,ΩP )Kl .

It follows that expp((Cone ΩP ,ΩP )Kl+1) ≤ pr+1.

By induction, we obtain the upper bound expp((Cone ΩP ,ΩP )K) ≤ pr+1.

Next we show that pr+1 also bounds below. By Proposition 6.11, fi has a right

homotopy inverse for each k ≤ i ≤ n. Thus there are homotopy decompositions

Ω (Cone ΩP ,ΩP )Ki ' ΩFi × Ω (Cone ΩP ,ΩP )Ki−1

for k ≤ i ≤ n. It follows that Ω (Cone ΩP ,ΩP )K ' Ω (Cone ΩP ,ΩP )Kk × Z for

some space Z. In particular, π∗(Ω (Cone ΩP ,ΩP )K) contains π∗(Ω (Cone ΩP ,ΩP )Kk)
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as a direct summand, and therefore contains elements of order pr+1 since (Cone ΩP ,ΩP )Kk

is a wedge of Moore spaces. this proves the result.

We conclude by observing that since Moore spaces are rationally contractible,

then so is (Cone ΩP ,ΩP )K . That is the rational equivalence Pm(pr) 'Q ∗

induces a rational equivalence (Cone ΩP ,ΩP )K 'Q (∗, ∗)K . It follows that

(Cone ΩP ,ΩP )K has trivial rational homotopy groups and is therefore elliptic.

Therefore Theorem 6.18 provides a family of spaces satisfying Moore’s Conjec-

ture, that we believe were not known previously. If Barratt’s Conjecture is true

then Theorem 6.20 extends this family.



Chapter 7

Further Work

We end the thesis by outlining some possibilities for further work which would

build on the results of this thesis.

Conjecture A. The following statements are equivalent:

a) (Dm, Sm−1)
K

is elliptic,

b) K is a join of simplices and boundaries of simplices,

c) (Dm, Sm−1)
K

is homotopy equivalent to a product of spheres.

A proof of Conjecture A would extend Debongnie’s result, (Theorem 5.3),

which classifies those simplicial complexes for which (D2, S1)
K

is elliptic, to the

pair (Dm, Sm−1) and consequently to (Pm(pr), Sm−1) for m ≥ 2. It should be

noted that during the final stages of writing this thesis, Bahri, Bendersky, Cohen

and Gitler ([2]) have found a geometric proof of Debongnie’s result, by show-

ing that when K is not a join of simplices and boundaries of simplices, then a

pair of intersecting missing faces in K can be chosen which realize a rational

wedge of spheres Sn ∨ Sk as a retract of (D2, S1)
K

. This of course implies that

the rational homotopy groups of (D2, S1)
K

contains a free Lie algebra on two

120
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generators, yielding the hyperbolicity result. We have not proven it here due to

time constraints, but we believe that the same methods should work for the pair

(Dm, Sm−1) and therefore confirm Conjecture A.

Let p be an odd prime, and let P = Pm(pr) for m ≥ 3 and r ≥ 1.

Conjecture B. If K is any simplicial complex other than a full simplex, then

expp((Cone ΩP ,ΩP )K) = pr+1.

We proved in Theorem 6.20, that this result holds if we assume that Barratt’s

Conjecture is true. The proof that pr+1 is a lower bound did not depend on

Barratt’s Conjecture and so this is holds in general. To prove Conjecture B, it is

enough to show that pr+1 is an upper bound.
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