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Abstract

A three-dimensional elasto-plastic model for the deformation and �ow
of granular materials which generalises the plastic potential model and
contains an additional term analogous to that appearing in the double
shearing model is presented. It is shown that for planar �ows the resulting
system of �rst order partial di¤erential equations is hyperbolic. This is
in distinct contrast to the non-associated plastic potential model rule and
the double shearing model, both of which fail to be hyperbolic. The
ill-posedness of the planar double shearing model is due to the presence
of the rotation-rate of the principal axes of stress. The ill-posedness of
the non-associated plastic potential model is due to distinct quasi-static
spatial stress and velocity characteristics. The present model attains well-
posedness by replacing the planar rotation-rate of the principal stress
axes by the vector intrinsic spin of a Cosserat continuum and using it to
ensure identical spatial stress and velocity characteristics. Flows in which
the intrinsic spin vector is constant in both space and time correspond
to �ows in an ordinary continuum. The model governing such �ows is
embedded into a Cosserat model in such a way that the characteristic
structure is preserved.

1 Introduction

A leading exponent of continuummechanics in the 20th Century, A.J.M. Spencer,
wrote �The correct formulation of constitutive equations to describe the me-
chanical behaviour of granular materials on the macroscopic scale is one of the
outstanding problems of continuum mechanics�, Spencer (1982). Both interpre-
tations of this sentence, namely that this is an open problem and that this is
an important problem in continuum mechanics, remain true today.
In the class of elasto-plastic models, an associated �ow rule is one in which

the yield function also acts as the plastic potential function. This model had
proved so successful in the analysis of inelastic deformations of metals, Hill
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(1950), that it seemed a natural extension to apply the same idea to soil mechan-
ics, Drucker-Prager (1952). However, associated �ow rules proved too restric-
tive to account for experimental properties of granular materials and attention
turned to using a plastic potential function distinct from the yield function, i.e.
a non-associated �ow rule, Mroz et al (1979).
Broadly speaking, metals yield independently of the pressure, whereas soils

and other granular materials exhibit a marked pressure dependence on yield.
The kinematic quantity associated with pressure is dilatation or compaction
(or their rates). The issues arising out of incorporating these two properties
have proved di¢ cult to resolve satisfactorily. An associated �ow rule entails
only one parameter to control the magnitude of both the pressure dependence
and the dilatation. The magnitude of the dilatation is known to be rather less
than that of the pressure dependence and so the model either over-estimates
the dilatation or under-estimates the pressure dependence. A simple way of
incorporating realistic magnitudes of the pressure dependence and dilatation is
to use a non-associated �ow rule which allows two independent parameters with
which to model their magnitudes and this ability to satisfy experimental data
has led to its frequent use in geotechnical and civil engineering. The measures of
the magnitudes of pressure-dendence and of dilatation for the yield and plastic
potential functions used in this paper are given by equations (42).
However, non-associated �ow rules have, from the very beginning of their use,

been viewed with suspicion and many arguments have been presented against
their use. For example Drucker (1951) and Ilyushin (1961) introduced ad hoc
postulates which lead naturally to associated �ow rules. In Section 7 we also
present an argument against the use of a classical non-associated �ow rule,
namely that non-associated �ow rules are ill-posed in the context of evolutionary
problems. Thus, if the inertia terms are retained in the equations of motion,
then, together with the non-associated �ow rule and yield condition, the solution
to the Cauchy problem, as a function of time, is discontinuous in the initial data.
The issue of ill-posedness in plasticity models was dealt with, in a series of papers
by D.G. Schae¤er and co-workers, for example Pitman et al (1987), Schae¤er et
al (1988), Schae¤er (1990) and, for the double shearing model, by Kruyt (1990).
See also Harris (2001a).
The classical use of the theory is to quasi-static and time independent prob-

lems. The same property that induces ill-posedness in time-dependent problems
also manifests itself in quasi-static problems and this con�rms the inadequacy
of non-associated �ow rules. The velocity characteristic directions are distinct
from the stress characteristic directions and from this it may be inferred that
the domains of dependence and of in�uence di¤er. Thus, from Cauchy data
on a non-characteristic boundary it follows that the stress and velocity �elds
are determined in overlapping, but distinct regions. This makes construction of
solutions to all but the simplest problems impractical.
An alternative class of models is provided by the double sliding free ro-

tating model, de Josselin de Jong (1959, 1977) and the double shearing model,
Spencer (1964, 1982) and Mehrabadi et al (1978). The idea had previously been
proposed in Mandel (1947). Single shearing models have also been proposed,
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Geniev (1958), Harris (2001b). These models are inherently planar (although
they may be generalised to axially-symmetric �ows of Mohr-Coulomb materi-
als). The double sliding free rotating model introduces the crucial idea that a
quantity associated with the average grain spin needs to be incorporated into
continuum models of granular systems. Incorporating such a quantity into the
formulation has proved very di¢ cult to accomplish successfully. In the double
sliding free rotating model the spin is governed by inequalities and is bounded
in magnitude but not determined uniquely (hence the word �free�). The in-
equalities are intended to express the variability of material response to a given
loading. The double shearing model replaces the grain spin by the rotation-
rate of the principal axes of stress and there is a contribution to the velocity
strain (i.e. strain-rate or deformation rate) due to the di¤erence between the
spin of the stress principal axes and the velocity spin (i.e. vorticity). The dou-
ble shearing model uses the relative spin of the material and of stress to induce
identical stress and velocity characteristic directions. It turns out that this class
of model is also ill-posed, the double sliding free rotating model by design, the
double shearing model because of the manner in which the presence of the spin
of the stress principal axes interacts with the other terms of the model, see
Harris (2001a). A further generalisation of the double shearing model due to
Anand (1983) possesses distinct stress and velocity characterisic directions in
addition to the stress rotation rate and consequently this model is ill-posed on
two counts.
For further results on ill-posedness for both non-associated �ow rules and

the double shearing model, see Harris (2001a). A uni�ed formulation of the dou-
ble shearing and plastic potential models was obtained in Harris (1993, 1995),
which enabled the development of a well-posed model in the context of a re-
duced Cosserat continuum in Harris et al (2005). The model was generalised to
a truly three-dimensional constitutive equation in Harris (2006). The present
paper furthers this work and presents an elasto-plastic model that incorporates
pressure dependence, dilatation and the grain spin in such a way that the model
is well-posed. The model may also incorporate compaction but this is not pur-
sued here.
The model governing classical �ows presented in this paper is very well-

founded experimentally. Much work has been done on �tting experimental data
concerning pressure dependence of yield and dilatancy to the plastic poten-
tial model in the context of quasi-static geotechnical engineering problems. For
problems involving �ow the double-shearing model, in the case where the elastic-
ity is neglected (the so-called rigid-plastic model), gives physically realistic �ow
patterns (more realistic than the plastic potential model with a non-associated
�ow rule). The present model combines the best qualities of both of these
previous models and eliminates their inadequacies.
The experimental basis for the use of Cosserat models is much less clear cut.

A classical continuum provides no internal length scale for the material and
localisation leads to shear bands of zero width, i.e. reduces to discontinuities
in some of the dependent variables. In real granular materials, shear bands
are of several grain diameters in width and a Cosserat continuum does admit
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an internal length scale which may be used to account for this. However, the
complexity of Cosserat models and the paucity of experimentally veri�ed e¤ects
makes the construction of mathematical models, which are both simple and
do not incorporate super�uous e¤ects, problematic. The model presented here
for �ows which are describable by an ordinary continuum contains degenerate
values of a Cosserat quantity. It is therefore necessary, in order to complete the
modelling process, to embed the model for such �ows into a Cosserat model. In
this paper we embed the model into the simplest possible Cosserat model which
will enable the characteristic structure of the classical model to be preserved.
This provides a base Cosserat model from which to develop more complicated
models to account for those experimental properties of granular materials which
ultimately may be ascribed to Cosserat e¤ects (this e¤ectively means to �nite
grain-size e¤ects).

2 Mathematical Formulation

Relative to an inertial frame of reference, take rectangular Cartesian coordinate
axes Oxi and denote the position vector of a point P relative to O by x. Let
� denote the Cauchy stress tensor, � the bulk density of the material, v the
Eulerian velocity vector, dt the convected derivative, @i the partial derivative
with respect to xi and @t (or @0) the partial derivative with respect to time
t. Let 
 =

�

ij
�
denote the velocity gradient tensor and let d, s denote the

symmetric and anti-symmetric parts of 
,

d =
1

2

�

 + 
T

�
; s =

1

2

�

 � 
T

�
(1)

and call d the velocity strain and s the velocity spin.
The model for a standard continuum that is presented here is formulated in

terms of a Cosserat continuum (see Section 10) in which the Cosserat quanti-
ties are either identically zero or everywhere constant. One Cosserat quantity
appears in the constitutive equation for a standard continuum but takes a de-
generate value (namely a constant, which is zero relative to certain frames, in
both space and time). In addition to the Eulerian velocity v we shall suppose
that, at each point P , an Eulerian vector quantity called the intrinsic spin,
denoted by 
v = (
i), is de�ned. This is a primitive quantity and, as such,
needs no de�nition. The intuitive interpretations that we give to v and 
v are
as follows. In the real granular material, or in a discrete mathematical represen-
tation of it, take a representative volume element (RVE) comprising N grains
about each point P in the granular material. The size and shape of the RVE
need not be the same for every point, for example for points interior to a shear
band the RVE may be chosen di¤erently from the RVE for points exterior to
the shear band. Let M denote the total mass of the grains interior to the RVE
then we may identify v at the point P with the total momentum of the grains in
the RVE divided by M . Similarly, let I denote the moment of inertia tensor for
all the grains in the RVE then we identify 
 with the total angular momentum
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of the grains in the RVE multiplied by the inverse of the moment of inertia
tensor. The anti-symmetric tensor dual to 
v, called the intrinsic spin tensor,
and denoted by 
 = (
ij) is de�ned by


 = �" �
v, 
ij = �"ijk
vk: (2)

where " denotes the permutation tensor. The relative spin, !, is de�ned as the
di¤erence between the velocity spin and the intrinsic spin,

! = s�
: (3)

Note that ! is frame-indi¤erent, being the di¤erence in two spins, and hence
may appear in constitutive equations. We regard ! as a fundamental quantity
required for the kinematic description of granular materials. Deformations and
�ows in which the intrinsic spin 
 is constant everywhere at all times and in
which all other Cosserat quantities are identically zero will be called a classical
deformation or �ow. The constant value of 
 may always be taken to be zero
by a suitable choice of reference frame.

3 Equations Governing Classical Deformations
and Flows

The equations governing classical �ows are as follows and are written in both
direct and indicial notation (using the double su¢ x summation convention).
The balance laws are
(a) Cauchy�s equations of translational motion

r � � + �F = �dtv; @j�ji + �Fi = �dtvi: (4)

where F denotes the body force.
(b) Continuity of mass

dt�+ �r � v = 0; dt�+ �@jvj = 0: (5)

The constitutive equations comprise a yield criterion and a �ow rule. The exis-
tence is assumed of two scalar valued functions of the stress, the yield function
f and the plastic potential function g (this assumption can be weakened but it
simpli�es the analysis).
(c) Yield condition

f (�) � 0; (6)

where f denotes a scalar valued function of the stress �. At a point P such that
f (�) < 0, the material is said to be in an elastic state. At a point P such that
f (�) = 0, the material is said to be in a state of yield or in a plastic state. For
the yield function f (�) and plastic potential function g (�) de�ne the second
order tensors f and g by

f = (fij)=
@f

@�
=

�
@f

@�ij

�
, g = (gij)=

@g

@�
=

�
@g

@�ij

�
; (7)
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and call them the yield and �ow tensors, respectively. The equation of contin-
uing yield reads

f �dt� = 0; fijdt�ij = 0: (8)

(d) The �ow rule is the elasto-plastic �ow rule augmented by a term analo-
gous to a term of the double shearing model, namely

d =

�
M :��+�g + � (! � � � � � !) if f (�) = 0

M :�� if f (�) < 0
(9)

where M denotes the 4th order elastic compliance tensor, � is an arbitrary
non-negative scalar multiplier and � is called the relative spin coe¢ cient. It
is important to note that the scalar quantity � is not to be regarded as a
disposable material parameter. Its value will be determined by what we regard
as a physical law in Section 6, see equ.(47). The term ! � � � � � ! may be
intrerpreted physically as the di¤erence in the stress rate as measured in two
frames, one spinning with the vorticity, the other �xed relative to the intrinsic
spin 
. See Harris et al (2005) for a derivation of the plastic part of the model
in the planar case. A statement of the three-dimensional model was �rst given
in Harris (2006). Note that if � = 0, the quantity ! no longer appears in equ.
(9) which reduces to the equations governing the plastic potential model.
This completes the statement of the model and we now consider a planar

deformation in the Ox1x2 plane in which the Ox3 direction is a principal stress
direction. We shall restrict attention to perfect plasticity (i.e. no strain-, work-
or density-hardening or softening). The equations governing such deformations
and �ows are as follows. The planar balance of linear momentum equations are

�dtv1 � @1�11 � @�12 � F1� = 0; �dtv2 � @1�12 � @2�22 � F2� = 0; (10)

where
dt = @t + v1@1 + v2@2 (11)

and the balance of rotational momentum reduces to �12 = �21. The equation
of continuing yield is

f11dt�11 + 2f12dt�12 + f22dt�22 = 0 (12)

The planar continuity of mass equation is

dt�+ � (@1v1 + @2v2) = 0 (13)

We shall assume elastic isotropy and de�ne

a = E�1
�
1� �2

�
; b = �E�1 (1 + �) �; c = 2E�1 (1 + �) (14)

where E denotes Young�s modulus and � Poisson�s ratio. Let

�1 = (�� c=2)�12; �2 = (�� c=2) (�11 � �22) (15)
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then the planar �ow rule becomes

(�@1 + �1@2) v1 � �1@1v2 + adt�11 + bdt�22 + g11�+ 2�
3�12 = 0; (16)

� (1 + �2) @2v1+(�1 + �2) @1v2+ cdt�12+2g12�� 2�
3 (�11 � �22) = 0; (17)

��1@2v1 + (�@2 + �1@1) v2 + bdt�11 + adt�22 + g22�� 2�
3�12 = 0: (18)

Let z denote the vector of dependent quantities given by

zT = (v1; v2; �; �11; �12; �22; �) ; (19)

and let

bT = (0; 0; 0; 2�
3�12;�2�
3�12;�2�
3 (�11 � �22) ; 0) (20)

where superscipt T denotes transpose Let A denote the matrix

A =

2666666664

�dt 0 0 �@1 �@2 0 �F1
0 �dt 0 0 �@1 �@2 �F2
0 0 0 f11dt f12dt f22dt 0

�@1 + �1@2 ��1@1 g11 adt 0 bdt 0
� (1 + �2) @2 (�1 + �2) @1 2g12 0 cdt 0 0
��1@2 �@2 + �1@1 g22 bdt 0 adt 0
�@1 �@2 0 0 0 0 dt

3777777775
(21)

then in matrix form the equations governing the model are

Az+ b = 0: (22)

4 Linearisation of the Equations Governing Clas-
sical Flows

Equ. (22) represents a system of �rst order partial di¤erential equations for the
quantities zT : Let

ZT = (V1; V2;�;�11;�12;�22; %) ; z0T =
�
v01; v

0
2; �

0; �011; �
0
12; �

0
22; �

0� (23)

denote a given solution of equ. (22) and an arbitrary perturbation of this given
solution, respectively. Let z = Z+ z0; i.e.

v1 = V1 + v
0
1; v2 = V2 + v

0
2;

_� = _� + _�
0
; �11 = �11 + �

0
11;

�12 = �12 + �
0
12; �22 = �22 + �

0
22; � = %+ �0:

In this section the perturbed solution is also assumed to be a classical �ow.
For the case in which the perturbed solution may involve non-trivial values of
Cosserat quantities, see Section 11. Linearising equ. (22) and using the fact
that Z is a solution of equ. (22) gives the following system of linear pdes for

7



z0: Let cij denote those coe¢ cients of components of z0 evaluated in the given
solution Z which are of zeroth order in derivatives of components of z0, where i
denotes the equation and j the component z0.
(a) First component of the equation of linear momentum

(%Dt + c11) v
0
1 + c12v

0
2 � @1�011 � @2�012 + c17�0 = 0; (24)

where

Dt = @1 + V1@1 + V2@2; c11 = %�11; c12 = %�12; c17 = DtV1 � F1

and �ij = @Vi=@xj .
(b) Second component of the equation of linear momentum

c21v
0
1 + (%Dt + c22) v

0
2 � @1�012 � @2�022 + c27�0 = 0; (25)

where
c21 = %�21; c22 = %�22; c27 = DtV2 � F2:

(c) Continuing yield
Assuming that f (�) is twice di¤erentiable with respect to its arguments, let

Fij = fij (�11;�12;�22) ; Fijkl =
@fij
@�kl

����
�

; (26)

then

(F11Dt + c34)�
0
11 + (2F12Dt + c35)�

0
12 + (F22Dt + c36)�

0
22 = 0: (27)

where

c34 = F1111Dt�11 + 2F1211Dt�12 + F2211Dt�22;

c35 = F1112Dt�11 + 2F1212Dt�12 + F2212Dt�22;

c36 = F1122Dt�11 + 2F1222Dt�12 + F2222Dt�22:

Now let
�1 = (�� c=2)�12; �2 = (�� c=2) (�11 � �22) : (28)

(d) The �rst component of the �ow rule is

(�@1 +�1@2 + c41) v01 + (��1@1 + c42) v02 +G11�0

+(aDt + c44)�
0
11 + c45�

0s
12 + (bDt + c46)�

0
22 = 0; (29)

where

c41 = a@1�11 + b@1�22; c42 = a@2�11 + b@2�22;

c44 = cS21 � 2� (S21 � 
3) + �G1112; c45 = �G1111; c46 = �G1122;

where

Gij = gij (�11;�12;�22) ; Gijkl =
@gij
@�kl

����
�

: (30)
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(e) The second component of the �ow rule is

[� (1 + �2) @2 + c51] v01 + [(�1 + �2) @1 + c52] v02 + 2G12�0

+c54�
0
11 + (cDt + c55)�

0
12 + c56�

0
22 = 0; (31)

where

c51 = c@1�12; c52 = c@2�12; c54 = 2� (S21 � 
3)� cS21 + 2�G1211;
c55 = 2�G1212; c56 = cS21 � 2� (S21 � 
3) + 2�G1222:

(f) The third component of the �ow rule is

(��1@2 + c61) v01 + (�@2 +�1@1 + c62) v02 +G22�0

+(bDt + c64)�
0
11 + c65�

0
12 + (aDt + c66)�

0
22 = 0; (32)

where

c61 = b@1�11 + a@1�22; c62 = b@2�11 + a@2�22;

c64 = �G2211; c65 = 2� (S21 � 
3)� cS21 + �G2212; c66 = �G2222:

(g) Mass continuity

(%@1 + c71) v
0
1 + (%@2 + c72) v

0
2 + (Dt + c77) �

0 = 0; (33)

where
c71 = @1%; c72 = @2%; c77 = �11 + �22:

5 Characteristic Equation Governing Classical
Flows

The linearised equations may be written in matrix form as

A0z0 = 0 (34)

where

A0 =

2666666664

a11 c12 0 a14 a15 0 c17
c21 a22 0 0 a25 a26 c27
0 0 0 a34 a35 a36 0
b41 b42 G11 b44 c45 b46 0
b51 b52 2G12 c54 b55 c56 0
b61 b62 G22 b64 c65 b66 0
d71 d72 0 0 0 0 d77

3777777775
(35)

where
a11 = %Dt + c11; a14 = �@1; a15 = �@2;
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a22 = %Dt + c22; a25 = �@1; a26 = �@2;

a34 = F11Dt + c34; a35 = 2F12Dt + c35; a36 = F22Dt + c36;

b41 = (�@1 +�1@2)+c41; b42 = ��1@1+c42; b44 = aDt+c44; b46 = bDt+c46;

b51 = � (1 + �2) @2 + c51; b52 = (�1 + �2) @1 + c52; b55 = cDt + c55;

b61 = ��1@2+c61; b62 = �@2+�1@1+c62; b64 = bDt+c64; b66 = aDt+c66;

d71 = %@1 + c71; d72 = %@2 + c72; d77 = Dt + c77:

Let the matrix As be obtained from A0 by replacing every occurence of @k;
where k = 0; 1; 2 by the algebraic quantity i�k; where i =

p
�1. The symbol of

the system of pdes is the determinant of As. Let �� = �0 + V1�1 + V2�2 then the
symbol is

detAs =

2666666664

as11 c12 0 as14 as15 0 c17
c21 as22 0 0 as25 as26 c27
0 0 0 as34 as35 as36 0
bs41 bs42 G11 bs44 c45 bs46 0
bs51 bs52 2G12 c54 bs55 c56 0
bs61 bs62 G22 bs64 c65 bs66 0
ds71 ds72 0 0 0 0 ds77

3777777775
where

as11 = %i�� + c11; as14 = �i�1; as15 = �i�2;

as22 = %i�� + c22; as25 = �i�1; as26 = �i�2;

as34 = F11i�� + c34; as35 = 2F12i
�� + c35; as36 = F22i�� + c36;

bs41 = (�i�1 +�1i�2)+c41; bs42 = ��1i�1+c42; bs44 = ai��+c44; bs46 = bi��+c46;

bs51 = � (1 + �2) i�2 + c51; bs52 = (�1 + �2) i�1 + c52; bs55 = ci�� + c55;

bs61 = ��1i�2+c61; bs62 = (�i�2 +�1i�1)+c62; bs64 = bi��+c64; bs66 = ai��+c66;

ds71 = %i�1 + c71; ds72 = %i�2 + c72; ds77 = i�� + c77:

The principal part of the symbol is the homogeneous polynomial comprising all
highest order terms in �k and provides an e¢ cient method to determine the type
of the system of pdes. Every term in the expansion of detAs which contains a
term cij is a lower order term in the �k: Let the matrix A

p be obtained from As

by replacing every cij in As by zero, i.e.

Ap =

2666666664

%i�� 0 0 �i�1 �i�2 0 0
0 %i�� 0 0 �i�1 �i�2 0
0 0 0 F11i�� 2F12i�� F22i�� 0

�i�1 +�1i�2 ��1i�1 G11 ai�� 0 bi�� 0
� (1 + �2) i�2 (�1 + �2) i�1 2G12 0 ci�� 0 0
��1i�2 (�i�2 +�1i�1) G22 bi�� 0 ai�� 0
%i�1 %i�2 0 0 0 0 i��

3777777775
:
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The principal part of the symbol is obtained by expanding the determinant of
the matrix Ap and this gives either ��

2
= 0 or

%2A��
4
+ %

�
B�21 + C�1�2 +D�

2
2

�
��
2

+
�
F22�

2
1 � 2F12�1�2 + F11�22

� �
H22�

2
1 � 2H12�1�2 +H11�

2
2

�
= 0 (36)

where

A = 4
�
a2 � b2

�
F12G12 + c [a (F11G11 + F22G22)� b (F11G22 + F22G11)] ;

B = �a (F11G11 + 4F12G12 + F22G22) + b (F11G22 + F22G11)� cF22G22
�2 (a+ b)�1 (F22 � F11)G12
+a�2 (F11G11 + F22G22)� b�2 (F11G22 + F22G11) ;

C = 2 (a� b) [(F11 + F22)G12 + F12 (G11 +G22)] + 8 (a+ b)�1F12G12
+c�1 (F11 + F22) (G11 +G22)� 2 (a+ b)�2F12 (G22 �G11) ;

D = �a (F11G11 + 4F12G12 + F22G22) + b (F11G22 + F22G11)� cF11G11
+2 (a+ b)�1 (F22 � F11)G12
�a�2 (F11G11 + F22G22) + b�2 (F11G22 + F22G11) ;

H22 = (1��2)G22 + 2�1G12; H12 = G12 +�1 (G11 +G22) ;

H11 = (1 +�2)G11 + 2�1G12:

Notes: (i) The system of pdes, equ. (34), is of order seven and gives rise to
a characteristic equation of degree six (and so the system is degenerate) which
has a repeated linear factor

�0 + V1�1 + V2�2 = 0:

(ii) The remaining factor, equ. (36), is a homogeneous polynomial of degree
four in ��; �1; �2 such that every term in the coe¢ cients contains exactly one Fij
and exactly one Gij : Equ. (36) is investigated thoroughly in Sections 6 - 9.
(iii) The terms independent of �� (which corresponds to the quasi-static case)

factorise in such a way that the contributions from the stress and velocity un-
couple. The roots of both factors are real and distinct provided that

F 212 � F11F22 > 0; H2
12 �H11H22 > 0: (37)

We shall suppose these restrictions on f and g to hold true.
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6 Transformation of the Characteristic Equation

De�ne the planar invariants

p = �1
2
(�11 + �22) ; q =

1

2

h
(�11 � �22)2 + 4�212

i1=2
(38)

then the in plane components of the stress tensor may be written

�11 = �p+ q cos 2 ; �22 = �p� q cos 2 ; �12 = q sin 2 (39)

where  denotes the angle that the greater principal stress makes with the
positive x-axis,

tan 2 =
2�12

�11 � �22
: (40)

So far we have not assumed plastic isotropy and equ. (36) holds for plastic
anisotropy (but elastic isotropy has been assumed). At this point we now assume
plastic isotropy. We also now make the assumption that the material obeys a
general Mohr-Coulomb type yield condition, i.e. we assume that

f = f (p; q) (41)

and de�ne the angle of internal friction and the angle of dilatancy by

sin� = �fp
fq
; sin �p = �

gp
gq

(42)

respectively, where the subscripts p and q denote partial di¤erentiation with
respect to that variable and 0 � � < �=2, 0 � �p < �=2. The restriction
on f given in the �rst inequality (37) is equivalent to jfp=fqj � 1 and under
this condition the �rst de�nition in equ. (42) makes sense. If this condition
is satis�ed then g will automatically satisfy jgp=gqj � 1, since the condition of
non-negative work-rate imposes the restriction that �p � � and we shall always
assume this to be the case. Then we may write

F11 =
1

2
Fq (sin�+ cos 2	) ; F22 =

1

2
Fq (sin�� cos 2	) ; (43)

F12 =
1

2
Fq sin 2	; (44)

G11 =
1

2
Gq (sin �p + cos 2	) ; G22 =

1

2
Gq (sin �p � cos 2	) ; (45)

G12 =
1

2
Gq sin 2	; (46)

where upper-case letters denote that the quantity is evaluated in the underlying
solution Z. Note (iii) after eq. (36) states that the quasi-static characteristic
equation uncouples the contributions from the stress and velocity and, in the
event of the roots being real and distinct, there are two stress and two velocity

12



characteristic directions. The stress characteristics directions will be referred
to as yield directions and the velocity characteristic directions will be referred
to as slip directions. It is implicit in eq. (36) that if the stress and velocity
characteristics do not coincide (i.e. the yield and slip directions do not coincide)
then eq. (36) will have complex roots (see section 7 where an example of this
is worked out). Another example of this situation is the model proposed in
Anand (1983). We regard it as a fundamental physical law that the yield and
slip directions coincide and assume henceforth that this condition is satis�ed. It
enables us to calculate the value of � in equ. (9) in the case of planar �ows. A
su¢ cient condition for coincident quasi-static stress and velocity characteristic
directions is that theHij = kFij for some k. This is accomplished if the following
condition is satis�ed

2�q =
q

E
(1 + �) +

sin�� sin �p
1� sin �p sin�

: (47)

and we regard this as an equation to determine �: Note that the �rst term on the
right hand side is due to the retention of the rotational terms in the Jaumann
derivative of the stress rate in the elastic law. Since the quantity q=E is small
this term is often neglected. Indeed, for an associated rule, it must be neglected
in order to obtain a well-posed model. For the model proposed here, it may be
either retained or neglected. Let

A1 = cos
2 �p � 0; (48)

B1 = (1� � + sin� sin �p) (1� sin �p sin�) � 0; (49)

C1 = cos
2 �p sin�� (sin�� sin �p) �; (50)

D1 = (1� sin �p sin�) (1� 2� + sin� sin �p) � 0; (51)

then using equ. (43) - (47), the characteristic equation (36) becomes

A1
�
(sin�� cos 2	) �21 � 2 sin 2	�1�2 + (sin�+ cos 2	) �22

�2
�4 f(B1 � C1 cos 2	) �21�2C1 sin 2	�1�2 +(B1 + C1 cos 2	) �22

	
E�1 (1 + �) ���

2

+4D1

h
E�1 (1 + �) ���

2
i2
= 0: (52)

De�ne

� =

q
�21 + �

2
2; tan � =

�2
�1
; m =

r
1 + �

E
�
��

�

then the polar form of the characteristic equation is

A1 [sin�� cos 2 (	� �)]2 � 4 [B1 � C1 cos 2 (	� �)]m2 + 4D1m
4 = 0: (53)

The physical interpretation of m and � is that a plane wave in the direction
(cos �; sin �) propagates with wave speed m. Then

m2 =
B1 � C1 cos 2 (	� �)�

p
F (�)

2D1
(54)
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where

F (�) = [B1 � C1 cos 2 (	� �)]2 �A1D1 [sin�� cos 2 (	� �)]2 (55)

The two values of m2 are real and non-negative provided that

B1 � C1 cos 2 (	� �) � 0 and F (�) � 0 (56)

for all �, 0 � � < �. If the inequalities (56) are strict then the four roots m
of the characteristic equ. (53) are real and distinct and the system of pdes is
hyperbolic. Let

E1 = B21 �A1D1 sin
2 �; F1 = 2 (A1D1 sin��B1C1) ; G1 = C21 �A1D1

(57)
then

F (�) = G1 cos
2 2 (	� �) + F1 cos 2 (	� �) + E1;

= G1

�
cos 2 (	� �) + F1

2G1

�2
+
4E1G1 � F 21

4G1
(58)

provided G1 6= 0. The following theorem is seen to hold in various cases.
Theorem 1: The minimum value Fmin of F (�) for 0 � � < � and the

number of real roots of equ. (53), is given as follows.
(a) Let G1 6= 0 and jF1=2G1j � 1 then the minimum value of F (�) occurs when
cos 2 (	� �) = �F1=2G1 and is given by

Fmin =
�
4E1G1 � F 21

�
=4G1:

There are four distinct real roots
(i) if G1 > 0 and 4E1G1 > F 21 ;
(ii) if G1 < 0 and 4E1G1 < F 21 :
(b) Let G1 6= 0 and jF1=2G1j > 1 then the minimum value of F (�) occurs when
one of cos 2 (	� �) = �1 holds, depending on whether F1=2G1 is positive or
negative. Then

Fmin = E1 � F1 +G1;

depending on whether F1 is positive or negative. There are four distinct real
roots if E1 +G1 > �F1:
(c) Let G1 = 0 then
(i) if F1 > 0 then the minimum value of F (�) occurs at cos 2 (	� �) = �1 and
Fmin = E1 � F1. There are two distinct real roots if

E1 > F1; B1 � C1 �
p
E1 � F1 > 0

(ii) if F1 < 0 then the minimum value of F (�) occurs at cos 2 (	� �) = 1 and
Fmin = E1 + F1. There are two distinct real roots if

E1 > �F1; B1 � C1 �
p
F1 + E1 > 0

14



(iii) if F1 = 0 then the minimum value is Fmin = E1 and the two roots are real
and distinct provided E1 > 0 and if C1 < 0 we have

p
E1 < B1 + C1; while if

C1 � 0 we have
p
E1 < B1 � C1:

This completes the statement of the theorem.
Note that if F1 6= 0 then in the vicinity of G1 = 0 we have jF1=2G1j > 1 and

jF1=2G1j is unde�ned at G1 = 0:
The parameter space for the model is de�ned by the intervals

0 � � � 1

2
; 0 � sin� < 1; 0 � sin �p � sin�: (59)

Although strictly speaking � < �=2; we will include the limiting case � = �=2
since all the coe¢ cients are continuous in � and this value does give some
information concerning very frictional systems. Finally, it may be shown that

E1 = (1� sin �p sin�)
�
(1� 2� + sin �p sin�) cos2 �+ �2 (1� sin �p sin�)

�
;
(60)

F1 = �2� (1� sin �p sin�)
�
cos2 � sin �p + � (sin�� sin �p)

�
(61)

G1 = � (1� 2�) cos2 �p cos2 �+ �2 (sin�� sin �p)2 : (62)

In the above parameter space, E1 � 0, F1 � 0 and G1 is of inde�nite sign. Equ.
(49), (50), (60) - (62) show that question of whether the model is hyperbolic is
determined solely by the material parameters Poisson�s ratio �; angle of internal
friction � and angle of dilatation �p: It is of interest to extend the parameter
space by allowing �p < 0 which corresponds to plastic compaction. In this case,
E1; F1; G1 are all of inde�nite sign. However, we will not pursue this point here.

7 Failure of Hyperbolicity for the Plastic Poten-
tial Model

Before analysing the characteristic equation for the present model in Sections
8 and 9, we �rst of all demonstrate the failure of the classical plastic potential
model with non-associated �ow rule to exhibit hyperbolic behaviour. Let � =
0 and also neglect the rotational terms in the Jaumann stress rate then the
characteristic equ. (36) reduces to

�
(sin�� cos 2	) �21 � 2 sin 2	�1�2 + (sin�+ cos 2	) �22

�
�
�
(sin �p � cos 2	) �21 � 2 sin 2	�1�2 +(sin �p + cos 2	) �22

	�
�4
�
(B2 � C2 cos 2	) �21 � 2C2 sin 2	�1�2 + (B2 + C2 cos 2	) �22

�
E�1 (1 + �) ���

2

+4D2E
�2 (1 + �)

2
�2��

4
= 0

where

B2 = 1��+sin� sin �p; C2 =
1

2
(sin�+ sin �p) ; D2 = 1�2�+sin� sin �p;

(63)
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then in polar form,

[sin�� cos 2 (	� �)] [sin �p � cos 2 (	� �)]

�4 [(B2 � C2 cos 2 (	� �))]m2 + 4D2m
4 = 0; (64)

and

F (�) = [B2 � C2 cos 2 (	� �)]2�D2 [sin�� cos 2 (	� �)] [sin �p � cos 2 (	� �)] :

Now

B2 � C2 cos 2 (	� �) � 1� � + sin� sin �p �
1

2
(sin�+ sin �p) � 0

but
[sin�� cos 2 (	� �)] [sin �p � cos 2 (	� �)] < 0

in the four wedge-shaped regions

 +
�

4
+
�p
2
� � �  +

�

4
+
�

2
;  � �

4
� �

2
� � �  � �

4
� �p
2

 +
5�

4
+
�p
2
� � �  +

5�

4
+
�

2
;  +

3�

4
� �

2
� � �  +

3�

4
� �p
2
:

Hence
p
F (�) > B2 � C2 cos 2 (	� �) and one of the two possible values for

m2 is negative and hence two of the roots for m are complex, i.e. the system is
mixed. Thus, the non-associated plastic potential model predicts that, for every
state of plastic stress, there are four regions arranged symmetrically about the
principal axes of stress de�ning directions in which there are only two plane wave
speeds, whereas in all other directions there are four wave speeds. This suggests
a way to experimentally determine the validity or otherwise of the model. The
�blind regions�should be observable because it is reasonable to suppose that any
loading which locally produces plastic deformation (e.g underground explosions
or seismic events) but which far from the loading region is elastic will leave a
signature in the elastic signal re�ecting the existence of these regions.

8 Hyperbolicity: Special Cases

In the three dimensional parameter space de�ned by the intervals (59), taking
orthogonal axes labelled sin�; sin �p; � the parameter space of all possible values
of (sin�; sin �p; �) is a triangular prism with vertices at O (0; 0; 0) ; A (1; 0; 0) ;
B (1; 1; 0) ; C

�
0; 0; 12

�
; D

�
1; 0; 12

�
and E

�
1; 1; 12

�
:We shall now consider a num-

ber of important special cases of materials which correspond to edges or faces
of the prism OABCDE.
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8.1 Metal plasticity

Metal plasticity corresponds to the edge OC of the parameter space prism. In
this case � = �p = 0; 0 � � � 1

2 and neglecting the rotational terms in the
Jaumann stress rate,

A1 = 1; B1 = 1� � > 0; C1 = 0; D1 = 1� 2� � 0

E1 = (1� �)2 > 0; F1 = 0; G1 = � (1� 2�) � 0

and so G1 < 0 for 0 � � < 1=2 and zero at � = 1=2: Also B1 > C1.
(i) If 0 � � < 1=2 then jF1=2G1j = 0 and 4E1G1�F 21 = �4 (1� �)

2
(1� 2�) <

0 for all values of � in this interval. Hence the roots are real by Theorem 1(a)(ii).
The wave speeds are given by

m2 =
1� � �

q
(1� �)2 � (1� 2�) cos2 2 (	� �)

2 (1� 2�) :

(ii) if � = 1=2 then F1 = 0; G1 = 0 and E1 = 1=4;and there are two distinct
real roots by Theorem 1(c)(iii) given by

m = � 1p
2
cos 2 (	� �) ;

and there is a zero wave speed in the characteristic directions

� = 	� �

4
:

This latter case corresponds to the classical theory of plasticity, see Hill (1950).

8.2 Associated �ow rule

Associated �ow rules correspond to the face OBEC, i.e. � = �p and neglecting
the rotational terms in the Jaumann stress rate,

A1 = cos2 �; B1 =
�
1� � + sin2 �

�
cos2 � � 0

C1 = cos2 � sin� � 0; D1 = cos
2 �
�
1� 2� + sin2 �

�
� 0

E1 = cos
4 �
h
(1� �)2 + sin2 �

i
� 0; F1 = �2� cos4 � sin� � 0;

G1 = � (1� 2�) cos4 � � 0;

and G1 < 0 for 0 � � < 1=2; 0 � � < �=2 and G1 = 0 at � = 1=2 or � = �=2:
Also, B1 � C1.
(i) If G1 < 0 then ���� F12G1

���� = �

1� 2� sin�
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and so may take any value 0 � jF1=2G1j <1:
(a) If � and � are such that 0 � jF1=2G1j � 1 then

4E1G1 � F 21 = �4 cos8 � (1� �)
2 �
1� 2� + sin2 �

�
� 0

for any such � and � and hence the roots are real and distinct. The roots may
now easily be written down using equ. (54).
(b) If � and � are such that jF1=2G1j > 1 then

E1 +G1 � F1 = cos4 � (� + sin�)2 � 0

and the roots are real and distinct.
(ii) If G1 = 0; F1 < 0, i.e. � = 1=2 and � < �=2; then

E1 � F1 = cos4 �
"�
1

4
+ sin�

�2#
� 0

and the roots are real and distinct.

8.3 Plastically incompressible material

Plastically incompressible materials correspond to the face OADC of the prism,
i.e. �p = 0; and then

A1 = 1; B1 = 1� � � 0; C1 = (1� �) sin� � 0; D1 = 1� 2� � 0;

E1 = (1� 2�) cos2 �+ �2 � 0; F1 = �2�2 sin� � 0;
G1 = � (1� 2�) + (1� �)2 sin2 �:

G1 is of inde�nite sign and is zero for values of � and � which satisfy

sin2 � =
1� 2�
(1� �)2

:

Also B1 � C1. If G1 < 0 then
(i) if jF1=2G1j � 1 then

4E1G1 � F 21 = �4 (1� 2�) (1� �)
2
cos4 � � 0

is identically true and there are four real, distinct roots.
(ii) jF1=2G1j > 1 then

E1 +G1 � F1 = �2 (1 + sin�)
2 � 0

is identically true and there are four real, distinct roots.
If G1 > 0 then E1 +G1 � F1 = �2

�
1 + sin2 �

�
� 0 holds and there are four

real, distinct roots.
If G1 = 0, F1 < 0 then

E1 + F1 > 0

and the roots are real and distinct.
Hence the model is hyperbolic for plastically incompressible granular mate-

rials.
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8.4 Maximal limit of very frictional materials,

The maximal limit of very frictional materials corresponds to face ABDE, � =
�=2; and

A1 = cos
2 �p � 0; B1 = C1 = (1� � + sin �p) (1� sin �p) � 0

E1 = G1 = �2 (1� sin �p)2 � 0; F1 = �2�2 (1� sin �p)2 � 0:

If G1 > 0 then jF1=2G1j = 1 and

4E1G1 � F 21 = 0

and there are two real distinct roots.
If G1 = 0 then �p = �=2 or � = 0 and E1 = F1 = 0 and there are two

distinct real roots.

8.5 Maximally elastically compressible materials,

Maximally elastically compressible materials correspond to face OAB; � = 0;

A1 = cos2 �p � 0; B1 = D1 = 1� sin2 �p sin2 � � 0;
C1 = cos2 �p sin� � 0

E1 =
�
1� sin2 �p sin2 �

�
cos2 � > 0; F1 = 0; G1 = � cos2 �p cos2 � � 0:

Then B1 � C1.
(i) If G1 < 0 then jF1=2G1j = 0 so 4E1G1 � F 21 is identically satis�ed giving
four real, distinct roots.
(ii) If G1 = 0 (the limiting cases �p = �=2 or � = �=2) then 0 � jF1=2G1j <1:
If jF1=2G1j � 1 then 4E1G1 � F 21 = 0 and there are two real distinct roots.
If jF1=2G1j > 1 then E1+G1�F1 =

�
1� sin2 �p sin2 �

�
cos2 � � 0 and there

are two real distinct roots.

8.6 Elastically incompressible materials,

Elastically incompressible materials correspond to face CDE, � = 1=2;

A1 = cos2 �p � 0; B1 =

�
1

2
+ sin �p sin�

�
(1� sin �p sin�) � 0

C1 = cos2 �p sin��
1

2
(sin�� sin �p) ;

D1 = (1� sin �p sin�) sin �p sin� � 0

E1 =
1

4
(1� sin �p sin�) [1 + sin �p sin� (1 + 2 cos 2�)] � 0;

F1 = �
1

2
(1� sin �p sin�) (sin�+ cos 2� sin �p) � 0;
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G1 =
1

4
(sin�� sin �p)2 � 0:

Also B1 � C1 � 0. If G1 > 0 then jF1=2G1j � 1 and E1 +G1 � F1 � 0: There
are four real, distinct roots.
If G1 = 0 then � = �p. If F1 < 0 then

E1 =
1

4
cos2 �

�
1 + 4 sin2 �

�
� 0;

F1 = � cos4 � sin� � 0;

E1 � F1 = cos4 �
�
1

2
� sin�

�2
� 0

and there are 4 distinct real roots.
If F1 = 0 then � = 0 or � = �=2 and there are 2 distinct real roots.

9 Hyperbolicity: the General Case

Having considered the above special cases, we now consider the remaining case
and consider the interior of the prism OABCDE using equ. (48) - (51), (60) -
(62).
Note that B1�C1 � 0. G1 is of inde�nite sign and is zero for values of �; �p

and � which satisfy
�2

1� 2� =
cos2 �p cos

2 �

(sin�� sin �p)2
:

Case (a) If jF1=2G1j > 1 then (irrespective of the sign of G1)

E +G� F = cos4 � sin2 �p + 2� cos
2 � (1 + sin�) (1� sin �p) sin �p

+�2 (1� sin �p sin�+ sin�� sin �p)2 � 0

and the inequality is automatically satis�ed.
Case (b) If jF1=2G1j � 1 then
(i) If G1 < 0 then 4E1G1 � F 21 is automatically satis�ed.
(ii) There are no values of �; �; �p satisfying G1 > 0.
Hence, we conclude that the model is hyperbolic over the whole of the pa-

rameter space. Given that the model is constructed from two models which
fail to be hyperbolic, together with a general tendency for models of granular
materials to exhibit ill-posedness of one sort or another, this is a striking result.

10 Equations Governing the Cosserat Model

The model described in Section 3, with 
 taken to be identically zero relative to
a suitable frame, is su¢ cient for many applications. For planar �ows in which
both _ � 0 and 
 = 0 the model is identical to the double-shearing model.
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In this Section we complete the model of Section 3 by introducing equations
which govern the intrinsic spin 
. The proper context for this quantity is a
Cosserat continuum and a complete Cosserat model is needed to investigate
the internal structure of shear bands and also in the neighbourhood of rigid
or elastic external boundaries. A model for classical �ows is then obtained
by putting 
 = 0 relative to a suitable frame F1. For a frame F2 rotating
steadily relative to F1, 
 takes a non-zero constant value determined by the
relative spin of the two frames. In this section we embed the model for classical
�ows into a special Cosserat model which preserves the characteristic structure.
The couple stress tensor is denoted by � =

�
�ij
�
, the angular momentum by

l, where l = I �
, and I denotes the moment of inertia density tensor. In a
classical continuum, the Cauchy stress � is symmetric but will, in general, be
non-symmetric in a Cosserat continuum. Let �s;�a denote the symmetric and
anti-symmetric parts of the Cauchy stress. In a classical continuum � and �s

coincide and �a = 0.
The equations of Section 3 labeled (a) and (b) still hold, while (c) (d) become

as follows.
(c0) The yield condition (c) becomes

f (�;�) � 0; (65)

where f denotes a scalar valued function of the stress � and couple stress �. At
a point P; if f (�;�) < 0, the material is in an elastic state, while if f (�;�) = 0
the material is in a state of yield (or in a plastic state). De�ne

f� =
�
f�ij
�
=
@f�

@�
=

�
@f�

@�ij

�
; f� =

�
f�ij
�
=
@f�

@�
=

�
@f�

@�ij

�
; (66)

then the condition for continuing yield is

f���� + f���� = 0; f�ij��ij + f
�
ij��ij = 0: (67)

(d0) The �ow rule (d) still holds (we will now refer to it as the translational �ow
rule) with g = g� (�;�) de�ned analogously to f�:
Now consider the equations governing the rotational part of the motion.

(e) Euler�s equations of rotational motion are

r � �+ �G+ " : � = �dtl; @j�ji + �Gi + �ijk�jk = �dtli (68)

where G denotes the body couple.
(f) For the couple stress �ow rule, let

e =r
v

recalling that 
v = (
i) ; denotes the vector form of the intrinsic spin. The
intrinsic spin gradient e is frame indi¤erent. The rotational �ow rule is taken
to be

e =

�
Mc:��+_�f�; if f (�;�) = 0
Mc:�� if f (�;�) < 0

(69)
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where Mc denotes the 4th order elastic compliance tensor, �� the Jaumann
derivative of the couple stress.
We state here an explicit, simple model based on the following special assmp-

tions:
(i) Granular materials are not capable of sustaining a non-symmetric Cauchy

stress, �a = 0;
(ii) The couple stress tensor is anti-symmetric;
(iii) The constitutive equations may be decomposed into translational and

rotational parts. Thus, we shall assume separate translational and rotational
yield conditions

fs (�) � 0; fa (�) � 0: (70)

A full discussion of the possibilities of embedding the classical model into
a heirarchy of Cosserat models will be presented in a subsequent paper. For a
planar deformation in the Ox1x2 plane the equations are as follows. The spin
equations of motion reduce to the single equation

@1�13 + @2�23 + �G3 = �dtl3 (71)

since all quantities are independent of x3: In this model �12 = �21: The equation
of continuing rotational yield reads

fa13��13 + f
a
23��23 = 0: (72)

The couple stress �ow rule is

@1
3 =M c
13��13 +

_�
c
fa13; (73)

@2
3 =M c��23 +
_�
c
fa23: (74)

where M c denotes the couple stress elastic modulus, _�
c
a non-negative mul-

tiplier. The unknown quantities are: v1; v2; �11; �12; �22; �; �13; �23;
3; _�; _�
c
:

The equations comprise 2 translational equations of motion, 1 rotational equa-
tion of motion, 3 translational constitutive equations, 2 rotational constitutive
equations, 1 continuity continuity equation and 2 continuing yield equations. A
variant involving a single continuing yield equation and _� = _�

c
will be needed

if it turns out that experimental properties of granular materials require cou-
pling between the translational and rotational variables to describe the interior
structure of a shear band.

11 Linearisation of the Cosserat Model Equa-
tions

Now de�ne
zT =

�
v1; v2; _�; �11; �12; �22; �;
3; _�

c
; �13; �23

�
and let

ZT =
�
V1; V2; _�;�11;�12;�22; %;


u
3 ; _�

c;M13;M23

�
22



denote a given solution of equations (10), (12), (13), (16) - (18), (71) - (74). Let

z0T =
�
v01; v

0
2;
_�
0
; �011; �

0
12; �

0
22; �

0;
03;
_�
c0
; �013; �

0
23

�
denote an arbitrary perturbation of the given solution. Then de�ne


3 = 

u
3 +


0
3;

_�
c
= _�c + _�

c0
; �13 =M13 + �

0
13; �23 =M23 + �

0
23:

Linearising equations (10), (12), (13), (16) - (18), (71) - (74)) and using the
fact that Z is a solution gives the following system of linear pdes for z0: Denote
coe¢ cients of components z0 evaluated in the given solution Z which are of
zeroth order in derivatives of components of z0, by cij , where i denotes the
equation and j the component z0. There is now an extra term involving 
03 in
the linearisation of the translational �ow rule of Section 3.
(a) First component of the translational �ow rule

(�@1 +�1@2 + c41) v01 + (��1@1 + c42) v02 +G11 _�
0

+(aDt + c44)�
0
11 + c45�

0
12 + (bDt + c46)�

0
22 + c48


0
3 = 0; (75)

where
c48 = 2��12:

(b) Second component of the translational �ow rule

[� (1 + �2) @2 + c51] v01 + [(�1 + �2) @1 + c52] v02 + 2G12 _�
0

+c54�
0
11 + (cDt + c55)�

0
12 + c56�

0
22 + c58


0
3 = 0; (76)

where
c58 = �2� (�11 � �22) :

(c) Third component of the translational �ow rule

(��1@2 + c61) v01 + (�@2 +�1@1 + c62) v02 +G22 _�
0

+(bDt + c64)�
0
11 + c65�

0
12 + (aDt + c66)�

0
22 + c68


0
3 = 0; (77)

where
c68 = �2��12:

(d) Equation of rotational motion

c81v
0
1 + c82v

0
2 + c87�

0 + I%Dt

0
3 � @1�013 � @2�023 = 0; (78)

where
c81 = I%@1
3; c82 = I%@2
3; c87 = IDt
3 �G3:

(e) Rotational continuing yield

(F a13Dt + c9;11)�
0
13 + (F

a
23Dt + c9;12)�

0
23 = 0; (79)

23



where

c9;11 =
@fa13
@�13

����
M

DtM13 +
@fa23
@�13

����
M

DtM23;

c9;12 =
@fa13
@�23

����
M

DtM13 +
@fa23
@�23

����
M

DtM23:

(f) First component of couple stress �ow rule

�@1
03 + F a13 _�
c0
+ (M cDt + c10;10)�

0
13 + c10;11�

0
23 = 0; (80)

where

c10;10 = _�c
@fa13
@�13

����
M

; c10;11 = _�c
@fa13
@�23

����
M

:

(g) Second component of couple stress �ow rule

�@2
03 + F a23 _�
c0
+ c11;10�

0
13 + (M

cDt + c11;11)�
0
23 = 0; (81)

where

c11;10 = _�c
@fa23
@�13

����
M

c11;11 = _�c
@fa23
@�23

����
M

:

Writing the linearised Cosserat equations in block matrix form gives�
A D
C B

�
z0= 0 (82)

where

B =

2664
I%Dt 0 �@1 �@2
0 0 F a13Dt + c9;11 F a23Dt + c9;12
�@1 F a13 M cDt + c10;10 c10;11
�@2 F a23 c11;10 M cDt + c11;11

3775 ;

C =

2664
c81 c82 0 0 0 0 c87
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

3775 ;

D =

2666666664

0 0 0 0
0 0 0 0
0 0 0 0
c48 0 0 0
c58 0 0 0
c68 0 0 0
0 0 0 0

3777777775
and B has symbol

B =

2664
I%i�� 0 �i�1 �i�2
0 0 F a13i

�� + c9;11 F a23i
�� + c9;12

�i�1 F a13 M ci�� + c10;10 c10;11
�i�2 F a23 c11;10 M ci�� + c11;11

3775 (83)

with principal part Bp obtained by replacing all cij by zero.
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12 Hyperbolicity of the Cosserat Model

The principal part of the symbol obtained by expanding the determinant of the
matrix in eq. (82) gives

detAp = 0; detBp = 0 (84)

i.e. the characteristic equation for classical �ows together with the characteristic
equation for the Cosserat equations. Expanding the latter gives either _� = 0 or

M cI%
h
(F a13)

2
+ (F a23)

2
i
��
2 � (�1F a23 � �2F a13)

2
= 0 (85)

which has two distinct real roots. This establishes that the model for classical
�ows can be embedded in a simple Cosserat model which is hyperbolic and in
which the characteristic structure of the classical model is preserved. This gives
a base model from which more complicated Cosserat models can be constructed
to obtain agreement with any experimental evidence that becomes available.

13 Conclusions

It has been established that a model for the deformation and �ow of granu-
lar materials comprising the plastic potential model augmented with a three-
dimensional analogue of the "non-coaxial" term of the double-shearing model in
which the planar stress-rate dt is replaced by the vector (in three dimensions)
intrinsic spin 
 is hyperbolic, i.e. the roots of the characteristic equation are
real and distinct. The Cauchy problem for the model is hence well-posed. The
formulation of the model governing classical �ows requires a Cosserat quantity
to take degenerate values and the model has been embedded into a simple model
for a Cosserat continuum. The Cosserat model has been constructed in such a
way that the underlying characteristic structure for classical �ows is preserved.
It is emphasised that the model is constructed on the basis of two models

which are well-established in describing observed and experimental behaviour
of granular materials. The new model has the considerable advantage of being
well-posed for the Cauchy problem, whereas the two previous models are both
ill-posed. As examples of applications of its use, the new model is capable
of analysing elasto-plastic wave propagation in soils and granular materials and
may also be used for quasi-static rigid-plastic �ows. Again, neither of the models
from which it was derived are capable of doing this.
The major conclusion of the work presented in this paper is that the �rst

interpretation of the quote by A.J.M. Spencer given in the introduction is now no
longer true: a robust model suitable for the analysis of a wide range of problems
in the mechanics of granular materials and soil mechanics is now available to
researchers.
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