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Abstract

We develop the notion of essentially algebraic theories from [1]. We
associate with each Grothendieck site a corresponding essentially algebraic
theory whose models are the sheaves on that site. This is used to classify
locally finitely presented toposes, and to show that the category of modules
over a ring object in a locally finitely presented topos is also locally finitely
presentable.

1 Introduction

Our motivation comes from a paper by Prest and Ralph, [8], in which it was
speculated that for a ring in a locally finitely presented topos, the category of
modules is locally finitely presented, and it was shown that this is the case when
the topos is a category of sheaves on a space. More generally, we can ask what
it means for a sheaf to be finitely presented. Given a finite type Grothendieck
topology on a small category, it is known that the finitely presented sheaves are
precisely the sheafifications of finitely presented presheaves [10]. The notion of
finite presentation can be made very concrete for presheaves, since we can of
course represent a presheaf category by a multisorted equational theory. In this
paper, we extend this approach to cover sheaves, so that given a Grothendieck
site (C,J), we can write down an essentially algebraic theory (in the sense of
[1]) whose models correspond to the sheaves on the site. This allows us to
write presentations for sheaves in the same way as we would for presheaves, and
the notion of finite presentation we get is the natural one. Furthermore, we
can characterize locally finitely generated, locally finitely presented and locally
coherent toposes using these ideas. These characterizations are known, but
we believe this method of proving them is new. This leads to an immediate
generalization of Prest and Ralph’s result, since we just add (finitary) axioms
to the finitary theory of the locally finitely presented topos. In the last section of
the paper, we consider when the category of modules is locally coherent, rather
than just locally finitely presented; this is a much rarer condition.

We will assume the reader is familiar with the general theory of Grothendieck
toposes; an introduction to this topic is given in [6, III], and we will borrow
notation from that book throughout this paper.

The work in this paper formed part of the author’s PhD thesis, [3] and was
supported by an EPSRC Doctoral Training grant.



2 Locally presentable categories

In this section we summarise facts about locally presentable categories from [1].
These definitions can be found for abelian categories in Appendix E of [7].

Let A be a regular cardinal. A partially ordered set (I, <) is said to be A-
directed if every subset of I of size less than A\ has a least upper bound. Let C
be a category. A A-directed system in C is a functor D : D — C where D is a
M-directed partially ordered set, considered as a category. A A-directed colimit
in C is a colimit over a directed diagram. We denote the colimit over a diagram
D with the notation h_n} D. Ny-directed colimits are called direct limits in many

areas of mathematics. An object C in C is said to be \-presented if the functor
Hom(C, —) : C — Sets

commutes with A-directed colimits. Equivalently, given a A-directed system

{D;{—=D; |i<je(I,<)}

where (I, <) is some A-directed poset, and given a colimit cocone

we have that any map f : C — L factors through the cocone, that is, f = d; f’
for some i € I and some f’ : C' — D;, and this factorization is essentially unique,
in the sense that if g : C' — D; is some other map with d;jg = f, then for some
k > 14,j, we have dir f' = d;jrg. We say an object is finitely presented if it is
No-presented.

A set of objects G is said to generate C if for any pair of arrows f #g: A — B
in C, there is some map z : G — A with G € G and fx # gx. Equivalently, if C
has coproducts, for every object C' there is an epimorphism

GHGZ%C

where the objects G; are all in G.
An epimorphism e : A — B is said to be strong if given any commutative
square

A—=B

i
E—7—C

such that m is a monomorphism, there is a map d : B — F such that md = g
and f = de. In categories with pushouts, this is equivalent to stating that e is
extremal, that is, it does not factor through any proper subobject of C.

If C has coproducts, a generating set G is said to strongly generate C if for
every object C there is a strong epimorphism e : [[, G; — C as above. This is
equivalent to the condition that whenever s : S — A is a proper monomorphism
in C, there is a map = : G — A with G € G, not admitting a factorization
through s.



The category C is locally finitely presented if it is cocomplete and has a strong
generating set of finitely presented objects.

Analogous to the above, we say an object C in C is A-generated if the rep-
resentable functor Hom(C, —) commutes with A-directed colimits of diagrams
where all the maps d;; are monics. Such a diagram is called a A-directed union.
The category C is called locally A-generated if it is cocomplete, co-wellpowered
and has a strong generating set of A\-generated objects (note that one can prove
locally A-presentable categories are co-wellpowered using the definition above
(eg [1, 1.58, 2.49]); it is an open question whether this condition is necessary
in the definition of a locally A-generated category). We say an object is finitely
generated if it is Ng-generated.

It follows immediately from the above definitions that the categories of A-
presented and A-generated objects are closed under colimits of diagrams of size
less than A; in particular, the categories of finitely presented and generated
objects are closed under finite colimits [1, 1.16].

Finally, an object C in C is coherent if it is finitely generated, and for any
pullback diagram of the form

BxcB —— B

L

B C

in which B and B’ are finitely generated, we have that B X B’ is also finitely
generated. A category is locally coherent if it is cocomplete and has a strong
generating set of coherent objects.

3 Essentially algebraic theories

Locally presentable categories can be characterized as categories of models of es-
sentially algebraic theories. This gives a nice way of thinking about the objects
in these categories. In this section, we will introduce essentially algebraic theo-
ries, and give an explicit description of an essentially algebraic theory associated
with any given locally presentable category.

Recall the following from [1, 3.34].

Definition 1. 1. An essentially algebraic theory is given by a quadruple
I'=(X,E,%;, Def)

Here ¥ is a many sorted signature of algebras, over some set of sorts S.

¢ is a subset of X, denoting the set of function symbols we intend to
view as total. We write ¥, for the set ¥ — 3;; these function symbols are
to be interpreted as being partial. As usual, we view constant symbols as
function symbols defined over the empty set of sorts.

The set E consists of equations over 3 - that is, pairs of terms in variables
x;, where each x; has a sort s; € S. When considering the pair (t1,t2) as
an equation, we will write it t1 = ts.



Finally Def is a function assigning to each partial function symbol

UZHSZ'—>S

icl

a collection of ¥y-equations in variables x; € s;, (i € I). These equations
are taken to define the domain of definition for o.

2. We say that T is A-ary for a reqular cardinal X if each function symbol in
Y takes fewer than A arguments, and each Def (o) contains fewer than A
equations.

3. By a model of T, we mean a partial X-algebra A such that A satisfies all
equations of E, the total functions are everywhere defined, and a partial
function o € ¥, is defined for a tuple a in the domain of o if and only if
the tuple a satisfies all the equations in Def (o).

4. A morphism of I'-models is a morphism of the underlying partial algebraic
structures. We denote by Modl' the category of models of T'.

It is well-known [1, 3.36] that the categories of models of A-ary essentially
algebraic theories are precisely the locally A-presentable categories. We will
present a proof of this fact which we hope will make clear a sense in which an
essentially algebraic object can be seen as being generated by a collection of its
elements, in a similar manner to the way an ordinary algebraic object is.

Now assume we are given an essentially algebraic theory I' = (£, E, ¥, Def )
and a collection of variables x1 € Sy, ..., , € S,, we construct terms in I" over
these variables as follows:

1. each variable z; is a term of sort .S;.

2. given a total operation f : S; x ... x S, — S, and terms t; € Sy, ...,
tn € Sp, f(t1,...,t,) is a term of sort S.

3.ifo: S5 x...x S, = Sis a partial operation and t; € S, ..., t, € S,
are terms such that the equations Def (o)(¢1,...,t,) hold in every model
of (3, E), then o(t,...,t,) is a term of sort S.

Remark. The stipulation that the equations Def (¢)(t1,...,t,) hold in every
model of (X, F) in step 3 above could be replaced, via a suitable Completeness
Theorem, with the assertion that the axioms E admit a deduction of each of
the equations in Def (o) (t1,...,tn).

In a normal algebraic theory (that is, one where all the operations are as-
sumed to be total), a presentation of an object is given by a collection of gen-
erators x and a collection of equations ¢(x) which we assert is satisfied by x.
When we allow partial operations we add the complication that the equations
which go together to form ¢ should include only terms over x which are well-
defined. Consequently, we make the following definition: a presentation consists
of a collection of variables x = {x; € S;};cr and a totally ordered collection of
equations R(x) = {¢;(x) | i € I}, where (I, <) is some total order, and each
¢; is an equation in terms over x. This has the restriction that if the partial
operation o is used to form a term in ¢;(x), then the arguments for o satisfy
the equations Def(o) in every model of EU {¢;(x) | j < i}.

We define terms over a presentation (x | R(x)) as follows:



1. each variable z; is a term of sort .S;.

2. given a total operation f : S1 x ... x S, — S, and terms t; € Sy, ...,
tn € S, f(t1,...,t,) is a term of sort S.

3.ifo: 85 x...x 8, — S is a partial operation and t; € Sy, ..., t, € S,
are terms such that the equations Def (o)(ty,...,t,) are satisfied in every
model of (X, F U R(x)), then o(t,...,t,) is a term of sort S.

The collection of terms over a presentation is itself a model (x | R(x)) of
T', with the obvious operations. This is universal, in the sense that for any
other I'-model Y, and any tuple y € Y satisfying R(y), there is a unique map
¥ : (x| R(x)) = Y mapping the variables x to y. The definition of ¥ is given
on the terms over the presentation by induction.

Furthermore, any I'-model C' admits such a presentation - we can take x
to be all the elements of C, and R(x) to be all the equations holding between
them. We will of course usually be able to find smaller presentations than this.

Colimits can be determined in terms of these presentations. Let M and N
be models of T', with presentations (x, R(x)), (y,S(y)). Then the coproduct
MT] N is the object with presentation {(x,y), R(x) U S(y)). Given a I'-model
L and mappings f : M — L, g : N — L, we can find corresponding tuples
a,b € L, such that the equations R(a) and S(b) are satisfied. The tuple (a, b)
in L corresponds to the coproduct factorization.

Similarly, given a parallel pair of morphisms f,g: M — N, for every m € M,
the elements f(m) and g(m) can be expressed as terms tf (y), tJ,(y) over the
generators y of N. A map h : N — L with hf = hg, corresponds to a tuple
z € L, satisfying the equations S(z), with the additional property that for each
m € M, t} (z) = t4,(z) (this is the condition that hf = hg). In fact it suffices
to require this just for the generators x of M. Thus the coequaliser of f and g
admits the presentation (y | S(y) U {t{(y) = t9(y) Yuex)-

In particular, given a I'-model N and a presentation (y | S(y)) of N, each
equation 7 in S is of the form ¢7(y) = t7(y). Furthermore ¢] and ¢t have the
same sort, X, say. Let N; be the free I'-model on generators x = {z, € X},
and Ny the free model on generators y. There is a pair of maps f,g: Ny — No
defined by f : z; — t7(y), 9 : ; — t5(y). Then N is the coequaliser of the
maps f and g.

We summarize this information.

Lemma 2. FEvery model M of an essentially algebraic theory I' admits a pre-
sentation (x | R(x)), and M can be expressed as the coequaliser of a diagram

F——=G—M

where F' and G are free models of I'. The number of generators of G is bounded
by the cardinality of x, and the number of generators of F is bounded by the
cardinality of R(x).

For algebras over a signature X, the notions of finitely presented and finitely
generated correspond to the usual notions we can define using generators and
relations, this is proved in [1, 3.10]. We seek now to prove an analogous result for
essentially algebraic objects. Let I' = (X, E, ¥, Def ) be an essentially algebraic
theory. Let X be a model of I'. We say that a tuple of elements x € X generates



X if every element of X can be written as a term over the elements x, using the
term forming operations as described above.

Lemma 3. Let T' = (X, E,X;, Def ) be a A-ary essentially algebraic theory.
Then the forgetful functor U : Mod(I') — Mod(X:, E;) preserves A-directed
colimits.

Proof. Tt is sufficient to show that if (D;, <) is a A-directed system of T'-structures,
then the colimit of the underlying (X;, E;)-structures is also a I-structure. To
see this, let

DZ-L>L

be the colimit cocone in the category of (X, E})-structures. Suppose we have
some tuple x of elements of L that satisfy the equations Def (o), for some partial
operation . Then by the definition of a A-directed colimit, there is some ¢ € T
and some x’ € D; such that D; |= Def (0)(x’) and d;(x") = x. The well-defined
term d;(o(x’)) then gives us our definition for o(x). O

Lemma 4. (¢f. [1, 3.11], [10, 8.16(a)]) Let T’ be a A-ary essentially algebraic
theory. A model X is a A-generated object in Mod(T") if and only if it has a
generating set of size less than .

Proof. Suppose X is A-generated. For each set of elements S C X with size
less than A, let S be the substructure of X generated by S (this is the set of
all elements which can be written as terms over the elements of S). X can be
written as the union of all the S; therefore X = S for some S.

To prove the converse, suppose X has a generating set of size S less than
A, and let X be the A-directed union of a collection of subobjects X = |JU;.
Then each x; can be written as a term over the elements of the U;, and since
the terms are A-small, this term can only involve elements of fewer than A of
the objects U;. Since there are fewer than A elements x;, the set of U;’s needed
to write all the x; as terms over the elements of the U;’s is also of cardinality
less than . O

Lemma 5. (c¢f [1, 3.12], [10, 3.16(b)]) The A-presented objects in Mod (T') are
precisely those which have a A-small presentation.

Proof. We show that a free model F' of I' on a single generator of sort X is
A-presented. This follows from the fact that A-directed colimits in Mod (T') are
calculated as in (X4, E;). Thus, given a directed colimit cocone

(D% |iel}

over a directed system {d;; : D; = D; | i < j € (I,<)} for some directed poset
(I,<), amap F — L corresponds to an element x € L of sort X. But since the
directed colimit is the same as that for the underlying (¢, E;) structures, there
is some ¢ € I and some 2’ € D; with d;(z") = x. Thus the map F — D; defined
by z’ is an appropriate factorization through the cocone.

Having established that a free object on a single generator is A-presented,
the result now follows from Lemma 2 and the fact that A-presented objects are
closed under A-small colimits. O



Essentially algebraic theories characterise locally presentable categories; that
is, a category C is locally presentable if and only if it is the category of models
for an essentially algebraic theory. This is proved in [1, 3.36]. We will give
a different proof of this, which will describe explicitly an essentially algebraic
theory associated with a given locally presentable category.

To prove this result, we recall the following concept, from [1, 1.42]. For a
small category A and a regular cardinal A, denote by Conty.A the category of
all functors A — Sets preserving all A-small limits in A.

Theorem 6. ([1, 1.46]) IfC is a locally A-presentable category, and A is the
subcategory of A-presented objects in C, then C is equivalent to Conty.A.

Theorem 7. A category C is locally \-presentable if and only if it is equivalent
to the category of models of a A-ary essentially algebraic theory (X, E, ¥y, Def ).

Furthermore, this is a reflective subcategory of the category of models of the
equational theory (X4, E;), where Ey is the subset of E containing those equa-
tions not using any of the function symbols from X, and the inclusion functor
preserves \-directed colimits.

Proof. We have already proved the last part.

Suppose we are given a A-ary essentially algebraic theory I' = (X, E, 3, Def ).
Let C be a model of (X, E;). The reflection of C' is just the I'-structure given
by the presentation (c, R(c)), where the variables in c¢ are the elements of C,
and R(c) is the set of in ¥; holding for the elements of C' (with an arbitrary
ordering).

If C is a locally A-presentable category and A is a reflective subcategory closed
under A-directed colimits, then A is also locally A-presentable. The reflections
of the A-presentable objects in C are A-presentable in A, and form a strong
generating set [1, 1.3].

To show that every locally A-presentable category can be represented this
way, let C be a locally A-presented category, with A the category of A-presented
objects in C.

Define a A-ary essentially algebraic theory I' as follows. The total part of
T" is just the category A°P, with equations those holding in A°P; that is, we
consider the objects of A to be the sorts, with the function symbols TA — A’
between two sorts being the set of morphisms A’ — A in A - this is described
in more detail at the start of section 4.

k

For each A-small diagram D = {Ding} in A, with colimit cocone
{DiLL}, the object L will be in A, since A-presentable objects are closed
under A-small colimits. Define partial operations op : [[,c; D; — L, where
Def (o) is the set of equations Z(x]) = x; for each arrow f;; :D; = Dj (note
we can have D; = D; for ¢ # j). Add equations to our theory stating that if
x = {x; € Di}ier € [[;c; Di is a tuple, then Td;op(x) = m;(x;), for each i € I,
where 7d; is the function symbol corresponding to sd;.

The category of models for I' is the category of presheaves on A which
preserve the A-small limits existing in A4°P; that is, the category Cont AP of
A-continuous set-valued functors on A°P. By Theorem 6, this is equivalent to C.
This proves that I' is an essentially algebraic theory whose category of models
is equivalent to C. O



Remark. The Yoneda embedding gives us a way to see the objects of C as models
of the theory I' in the obvious way: let C be an object of C. Then for each object
A in A, the set of elements of C of that sort is the collection of maps A — C;
the functions in A act on this set by precomposition. For each diagram D, the
map op sends a compatible cocone over the diagram with codomain C' to the
factorisation through the colimit.

It is clear from this that the free I'-models in the given presentation are
precisely the A-presented objects in C.

Lemma 8. Let T’ be an essentially algebraic theory (X, E,X¢, Def ) such that
every function symbol in 3 is finitary. Then the category of I'-models is locally
finitely generated.

Proof. Tt suffices to show that for an essentially algebraic theory of the above
form, if (I, <) is a directed poset and {d;; : D; = D; | i < j € I} is a directed
union of I'-structures, then the colimit of the underlying (3, F;)-structures is
also a I'-structure.

Write {d; : D; = D | i € I} for the colimit cocone. Note that each d; is
also a monic map. In a locally presentable category, the monic maps are pre-
cisely the injective maps, so we can consider the D;’s to be essentially algebraic
substructures of D.

Now let o be a partial operation, with domain of definition given by Def (o).
Since o is a finitary operation, the set of equations Def (o) uses only finitely
many variables. Let d be a tuple in D such that D |= Def (0)(d). Since the
D;’s cover D, each element dj from d occurs as an element of D; for some 1.
Since the D;’s occur as a directed system, we can find some D; containing the
whole tuple d. Then we define o(d) to be o7 (d). O

We conjecture that locally finitely generated categories are characterized by
essentially algebraic theories of this form, but we do not have a proof of this.

4 Sheaves as essentially algebraic objects

Let C be a small category. The category (C, Sets) of set valued functors on C is
described by a multi-sorted equational theory, which we will denote I'. This
theory is described as follows:

e For each object C of C, we take a corresponding sort C.
e For each morphism f : C — C’ in C, take a function symbol £ : C — C'.

e For each commutative diagram in C of the form

A—1.p

NP

C

add an equation to F in one variable x of sort A stating gf(x) = h(x).



If (C,J) is a site, we can describe the presheaves on C as the set-valued
functors on C°P in the manner just described (so in this case, for each morphism
f:C — C"in C, we have a function symbol £ :C" — C). Furthermore, we
can extend the theory to an essentially algebraic theory (X, E,X;, Def ) whose
models are the sheaves on the site.

e For every covering sieve J of an object C, we take a partial operation

05:C— [[dom(f) —c,
feJ

in variables x = (x¢)¢ey (each variable (x¢) is of sort dom(f)).

e The equations in Def (o3) are those of the form gf(xp) = h(x,) whenever
we have a commutative diagram

such that g and h are in J.

e We add equations to E stating that foj(x) = x; for every covering sieve
J and every f € J.

It is easily checked that the models of this essentially algebraic theory are
just the sheaves for the topology. We write I'(¢ y) for this essentially algebraic
theory.

In fact it suffices to take a basis for the Grothendieck topology in the above.
That is, given a basis K for J, define an essentially algebraic theory by taking
the partial operations oy, defined for each covering family {f;} of morphisms
in K as above. The models of this algebraic theory are again the sheaves for
the topology. We denote this essentially algebraic theory by I'«¢ k-

Let J be a topology, such that there exists a regular cardinal A and a basis K
for the topology such that every covering family in K has less than A elements.
Then every function symbol in T'¢ g will take fewer than A arguments, and by
Lemma 8, the category Sh(C, J) will be locally A-generated.

5 Locally coherent and finitely presented toposes

By considering sheaves as essentially algebraic objects, we can understand the
notions of finite presentability and coherence in a very concrete way. In this
section, we will use this to characterize the different local generation conditions
for toposes. The results here are mostly known, see e.g., [2, VI.2], but this
approach gives us a different way of thinking about them.

To provide characterizations of toposes with these various local genera-
tion properties, we start by introducing the following form of the Comparison
Lemma.



Lemma 9. (/6, p.589]) If C is a full subcategory of the Grothendieck topos,
E whose objects form a generating set, and J is the topology on C in which
the covering sieves on an object C are precisely those containing an epimorphic
family of morphisms, then & is equivalent to Sh(C, J).

We use this result to find sites for a given topos. For instance, if we assume
the topos £ is locally finitely generated, we can take C to be the collection of
finitely generated objects in £. If J is a sieve on a finitely generated object in £
which contains an epimorphic family of morphisms, than there is a finite family
of morphisms in J which is also epimorphic. This observation leads to one half
of the following result.

Proposition 10. A topos £ is locally finitely generated if and only if it is
equivalent to Sh(C, J), for some site (C,J), where every sieve in the topology J
contains a dense finitely generated sieve.

Proof. Tt remains to show that a topos of this form is locally finitely generated.
But this follows immediately from Lemma 8, since for a site of this form, we can
choose an essentially algebraic theory as in section 4 for which all the operation
symbols are finitary. O

Definition 11. If (C,J) is a site where every sieve in the topology J contains
a dense finitely generated sieve, we say the topology J is of finite type. More
generally, if every sieve in the topology J contains a dense \-generated sieve,
we say the topology J is of A-type.

A reflection functorr : C — A is said to be of finite type (respectively, of A-
type) if the inclusion functor i : A — C preserves directed unions (respectively,
A-directed unions).

There is some incosistency in the literature over whether, for a finite type
localization, the inclusion functor i : A — C is required to preserve directed
unions, or all directed colimits. This confusion is caused partly by the fact
that if the small category C has pullbacks, the two definitions are equivalent.
However, the definition of finite type topology given here is fairly universal,
and in general, it is only equivalent to demanding that the inclusion functor
preserve directed unions. We shall call a localization such that the inclusion
functor preserves all directed colimits a coherent type localization.

It is shown in e.g., [10, 3.15] that for a Grothendieck topology J on a small
category C with pullbacks, the topology J is of finite type if and only if the
localization functor a : Sets® — Sh(C,.J) is.

The next result characterizes locally finitely presented toposes. To make the
proof easier to follow, we make the following definition. Let C be a topos, and
let f: A— C, g: B — C be a pair of arrows in C with common codomain. By
a square in C over f and g, we will mean a commutative diagram of the form

X$'B .
‘N
A—1oc

We denote this square by (X, x1, z2). Given two squares over f and g, (X, 1, x2),
(Y, y1,y2), we say a factorisation of X through Y is a map 2’ : X — Y with the
property that y 2’ = z1, yo2’ = x9.

10



Theorem 12. A topos £ is locally finitely presented f to Sh(C,J), for some
site (C,J), where every sieve in the topology contains a dense sieve S with the
property that (1) S is generated by a finite collection of arrows S'; and (2) every
pair of arrows f,g € S’ admits a finite collection of squares, X; = (X;, x%, xb)
with the property that every other square over f and g, Y = (Y,y1,y2), factors
through one of the X;.

Remark. A finite collection of the form given in condition (2) of this theorem is
called a weak multilimit over the diagram

B

lg

a—tsc

Proof. Suppose the site (C, J) is of the form described. Take as a basis for the
topology the finite collections of arrows generating each sieve S’ as described in
the statement of the theorem. Associate with this basis the essentially algebraic
theory as described in section 4. For each sieve S’, the equations stating that the
squares X; commute are sufficient to describe the essentially algebraic theory.
This theory is finitary, and the category of its models is therefore locally finitely
presented. This category is of course just Sh(C, J).

It remains to show that if £ is locally finitely presented, then it is equivalent
to the category of sheaves on a site of this form. By the previous result, if £
is locally finitely presented, it is equivalent to the category of sheaves on the
site (C, J), where C is the category of finitely generated objects in &£, and J is
the topology on C generated by the families of morphisms that are epimorphic
families in £. We claim that if J is not of the above form, then the objects in C
are not finitely presented in &.

Suppose C'is in C and S is a finitely generated J-dense sieve on C, which is
generated by a finite family of morphisms {s; : S; = C}li<i<pn. Suppose there
is some pair s;,s;, which does not admit a finite family of squares with the
property (2). Consider the collection of all squares (Y, yF,y5) over s;, s;.

Build up a directed system of functors as follows: each functor F' is generated
by a pair of elements x; € 5;, for each 1 < ¢ < n. The directed system consists of
all functors with this generating set and containing finitely many of the relations
satisfied by the generating set of elements s; in S. Thus these functors form
a directed system (the join of two functors Fy, F» in the system is the functor
whose set of relations is just the union of those for Fy and Fy). The colimit of
this directed system is clearly S. However, there is no map from S to any of
the functors F;, since this would force F; to satisfy extra relations. Since S is
isomorphic to Hom(—, C) in the sheaf category, this contradicts the assertion
that C is finitely presented in &. O

The most obvious examples of sites which fulfil the condition given in Propo-
sition 12 are those where the topology is trivial, i.e., for each object C' in C,
JC = {Hom(—,C)} (this is the wholly obvious fact that presheaf categories
are locally finitely presented) and those where the category C has pullbacks
(this is the equally obvious fact that locally coherent toposes are locally finitely
presented).
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If (C, J) is a site as described above, the finitely presented objects in Sh(C, J)
are described by the following result, which appears as [10, 3.16]. This can be
seen as an immediate consequence of Lemma 5 applied to the description of
sheaves as essentially algebraic objects given in Section 4.

Theorem 13. Let J be a A-type Grothendieck topology on a category C.

a If F is a A\-generated sheaf, there is a A-generated presheaf P such that F =
aP.

b If F is a \-presented sheaf, there is a A-presented presheaf P such that F =
aP.

To look at coherent and locally coherent toposes, we will need the following
result.

Lemma 14. Let C be any category. Then the full subcategory of C consisting
of coherent objects in C is closed under pullbacks.

Proof. Suppose we are given a pullback diagram of the form

T
— B

A
le \LQ
f
C——D
in which the objects B, C' and D are all assumed to be coherent. Since D
is coherent and B and C are finitely generated, it follows that A is finitely

generated as well.
Now suppose we have a further pullback diagram

i ih
f
Z—A
in which Y and Z are finitely generated. Then the diagram

P1
—Y

X
P2i gmih

7|'2k

Z —D

is also a pullback diagram, and so X is finitely generated by coherence of D.
Thus A is coherent. O

The next result characterizes locally coherent toposes; it will require quite a
bit of work to prove. This characterization was originally shown in [2, VI.2.1].
The proof we give here uses the idea of a presheaf as a model of an algebraic
theory.

Recall from [6] the definition of the plus functor

(=) : Sets®” — Sets®”

12



and the associated sheaf functor

a=(=)t+:Sets"” — Sh(C,J)

Proposition 15. A topos £ is locally coherent if and only if it is equivalent to
Sh(C, J), for some site (C,J), where C is closed under pullbacks and every sieve
in the topology J is generated by a finite number of arrows.

Such a topos is always cocomplete, so it suffices to prove that the functors
aHom(—, C') are coherent in such a topos. We will need to look at the notion of
separated presheaves. A presheaf P on a site (C, J) is separated if for any object
C in C, and any cover S of C, if x,y € PC such that for all f: D — C'in S, we
have that if Pf(x) = Pf(y), then x = y. That is, P is separated if elements of
P agree on a cover only if they are the same. A presheaf P if separated if and
only if P is a sheaf.

The separated presheaves form a reflective subcategory Sep(C) of Setscop,
and the associated sheaf functor factors through this reflection. On any presheaf
P, we define, for each object C of C an equivalence relation R on PC given by

xRy if and only if 35 € JC such that Vf € S, Pf(z) = Pf(y).

Given a map f : C — C’, the corresponding map Pf : PC' — PC respects this
equivalence relation, so this defines a functor (—)sep : Sets®” — Sep(C). We
write Psep for the image of P under this functor. This functor is a localization, so
in particular the associated sheaf functor can be represented as (—)sep followed
by one application of the plus-functor. The details of this can be found in, for
example, [10, p.32].

If F is a presheaf on a site (C,J), we say a subpresheaf s : S — F is dense
if as is an isomorphism. The dense subpresheaves of a presheaf P are closed
under intersections, so they form a directed system, denoted D(P). If F and G
are presheaves then a map between f : aF' — aG may be represented by a map
f'+ F" — Ggep such that af’ = f. Two maps f: F' — Ggep and g : ' — Gsep
represent the same map aF — aG if they agree on some dense subobject of
F'nF".

Lemma 16. ([10, 3.9]) For presheaves F and G on a site (C,J), there is a
natural isomorphism

Homgy(c, ) (aF, aG) = hi>n prep(p)Homgescor (P, Qsep)-

Lemma 17. Let (C, J) be a site where C is closed under pullbacks and every sieve
in the topology J is generated by a finite number of arrows. Let a : Sets¢” —
Sh(C, J) be the localization functor. Then the functors aHom(—, C) are coherent
objects in the sheaf category.

Proof. The functor aHom(—, C) is finitely generated in the sheaf category by
Theorem 13. It remains to prove the pullback property. We will show this
by looking at the separated presheaf Hom(—, C')sep. For each object C’ in C,
the elements of Hom(—, C)sep(C’) are equivalence classes of maps f: C' — C,
where [ is equivalent to f’ if there is some cover {g; : G; — C’'};er such that

fgi = f'gs, for all 4.
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Suppose we are given maps « : A — aHom(—,C), f: B — Hom(—,C) in
the sheaf category, with A and B finitely generated. Since A and B are finitely
generated in the sheaf category, they are isomorphic to sheaves aA’, aB’ for some
finitely generated presheaves A’ and B’, by Theorem 13. The maps « and 3 can
be represented by maps & : A* — Hom(—, C)sep and B:B* — Hom(—, C)sep
in Sets®” with A* and B* finitely generated dense subobjects of A" and B’
respectively (we may assume A* and B* are finitely generated because the
localization is of finite type). The presheaves AZ,, and B, are finitely generated
objects in the category Setscop, since they are quotients of the finitely generated
objects A* and B* respectively.

Thus the map a and 8 are given by maps a* : A, — Hom(—,C)sep,
B* : Bi,, — Hom(—, C)sep, where A%, and BZ, are finitely generated objects
in Sets®”, and a(a*) = a, a(8*) = 8.

Since A, and Bg,, are objects in the presheaf category, we can assume they

are generated as models of the algebraic theory I'c by elements a; € AZ,,C;

and b; € B,C;. The map o* : A%, — Hom(—,C)sp identifies each of the
generators a; with an equivalence class of arrows C; — C, and we choose a
representative a} : C; — C for each equivalence class. Similarly, we choose
representatives b7 for the image of each of the generators b;.

For each pair of generators a; of A, and b; of By, take the pullback square

P P

2
Tij
Ci Xc Cj E—— Cj

Tril’jl lb;
a¥

C;—C

Now define P to be the presheaf defined by taking generators (p;,p;) of
sort C; x¢ C; for each pair of generators a;,b;. Every term t(p;,p;) of sort
C’ corresponds to a map t : C' — C; x¢ Cj, which then corresponds to a
pair of maps t; : ¢ — C;, t; : C" — C;. The relations on P are defined by
taking t(pi,,pj,) = t'(i,,pj,) When the corresponding terms in A%, and B,
are equal, i.e., til (ail) = t;z (ai2) and tj1 (bj1) = t;—2 (bﬁ).

This presheaf P is clearly finitely generated, and we have a diagram

P 2 B*

sep

*

A;ep L> HOIH(*, C()scp

This diagram is not in general a pullback diagram, but it suffices to show that
it is mapped to one by the localization functor.
Let X be any functor, and suppose we have a commutative diagram

aX

14



The map z; : aX — A is given by a map z7 : S — Al,,, where S is a
dense subobject of X. The sep-functor preserves monomorphisms, so AZ,, is a
subobject of Al,,, and since both objects are mapped to aBB by the associated
sheaf functor, it is a dense subobject. The pullback of A%, along z is also
a dense subobject of X, so there is a map z7 : S — Al with a(z}) = z1.
Similarly, we may assume there is a map z3 : S — Bf,, with a(23) = 22 (we
can assume both maps have the same domain by taking the intersection of the
two domains).

Suppose S is generated by elements sy each of sort Si. The maps z7, z5
send each of these generators sy to zi(sx) € A%,Sk, z5(sk) € Bi,Sk. This
pair is represented by an element (z7(sg),z5(sk)) € PSk. Defining this on each
generator gives us a transformation & : S — P. We observe that this is indeed
a transformation since any relations that are required to hold in P hold in each
of its two components, by the assumption that ] and x5 were transformations
themselves.

We still need to show that the factorization is unique. Suppose there is
another transformation 2’ : S — P, such that S’ is dense in X, and a(mz') = x1
and a(ma2’) = x9. Then by Lemma 16, there is a subobject of T of S and S” on
which 712’ agrees with 71, and mez’ agrees with Zo; it follows by the definition
of & that Zp = xiT. But if this is the case then z’ and I represent the same

transformation aX — aP. This concludes the proof. O

Proof of theorem 15: The topos of sheaves on a site (C,J) always has the
representable functors aHom(—, C) as a generating set; we have just shown that
these will be coherent. The converse follows immediately from the Comparison
Lemma, 9 and Lemma 14.

6 Modules over a sheaf of rings

Let &£ be a topos of presheaves, i.e., & = Sets®” for some small category C. A
ring object in &£ is a presheaf of rings on C - this is a presheaf R : C°? — Sets
such that RC has a ring structure for every object C' in C, and for each map
f:C — C"in C, the map Rf : RC' — RC is a morphism of rings. We write
Rings(€) for the category of ring objects in £.

If J is a topology on C, then a ring object in Sh(C, J) is a presheaf of rings
such that the underlying presheaf of sets is a sheaf.

In particular, since the localization functor a : Sets®” — Sh(C, J) preserves
finite products, we see that the localization of a presheaf of rings is also a sheaf of
rings, and this is a reflection functor from Rings(Sets®” ) — Rings(Sh(C,.J))
(and more generally, if f : & — F is a geometric morphism of toposes, this
defines a ‘geometric morphism’ Rings(F) — Rings(€), that is, an adjoint pair
of functor between these two categories with the left adjoint preserving finite
limits).

If (R,0gr,1Rr,—R,+R, XRr) is a ring object in a topos, we define a right
R-module object (M,0p,—nar,+a1, X)) in C to be an abelian group object
(M,0n1, —ar, +ar) together with a map X : M x R — M satisfying the com-
mutativity conditions required by modules; for example, to show the multiplica-
tion is distributive over addition, we stipulate that the following diagram must
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commute:
(x)m xidR

MxRxR——MXxR .

\LXM
XM

M x R M

idMX(XR)\L

Morphisms of R-module objects are defined similarly.

If R is a presheaf of rings over some small category C, then an R-module
object M in Sets®” is a ‘presheaf of R-modules’ - for each object C' in C, MC
will be an RC-module, and for a map f : C — C’, the map M f: MC' — MC
will be an RC’-linear map, where M C is considered with the action of RC’ on
it defined by the map Rf : RC’ — RC. We denote the category of presheaves
of R-modules over a presheaf of rings by PreMod-R. If R is a sheaf of rings
we denote the category of sheaves of R-modules by Mod-R.

In particular, we see that since the localization functor a : Sets®” —
Sh(C, J) preserves finite limits, if M is a presheaf of R-modules for some presheaf
of rings R on a small category C, then aM will be a sheaf of aR-modules.

Now let N be a sheaf of aR-modules. The presheaf of rings R has an action
on N, given by

rXidn

N x R— N N % aR—5N

and one can easily show that N is a presheaf of R-modules with this action.

Theorem 18. Let (C,J) be a site, with associated sheaf functor a : Sh(C,J) —
Setscop, and inclusion functor i : Sets®” — Sh(C, J). Suppose R is a presheaf
of rings on C. Then a and i induce functors a’ : PreMod-R — Mod-aR,
i' : Mod-aR — PreMod-R, and this expresses Mod-aR as a localization of
the category PreMod-R.

Proof. We have already described the functors a’ and ', and o’ preserves finite
limits since it commutes with the forgetful functor. It remains to show that a’
is left adjoint to i/, or equivalently, that given a presheaf of R-modules M and
a sheaf of aR modules N, then a map f: M — N in SetsC” is a morphism in
PreMod-R if and only if the corresponding map af : aM — N in Sh(C, J) is
a morphism in Mod-aR. We show that f commutes with the multiplication by
R if and only if af commutes with the multiplication by aR; the proof that f
is an abelian group map if and only if af is is similar.
Consider the diagram below, where f = af.ny:

id

M xR Jxidn NxR

(M x R) )

\ \lew XNR=MN(Nx R)
id,

X m aM x aRafi;?\f x aR
la(xM) \LXN

M — N

Our claim is that the inner square commutes if and only if the outer square does.
To see this, notice that the inner square is the image of the outer square under
the functor a; thus if the outer square commutes, the inner square must commute
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also. Now suppose the inner square commutes. Then X y.nnxg).(f X idr) =
xXn-(af X idar)Nmxr) = af-a(Xa)nvxr = afnar-xar, and thus the outer
square commutes, as required. O

In the paper of Prest and Ralph, [8], the following result was shown: let X
be a topological space with a basis of compact open sets, and let R be a sheaf
of rings on X (we refer to a topological space with a sheaf of rings as a ringed
space). Then the category of R-modules is locally finitely presentable.

In that paper, it was asked under what conditions this result generalizes
to an arbitrary Grothendieck topos. This question can be answered using the
characterizations given up to this point.

Theorem 19. If £ is a locally finitely presentable topos (respectively locally
finitely generated) and R is a ring object in &, then Mod-R, the category of
R-module objects in &, is locally finitely presentable (respectively locally finitely
generated).

Proof. Let £ be a locally finitely presentable topos. Then by Theorem 12, £
is equivalent to Sh(C,J), where J is a topology on a small category C with
the property that every covering sieve on an object C' in C contains a finitely
presentable covering sieve.

We use the essentially algebraic theory describing the objects in Sh(C,J)
described in section 4. Sheaves of R-modules can be described by adding more
functions and equations to this theory.

To define the category of R-module objects in Sh(C, J), we add total oper-
ation symbols to the above signature. For a given sort C (that is, each object C'
in C), we add a function symbol r : C — C, for each element » € RC. We also
add a constant symbol O¢ of sort C, and function symbols +¢ : C x C — C and
—C:C — C. We expand F to include equations stating that with the operations
so defined, the collection of elements of the sort C is an RC-module for each
object C, and each function symbol f : B — C is an RB-linear map.

This gives us a description of Mod-R as a finitary essentially algebraic cate-
gory; it is therefore locally finitely presentable.

To get the corresponding result for locally finitely generated toposes, we use
a similar argument, but the sets Def (o) are allowed to contain infinitely many
equations. The rest of the argument is unchanged. O

It is well-known that for a topological space X, the category of sheaves on
X is locally finitely presentable if and only if the space has a basis B of compact
open sets, see e.g., [5, D3.3.14]. This can be seen as a consequence of [6, I1.2.3],
which states that a sheaf on the lattice Op(X) is equivalent to a sheaf on the
sublattice consisting of the basis elements B. If this basis consists of compact
open sets, then the essentially algebraic theory described in section 3.1 will be
finitary.

Remark. It has been pointed out to us that results in section D5 of [5] can be
used to provide a straightforward proof that local A-presentability of a topos £
implies local A-presentability of any category of modules in £. Our proof has a
much more model theoretic flavour, and we hope it will be more straightforward
to those with experience in this field.

We now turn our attention to the question of when the category of modules
on a ringed space is locally coherent. It should be noted at this point that the

17



definition of coherence we are using is distinct from (and a lot stronger than)
the definition of a coherent sheaf of modules used by algebraic geometers, in for
example [4, IL.5].

Let X be a topological space, and let R be a presheaf of rings on X. Denote
by Op(X) the lattice of open sets of X. Denote by I'r the essentially algebraic
theory of presheaves of modules over R.

For each open set U € Op(X), define a presheaf Ry : Op(X)°P — Sets by

Ry(V)=R(V)itV CU; 0if V£ U.

Each presheaf-of-modules Ry is the free model of the theory I'p generated by
a single element of sort U. It follows that the collection {Ry | U € Op(X)}
is a generating set of objects for PreMod-R - if a # § : F' — G are distinct
maps in PreMod-R, then there is some U € Op(X) and some = € FU such
that ay(x) # By(x). The element x represents a map & : Ry — F, and the
inequality az # % holds.

Every presheaf Ry is finitely generated, and is a subobject of the presheaf
R, considered as an object in PreMod-R.

Lemma 20. Let R be a presheaf of rings on a space X. The category PreMod-R
is locally coherent if and only if R, considered as a sheaf of modules, is coherent
as an object in the category.

Proof. If R is coherent as a module over itself, the objects Ry form a generating
set of coherent objects. We claim that any finitely generated subobject of a
coherent object is itself coherent. If C' is coherent and s : S — C' is a finitely
generated subobject, and there is a pullback diagram

BxgB —= B

L

B——S

then the diagram
BxsB —— B

L

B——C

obtained by composing with s is also a pullback. Thus if B and B’ are finitely
generated, B xg B’ must also be finitely generated, by coherence of C.

This shows that the objects Ry form a coherent generating set for the cate-
gory PreMod-R.

Conversely, if the category PreMod-R is locally coherent; then every finitely
presentable object is coherent [7, E.1.18], and since R is finitely presentable in
PreMod-R, it must be coherent also. [

We look for conditions under which a presheaf of rings R is coherent.

Lemma 21. If R is a coherent presheaf of rings on a space X, then for every
open set U in X, RU is a coherent ring.
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Proof. Let R be a presheaf of rings on a space, and let U be an open set in X
such that RU is not a coherent ring. Then there is some finitely generated ideal
(x1,...,2n) = I C RU, such that I is not finitely presentable. But I defines
a finitely generated subobject of R - just take the subobject of R generated by
T1,...,Tn. This is not finitely presentable; if I had a presentation with only
finitely many relations, then taking the relations which occur between terms of
sort U would give a finite presentation of IU. O

A version of the next result appeared as Theorem 2.18 in [9]. In this paper,
the result was proved for an arbitrary presheaf of rings R, as long as RU was
coherent for each open set U € Op(X). As it turns out, the argument in
[9] contains a mistake: if F' is a finitely presentable module and G a finitely
generated submodule, then the sheaf-of-rings structure of R can force G to have
infinitely many relations. The argument can be made to work if we insist that
the presheaf-of-rings R be finitely presentable, however.

Theorem 22. (c¢f [9, 2.18]) Let R be a presheaf of rings on the space X. If
R is finitely presentable, and for each open set U € Op(X), RU is a coherent
ring, then the presheaf of rings R is coherent as an object in PreMod-R.

Proof. Let (x1,...,2, | 711(X),...,7m(X)) be a presentation of R in the language
of presheaves of rings over C. Each element x; has sort U; where U; is some open
set in Op(X). Suppose for some open set U;, we have an open set U C U;; then
denote by z¥ the restriction of the element x; to U (i.e., the image of x; under
the restriction map RU; — RU). Each relation r;(x) is an equation between
terms in the variables x = z1,...,x,, and each equation is between terms in
some sort V;, where V; € Op(X).

On any open set U € Op(X), the ring RU is generated by the set of elements
in, for those elements x; where U C U;. The relations that hold on these
elements {z{ | U C U;} are precisely those induced by those relations 7;(x)
which have U C U;. In particular, if U and U’ are two open sets that are
contained in precisely the same open sets U; and V; (that is, for every ¢ =
1,...,n, U C U, if and only if U" C U;, and for every j = 1,...,m, U C U;
if and only if U" C Uj) then the rings RU and RV are isomorphic (since they
have the same presentation).

To prove that the category PreMod-R is locally coherent, it suffices to
prove that the presheaf-of-modules R is a coherent object of this category. Since
PreMod-R is an abelian category, it suffices to show that any finitely gener-
ated subobject of R is finitely presentable. To see this, suppose that I C R
is a finitely generated subobject of R; let y1,...,%; be a generating set of ele-
ments, where each element y; is of sort Wj. Suppose we have two open sets
U C U’ that are contained in precisely the same open sets from the collection
Uiy ., Un, Vi oo, Vi, W, .., W, Then RU and RU’ are isomorphic, and this
isomorphism restricts to an isomorphism U = [U’, since IU will be the subob-
ject of RU generated by the elements y for each k with U C Wy, and IU’ will
be the generated by the elements y,g/ for precisely the same values of k from
1,...,10.

Thus the presheaf-of-rings I is completely described by its presentation on
the open sets which are intersections of subsets of the set

{U17"'>Una‘/17"'avm7W17'"aVVl}'
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There are only finitely many such intersections, and since RU is coherent on
every open set U, IU is finitely presentable on each open set U that is such an
intersection. Combining the finite presentation of I on each intersection from
this set, we can write down a finite presentation for the whole presheaf I. [

The next result gives us a condition for categories of sheaves of modules (as
opposed to just presheaves) to be locally coherent.

Theorem 23. Let (C, J) be a site such that the inclusion functori: Sh(C, J) —
Sets®” preserves directed colimits, and let R be a presheaf of modules on C
such that PreMod-R s locally coherent. Then the category Mod-aR is locally
coherent also.

Proof. Suppose (I, <) is some directed partial order, and we are given a directed
diagram in Mod-aR,

(Di—%D, |i<je <)

This is a directed diagram in PreMod-R also, and the directed colimit of
this diagram exists in PreMod-R, and has as its underlying presheaf of sets
the colimit of the underlying presheaves of sets (see [1, 3.4(4), 3.6(6)]). Let L
be the directed colimit in PreMod-R, so we have an action of R on L denoted
Xp:LxR— L.

Since the inclusion functor ¢ : Sh(C, J) — Sets®” preserves directed colim-
its, L is a sheaf, and the map a(x) : L xaR — L is an action of aR on L, with
respect to which L is the colimit of the diagram in Mod-aR. O

It is nevertheless possible to find a ring object R in a locally coherent topos,
such that the category of R-modules is not locally coherent, as demonstrated
by the next result.

Theorem 24. Let X be a topological space with infinitely many open sets. Then
there is a sheaf of rings R on X, with the property that RU is a coherent ring
for every open set U in X, but the category Mod-R is not locally coherent.

Proof. If X has infinitely many open sets, then the distributive lattice Op(X)
has infinitely many elements. Recall that such a lattice must contain an infinite
chain. For suppose it does not. Then the lattice has finite height n. Since
the lattice has infinitely many elements, there is a least height ¢ < n such that
Op(X) has infinitely many elements of height 7. Note that since the empty set is
the unique element of height 0, ¢ > 0. There are only finitely many elements of
height 7 — 1, so there must be one element, U say, with infinitely many elements
of height ¢ above U. Choose a countable collection of these, {U; }ien,-

For a given 4, consider whether U, is contained in the union of the other
elements \/j 2 Uj. Only finitely many of the U; can have this property - if
infinitely many did, than we could construct an infinite chain from taking their
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finite unions. So there exists at least one open set which does not - Uy, say. So
we may assume Uy C \/Z.>1 U;. Foreachi > 1, UyNU; = U. So we have the
equalities -

\ (Uonti) =U

i>1
and

U \/ Ui = Uo.

i>1

Together, these equalities contradict the fact that Op(X) is a Heyting algebra.
So Op(X) must have an infinite chain.

Now suppose the lattice Op(X) contains an infinite chain. Then in particu-
lar, it contains a chain isomorphic to w, or a chain isomorphic to w°?. We deal
with these two cases separately.

First of all, we look at the case when Op(X) contains a sequence of open
sets isomorphic to w, say

Ug——>Uj —> - U, —> - — Uy

We may assume that Uy is the empty set, that Uy, = U;’io U;, and that every
open set U, is connected (if U, is the smallest disconnected set, replace it with
the connected component of U, that contains Uy_1).

In this case, for each U;, we define RU; = Z/2'Z. We define RU, to be Zs,
the ring of 2-adic integers. For an arbitrary connected open set V' C X, there
is a smallest number iyy € NU {oo} such that V' C U;,,. Define RV = RU;,,.
For a disconnected subset V, define RV to be the product over the connected
components.

The presheaf R so described is a sheaf. It suffices to check the sheaf condition
on connected subsets V' of X, since R sends disjoint unions to the appropriate
product by definition.

Suppose V is a connected subset of X, and let {V}},c; be a cover of V', and
take a matching family x; € RV} of elements of R. Suppose RV = RU, (that
is, U, is the smallest set in the chain such that V' C U, ). But then there is some
point p € V' with p € U; for any i < a. But the point p is in V; for some j € J,
and in particular RV; = RU, = RV. Now the amalgamation for the matching
family will be the element z; € RV; = RV.

The sheaf R is finitely presentable as a module over itself. As before, we
consider the subpresheaf M generated by 2 € RX. On each open set V in X,
MYV consists of those elements of RV which admit a division by two. The same
argument as for R shows that this is a sheaf.

We need to show that M is not finitely presentable. The argument above
shows that if V' is covered by subsets V; then RV; = RV for some j, and
consequently MV; = MV also. Thus if the presentation includes a relation on
some open subset V', this cannot be used to derive relations on subsets strictly
containing V. Now suppose there is a finite presentation for M. There is some
i € N such that the finite presentation does not induce relations on MU;. But
MU; is not free. So there cannot be any finite presentation for M.

Now we examine the case when Op(X) contains an infinite chain isomorphic
to w°P, say

0=Ux U, Uy Up=X.
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Let k be a field. Define a sheaf of rings R on X as follows: let RX = k[xz(].
For an open set V' that is not contained in any U; for i € N, set RV = 0, the
one element ring. For any other open set V' C U, let n be the smallest natural
number such that V' C U, (if V is contained in every U,, set n = co). Then
define

RV = k[an T1y--- 7xn]/<$0xi = 1’0>1§i§n~

The restriction maps are the canonical inclusions of the polynomial rings. Every
ring RV is coherent (since we take a quotient of a finite polynomial ring by a
finitely generated ideal).

We can show that R is a sheaf in a similar way to the first case: if V is
covered by a collection of open sets V;, there is some V; with RV; = RV, and
this is how we find an amalgamation whenever we have a matching family of
elements of R for the cover.

Now let M be the subobject of R in Mod-R generated by the object zy of
sort X. For each open set V of X with RV = k[zo, ..., 2]/ (Toxi = To)1<i<n,
MYV is given by the presentation

MV = (ylyx; = y>1§i§n~

The same argument as for R shows that M is a sheaf. The object M is finitely
generated in Mod-R (by xg), but a finite presentation for M would only mention
finitely many of the variables z; in M, so there would be some zj, that is not
mentioned in the presentation. But then MUy would not to satisfy yxi = y. So
M is not finitely presentable. O
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