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A SPATIALLY ADAPTIVE ITERATIVE METHOD FOR A CLASS OF
NONLINEAR OPERATOR EIGENPROBLEMS

ELIAS JARLEBRING' AND STEFAN GUTTEL?

Abstract. We present a new algorithm for the iterative solution of nonlinear operator eigenvalue problems
arising from partial differential equations (PDEs). This algorithm combines automatic spatial resolution of linear
operators with the infinite Arnoldi method for nonlinear matrix eigenproblems proposed in [17]. The iterates in
this infinite Arnoldi method are functions, and each iteration requires the solution of an inhomogeneous differential
equation. This formulation is independent of the spatial representation of the functions, which allows us to employ
a dynamic representation with an accuracy of about the level of machine precision at each iteration, similar to
what is done in the Chebfun system [2] with its chebop functionality [11], although our function representation is
entirely based on coefficients instead of function values. Our approach also allows for nonlinearities in the boundary
conditions of the PDE. The algorithm is illustrated with several examples, e.g., the study of eigenvalues of a vibrating
string with delayed boundary feedback control.

1. Introduction. PDE eigenvalue problems arise naturally in many modeling situations.
In some cases, e.g., when the PDE eigenvalue problem stems from a time-dependent PDE
involving higher order derivatives in time, or when it involves a delay, the corresponding
PDE eigenvalue problem will be nonlinear in the eigenvalue parameter. In this paper we
present a method for a class of such PDE eigenvalue problems nonlinear in the eigenvalue
parameter. Examples of such problems are given, e.g., in [30, 7, 5] and our Section 4.

The nonlinear operator eigenvalue problem we are concerned with consists of finding
AeD(u,r) :={A€C:|\— pu| <r}closeto u € C and anonzero function f such that

M) = 0,

Cl(Avf) = O,
(1.1)

Ck(Aaf) = 0.

Here, M () denotes a family of operators defined on a common domain D = D(M(X)) C
LY ([a,b]), independent of A € D(u,r). The set LY ([a,b]) denotes functions which are
square integrable on the interval [a, b] with a suitable weight w (which we shall specify in
Section 3). The functions ¢; : C x D — C specify k conditions that need to be satisfied for
an eigenpair (A, f).

We will assume that M () can be represented as

(1.2) M) = g1(MN) L1+ g2(MN) L2 + -+ gm(A) Lo,

where the £; : D — LY ([a, b]) are closed linear operators and g; : C — C are given analytic
functions defined in an open neighborhood of the disk D(u, 7). We also assume that the
conditions ¢; can be represented in a similar fashion. More precisely, we assume that for all
i=1,...,k we have

(AN ) =hiaNCiif +- -+ hin(NCinf,

where h; ; : C — C are analytic functions defined in a neighborhood of D(y,7) and C; ; :
D — C are closed linear operators. We further assume that the conditions are given such that
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the problem (1.1) is well posed in the sense that its solutions A € D(u, r) are elements of a
discrete set.

We have formulated the operator problem (1.1) in a quite general form mostly for no-
tational convenience. The problems we have in mind come from PDEs (with one spatial
variable), e.g., PDEs with delays (see Section 4 for examples). For instance, the operators in
(1.2) may correspond to differentiation

0 0? am

51:%,52:@7---7 m:axim'

In this case the functions ¢; specify k = m boundary conditions and we assume that they are
such that (1.1) is a well-posed operator eigenvalue problem.

The algorithm we propose is closely related to the infinite Arnoldi method presented
in [17]. The infinite Arnoldi method can, in principle, resolve nonlinear matrix eigenvalue
problems (for eigenvalues in a disk) to arbitrary precision, provided that certain derivatives
associated with the problem are explicitly available. One can approach problems of the type
(1.1) with the infinite Arnoldi method by first discretizing the PDE on the interval [a, b],
thereby obtaining a matrix eigenvalue problem whose solutions hopefully approximate that
of (1.1). There are a number of approaches available for the nonlinear matrix eigenvalue
problem [22, 29, 1, 3, 12]. Such a discretize-first approach requires an a priori choice of
the discretization of the interval [a, b]. The algorithm presented here does not require such a
choice because the spatial discretization will adapted automatically throughout the iteration.

We derive the algorithm as follows. By approximating g; and c; by truncated Taylor
expansions of order N, we first show that the resulting truncated operator eigenvalue prob-
lem can be written as an eigenvalue problem for an operator acting on arrays of functions
in LY ([a,b])N. This approach is similar to what for matrices is commonly called a com-
panion linearization. We select a particular companion-like operator formulation having a
structure that is suitable for the Arnoldi method [25] applied to the operator formulation,
and our derivation does not require a spatial discretization at that stage. We show that when
the Arnoldi method for the companion-like operator formulation is initialized in a particular
way, each iteration is equivalent to a result that would be obtained with an infinite trunca-
tion parameter /N. We further exploit the structure of the Arnoldi method applied to the
companion-like formulation so that the iterates of the algorithm are represented as arrays of
LY ([a, b]) functions. The abstract algorithm presented in Section 2 can, in principle, find so-
lutions to (1.1) with arbitrary accuracy, with the main computational cost being the solution
of an inhomogeneous differential equation derived from M () in every iteration.

As our algorithm derived in Section 2 is, in theory, based on iterating with functions in
LY ([a, b]), and due to the fact that the algorithm does not involve a spatial discretization, we
are free to choose the representation of the functions. In Section 3 we present an adaptive
multi-level representation suitable to be combined with the algorithm in Section 2. Each iter-
ate is represented via coefficients of a Chebyshev expansion of length automatically adapted
to achieve machine precision. Details for some of the common L;-operations (like differenti-
ation and pointwise multiplication) are also given in Section 3. In Section 4 we demonstrate
our algorithm with three numerical examples.

Our approach of adaptive representation of functions, together with an adaptive resolu-
tion of differential operators, is clearly inspired by the Chebfun system [2] with its chebop
functionality [11]. The idea to carry out iterates with functions has been presented in other
settings. A variant of GMRES for functions is given in [23] where the functions are repre-
sented using Chebfun [2]. See also the discussion of infinite-dimensional numerical linear
algebra in [15].



Apart from the notation introduced above, we use the following conventions. Calli-
graphic style will be used to denote operators, in particular Z will denote the identity operator
and O will denote the zero operator. The set of one-dimensional (or two-dimensional) ar-
rays of functions will be denoted LY ([a, b])™ (or LY ([a, b])™V **). The partial derivative with
respect to A will be denoted (-)’, the second partial derivative with respect to A by (-)”, etc.

2. Infinite Arnoldi in abstract PDE setting.

2.1. Truncated Taylor expansion. The derivation of our algorithm is based on a trun-
cated Taylor-like expansion of the operator M around a given point ¢ € C. Given an integer
N, let the truncated operator M y be defined by

A=V

N MY ),

A\ —
M) = M) + “E MO () 4
with the operators M () being analogues of the jth derivative of M evaluated for i,

MD (1) := gD (W)L + g5 (1) Lo + - + g5 (1) Lom

Accordingly, we define a Taylor-like expansion for the boundary conditions,

(21) Ci,N()\7 f) = Ci(ﬂa f) + A a (88)\01()\, f)) +
A=p

1!
(A —p)? (32 ) A=~ <8N
S (g D) e S (gweh D)
2! ON? Aep N! ONN A=y
‘We now consider the truncated operator eigenproblem
(2.221) MNO\N)]UN = 07
(22b) Ci,N(/\Nny):Oa iZl,...,k

with solution (Ay, fn). This eigenproblem approximates (1.1) in the sense that the residual
of (An, fn) vanishes as N — oco. This is summarized in the following theorem.

THEOREM 2.1 (Convergence of operator Taylor-like expansion). Suppose that (Ay, fn)
is a solution to (2.2) with | Ay — u| < r for any N. Moreover, suppose that the approximations
are convergent, i.e., (An, fn) — (s, fx). Also suppose L; fn and C; ; f are convergent for
any i,j as N — oo. Then there exist positive constants vy and 3 < 1 independent of N such
that

IMAN) Sl < 78N
llex(N, Pl < vBY

llex (A, £ < 8™,

Proof. Since the functions g; ( = 1,...,m) are assumed to be analytic in a neighbor-
hood of D(y, ), the complex Taylor theorem asserts that

) N al gz(j)(ﬂ) RY )
50 = 32 20—+ Run(Y
j=0 7
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where the remainder term can be expressed via the Cauchy integral formula

oo

R = Y Ol [ 0Oy

j=N+1 2 (€= p*t

and I can be taken as a circular contour with center £ and radius r > |\ — p|. With M, ,. :=
maxcer |g;(¢)| we obtain the standard Cauchy estimate

ZOO M A —plf M, N+
‘R7,7N(>\)| S ) ‘T] IL’L| § ) /6 _
J=N+1 1=p

with [\ — p|/r < 3 < 1. Consequently,

[MAN) Nl = [MAN) N = Myn(AN) fall
IR NOAN)L1fN + -+ R N(AN) L [ ]|
Mi,TBN+1

pax ﬁ”ﬁiﬁv”'

2.3)

IN

The conclusion about the bound on ||M(Ay)fn|| now follows from the fact that £; fy is
assumed to be convergent. The conclusion about the bound on the boundary condition resid-
uals follows from a completely analogous argument. The constant 3 and -y are formed by the

maximum of the computed bounds which are all of the form (2.3).
0

REMARK 2.2. Theorem 2.1 illustrates that the residuals will decrease when N is suf-
ficiently large and eventually approach zero as N — oo. The conclusion holds under the
assumption that (\n, fn) converges to a pair (A, f«). Despite this, note that the operators
under consideration are not necessarily bounded, and therefore Theorem 2.1 does not neces-
sarily imply that || M () f«|| = 0. For example suppose M(\,) = 6% and consider a situa-
tion where (A, fn) is a solution to the truncated problem and [y (x) = f.(x)++ sin(Nz).
Then fn — fi but M(\,) fn will not converge to zero as N — oo. In such a situation, also
a discretize-first approach could not be expected to give meaningful results. When f, and
all fn are sufficiently smooth this is unlikely to occur, and our numerical experiments in
Section 4 suggest that such a situation would be rather artificial.

2.2. Operator companion linearization. From the above discussion it follows that one
can approximate the original operator problem (1.1) by an operator problem where the coef-
ficients in the operator and the boundary conditions are polynomials in A. This is essentially
an operator version of what is commonly called a polynomial eigenvalue problem [26, 20],
and such problems are often analyzed and solved with the companion linearization technique.
There are many types of companion linearizations [21], but for the purpose of this paper a
particular companion linearization is most suitable.

We first define an operator Ay acting on LY ([a, b])™ such that

f M(p) f M) fr
1 I 1 f2
n . T In f;v



and an operator By with action defined by
(2.5)
— MWD (1) —%M(z)(u) —%M(N)(M)
fi A ) fi
Byl i | = 2L :
IN X In
N—1L
Using these two operators we can formulate the following generalized operator eigen-
problem with boundary conditions

(2.6a) Anp = (A= p)Bny
ci(py 1) +ci(py 2) + -+
_ A —
(2.6b) +eM D on) = =“F M (wen), =1,k

This particular companion linearization is useful because, for any M > N, the leading N x N
blocks in the operators By, and Aj; consist precisely of Ay and By . This will be implicitly
exploited in Section 2.3. The companion operator problem (2.6) is equivalent to the M -
problem (2.2) in the following sense.

THEOREM 2.3. Consider ¢ = (p1,...,on)T € L¥([a,b))N with o1 = f. The com-
panion linearization (2.6) and the truncated Taylor expansion (2.2) are equivalent in the sense
that the following two statements are equivalent.

a) The pair (X, @) is a solution to (2.6).
b) The pair (X, f) is a solution to (2.2).

Proof. Consider a solution ¢ = (1, ...,¢on)7T to (2.6). Then the last N — 1 rows of

(2.6a) imply that

P2 = (1)\ — W)e1 )
p3 = g(A—ppr =g~ u)zsol
_ ) (N=1)

on = e
By inserting (2.7) into the first row in (2.6a) we have
2.8)

A—p)? A=)V

0= M(er + (MO (o + AL MO (g, 1 BT 0y,

Similarly, (2.6b) implies with (2.7) and the linearity of ¢; (), f) with respect to f that

(A —p)?
2

A= (M

T i MMPl)-

(29) 0= ci(p, 1)+ (A= p)ci(p, p1)+ (1) +-- -+
The forward implication now follows from the fact that (2.8) is identical to (2.2a) and (2.9) is
identical to (2.2b).

In order to show the converse, suppose f is a solution to (2.2) and define 7 = f and ¢;
(1 =2,...,N)asin (2.7). The relation (2.8) holds because of (2.2), and a similar argument

is used for the conditions (2.9). 0



2.3. Infinite Arnoldi Algorithm. Now note that (2.6) is a linear operator eigenproblem
for the variable A = (A — u)~L. Linear eigenvalue problems can be solved in a number
of ways, where the Arnoldi method [25] is one of the most popular approaches. We will
now show how to formulate the Arnoldi method* for (2.6), exploit the structure and thereby
avoiding the traditional approach of first discretizing the problem. This is similar to the
“Taylor version” of the infinite Arnoldi method for nonlinear matrix eigenvalue problems
described in [17].

Conceptually, it is straightforward to use the Arnoldi method in an operator setting; and
this has been done to study its convergence, e.g., in [18, 8]. In order to apply the Arnoldi
algorithm on the formulation (2.6) we will need

e a procedure which solves the operator problem

(2.10a) Ane = Bny
1 .
(2.100) ci(p 1) + -+ e pw) = — el (wuw), =1,k

for the unknown ¢ € LY ([a,b])Y, where 1) € LY ([a,b])" is given; and
e a scalar product for LY ([a, b])™.
It turns out that the structure of Ay and By is particularly suited for the Arnoldi method.
Suppose we start the Arnoldi method with a function ¢ € LY ([a,b])" of the form

Y1
@2.11) =

where ¢ € LY ([a,b]). In the first step of the Arnoldi method we need to solve (2.10). By
inspection of the structure of Ay and B, the solution will be of the form

®1
(3

Hence, the action corresponding to the non-zero part of the solution of (2.10) is independent
of N if we start with a vector consisting of just one leading non-zero block. More generally,
the solution of (2.10) can be characterized as follows.

THEOREM 2.4. Consider a given function 1) € LY ([a,b])™ with the structure

V1

2.12) v=1"

*Note that our construction corresponds to a variant also known as shift-and-invert Arnoldi method, since we
actually approximate eigenvalues A = ﬁ For simplicity we will still refer to this variant as the Arnoldi method.
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where 1, ..., 1, € LY ([a,b]). Consider the operators Ay and By defined by (2.4) and
(2.5) for any N > p. Suppose ¢ € LY([a,b])" is a solution to the operator problem (in
L ([a, b])™):

(2.13a) Ane = Byy
- 1 .
@130) ei(mpr) + -+ e D npno1) = oM (n), i=1,.

Then this solution satisfies

(2.14) o= 5%

where ¢1 € LY ([a, b]) is the solution to the operator problem (on LY ([a, b]))
1 1
@150) M(pypr = =MD (upin = ZMP )iz = - = Z M )y

1 1 .
QIS6) exlpoipr) = () — el (ntba) — o =P (uy). P=Lo Lk

Proof. The last N — 1 rows of (2.13a) implies that ¢ has the structure (2.14). Equation
(2.15a) follows directly from the insertion of (2.14) and (2.12) into the first row of (2.13a).
Note that the terms M) (11)1); vanish for j > p since 1; = 0. Similarly, by inserting into
(2.13b) the structure of ¢ given in (2.14), and 1 given in (2.12), several terms vanish and
(2.15b) is verified. O

From the above theorem we make the following key observation.

The non-zero part of the solution to (2.13) for a function ) with structure (2.12) is
independent of N as long as N > p.

By only considering functions of the structure (2.12) we can, in a sense, take N — oo without
changing the non-zero part of the solution. With N — oo the truncation error in the Taylor
expansion vanishes and (2.2) corresponds to the original problem (1.1) (under the conditions
stated in Theorem 2.1 and Remark 2.2).

The key idea is to start the Arnoldi algorithm with an array of functions of the structure
(2.11). Due to the fact that the Arnoldi method essentially involves solutions of (2.13) at every
iteration, combined with a Gram—Schmidt orthogonalization, all arrays of functions will be
of the structure (2.12). This naturally leads to a growth in the basis matrix in the Arnoldi
algorithm, not only by a column but also by a row at each iteration. The basis matrix after k
iterations will be represented by

V1,1 V1,2 U1,k
0 V2,2 .
(2.16) V= , ) .| e L¥([a, b))k,
0 . . :
0 0 Vk,k



where v; ; € LY ([a, D]).
In the Arnoldi algorithm we also need a scalar product. For the space LY ([a,b])" it

appears to be natural to use the aggregated scalar product associated with a scalar product
(-, ) for LY ([a, b)), i.e., given f,g € L¥([a,b])", we define

<fag>w = <flvgl>w +- <vagN>wa

where f = (f1,...,f~)%, 9 = (g1,...,9~5)T. The scalar product (-, -),, can be tailored
to the problem at hand, but we will propose a particularly convenient one in Section 3. A
version of the Arnoldi algorithm that exploits the structure of the involved variables is given
in Algorithm 1, referred to as the infinite Arnoldi method (for nonlinear operator eigenprob-
lems).

REMARK 2.5 (Existence). Algorithm I uniquely defines a sequence function iterates
only if there exists a unique solution to (2.15). Existence issues will not be studied in detail
here and should be established in a problem specific manner. For the numerical examples we
present in Section 4, existence and uniqueness of the solutions of (2.15) will be guaranteed
by the well-posedness of the considered differential equations.

Algorithm 1 Infinite Arnoldi method for nonlinear operator eigenproblems (1.1)

Require: Starting function vy 1 € LY ([a, b])

I: 011 = U1,1/\/ <'U1,17U171>w

2. fork=1,2,..., knax do
3:  Compute @, ..., k41 from (2.14) where Y1 = v1 ,..., Y = Vg andp = k.

4:  Solve the inhomogeneous differential equation (2.15) for 1 withy; = vy ,..., ¥, =
Vk,k andp =k.

5 fori=1,...,kdo

6: hik = (@i, Vii)w + - + (Pis Viyi)w

7: forj=1,...,ido

8 ;= ; — hi kv

9: end for

10:  end for

1: hpprp = \/<%017<P1>w + - (Pt P 1) w
122 forj=1,....k+1do

13: Vjkt1 = 05/ M1k
14:  end for
15: end for

16: Compute the eigenvalues {1;}¥_; of the Hessenberg matrix with elements H; ; = h;
6 =1 Fmax
17: Return eigenvalue approximations {1/4;}*_; of (1.1)

e

3. Multi-level space resolution. The main computational cost in a practical implemen-
tation of our nonlinear eigensolver (Algorithm 1) lies in the solution of a differential equation
(2.15) at every Arnoldi iteration. In this section we will propose a polynomial spectral method
for solving differential equations with analytic (or sufficiently smooth) solutions defined on
an interval [a, ], suitable to be used in this setting. Because the Arnoldi method can be sensi-
tive to inexact computations, we aim to solve these equations “exactly”, that is, with an error
close to machine precision. Our approach is inspired by the automatic grid refinement idea
implemented in the Chebfun system [2] with its chebop functionality [11], but it differs from
Chebfun in the representation of the polynomials. The Chebfun system is based on interpola-
tion polynomials represented on a Chebyshev grid with an adaptively chosen number of grid
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points, whereas we prefer to represent the polynomials by their coefficients in the Cheby-
shev basis. In other words, our approach is based on the fau method instead of a collocation
(or pseudospectral) method. The reason for our choice is that with a coefficient representa-
tion of polynomials all operations required in our Arnoldi method can be implemented very
efficiently without resampling function values between non-matching Chebyshev grids.

3.1. Coefficient space representation. Let [a, b] be a given interval. In this section we
will use the convention that with every occurrence of the variable x in [a, b] we identify the
variable y = (2 — b — a)/(b — a) in [—1, 1]. Any polynomial P,, of degree at most m can
be represented as

Pm(x) = chTj(y)a T € [CL, b],
j=0

with the well-known Chebyshev polynomials 7j(y) = cos(j arccos(y)). Recall that these
polynomials satisfy the recurrence

To(y) =1, Ti(y) =y, Tj1(y) =2yT;(y) — Tj-1(y),

and are orthogonal with respect to the weighted L5’ inner product

2 /1 OIO)
Gw == | ==y,
{f b =~ By y
more precisely
0, ifj#k;
(T, Te)w =4 2, ifj=k=0;
1, ifj=k>1

In contrast to the more popular spectral collocation approach [27, 4, 10], where a poly-
nomial P, is represented by its function values on a Chebyshev grid with nodes y; =
cos(mj/m) (j = 0,1,...,m), we prefer here to represent P, by its Chebyshev coefficients
c;. Given two polynomials P, (z) = Y27 ¢;Tj(y) and Qn(2) = Y77 d;T(y) of possi-
bly different degrees, the coefficient representation allows us to compute linear combinations

max{m,n}

aPp () + BQn(x) = Z (acj + Bd;)T;(y),

Jj=0

without resampling function values of P, or J,, on a refined Chebyshev grid. (We assume
that coefficients c; or d; with j exceeding the degree of the associated polynomial are equal
to 0.) Moreover, it is easily verified that the Euclidean inner product between coefficient
vectors (with the Oth coefficients divided by /2) corresponds to a weighted LY inner product
between the corresponding polynomials:

—  min{m,n} n

d - m
WY G = () Y AT ), = (P Qe
i=1 i=0

j=0

Note that our infinite Arnoldi method is rich in inner product computations, and this relation
allows for an efficient implementation.



3.2. Chebyshev tau method with automated degree adaptation. Given a polynomial
P,,, in spectral methods one represents linear operations like differentiation P,,, — P/ ,
pointwise multiplication P,,(x) — f(z)P,,(z), or the nonlocal reversal operation P, (z) —
P, (a 4+ b — x), by matrix-vector products with spectral matrices. The tau method (invented
by Lanczos [19], see also [4, Chapter 21], [16, Section 7.2]) is a spectral method for solving
differential equations using the coefficient representation of polynomials, where the coeffi-
cients are determined such that the residual of the approximate solution is orthogonal to as
many basis polynomials as possible. The Chebyshev tau method is a tau method where the
Chebyshev polynomials are used as a basis.

In the following we give an exemplary list of three coefficient maps representing the ac-
tion of linear operators on a polynomial P, (x) = Z;”:O ¢;T;(x). For the identities involving
Chebyshev polynomials used in the derivation we refer to [13, Section 3].

o Differentiation: By the relation for the derivative of a Chebyshev polynomial T (y),

A [ GTo+2/(Te+Ti+ - +Tj-1), ifjisodd;

dy’ 2T + T3+ -+ Tj-1), if j is even,
we deduce that the matrix mapping the Chebyshev coefficients of P,, to the Cheby-
shev coefficients of P/ is

c R('m-i—l) X (m+1) )

o O o oo
SO OO
O O OO
SO OO W
O 0 O w o

Higher order derivatives are obtained by taking corresponding powers of the differ-
entiation matrix D,,. Note that—in contrast to spectral collocation matrices acting
on function values rather than coefficients—the matrix D,,, is not dense.

e Multiplication: Let Q,,(z) = Z?:o d;T;(y) be a polynomial. From the relation

Ti(y)Tr(y) = % (Tj+r(y) + T)j—ry (v))

it is easily verified that the matrix mapping the Chebyshev coefficients of P, to the
Chebyshev coefficients of P,,,@,, is

do 0 0 0

di 2dy di dy -
Tlay, ay 2dy dy - +
2 |ds do di 2d .

do di dy ds

) di do ds

_ (m+n+1) X (m+n+1)

5 |do ds eC ,
ds '
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which is the sum of a rank-1-modified Toeplitz matrix and a Hankel matrix.
e Reversal: Using the fact that T;(y) = (—1)?Tj(—y), it is easily verified that the
matrix

R, = diag(1,-1,1,—1,...) € ROmHDx(m+1)

maps the coefficients of P,,(x) to the coefficients of the “reversed” (right-to-left)
polynomial P, (a + b — ).
Let A be a linear operator acting on functions defined on the interval [a, b], and denote by
A,, € ClmA1)x(m+1) the spectral matrix mapping the Chebyshev coefficients of polynomials
P,, to the Chebyshev coefficients of Q,,, = AP,,,

do Co
dy c1
dm Cm

(Again we have assumed that coefficients of index exceeding the degree of a polynomial are
set to 0.) Typically the matrix A,, is not invertible and k£ boundary conditions need to be
imposed when solving for P, given @, (abbreviated as “A,,, P,, = Q,,” with a slight abuse
of notation). In the tau method this is typically achieved by replacing the last k rows of A,,
by row vectors corresponding to the boundary conditions (boundary bordering), e.g.,

Dirichlet b.c. on the left
Dirichlet b.c. on the right

[1,-1,1,-1,...,(=1)m™+!
1,1,...,1
210,1,-2,4,...,(-=1)™(m — 1)?
2-100,1,2,4,...,(m — 1)

and to alter the last k coefficients of Q,,, namely [d,,—g+1,-- -, dm]T, to the prescribed
boundary value (zeros for homogeneous conditions). The results of this modification are
denoted as A,, and Q),,, respectively. This ensures that the polynomial P,, = A,, 10m
satisfies the boundary conditions exactly and the residual for the original differential operator
is

Neumann b.c. on the left
Neumann b.c. on the right,

[ T S S S S

oo

Q@) ~ APu@) = Y. oT(y),

j=m+1—k

provided that the exact solution A~'(Q),, exists and has a Chebyshev expansion. Lanczos
realized that with P,,, we have obtained the exact polynomial solution of AP,,, = Q,, + €,
to a (slightly) perturbed problem, €,, = — Z;’;m +1-1¢Tj(y). Under the condition that
P,,, converges uniformly to a solution function f (the solution of the spectrally discretized
differential equation) as m — oo, and the condition that this function f is analytic in a
neighborhood of the interval [a, b] (the Bernstein ellipse), it is known that the convergence is

geometric (see, e.g., [28, Chapter 8]): for some p > 1 and C' > 0 one has
|f(z) — Pp(x)] < Cp™™, forallz € [a,b].

If f has no singularities too close to [a, b], then p is large enough to achieve a fast uniform
convergence of P, towards f, indicated by a rapid decay of P,,’s Chebyshev coefficients
co,C1, - - -, Cm- This fact is exploited in the Chebfun system with its chebop functionality for

11



solving operator equations [11], and we will employ a similar rule of thumb: assume that
the weighted Lg error of a Chebyshev approximant P, is of about of the same order as
its trailing Chebyshev coefficient ¢, (see also [4, p. 51]). This error estimate allows us to
adaptively adjust the degree of P, such that the solution P,,, of A,, P, = Q. is likely to be
close to A~! f in a relative error sense:
1. Choose a number m, say m = 16.
2. Construct A,, (the spectral matrix with boundary conditions included) and solve the
linear system A, P, = Qu for Py, (z) = Z;n:O ¢;T;(x).
3. If the last coefficient ¢, /|| P ||« is not small enough relative to the norm || Py, ||
induced by (-, -),,, increase m (e.g., multiply by a factor of 1.5 and round to integer),
and go to Step 2.
Note that more sophisticated error estimates could be developed (for example, by taking into
account more than just the last Chebyshev coefficient c,,); however, every such estimate will
eventually be based on a heuristic. In the numerical experiments described in Section 4 we
found the above procedure (Steps 1-3) to perform satisfactorily.

3.3. Implementation. The implementation of our infinite Arnoldi method is straight-
forward in object-oriented Matlab. All spatial functions v; ; defined on the interval [a, b] are
approximated by polynomials P; ; of degree adaptively chosen such that ||v; ; — P j|lw <
tol| Pij|lw, where tol = 2.2 x 1076, These polynomial representations are stored in a
two-dimensional “cell array” (cf. (2.16))

Pii Pip2 Pi3
Py1 Pop Pz ---
V=1|P1 Pso P3z >

where each column corresponds to a Krylov basis vector and V' will have an upper triangular
structure. The action of the linear companion operator onto a column of V results in a new
column of spatial functions, where the number of nonzero components in the input and output
columns may be different. Note that a modified Gram—Schmidt orthogonalization of these
columns is fast when working with the coefficient representation described above.

4. Examples.

4.1. A differential equation with time delay. We consider a PDE with delay for u :
[0,7] X [-7T,4+00) = R,

(4.1a) up(x,t) = uge(x,t) —u(z, t — 1),
(4.1b) u(0,t) = 0,
4.1¢) u(m, t) =0,

an example which has also been considered in [6, formula (112)]. The linear operator associ-
ated with (4.1) is
4.2) M) = NI+ 2 =T,

with boundary conditions



In the implementation of our method we need to provide the derivatives of (4.2), which in
this case are explicitly given as

MWD (p) = -7 —re T
MB () = (=1)Fe™ ™ML, k> 2.

Consequently, in every iteration of our algorithm we need to solve (2.15) which reduces to

solving
(4.3)
o2 —Tu —Tp 1 2,—TH 1 P TH
fuIJr@fe I)or=(1+Te )1/}175(77’)6 ¢2—~-~72;(77')e Py

for (1 with boundary condition 1 (0) = o1 (7) = 0.

We have in this first example selected M () such that the problem can be solved explic-
itly as follows. By defining  := X\ 4 e~ it is clear from (4.2) that all y correspond to the
eigenvalues of the Laplacian with homogeneous boundary conditions, i.e., 88722 f =n~f with
ca(A, f) = f(0) =0, c2(A, f) = f(w) = 0. This eigenvalue problem can be solved analyti-
cally and the explicit eigenfunction solution is f(x) = sin(jx) with eigenvalues v = —j2 for
any positive integer j. Hence,

_j2 — )\—|—€7‘r>\.

It is straightforward to solve this equation for A\ by using the Lambert W function [9]. We
find that the eigenvalues of the nonlinear operator eigenvalue problem are given by

1 .
(4.4) A=—j2 4 Wy(—7e™)
T

for any j € N, and any ¢ € Z where W is the /th branch of the Lambert W function.
Note that different eigenvalues can have the same eigenfunction, as the eigenfunction does
not depend on /. The exact eigenvalues are shown in Figure 4.1 (a). For our infinite Arnoldi
procedure we have chosen the target © = —1, and the starting vector ¢ was a random poly-
nomial of degree 5. Figure 4.1 (a) also shows the approximate eigenvalues after 60 iterations
of the infinite Arnoldi method, and Figure 4.1 (b) shows the 10 approximate eigenfunctions
f to which this method converged first. (Each two if these eigenfunctions coincide.)

The error norm for each of the 10 approximate eigenpairs compared to the exact solution
as a function of the number of Arnoldi iterations is shown in Fgure 4.1 (c) (there are always
two error curves overlaying each other). Our spatial discretization was adapted such that
the expected truncation error in the Chebyshev expansion is of order machine precision. We
observe an error decay for each eigenfunction to about the same accuracy level as the number
of Arnoldi iterations increases. The residual norm || M (A) f]| for each of the 10 approximate
eigenpairs (\, f) is shown in Figure 4.1 (d) as a function of the number of Arnoldi iterations.
Note how the degrees of Arnoldi vectors grow moderately with each Arnoldi iteration, as
depicted in Figure 4.1 (e). More precisely, we show here the maximal degree among all
polynomials collected in each block Arnoldi vector. This growth is expected because we
potentially discover approximations to increasingly “nonsmooth” eigenvectors.

4.2. Vibrating string with boundary control. We now consider a vibrating string on
an interval [0, L] with a clamped boundary condition at z = 0 and a feedback law at x = L.
The feedback law is constructed with the goal to damp the vibrations of the string. In practice,
a feedback control may only be available at a later point in time due to, e.g., a delay in
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FIG. 4.1. A differential equation with time delay

measurement or the time required for calculating the feedback parameters. In such a situation
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the vibrating string is governed by a PDE with delay for u : [0, L] X [-7,00) — R,

(4.5a) up(,t) = cQum:,c(ac7 t),
(4.5b) u(0,t) = 0,
(4.5¢) ug (L, t) = auy(L,t — 7),

where c is the wave speed, 7 is the delay and « corresponds to a feedback law. See [14],
[30] and references therein for PDEs with delays and in particular the wave equation. In our
setting, the eigenvalues associated with (4.5) are described by the A-dependent operator

2 2 0°
M) =T — " —,
(M) 52
with A\-dependent boundary conditions,

cr(A, f) = f(0)
c2(X f) = FI(L) — are (L),

We now provide the implementation details for this example by specifying how to set up the
differential equation (2.15). First note that

MW () =
M® () =

uZ,
7.

In our algorithm we require the derivatives of the boundary condition with respect of A, which
are explicitly given for k > 0 by

i (u, ) =0,
&, f) = —af(L)e ™ (—1)F 1k — Tp).

Hence, the specialization of (2.15) to this example, is forp = k > 1,

(4.6a) W201(x) — () = ~2pua(a) — 520(x)
(4.6b) cpl(()) =0

k
460) (L) —ape M oi(L) = ae”H (Z %wk(L)(—T)’“’l(k - w))

where the functions v, ..., 1 are given and 1 € L1([a, b]) needs to be computed. When
p =k =1, i.e, in the first iteration, the term 15 should be set to zero in the inhomogeneous
term in (4.6a), whereas (4.6b) and (4.6¢) remain the same for p = k = 1. Note that (4.6) is
just a second order inhomogeneous second order differential equation with one Dirichlet and
one Robin boundary condition.

In Figure 4.2 we visualize the computed approximate eigenvalues and (complex) eigen-
vectors of M, as well as the decay of the residual norms || M () f|| for the first 10 approx-
imate eigenpairs with A closest to the target i = —1. The infinite Arnoldi method performs
well on this example (for which an analytical solution does not seem to be available): after
about 45 iterations the first 10 eigenpairs (A, f) are resolved nicely while the degree of the
Arnoldi vectors grows moderately.
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FIG. 4.2. Vibrating string with boundary control

4.3. An artificial example. In order to illustrate the broad applicability of our method
we will now consider the following artificial nonlinear operator eigenvalue problem, which
is complex, involves coefficient functions with branch cuts, and a non-local operator. We use

an interval [a, b] = [0, 7] and an operator defined by
M(A) = LAy i\ — o) YPR 4 i(\ — a9)/? sin(a:)2
Ox? ! 2 Oz

with boundary conditions

Here R represents the reversal operator R : u(x) — u(m — x). Welet 0; = —5, 03 =
—10 and let ;. = 10 be the target, such that the algorithm is expected to eventually find all

eigenvalues in the disk D(10, 15).
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The derivatives of the operator with respect to A are given by

1 1 d
D) = Tt im(h — o) 2R o im (N — 00) 2 gin(2) -2
M) I—i—z?(/\ o1) R+z2()\ 02) sm(x)ax
MBI = —i(=2)7F(1-3-5---(2k —3)) (A — o)~ F—D/2R
—i(=2)7F(1-3-5---(2k = 3)) (A — 0q) " (k—1)/2 sin(x)a%, k>1

and the derivatives of the boundary conditions are simply cgk)()\7 f) =0,k > 1and

SV ) = F(m), PO f) = 0for k > 2.

The numerical results are illustrated in Figure 4.3. Although the Arnoldi method still
performs robustly, convergence is somewhat slower than for the previous two examples (see
Figure 4.3 (c)). A possible explanation may be given by the fact that the eigenvectors f
of this problem have singularities nearby the interval [a, b] (see how the polynomial degree
of the Arnoldi vectors shown in Figure 4.3 (d) increases to about 48 immediately after the
first iteration), and therefore the Arnoldi method requires more iterations to resolve these. A
more detailed investigation of the convergence behavior of the infinite Arnoldi method will
be subject of future work.
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FIG. 4.3. The artificial example
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5. Concluding remarks. A key contribution of this paper is the formulation of an
Arnoldi-type iteration for solving nonlinear operator eigenproblems. Our approach relies on a
function representation of the iterates in the infinite Arnoldi algorithm whose resolutions are
adapted automatically such that the eigenpairs are computed with an accuracy not too far from
machine precision. It would be interesting to see if the spectral method recently proposed in
[24] could further improve the accuracy of solutions computed with our algorithm. We have
focused on the situation where the functions are of the type f : [a,b] — C mostly, but not
entirely, for notational convenience. The abstract formulation of the algorithm in Section 2
carries over to higher dimensions, e.g., functions f : R2 — C. However, in higher dimen-
sions the automatic adaption of the spatial resolution advocated in Section 3 becomes more
delicate. A suitable function representation for two-dimensional problems highly depends on
the geometry of the domain and could not be discussed in this paper. For PDEs with com-
plicated geometries, the finite-element method (FEM) is a popular approach for representing
functions. One could, of course, represent functions on such geometries using a (high-order)
finite-element basis and carry out Algorithm 1, but it is not clear whether such a FEM-based
infinite Arnoldi variant of Algorithm 1 would be computationally feasible (because it requires
the solution of a PDE at each iteration).

The treatment of boundary conditions in the presented algorithm is, to our knowledge,
somewhat novel and attractive. Note that boundary conditions nonlinear in A can be handled
in a general fashion, and their effect is simply propagated into the differential equation (2.15),
i.e., the equation to be solved at every iteration. Some boundary conditions with nonlinearities
in A can also be treated in a discretize-first approach, e.g., the derivative could be estimated by
one-sided finite differences. We are, however, not aware of a generic procedure to incorporate
nonlinear boundary conditions in a discretize-first approach.

We also wish to point out that in [17] two variants of the infinite Arnoldi method are
presented, and here we worked out the “Taylor version” of this method. An adaption of the
presented algorithm along the lines of the “Chebyshev version” appears feasible, although a
completely different reasoning might be needed.
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