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Abstract

We propose statistical tests for Gaussianity and linearity of nonsta-
tionary time series based on the evolutionary bispectrum. These tests
can be applied to a particular subclass of nonstationary processes,
the so-called oscillatory (also known as slowly varying) processes. We
then apply these tests to time series of network measurements arising
from internet traffic. Recent works by several researchers have demon-
strated that such internet traffic processes are typically nonstationary.
Also, the question of whether such processes can be described by some
model whose parameters vary with time has been raised and studied
at some length. We use the tests developed in this paper to show
that there is evidence of non Gaussianity and nonlinearity in such
processes under the assumption that they are described by a model
whose parameters (and so its spectral characteristics) vary slowly with

time.

1 Introduction

Spectral methods are often used in the analysis of a time series. Under the

assumption that a given time series is Gaussian, second order spectral meth-



ods are sufficient. Many time series however are not necessarily Gaussian (or
even linear) and as a result higher order spectral (HOS) methods are required
in analysing them. A detailed systematic study of higher order spectra (cu-
mulant spectra) can be found in [2], [3], [18] and applications of these studies
have been reported in [8] and [21]. Applications of HOS to digital signal
processes have been given in [11], [26] and [27].

It is to be emphasized that all of the above methods depend heavily on
the assumption that the series are stationary and that the linear systems
considered are time invariant. It is also to be expected that in practice, the
assumption of stationarity may sometimes be unrealistic. In order to over-
come these problems, Priestley [12] introduced a spectral representation for
a class of nonstationary processes, the so-called oscillatory or slowly varying
processes, and defined for such processes the evolutionary spectral density
function which has physical properties similar to those of a stationary second
order spectrum. Priestley and Gabr [15] then extended this concept to the
case of evolutionary bispectra, and considered the distribution and sampling
properties of evolutionary bispectral estimates.

In this paper we use the concept of evolutionary bispectrum in order
to construct statistical tests for Gaussianity and linearity of nonstationary
slowly varying processes. In order to do this, we begin by giving a brief
outline in section 2 of the existing theory on the evolutionary second order
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spectrum and bispectrum in which oscillatory and linear oscillatory processes
are defined. In section 3 we review some of the existing theory on estimating
the evolutionary spectrum and bispectrum. In section 4 we develop tests
for Gaussianity and linearity for oscillatory processes based on the theory
given in sections 2 and 3. These provide a generalization to earlier tests on
Gaussianity and linearity (see [21]) for stationary processes. In section 5 we
consider a time series of network measurements arising from internet traffic.

Several models have been proposed in the past in describing internet
traffic. However, such models exhibit stationarity which in many cases was
found to be unrealistic for such processes (see e.g. [4], [28]). It has also
been suggested that internet traffic data may be described by a model whose
parameters vary with time (see [10]). It would therefore be reasonable to
study internet traffic data under the assumption that the nonstationarity is
one exhibited by a slowly varying process. Furthermore, Igloi and Terdik [7],
Terdik and Molnar [24] and Molnar and Terdik [9] proposed new nonfractal
models which are not self similar and the scaling factor can be estimated
using higher order spectral estimates. In addition, Basu, Mukherjee and Kli-
vansky [1] proposed non-Gaussian nonstationary models for internet traffic
which after differencing become stationary. It would thus be interesting to
investigate whether a Gaussian/linear class of nonstationary models which
do not admit a simple differencing strategy and are slowly varying would be
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appropriate in describing internet traffic data.

2 Evolutionary second order spectrum and

bispectrum

In this section we briefly review some of the results given in [12] and [15].
Let {X;} be a zero mean discrete parameter time series admitting a rep-

resentation

X, = / ’ e Ay(w)dZ (w)

where Z(w) is an orthogonal random process, with
EldZ(w)] = 0,

El|dZ (w)[*] = dp(w)

and for each fixed w, A;(w) has a Fourier transform whose absolute maximum
occurs at the origin. Priestley [12] defines such a process { X;} an ‘oscillatory
process’.

The evolutionary spectral density function h;(w), and the evolutionary

bispectral density function h;(wq,ws), are then defined by

hi(w)d(w) = |Ai(w)Pdp(w),

hi(wr, we)dwydwa= Ag(wr)At(w2) Ai(—wi — wa)dp(wr,ws),



where

dp(w) = E[|dZ(w)[],

dp(wy,wy) = E[dZ(wy)dZ (we)dZ (—w; — wy)].

It is shown in [15] that if a nonstationary time series {X;} is Gaussian then
hi(w1,ws) = 0 for all ¢, wy and ws.

Let us now describe some properties of the evolutionary spectrum and
bispectrum (for details see [17], [23], [19] and [20]). Let {Y;} and {X;} be

two zero mean oscillatory processes and let

Xt = Z gt,uY;,—u
u=0

where the filter {g;,} is a deterministic function of u and ¢. Let also I';(w) =
> o Grue . Under suitable conditions, Priestley and Gabr [15] showed

that

hex (W) ~ [Ty(w)*hyy (@),
(1)
ht,X(w1,w2) ~ Ft(wl)rt(wz)rt(_wl - w2)ht,y(w1,w2)
where |w| < 7, wy + wy + w3 = 0 (mod 27), hyx(w) and Ay x(w,ws) are
respectively the evolutionary spectrum and the evolutionary bispectrum of

{X;}. It is important to note the remarkable similarity between the relations

(1) and those that exist for stationary processes.



2.1 Linear Processes

An oscillatory process {X;} is said to be a linear process if it admits the

representation
X = th,uet—u (2)
u=0
where {e;} are independent, identically distributed random variables with
Ele)) = 0, E[e?] = 02 and Ele}] = ps. If {X;} admits the representation (2),

then we have

hx(@) =2 ) ®)
ht,X(wl,wZ)Z%n(wl)rt(wgrt(—wl — wy). (4)

If {e;} is Gaussian then pz = 0, which implies that h; x(w1,w2) = 0 for all
w1, wy and t. More generally, we obtain from (1) and (4),

2

e (n,02)” = 5225 () hex (@) hex (—wn = ws)
which implies that
|ht,X(wlaw2)|2 - :u'g (5)

he x (w1) by, x (we) he x (—w1 — w2) 270
and the ratio on the left is thus independent of w;, wy and t. In other words,
in testing the Gaussianity of a nonstationary series we can test the null
hypothesis h;(wy,ws) = 0 for all w; and wy. Also in testing for linearity we
can test for the constancy of the ratio (5) using a procedure similar to that
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described in Subba Rao and Gabr [22]. It may be pointed out that in testing
for second order stationarity, i.e. testing h;(w) = h(w) for all ¢, we use the
statistical tests proposed in [16]. A similar test in testing for stationarity of
higher order moments can also be constructed. In the following, we assume
that the series is nonstationary and we construct tests for Gaussianity and

linearity.

3 Estimation of the evolutionary spectrum

and bispectrum

Let us now consider briefly the estimation of spectra and bispectra (for details
see [12] and [15]). Let (X1, X3, ..., Xx) be asample from a zero mean discrete
parameter nonstationary time series {X;}. Let {g,} be a filter and I'(w) the

corresponding frequency response function, i.e.

MNw) = Zgue_i‘*’“.

The bandwidth of {g,} is defined as B, = > |u||g.| and we assume that

{g.} is normalised so that

2 3 gl = / (o) Pdw = 1,

U=—00 -



and
> Jullgu| = By

Now write

Up(wo) = Z guXt—ue_iwo(t_u)-

U=—00

We may then construct evolutionary spectral estimates using

[e.o]

ﬁt(w): Z Wy | Uy (w)]?

V=—00

where the weight function wy ; satisfies the following conditions:
o wpy >0 for all t,T"
e wyp, decays to zero as |t| — oo, for all 7"
e > _wpy=1,foralT
o > 7 {wr}? < oo, forall T".

If we assume that {g,} is normalized so that

/_: /_: Pwn)T(w2)T (w1 — wp)dwydws =1

we may also construct evolutionary bispectral estimates using

hi(wi,w2)= Y W W Upo(@1) Vs (w2) Vs (—w1 — wp)

V=—00

where the weight function wy ; satisfies the same conditions as above.
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Let Wp(A) = Yoo e *wp, and assume there is a constant C such

that

T'—00

—T

Under the above conditions on the filter {g,} and the weight function wy,

Priestley [14] has shown that

Eﬁmm}N/wm@+w@w@ij

and

Ky

TVar (iuun)} ~ (1+ )R { [

—T

|I(0ﬂ4d9}

where

i_lt (W): Z wT’,vht—v (w)a

V=—00

i)~ Eiggr el

and ¢ is the Kronecker delta function. Note that the sampling properties

of hy(w) have been stated in [14]. Although no rigorous proof exists on the
asymptotic results given, a heuristic argument in the same paper shows that
these properties should reasonably well be expected to hold. Furthermore,
it has been demonstrated by Tsolaki in [25] using Monte Carlo methods
that ﬁt(w) has approximately a normal distribution and that a logarithmic
transformation of Bt(w) makes the estimate converge to a normal random
variable faster, as conjectured by Priestley and Subba Rao in [16].
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In estimating h;(w) a choice of windows {g,} and wy , is required. For
a discussion on different choices of windows we refer to Priestley [13]. We
note that the computations in section 5 were carried out for various choices
of {g,} and w «» all of them supporting our conclusions. In this paper we

present the results obtained for

1 lu| < A,

2m(2h+1)’
gu = { V@) ©
0, otherwise
and

1 T T

T'——H’ g S v S IR
wT’,v = (7)

0, otherwise.

We now consider the sampling properties of Bt(wl,wQ). Priestley and

Gabr [15] have shown that

Elhy(wi, ws)] ~

/ / Et(wl + V1, Wy -+ ’UQ)F(Ul)F(’UQ)F(—’Ul — ’Ug)dvld’vg

where

Et(wla‘*&) = Z UJT',vht—v(wl,w2)

U=—00

and

Var[hy(w, wa)]~27[0(ws) {1 + 86(w1 )} G4
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-|-{]_ + 5(&)1 - wg) + 45(w1)5(w2)}G2]
{ Z wT, }ht (w1, ws)
where 0 is the Kronecker delta and

7 Zzo:_oo{htfu(wl)htfu(wz)htfu(w1+wz)}w;, u
hi(w1,ws) = S =,
v=—00 Wt 4

Gy = IPO)* { | |r<w>|2dw}2,

Gy — / [ ()T (@) D (—n — )V 2duwrdovs.

Assuming that h(wy, ws) is ‘smooth’ with respect to I'(wy)[(w2)['(—wy —ws)
and that the bandwidth of wy, is ‘small’ compared with the ‘time domain

bandwidth’ of h;(w;,ws) we have that

Elhy(w1,ws)] ~ hy(wy,ws)

and
Varlhy(wr,w2)] ~ 2x[5(wn) {1+ 85(w1)}Ca
{1+ 8w — wa) + 46(w1)8(ez) )Gl
X {5 oy } helwn)he(w)he(wr +w2)
= By, wa) (6 (w2 (1 + o)
where

B(wy,ws) = 27[6(wq){1 + 86(w1)} Gy +

+{1+ §(wy — wz) + 46(wy1)d(ws) }Gs] X { Z wi, } (8)

V=—00
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We also note that the bispectrum h;(ws,ws), which is complex valued, satisfies

the usual symmetry relations

ht(w17w2) = ht(wz,%) = ht(wla —Ww1 — w2) =
= hy(—w1 — wa, w2) = hj(—w1, —ws)
where —m < wq, wy < 7. As a result it suffices to consider only frequencies

in the domain
Q= {(w1,w2); 0 < wy, wp Swy, Wy +wy <} 9)

One can see from the definition of the evolutionary bispectrum that h;(w;, w2)
is real valued at w; = 0, wy = 0 as well as along the boundaries.

In estimating h;(w;, ws) we use

m; lu| < h,
Gu = " (10)

0, otherwise.
The weight function wy , is chosen to be of the form (7). We note that {g,}
as given in (10) is different to the one used for the estimation of the spectral
density function as it is chosen to satisfy a different normalizing condition.
Using Monte Carlo methods, Tsolaki [25] has shown further that there is
strong evidence to support that the distribution of the evolutionary bispectral

estimate is approximately complex Gaussian.
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4 Tests for Gaussianity and linearity

As already mentioned in section 2, if a series is Gaussian, its evolutionary
bispectral density function h;(wq,ws) is zero for all values of w;, wy and for
all values of t. The statistic we propose should depend on all frequencies and
time points. However, in view of the symmetry relations we can restrict our
frequency domain to the principal domain given in (9).

We take the bispectral estimate h; (w1, ws) to be approximately distributed
as complex normal with mean h;(w;,ws) and variance

B(wy, ws)hy(wr)hy(w2)hy(wr + ws). Tt follows that

2[(ho(w1, w2))’]

Xi(wr,w) = B(w1, wa)hi(w1)hi(wa)hy(wr + wa)

is distributed approximately as a noncentral x? with 2 degrees of freedom

with noncentrality parameter

2 [ hy(wn, ws) [
B(wl, wg)ht(wl)ht(wg)ht(wl + (,UQ) )

)\t(wla w?) —

4.1 Test for Gaussianity

If hy(wy,w2) = 0 then X;(w;,ws) is distributed as a central x? with 2 degrees
of freedom. As an overall measure for departure of Gaussianity we consider

the statistic

Y = Z Z Xy, (wr,ws)

=1 wi,w2€G
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where the time points %q,%s,...,t; and the frequency points G are chosen
such that the statistics Xy, (w;, ws) are approximately independent (see [15]).
If the set G contains J points, then under the null hypothesis Y; will be
distributed as a central x? with 2IJ degrees of freedom.

In the computation of the statistic X;(wy,wsz) the assumption that the
evolutionary spectral density function h;(w) is known is unrealistic. In prac-
tice we assume that the spectral density function h;(w) is estimated following
the procedure suggested by Priestley [12]. The resulting test statistic will
still be approximately distributed as a central x? under the null hypothesis.
The statistic Y; does not contain X;(w;,ws) estimated along the boundary
wy = 0. We note that on the boundary the estimated evolutionary bispec-
trum izt(wl,wg) is normal. At these frequencies the test statistic X;(wq,ws)
under the null hypothesis is a central x? with 1 degree of freedom. Taking

into account the values on the boundary we consider the statistic

v, :i > [ (w1, wp) 2

o1 wa=0, all w1 (w1, WQ)Bt(wl)Bt(w2)Bt(wl + ws)

which under the null hypothesis is distributed as a central y? distribution
with J'I degrees of freedom where J' is the number of frequencies considered
on the line wy = 0. As an overall measure of departure from Gaussianity we
consider the test statistic A; = Y; + Y, where Y; and Y; are independent.

Under the null hypothesis, A, is distributed as a central x? with I(2J + J')
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degrees of freedom. If A; > X?x, 120+ We conclude that there is evidence to

suggest that the nonstationary signal is non Gaussian.

4.2 Test for Linearity

As pointed out earlier, nonstationary series can be non Gaussian but lin-
ear in the sense that {X;} admits the linear representation (2). Under
the hypothesis that the ratio (5) is independent of wy, wy and ¢, hy(wy,ws)
is approximately normally distributed with mean h;(w;,w,) and variance
B(wy, ws)hy(wy)hy(w2)hy(wr + w2). Hence under the null hypothesis that the

time series is linear, the statistic

Vbt
[B(wlanZ)ht(wl ht(w2)ht(w1 + w2)]%

Zt(w1>w2) =

is approximately normally distributed with mean c, /m and variance 1

— _lus| : ;
where ¢ = Wt As ¢ is unknown, the mean of Z;(w;,ws) is unknown but

an estimate of the mean can be found using

T

Ny { B L v {hy(wn)hy(wa)he(wn +wn)

A~

ht(wl, CU2)

~

h(wl, CU2) =

where B(w;,ws) is a deterministic function and can be calculated using (8).

Hence, asymptotically

<Zt(w1,w2) - ‘Z(wl,u@)

) ~ N(0,1)
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and therefore, the statistic

Jhenw)|) ~ 0@

Z Z (Zt Wy, wWs)

all t wy,w2

is distributed (under the null hypothesis of linearity) approximately as a
central x? with I.J degrees of freedom.

In the evaluation of the summation (11) we have not considered the
boundary ws = 0 where at these frequencies (i.e. ws = 0 for all wy) the

statistic

Bt (wla w2)

(B(w1, w2)h(wi)hy(we) hy(wr + wy))*/2

Zt(wla wZ) =

¢ and variance 1. Hence we

is approximately normal with mean
PP Y (B(w1,w2))2

consider the statistic

ZZ (Zy(w1,0) — Z(wy,0))?

where

_ wl, )
Z(wq,0) = ]J’{B .0 ZZ ht ht( ))1/2.

Under the null hypothesis, Y, is distributed as a central x? with I.J’
degrees of freedom. As an overall measure of departure from linearity we
consider the statistic Ay = Y3 + Y, where Y; and Y, are independent and is
distributed as a central x? with I(J + J') degrees of freedom. We reject the

null hypothesis if Ay > X2 17, -
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5 An application to internet traffic data

Management of internet traffic has become one of the most important tasks
in present day communication networks. An understanding of internet traffic
can contribute to fast and efficient communications and thus suitable statis-
tical models are needed to describe its complex structure. These models can
be used to simulate internet traffic. In a recent excellent review, Cleveland
and Sun [5] provide some basic ideas on internet traffic modelling as well as
a statistical analysis of the traffic. In internet communications, information
is transferred from one computer to another using the IP (Internet Proto-
col) which implements two basic functions: addressing and fragmentation,
examples of which are webpages and e-mails. The transfer is carried out
by different protocols based on the application. For example, the HTTP
(Hypertext Transfer Protocol) transfers a worldwide webpage from a server
computer to a client computer, SMTP (Simple Mail Transfer Protocol) sends
e-mails and FTP (File Transfer Protocol) transfers files between local and
remote network computers.

In an ATM (Asynchronous Transfer Mode) network when files are trans-
ferred they are divided into packets which are reassembled at the receiver
end of the computer. Each packet consists of static capacity which in our

implementation was 1460 bytes of information. Each computer has a unique
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Internet Protocol (/P) number which is carried by each packet when it is
sent. A computer connects with another using the Transfer Control Protocol
(TCP).

Ethernet works at layer 1-the Physical Layer. This means that any pro-
tocol can be used, TCP/IP, NetBeui, IPX. However, if two sources are trying
to send simultaneously packets to destinations, there is a mechanism called
Carrier Sense Multiple Access with Collision Detection (CSMA/CD) which
is a non-deterministic Media Access Control (MAC) protocol in which a
node verifies the absence of other traffic on a shared physical medium before
transmitting. This mechanism is soundly responsible to avoid collisions by
transmitting a short signal to indicate a node’s intention to transmit. When
other nodes see this signal, they wait for some time before attempting to
send any frames. In this way collision can be avoided on any Ethernet-based
access media.

Internet traffic can be viewed as a point process (arrival times of packets).
If the size of packets (in bytes) is sent together with arrival times then the
series is a marked point process. When byte counts are summed over equally
spaced time intervals, a time series is obtained. In this paper we consider
such a time series for our analysis. Cleveland and Sun [5] have pointed out
that HTTP start times are nonstationary and nonstationarity is as pervasive
as internet traffic data is long range persistent. This view is confirmed in the
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following analysis using evolutionary spectral methods.

The data we consider is 425 million arrivals (at workstations) which is
the number of nonempty packets arriving at a workstation, collected at the
Swedish University Network. In experiments, every cluster of workstations
has its particular specified mean response time depending on CPU process-
ing /response time and network metrics as well as on network dimensions
particularly when an wide area network is considered. However, in discrete
time the sampling interval must be relatively small in order to avoid the
self-similarity nature of traffic data. In our case, the number of nonempty
packets arriving at a workstation were summed over 20 ms time intervals.
The data were divided into 8000 slots where each block consists of 40000 to
60000 measurements. In this paper we consider one such block consisting
of 53136 measurements. For the estimation of the evolutionary spectrum
and bispectrum we have used several choices of h and 7”. Depending on
the choices of h and 7" in estimating the spectrum and bispectrum we need
to choose the time and frequency points to be sufficiently apart so that the
estimates are approximately uncorrelated (see [12]). Here we present the
analysis made for a choice of h = 7 and 7" = 300 in estimating the spectral
density function and A = 4, 7" = 120 in estimating the bispectrum.

Plots of parts of the data are shown in figure (1) corresponding to four
segments of the data those at time points 1 — 1000, 15001 — 16000, 30001 —
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31000 and 45001 — 46000 respectively.
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Figure 1: Plot of segments of the data corresponding to points 1-1000, 15001-

16000, 30001-31000 and 45001-46000 respectively.
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As we cannot include a plot of the entire series we have chosen four seg-
ments of the data which include some of the time points at which we estimate
the spectral density function and the bispectrum. The test of Gaussianity
and linearity is applied to the data after we remove the trend; we first remove
a constant mean (denoted by series c), then a linear trend (denoted by series
[) and finally a quadratic trend (denoted by series q). As the results are
similar for the three data sets the figures presented in the subsequent of the
paper are those for the data the we have removed the constant mean.

Furthermore, it is not clear whether we can assume that the variance is
constant. As a change in the covariance structure of a series reflects to a
change in the spectrum, we test the data for stationarity by applying the
test by Priestley and Subba Rao [16]. We have applied the tests to all
three series to see if a possible nonstationarity in the mean would affect the
conclusions of the test. A plot of the evolutionary spectrum at time points
500, 10500, 20500, 30500, 40500 and 50500 for data series (c¢) are shown in
figure (2). The test of nonstationarity shows that there is evidence to reject
the null hypothesis that the series is stationary for all three data sets. Thus,
we procceed in applying the test of Gaussianity and linearity to the three

data sets.
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Figure 2: Plot of the estimated spectral density function of the internet data

at time points 500, 10500, 20500, 30500, 40500 and 50500.
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In order to test the series for Gaussianity and linearity the evolution-
ary bispectrum and normalized bispectrum are estimated at time points
(500(5000)53136) and frequency points (%(%)3F). Plots of the bispectrum
and normalized bispectrum of series (¢) for time points 500, 10500, 20500,
30500, 40500 and 50500 are shown in figures (3) and (4) respectively. The
estimates show differences in average magnitudes suggesting possibly non

Gaussianity and nonlinearity in the data. To test such a hypothesis we ap-

ply the proposed tests.
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0 o

Figure 3: Plot of the estimated bispectrum of the internet data at time points

500, 10500, 20500, 30500, 40500 and 50500.
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Figure 4: Plot of the estimated normalized bispectrum of the internet data

at time points 500, 10500, 20500, 30500, 40500 and 50500.
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We calculate the test statistics A; and Ay following the procedure de-
scribed in sections (4.1) and (4.2). The value of the test statistic A; is 774.4
for series (c), 765.7 for series (I) and 776.8 for series ¢ which is compared
with the x2,; with 341 degrees of freedom which is 385.1. The degrees of
freedom are so large, one could use critical points from a Normal distribution.
The test statistic for all three series is much higher than the critical value
and thus we can conclude that there is evidence to suggest that the data is
non-Gaussian. Also we compare the values of the test statistic Ay which is
290.1 for series (c), 278.5 for series (I) and 292.6 for series (g) with the X3 s
with 209 degrees of freedom. The value of the test statistic is higher than
the critical value (243.8) and thus the hypothesis of linearity is rejected at
5% significance level for the three series. Thus the Internet Traffic data are
nonstationary non-Gaussian and nonlinear.

Our conclusions of the data being nonstationary drawn using evolutionary
spectral methods, confirm the hypothesis of Cao, Cleveland, Lin and Sun [4].
The reason of nonstationarity in the internet traffic is believed to have been
caused by the superposition of internet traffic from various sources such as
HTTP, FTP and telnet (Cleveland and Sun [5]). Recent studies by Terdik
and Molnar [24], Igloi and Terdik [7] and Basu, Mukherjee and Klivansky [1]
indicated that internet traffic data is non Gaussian which is also confirmed
by this analysis. In addition it is shown here that the data is not only
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nonstationary and non Gaussian but also nonlinear. Therefore, in order to
model the data, a suitable nonstationary and nonlinear time series model
must be found. If a specific form of a nonlinear process is assumed then one

could estimate a linear representation (see e.g. [6]) for such a process.
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