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On Coprimality Graphs for Symmetric Groups

John Ballantyne, Nicholas Greer, Peter Rowley

Abstract

For G a group, X a subset of G and π a set of positive integers we
define a graph Cπ(G, X) whose vertex set is X with x, y ∈ X joined by
an edge provided x 6= y and the order of xy is in π. Here we investigate
Cπ(G, X) when G is a finite symmetric group and X is a G-conjugacy
class of elements of order p, p a prime.

MSC 20B30

1 Introduction

Suppose that G is a group, X is a subset of G and π is a set of positive integers.
We define the π-coprimality graph, Cπ(G, X), to be the graph with vertex set
X where, for x, y ∈ X , x and y are adjacent in Cπ(G, X) if x 6= y and the order
of xy is in π. Because xy and yx are conjugate elements of G, we note that
Cπ(G, X) is an undirected graph. If the orders of the elements in X are coprime
to all the integers in π, we refer to Cπ(G, X) as a π-coprimality graph (or just
coprimality graph if π is understood). We mention two important special cases
of π-coprimality graphs, the first being when X consists of involutions of G and
π consists of all odd positive integers. Such graphs, called local fusion graphs
and denoted by F(G, X), have been investigated by the authors in [2] when G
is a symmetric group and X is a conjugacy class of involutions (see Theorem 2.2
in Section 2). While C{2}(G, X) when X is a G-conjugacy class of involutions
is a commuting involution graph – such graphs have been studied in [3], [4], [5],
[6] and [7]. Also certain types of coprimality graph appear in [9].

In this paper we investigate coprimality graphs for the finite symmetric
groups and first address the question of connectedness. We shall use p′ to
denote the set of positive integers coprime to p.

Theorem 1.1. Suppose that G = Sym(n) and that x is an element of order p,
p a prime. Let X be the G-conjugacy class of x. Then Cp′(G, X) is connected
unless n = 4 and x has cycle type 22.

We now turn to the question as to what can be said about the diameters of
such graphs. For involution conjugacy classes we may give a complete answer
(see [2]). Our results on conjugacy classes of elements of odd prime order are
less complete.
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Theorem 1.2. Suppose that G = Sym(n) and X is the G-conjugacy class of a
p-cycle where p is an odd prime. Then Diam(Cp′(G, X)) = 2 unless n = 3 = p
when Diam(Cp′(G, X)) = 1.

Theorem 1.3. Suppose that G = Sym(n) and X is the G-conjugacy class
of elements of cycle type pr, where p is an odd prime. If r <

√
p, then

Diam(Cp′(G, X)) ≤ 5.

Theorem 1.4. Suppose that G = Sym(n) and X is the G-conjugacy class of
elements of cycle type pr, where p ≥ 5 is prime. Let k be the least non-negative
integer such that r/2k ≤ ⌊√p⌋. Then Diam(Cp′(G, X)) ≤ 5 + k.

This paper is arranged as follows. Section 2 develops some preliminary
material much of which is deployed in the proof of Theorem 3.4. We also review
certain results concerning the complex representation theory of the symmetric
group, touching on theorems of Frame, Robinson and Thrall (Theorem 2.3) and
the Murnaghan-Nakayama rule (Theorem 2.4). Section 3 begins with a number
of results on the complex irreducible characters of the symmetric groups, our
aim being to prove Lemma 3.3. With Lemma 3.3 to hand we then establish
Theorem 3.4 which deals in particular with the important base case when G =
Sym(p) and x is a p-cycle. In our build up to determining diameters (or bounds
for diameters) we pause, in Proposition 3.5, to observe a formula for the number
of vertices distance two from x, x ∈ X , when p ≥ 7 and G = Sym(p). Then
Proposition 3.6, with an easy calculation, determines the distance between x and
y where x, y ∈ X are disjoint p-cycles in Sym(n). Next we come to Lemma 3.7
which is pivotal in the proofs of Theorems 1.2, 1.3 and 1.4. After Lemma 3.7 we
then present a proof of Theorem 1.2. Moving onto Theorems 1.3 and 1.4 we first
introduce, in Definition 3.9, the important notion of disentangled and tangled
pairs. Subsequently in Lemmas 3.10, 3.12, 3.13 and 3.14 such pairs of elements
of Sym(n) are analyzed at length. In our final section we prove Theorem 1.1 –
the proof of this being delayed till then as Theorem 1.2 is required.

Our group theoretic notation is standard as found, for example, in [1].
Finally, we thank the referees for their helpful comments and suggestions.

2 Background Results

Throughout this paper t will denote a fixed element of Sym(n), the symmetric
group of degree n, with t having order p, a prime. We will sometimes denote
Sym(m) (m ∈ N) by Sym(Ω) where Ω is an m-element set upon which the
permutations act. For g ∈ Sym(Ω), the support of g, supp(g), is Ω \ fix(g),
where fix(g) = {α ∈ Ω | αg = α}. If α ∈ Ω, then Og(α) denotes the 〈g〉-orbit of
α. Alternatively, writing g = g1 . . . gr as a product of pairwise disjoint cycles,
Og(α) = supp(gj) where α appears in the cycle gj.

For a graph Γ we use dΓ(, ), or just d(, ) if there is no danger of confusion,
to denote the standard graph theoretic distance on Γ. We recall the diameter
of Γ, denoted Diam(Γ), is max{d(x, y) | x, y ∈ V (Γ)}, V (Γ) being the vertex set
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of Γ. Also for i ∈ N ∪ {0} and x ∈ V (Γ), the ith disc of x, ∆i(x), is defined to
be

∆i(x) = {y ∈ V (Γ) | d(x, y) = i}.
So ∆0(x) = {x} and ∆1(x) consists of the neighbours in Γ of x.

Lemma 2.1. Let Γ be a regular graph with V (Γ) = X. Let x ∈ X. If |∆1(x)| >
|X |/2, then Γ is connected and Diam(Γ) ≤ 2.

Proof. Since |∆1(x)| > |X |/2, the regularity of Γ implies connectedness. Sup-
pose there exists y ∈ X such that d(x, y) = 3. Then ∆1(x) ∩ ∆1(y) = ∅, since
otherwise d(x, y) ≤ 2. Therefore

|∆1(x)| ≤ |X | − |∆1(y)| = |X | − |∆1(x)|

by regularity. Hence |∆1(x)| ≤ |X |/2, a contradiction. Thus the diameter of Γ
is at most 2.

Theorem 2.2. Suppose that G = Sym(n) with n ≥ 5 and X is a G-conjugacy
class of involutions. Then Diam(F(G, X)) = 2.

Proof. See [2].

The following results will be called upon in Section 3. Let G be a finite group,
with conjugacy classes K1, . . . ,Kl, and let K1, . . . , Kl be the corresponding class
sums in the group algebra CG. Let aijk be the integers defined by

KiKj =

l
∑

k=1

aijkKk.

These integers are known as the class structure constants. Note that aijk is
precisely the number of pairs of elements (x, y), where x ∈ Ki, y ∈ Kj , such
that xy = z, where z is some fixed element of Kk. Now let {g1, . . . , gl} be a
complete set of conjugacy class representatives for G. Then we have

aijk =
|Ki||Kj |

|G|
∑

χ∈Irr(G)

χ(gi)χ(gj)χ(gk)

χ(1)
.

The integers aijk are therefore determined by the character table of G.
Suppose now that G = Sym(n), where n ≥ 5, and let X be the conjugacy

class of t in G. Furthermore, suppose that p = n, n − 1 or n − 2. We now
consider the graph Cp′(G, X). From our assumption on n, if x ∈ X and x 6= t,
then x lies outside ∆1(t) if and only if o(tx) = p (where o(tx) denotes the order
of tx), so if and only if tx ∈ X (note that tx must be an even permutation, so
cannot be a (disjoint) product of a p-cycle and a transposition). If we can count
the number of such elements, and show that it is not greater than |X |/2, then
by Lemma 2.1 Cp′(G, X) is connected, and Diam(Cp′(G, X)) ≤ 2. By applying
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the above formula for the class structure constants, we have an expression for
this number, namely

|X − ∆1(t)| =
|X |2
|G|

∑

χ∈Irr(G)

χ(t)χ(t)χ(t)/χ(1)

=
|G|

|CG(t)|2
∑

χ∈Irr(G)

χ(t)

χ(1)
|χ(t)|2.

The study of this case therefore reduces to the study of the character table of
the symmetric group. Fortunately, an extensive theory exists on this topic. We
briefly summarise the results which we require, and for a detailed treatment
refer the reader to [10].

Let n ∈ N. A partition of n is a sequence

λ = (λ1, λ2, . . . , λk)

where the λi are weakly decreasing and
∑k

i=1 λi = n. Recall that the partitions
of n are in one to one correspondence with the complex irreducible represen-
tations of the symmetric group Sym(n). To each partition λ we associate a
Young diagram Dλ, consisting of n cells and k rows, left justified, with the
length of row i equal to λi. For example, for the partition (5, 4, 4, 2, 1) of 16,
the corresponding Young diagram is shown below.

If (i, j) is a cell in the diagram Dλ of a partition λ, the hook Hi,j is defined as

Hi,j = {(i, j′) | j′ ≥ j} ∪ {(i′, j) | i′ ≥ i}.

We define the corresponding hook length as hi,j = |Hi,j |. To illustrate, for our
previous example, the hook H1,1 is shaded, which has hook length h1,1 = 9.

We may now state the first of our required results, known as the ‘hook formula’.

4



Theorem 2.3 (Frame, Robinson, Thrall). Let λ be a partition of a natural
number n, with χλ the character afforded by the corresponding irreducible rep-
resentation of Sym(n). Then

χλ(1) =
n!

∏

(i,j)∈Dλ
hi,j

.

Again, we illustrate using our previous example. The length of each hook is
displayed below.

Now, the hook formula yields

χλ(1) =
16!

9 · 72 · 6 · 52 · 42 · 32 · 22 · 14
= 549120.

Let Hi,j be a hook in the Young diagram associated with some partition λ.
Then the rim hook Ri,j is obtained by projecting Hi,j along diagonals onto the
lower-right boundary of our diagram. Note that |Ri,j | = |Hi,j | = hi,j . The leg
length of Ri,j is defined as

ll(Ri,j) = (number of rows of Ri,j) − 1.

For our example, the rim hook R1,1 is shown, for which ll(R1,1) = 4.

Observe that if hi,j < n, and we remove the rim hook Ri,j from the diagram
Dλ, what remains is a Young diagram associated with some partition of n−hi,j.
We denote this new diagram by Dλ \ Ri,j .

For a conjugacy class K of Sym(n), we can naturally associate a partition
of n with K via the cycle type of elements of K. We are now in a position to
state the second of our required results, a combinatorial rule for calculating the
values of irreducible characters of the symmetric group.
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The Murnaghan-Nakayama Rule

Let λ be a partition of n, with corresponding irreducible character χλ of Sym(n).
Let σ ∈ Sym(n) have cycle type with associated partition µ = (µ1, µ2, . . . , µr)
of n. We generate a branch B, and a corresponding value cB ∈ {−1, 0, 1}, by
using the following iterative procedure.

Initially, set c0 = 1 and Dλ0 = Dλ. For k ≥ 1, the k-th step is as follows:

1. If Dλk−1
consists of zero cells, set cB = ck−1, and stop.

2. If possible, remove a rim hook Rk of length µk from Dλk−1
, such that

Dλk−1
\ Rk is a Young diagram, or consists of zero cells. If this is not

possible, set cB = 0, and stop.

3. Set ck = (−1)ll(Rk) · ck−1, and Dλk
= Dλk−1

\ Rk.

When applying this rule, at each step, different choices of rim hook removal
yield distinct branches. The totality of these branches (those generated by all
possible valid combinations of rim hook removals) can be considered to form a
tree T associated with the pair (λ, µ). We have the following result.

Theorem 2.4 (Murnaghan-Nakayama). With the set-up as above, we have

χλ(σ) =
∑

B

cB,

where the sum runs over all distinct branches B of T .

We illustrate the Murnaghan-Nakayama rule with an example. Let n = 10,
with partition λ = (5, 3, 1, 1), and let σ ∈ Sym(n) have cycle type 5.2.2.1. The
tree we generate is as follows:
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So for this example we have two branches to sum over, yielding χλ(σ) = 1+0 =
1.

3 The Diameter of Cp′(G, X), p odd

In this section we prove Theorems 1.2, 1.3 and 1.4. We begin with some prepara-
tory lemmas.

Lemma 3.1. Let T be a Young diagram consisting of n cells, and let k > n/2.
Then there is at most one way of removing a rim hook of length k from T .

Proof. Suppose we have a way of removing a rim hook R1 of length k from T .
After removal, a diagram of n− k cells remains, which we denote T1. Let r and
r1 be the lengths of the top rows of T and T1 respectively. Similarly, denote by
c and c1 the lengths of the first columns.
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Note that since k > n/2, either r > r1, c > c1, or both. Firstly, suppose both
hold. Then clearly R1 is maximal in the sense that any other rim hook which
can be removed from T is of length less than k. Thus R1 is our only choice.

Suppose now that either r = r1 or c = c1. Since if necessary we may just
reflect the diagram in the main diagonal, without loss of generality we may
assume c = c1. Let H1,j be the hook from which R1 is projected, based at
position (1, j) in T . Suppose there exists another possible choice of rim hook,
labelled R2, with corresponding diagram T2.

Any projection of a hook H1,j−d, where d ≥ 1, will have length greater than
k, so is not suitable. Also, a projection of a hook Hi,j , where i > 1 and j > 1,
will have length less than n/2 < k, again unsuitable. Thus R2 must project
from some position (i, 1) where i > 1.

Note that R1 and R2 must intersect nontrivially, since otherwise

|T | ≥ |R1| + |R2| = 2k > n,

a contradiction. Since R1 projects from (1, j), and R2 projects from (i, 1),
R1∩R2 must intersect in the empty set with both the first row and first column
of T . Consequently we have |T1 ∩ T2| ≥ |R1 ∩ R2|. Thus

|T | = |R1 ∪ R2| + |T1 ∩ T2| ≥ |R1 ∪ R2| + |R1 ∩ R2| = 2k > n,

another contradiction. Therefore R1 is the only suitable choice of rim hook.
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Lemma 3.2. Let χS be the complex character of Sym(n) associated to a diagram
S, and let χT be the complex character of Sym(n− k) associated to the diagram
T , where T is obtained by removing a rim hook of length k from S, where
k > n/2. Assume χS and χT are both nonlinear. Then χS(1) ≥ 2χT (1).

Proof. We use the Murnaghan-Nakayama rule to calculate χS(1). Denote by R
the rim hook which we remove from S to obtain T .

Denote by rT and rS the lengths of the top rows of T and S repectively. Similarly
denote by cT and cS the lengths of the first columns. As k > n/2, note that
either rS > rT , cS > cT , or both. The first step in calculating χS(1) is to
remove a single cell rim hook from S. Clearly it is possible to remove this cell
from R.

We now consider the following three cases: either rS 6= rT +1 or cS 6= cT +1
and R is not a single row (or column); both rS = rT + 1 and cS = cT + 1; or R
consists of only a single row (or column). First, suppose that either rS 6= rT +1
or cS 6= cT + 1, and that R does not consist only of a single row (or column).
Then we have at least two choices of single cell rim hook removal from R. For
each choice, we are able to continue to remove single cells from R until the
diagram T remains. The value we calculate from this point onwards is χT (1).
But now, the details of the Murnaghan-Nakayama rule yield χS(1) ≥ 2χT (1).

Suppose now that rS = rT +1 and cS = cT +1 (this situation can only occur
when n ≤ 9).

It is clear from the figure that after our first removal we have two choices of
single cell removal. Arguing as above, we again have χS(1) ≥ 2χT (1).

Finally, suppose that R consists of only a single row (or column). Note
that since χT and χS are both non-linear, T must have at least two rows (or
columns).
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In this case we use the hook formula, which yields

χT (1) =
(n − k)!

∏

(i,j)∈T hT
i,j

and

χS(1) =
n!

∏

(i,j)∈S hS
i,j

,

where hT
i,j denotes the length of the hook based at (i, j) in the diagram T , and

hS
i,j the length of the hook based at (i, j) in the diagram S. By observing the

position of the subdiagram T ′ in both T and S, we see that

χT (1) =
(n − k)(n − k − 1) · · · (|T ′| + 1)

∏

(i,j)∈T\T ′ hT
i,j

· B

and

χS(1) =
n(n − 1) · · · (|T ′| + 1)
∏

(i,j)∈S\T ′ hS
i,j

· B,

where

B =
|T ′|!

∏

(i,j)∈T ′ hT ′

i,j

.

We must therefore show that

n(n − 1) · · · (|T ′| + 1)
∏

(i,j)∈S\T ′ hS
i,j

≥ 2 · (n − k)(n − k − 1) · · · (|T ′| + 1)
∏

(i,j)∈T\T ′ hT
i,j

.

Note that as k > n/2 and χT is non-linear, rT < k − 1. Hence we have

hT
1,rT

≥ hS
1,rT +k,

hT
1,rT−1 ≥ hS

1,rT +k−1,

...

hT
1,1 ≥ hS

1,k+1.

10



Also

hS
1,1 ≤ n,

hS
1,2 ≤ n − 2, (as χT is non-linear)

hS
1,3 ≤ n − 3,

hS
1,4 ≤ n − 4,

...

hS
1,k−1 ≤ n − k + 1.

Finally, note that hS
1,k = rT + 1 ≤ (n − 1)/2. Indeed,

n − 1 ≥ rT + k > rT + rT + 1 = 2rT + 1,

so n − 1 ≥ 2rT + 2. Hence we have

n(n − 1) · · · (|T ′| + 1)
∏

(i,j)∈S\T ′ hS
i,j

≥ 2 · (n − k)(n − k − 1) · · · (|T ′| + 1)
∏

(i,j)∈T\T ′ hT
i,j

,

as required.

Lemma 3.3. Let G = Sym(n), and let X be a conjugacy class of k-cycles in
G, where k > n/2. Then for a non-linear complex irreducible character χ of G
we have

|χ(x)| ≤ χ(1)/2

for all x ∈ X.

Proof. By the Murnaghan-Nakayama rule, the first step in calculating χ(x) is to
remove a rim hook of length k (if possible) from the diagram T associated with
χ. If this is not possible, then χ(x) = 0, and the result clearly holds. Therefore
suppose it is possible. Then by Lemma 3.1, there is only one way to do this.

If k = n, then clearly χ(x) = ±1, and the result follows since χ is non-
linear. So now suppose k < n. After removing our rim hook of length k, the
Murnaghan-Nakayama rule tells us to remove single cell rim hooks from the
remaining diagram T ′ in all possible ways. However, the hook formula also
yields this value. Thus

χ(x) = ± (n − k)!
∏

(i,j)∈T ′ hT ′

i,j

= ±χT ′(1)

where χT ′ is the character of Sym(n−k) associated with T ′. But T ′ was obtained
from T by removing a rim hook of length k > n/2. Hence Lemma 3.2 implies
χ(1) ≥ 2χT ′(1). Thus |χ(x)| ≤ χ(1)/2.

We are now in a position to apply our results to obtain information about
our graphs in the cases when p = n, n − 1 and n − 2.
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Theorem 3.4. Let G = Sym(n), where n ≥ 5, and let X be a conjugacy class
of p-cycles in G, where p = n, n− 1 or n− 2. Then Cp′(G, X) is connected and
Diam(Cp′(G, X)) = 2.

Proof. When n < 15 we can check directly using Magma [8], so suppose n ≥ 15.
Let t = (1, 2, . . . , p) ∈ X . As observed in Section 2, since p = n, n− 1 or n− 2,
x ∈ X lies outside ∆1(t) if and only if o(tx) = p, so if and only if tx ∈ X . The
class structure constants yield the following:

|X − ∆1(t)| =
|X |2
|G|

∑

χ∈Irr(G)

χ(t)χ(t)χ(t)/χ(1)

=
|G|

|CG(t)|2
∑

χ∈Irr(G)

χ(t)

χ(1)
|χ(t)|2.

Since G′ ∼= Alt(n), we have [G : G′] = 2, so G has exactly two linear characters.
Also, since p is odd, χ(t) = 1 for both of these characters. Denote by Irr(G)∗

the set of non-linear irreducible characters of G. Then

∑

χ∈Irr(G)

χ(t)

χ(1)
|χ(t)|2 = 2 +

∑

χ∈Irr(G)∗

χ(t)

χ(1)
|χ(t)|2.

By Lemma 3.3, for non-linear χ ∈ Irr(G) we have |χ(t)|/χ(1) ≤ 1/2. Further-
more, as n ≥ 15 we have p ≥ 13, and there are at least 11 non-zero character
values on X , and so at least 4 negative character values on X (this can be eas-
ily verified by considering possible Young diagrams and using the Murnaghan-
Nakayama rule). Hence we may write

∑

χ∈Irr(G)

χ(t)

χ(1)
|χ(t)|2 ≤ 2 +

1

2





∑

χ∈Irr(G)∗

|χ(t)|2 − 4





=
1

2

∑

χ∈Irr(G)∗

|χ(t)|2.

Next, we apply column orthogonality, remembering that G has exactly two
linear characters.

1

2

∑

χ∈Irr(G)∗

|χ(t)|2 =
1

2
(|CG(t)| − 2)

=
|CG(t)|

2
− 1

<
|CG(t)|

2
.

Therefore

|X − ∆1(t)| <
|G|

|CG(t)|2 · |CG(t)|
2

=
|X |
2

.

By Lemma 2.1, the result follows.
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In certain cases we can go further, and obtain an exact expression for the
size of the second disc.

Proposition 3.5. Let G = Sym(p), where p is a prime, p ≥ 7. Write p =
2m + 1. Let X be the conjugacy class of p-cycles, with t = (1, 2, . . . , p) ∈ X.
Then the size of ∆2(t) in the graph Cp′(G, X) is given by the following:

|∆2(t)| =
2D

p
− 1,

where

D = (p − 1)! − (p − 2)! + (−1)22!(p − 3)! + (−1)33!(p − 4)! + · · ·

· · · + (−1)m−1(m − 1)!(p − m)! + (−1)m 1

2
m!(p − m − 1)!.

Proof. From Theorem 3.4 we have that Cp′(G, X) is connected and has diameter
2, and that

|∆2(t)| + 1 =
|G|

|CG(t)|2
∑

χ∈Irr(G)

χ(t)

χ(1)
|χ(t)|2.

Furthermore, after a moment’s consideration we deduce that χ(t) = ±1 for
exactly p irreducible characters (the ‘L-shaped’ diagrams, so those consisting of
at most one row and one column), with the remainder yielding 0 on X . We use
the hook formula to calculate χ(1) for each of these contributing characters.

Starting from the diagram of one single row, and adding one cell to the first
column (and removing one cell from the top row) each time, the hook formula
yields the following character degrees:

1, p − 1,
(p − 1)(p − 2)

2
,
(p − 1)(p − 2)(p − 3)

3 · 2 , . . . ,
(p − 1) · · · (p − r)

r!
, . . . ,

where the sequence is symmetric around the (m+1)-th term. We also note that
diagrams with an odd number of rows yield a character value of 1, while those
with an even number of rows yield −1. Putting all this information together,
along with the observations that |G| = p! and |CG(t)| = p, gives us the desired
expression for |∆2(t)|.

Proposition 3.6. Suppose G = Sym(n), and t is a p-cycle where p ≥ 3 is
prime. Let X = tG. If x ∈ X is disjoint from t, then there exists y ∈ X with
d(t, y) = d(y, x) = 1.

Proof. Without loss of generality we assume

t = (1, 2, . . . , p)

and
x = (p + 1, p + 2, . . . , 2p).
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Take
y = (1, 2, . . . , p − 2, p + 1, p + 2) ∈ X.

Then

ty = (1, 3, 5, . . . , p − 2, p − 1, p, 2, 4, 6, . . . , p − 3, p + 1, p + 2)

and

yx = (1, 2, . . . , p − 2, p + 2)(p − 1)(p)(p + 1, p + 3, p + 4, . . . , 2p).

Hence ty has order p + 2 and yx has order p − 1, so proving the result.

Suppose x ∈ Sym(Ω), and that α ∈ Ω. We recall that Ox(α) denotes the 〈x〉-
orbit which contains α. The following lemma is the key to proving Theorems 1.2,
1.3 and 1.4.

Lemma 3.7. Let G = Sym(n), with x, y ∈ G distinct elements of order at least
3. Denote by Ω the set upon which G acts naturally. Suppose there exist distinct
α, β, γ ∈ Ω such that β, γ ∈ Oy(α) but β, γ /∈ Oxy(α).

(i) If γ /∈ Oxy(β), then there exists z ∈ G, where 〈z〉 has the same orbits on
Ω as 〈y〉, such that |Oxz(α)| = |Oxy(α)| + |Oxy(β)| + |Oxy(γ)|.

(ii) If γ ∈ Oxy(β), then there exists z ∈ G, where 〈z〉 has the same orbits on
Ω as 〈y〉, such that |Oxz(α)| = |Oxy(α)| + c and |Oxz(γ)| = |Oxy(γ)| − c,
where c ≥ 1.

(iii) If |Oy(α) ∩ (Oxy(α) ∪ Oxy(β))| = m, where m ≥ 4, then there exist

M = (m − 1)(m − 2)/2

distinct elements z1, . . . , zM , which can be created by an application of (ii),
where for 1 ≤ i ≤ M each 〈zi〉 has the same orbits on Ω as 〈y〉. Moreover,
there exist natural numbers c1 < c2 < · · · < cm−2, along with c0 := 0,
such that

{|Oxzk
(α)| | 1 ≤ k ≤ M} = {ci − cj | 0 ≤ j < i ≤ m − 2},

and this set has cardinality at least m − 2.

Proof. Without loss of generality we may suppose y contains the cycle

σ = (δ1, α, δ3, . . . , δk, β, δk+2, . . . , δl, γ, δl+2, . . .).

Firstly, suppose that β and γ lie in separate orbits of 〈xy〉. Then xy contains
the following cycles:

(δx−1

1 , α, . . .)(δx−1

k , β, . . .)(δx−1

l , γ, . . .),
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where δx−1

1 denotes the inverse image of δ1 under x, δx−1

k the inverse image of

δk under x and δx−1

l the inverse image of δl under x. Now let

σ = (δ1, β, δk+2, . . . , δl, α, δ3, . . . , δk, γ, δl+2, . . .),

and let z be equal to y but with the cycle σ replaced by σ. We have changed
the images of precisely three elements in supp(σ), namely δ1, δk and δl, and so

in the product xz only the images of δx−1

1 , δx−1

k and δx−1

l have been changed
from those in xy. Therefore xz contains the cycle

(δx−1

1 , β, . . . , δx−1

k , γ, . . . , δx−1

l , α, . . .),

and we have |Oxz(α)| = |Oxy(α)| + |Oxy(β)| + |Oxy(γ)|. This proves statement
(i).

Now suppose that γ ∈ Oxy(β), so we may assume xy contains the cycles

(δx−1

1 , α, . . .)(δx−1

k , β, . . . , δx−1

l , γ, . . .).

Once more we set

σ = (δ1, β, δk+2, . . . , δl, α, δ3, . . . , δk, γ, δl+2, . . .),

and let z be equal to y but with the cycle σ replaced by σ. As previously, in
the product xz only the images of δx−1

1 , δx−1

k and δx−1

l have been changed from
those in xy. Hence xz contains the cycle

(δx−1

1 , β, . . . , δx−1

l , α, . . .),

and so |Oxz(α)| = |Oxy(α)| + |β · · · δx−1

l |xy, where |β · · · δx−1

l |xy denotes the

distance between β and δx−1

l in the relevant cycle of xy (reading inclusively
from left to right). As a consequence, we have that |Oxz(γ)| = |Oxy(γ)| −
|β · · · δx−1

l |xy. This proves statement (ii).
Now let |Oy(α)∩(Oxy(α)∪Oxy(β))| = m, where m ≥ 4, and suppose without

loss of generality that β is the first element of Oxy(β) which we encounter when
reading from left to right in the cycle σ, starting at α. If there exists µ1 ∈ Oy(β)
such that µ1 6= α but µ1 ∈ Oxy(α), we may apply (ii) to find an element y1 ∈ G
such that |Oxy1(β)| > |Oxy(β)| and α /∈ Oxy1(β) (here β is playing the role of α
in the application of (ii)). Now, if there exists µ2 ∈ Oy1(β) such that µ2 6= α but
µ2 ∈ Oxy1(α), we may apply (ii) again to find y2 such that |Oxy2(β)| > |Oxy1(β)|
and α /∈ Oxy2(β). Continuing in this way, we eventually find an element ys such
that the only element of Oys−1(β) ∩ (Oxys−1(α) ∪Oxys−1(β)) which lies outside
Oxys

(β) is α.
There are now m − 1 elements of Oxys

(β) which also lie in Oys
(α). We

wish to apply (ii) once more, with different choices for β and γ, which we label
β′ and γ′. We have m − 2 choices of element β′ to play the role of β in the
application of (ii). After choosing a β′, the only requirement for choosing an
element γ′ ∈ Oxys

(β′) is that γ′ lies between β′ and α in the relevant cycle of
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ys, when we read from left to right starting at β′. So for the first possible β′

(reading from left to right in ys starting at α), there are m − 2 choices for γ′.
For the second possible β′ there are m − 3 choices for γ′, and so on. Therefore
the total number of choices M we have is

M = (m − 2) + (m − 3) + · · · + 2 + 1 = (m − 1)(m − 2)/2,

which leads to the elements z1, . . . , zM as in statement (iii). Moreover, after
fixing a β′, each subsequent choice of γ′ leads to a different value of c in (ii).
As noted, we had m − 2 choices for γ′ when β′ was our first possible choice.
Let c1, . . . , cm−2 be the values of c arising from these choices, labelled so that
cj < ci if j < i. Suppose xys contains the cycle

(β1, . . . , δ
x−1

γj
, γj , . . . , δ

x−1

γi
, γi, . . .),

and that ci = |β1 · · · δx−1

γi
|xys

and cj = |β1 · · · δx−1

γj
|xys

. Then if we choose β′ = γj

and γ′ = γi when applying (ii), we get

c = |γj · · · δx−1

γi
|xys

= |β1 · · · δx−1

γi
|xys

− |β1 · · · δx−1

γj
|xys

= ci − cj .

As every possible value of c must arise in this way, we see that the penultimate
statement in (iii) holds. The final statement follows since c1, . . . , cm−2 are all
distinct. This completes the proof.

Let us illustrate Lemma 3.7 with a brief example. Suppose G = Sym(16),

x = (1, 9, 8, 14, 15, 4, 5)(2, 3, 6, 7, 10, 11, 16)

and
y = λσ = (1, 2, 3, 4, 5, 6, 7)(8, 9, 10, 11, 12, 13, 14).

Then
xy = (1, 10, 12, 13, 14, 15, 5, 2, 4, 6)(3, 7, 11, 16)(8)(9).

Let α = 8 and β = 10. Then

Oy(8) ∩ (Oxy(8) ∪Oxy(10)) = {8, 10, 12, 13, 14},

and (iii) tells us there exist 4·3/2 = 6 distinct elements z1, . . . , z6, where for each
i the orbits of 〈zi〉 are the same as those of 〈y〉, and that {|Oxzi

(8)| : 1 ≤ i ≤ 6}
has cardinality at least 5 − 2 = 3. Explicitly, we apply (ii) by adjusting the
cycle σ of y to the following:

σ1 = (10, 11, 8, 9, 12, 13, 14)

σ2 = (10, 11, 12, 8, 9, 13, 14)

σ3 = (10, 11, 12, 13, 8, 9, 14)

σ4 = (12, 8, 9, 10, 11, 13, 14)

σ5 = (12, 13, 8, 9, 10, 11, 14)

σ6 = (13, 8, 9, 10, 11, 12, 14).
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Setting zi = λσi, for 1 ≤ i ≤ 6, we have

xz1 = (1, 12, 13, 14, 15, 5, 2, 4, 6)(3, 7, 11, 16)(8, 10)(9)

xz2 = (1, 13, 14, 15, 5, 2, 4, 6)(3, 7, 11, 16)(8, 10, 12)(9)

xz3 = (1, 14, 15, 5, 2, 4, 6)(3, 7, 11, 16)(8, 10, 12, 13)(9)

xz4 = (1, 10, 13, 14, 15, 5, 2, 4, 6)(3, 7, 11, 16)(8, 12)(9)

xz5 = (1, 10, 14, 15, 5, 2, 4, 6)(3, 7, 11, 16)(8, 12, 13)(9)

xz6 = (1, 10, 12, 14, 15, 5, 2, 4, 6)(3, 7, 11, 16)(8, 13)(9),

and we see that {|Oxzi
(8)| | 1 ≤ i ≤ 6} = {2, 3, 4}.

Notice that in Lemma 3.7, the elements x and y need not be G-conjugate.
Also, the proof can be easily modified to give a corresponding result regarding
the adjustment of the orbits of 〈x〉. We are now in a position to deal with the
case of single p-cycles.

Proof of Theorem 1.2. When p = 3 the result is clear, so assume p ≥ 5. Let
t = (1, 2, . . . , p) be our base point, and let x ∈ X . Suppose that t and x
are disjoint cycles. Then by Proposition 3.6, d(t, x) ≤ 2. So we may assume
|supp(t) ∪ supp(x)| < 2p.

Write y = x−1. Clearly y is adjacent to x in Cp′(G, X), but suppose t and
y are not adjacent. Then we must have ty = σµ, where σ is a p-cycle disjoint
from µ, a product of cycles of length less than p.

Suppose we have supp(t) = supp(σ). Then we claim that supp(t) = supp(y).
Indeed, suppose not. Then since supp(y) = supp(x−1) = supp(x), and supp(x)∩
supp(t) 6= ∅, there exists α ∈ supp(y) such that α /∈ supp(t) but αy ∈ supp(t).
Then αty = αy ∈ supp(t) = supp(σ), and since σ and µ are disjoint, this implies
that αty is fixed by µ. We therefore have

α = (αty)y−1t−1

= (αty)µ−1σ−1

= (αty)σ−1

,

and hence α ∈ supp(σ) = supp(t), a contradiction, and the claim holds. Now
Theorem 3.4 tells us that d(t, x) ≤ 2.

So let β ∈ supp(y) ∩ supp(σ). Suppose there exist distinct γ, δ ∈ supp(y)
such that γ, δ /∈ supp(σ). Then we may apply Lemma 3.7(i) or (ii) to obtain
z ∈ X such that tz contains a cycle of length greater than p. Hence t and z are
adjacent in Cp′(G, X). But 〈z〉 and 〈x〉 have the same orbits, and at least one
element of the p-cycle of x is fixed by zx (since x = y−1, and z was obtained
from y by changing the images of at most three points). Hence z is also adjacent
to x. Thus d(t, x) ≤ 2 in this case.

Now suppose γ ∈ supp(y) is the only such point for which γ /∈ supp(σ).
Then we may apply Lemma 3.7 to obtain z such that |Otz(γ)| > |Oty(γ)|.
Furthermore, by Lemma 3.7(iii) we have enough freedom of choice in choosing
z to ensure that |Otz(γ)| 6= p. Hence t and z are adjacent, as are z and x.
Therefore d(t, x) ≤ 2 in this final case, and the proof is complete.
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Corollary 3.8. Let G = Sym(n), where n ≥ 4, with X the conjugacy class of
a p-cycle, where p ≥ 3 is prime. Suppose t, x ∈ X are adjacent in Cp′(G, X).
Then there exists z ∈ X such that d(t, z) = 1 and d(z, x) = 1.

Proof. Set y = x−1. If y is adjacent to t then clearly we may let z = y.
Otherwise we may argue as in the proof of Theorem 1.2 to find a suitable z, by
adjusting y using Lemma 3.7.

When addressing the case of products of pairwise disjoint p-cycles, we wish
to decompose elements into pieces which are in some sense minimal, and thus
easier to work with. This motivates what follows.

Definition 3.9. Let G = Sym(n), with x, y ∈ G elements of order of prime
order p, not necessarily G-conjugate. Write x = x1x2 · · ·xr and y = y1y2 · · · ys

as products of pairwise disjoint p-cycles, and denote by A the set of non-trivial
orbits of 〈x〉 and 〈y〉. We say the pair (x, y) is disentangled if we can write
A = B ∪ C, where B and C are nonempty subsets of A such that

(

⋃

b∈B

b

)

∩
(

⋃

c∈C

c

)

= ∅.

If this is not possible we say (x, y) is tangled.
If we allow the ‘empty permutation’, which we denote by (∅), then for every

pair (x, y) there exists a decomposition x = x(1) · · ·x(k), y = y(1) · · · y(k) such
that each pair (x(i), y(i)) is tangled.

To illustrate the above we give some examples. Suppose that G = Sym(30),
and let

x = (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)(11, 12, 13, 14, 15)(16, 17, 18, 19, 20)

and

y = (1, 3, 6, 8, 21)(2, 9, 10, 23, 28)(11, 22, 12, 14, 16)(18, 29, 19, 26, 27).

Then (x, y) is disentangled, with decomposition

i x(i) y(i)

1 (1, 2, 3, 4, 5)(6, 7, 8, 9, 10) (1, 3, 6, 8, 21)(2, 9, 10, 23, 28)
2 (11, 12, 13, 14, 15)(16, 17, 18, 19, 20) (11, 22, 13, 14, 16)(18, 29, 19, 26, 27)

Now let
y = (1, 7, 4, 12, 15)(26, 28, 22, 30, 29).

Then (x, y) is again disentangled, with decomposition

i x(i) y(i)

1 (1, 2, 3, 4, 5)(6, 7, 8, 9, 10)(11, 12, 13, 14, 15) (1, 7, 4, 12, 15)
2 (16, 17, 18, 19, 20) (∅)
3 (∅) (26, 28, 22, 30, 29)
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Lemma 3.10. Let G = Sym(Ω), and let x, y ∈ G be elements of order p ≥ 3
such that (x, y) is tangled. Let |supp(x) ∪ supp(y)| = m, and suppose that xy is
not an m-cycle. Then for any cycle σ in the product xy, we may find a cycle ρ
of either x or y with α, β ∈ supp(ρ) such that α ∈ supp(σ) but β /∈ supp(σ).

Proof. First we write x and y as products of pairwise disjoint cycles, thus x =
x1x2 . . . xs and y = y1y2 . . . yr. For a contradiction suppose the result does not
hold for some cycle σ of xy. Then if O is any orbit of 〈x〉 or 〈y〉, then either
O is disjoint from supp(σ), or O ⊆ supp(σ). Thus if A is the set of orbits of
〈x〉 and 〈y〉, then we may write A = B ∪ C, where B is the set of orbits which
lie in supp(σ) and C = A \ B. Clearly B is nonempty and, since xy is not an
m-cycle, C must also be nonempty. Since by the above observation we have

(

⋃

b∈B

b

)

∩
(

⋃

c∈C

c

)

= ∅,

this implies the pair (x, y) is disentangled, which is the desired contradiction.

We now begin our attack on Theorem 1.3 and Theorem 1.4, and work under
the following hypothesis:

Hyposthesis 3.11. Let G = Sym(n), with x, y ∈ G such that x = x1x2 . . . xr

and y = y1y2 . . . ys are products of pairwise disjoint p-cycles, where p ≥ 7 is an
odd prime. Furthermore, suppose that (x, y) is tangled, and that r, s <

√
p.

Lemma 3.12. Suppose Hypothesis 3.11 holds, and additionally that |supp(x)∪
supp(y)| = kp for some k ∈ N, and that xy is a kp-cycle. Then there exist
elements x′ ∈ xG, y′ ∈ yG such that 〈x〉 and 〈x′〉 have the same orbits on Ω, 〈y〉
and 〈y′〉 have the same orbits on Ω, and the order of the product x′y′ is coprime
to p.

Proof. We first show that since r, s <
√

p, (x, y) is tangled and |supp(x) ∪
supp(y)| = kp, there must exist cycles λx, λy, of x and y respectively, with
|supp(λx) ∩ supp(λy)| ≥ 2. For suppose this is not the case. Then

|supp(x) ∪ supp(y)| ≥ rp + sp − sr > (r + s)p −√
p · √p = (r + s − 1)p.

On the other hand, again since (x, y) is tangled, we have that

|supp(x) ∪ supp(y)| < (r + s)p.

However, by assumption, |supp(x) ∪ supp(y)| is a multiple of p, so this is a
contradiction. Therefore we may choose α, β ∈ supp(λx)∩supp(λy) with α 6= β.
We may write

λx = (δ1, α, δ3, . . . , δ, β, δk+2, . . .).

Then we construct an element x′ ∈ xG, containing a cycle λx′ , by adjusting the
position of β in the cycle λx so that β = αλx′ (if this is already the case, we set
x′ = x). So

λx′ = (δ1, α, β, δ3, . . . , δ, δk+2, . . .).
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We now show that

(3.1) when considered as an element of Sym(supp(x) ∪ supp(y)), x′y is either a
single cycle or a product of exactly three cycles.

Firstly, note that if x = x′, then x′y = xy is already a single kp-cycle, so
assume that this is not the case. Then we have changed the image under λx of
exactly three elements, namely α, β and δ. So all but these three elements in
supp(x′y) will have the same image under x′y as under xy. In view of this, x′y
cannot be a product of more than three cycles. Suppose αxy = γ1, βxy = γ2

and δxy = γ3. We can therefore write either

(3.1.1) xy = (α, γ1, . . . , β, γ2, . . . , δ, γ3, . . .), or

(3.1.2) xy = (α, γ1, . . . , δ, γ3, . . . , β, γ2, . . .).

(Note that it might be the case that {α, β, δ} ∩ {γ1, γ2, γ3} 6= ∅).
Since in both (3.1.1) and (3.1.2) we have δx = β and δxy = γ3, it must be

that βy = γ3. Now, as αx′

= β, we deduce that αx′y = γ3. Consequently, we
must have βx′y = γ1 and δx′y = γ2. Hence if (3.1.1) holds we have

x′y = (α, γ3, . . .)(δ, γ2, . . .)(β, γ1, . . .).

On the other hand, if xy is as in (3.1.2), we see that

x′y = (α, γ2, . . . , β, γ1, . . . , δ, γ3, . . .).

Thus (3.1) holds.
Now we construct an element y′ ∈ yG by adjusting the position of β in the

cycle λy so that α = βλy′ . If this is already the case, we set y′ = y (note that
if we set x = x′ above, then it cannot be the case that y = y′, since this would
imply that α and β are fixed points of xy, which contradicts their lying in the
kp-cycle of xy). We may write

λy = (ǫ1, α, ǫ3, . . . , ǫl, β, ǫ, . . .)

and
λy′ = (ǫ1, β, α, ǫ3, . . . , ǫl, ǫ, . . .).

Next, we show that

(3.2) when considered as an element of Sym(supp(x) ∪ supp(y)), x′y′ is a prod-
uct of exactly three cycles.

If x′y is a single cycle, then a similar argument to that above shows that x′y′

is either a single cycle, or a product of exactly three cycles. But α is fixed by
x′y′, so x′y′ cannot be a single cycle, and hence the result holds in this case.
We may therefore assume that x′y is a product of exactly three cycles.
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In our rearrangement of λy we have changed the preimage under λy of exactly

three elements, which are α, β and ǫ. Suppose that ζx′y
1 = α, ζx′y

2 = β and

ζx′y
3 = ǫ. We may write

x′y = (ζ1, α, γ3, . . .)(δ, γ2, . . .)(ζ2, β, γ1, . . .).

As a consequence of our rearrangement, the images of ζ1, ζ2, and ζ3 are also

changed under x′y′. As ζx′y
3 = ǫ, and βy = ǫ, we must have that ζx′

3 = β.

Since βy′

= α we have that ζx′y′

3 = α, but α is fixed by x′y′, so it must be that

ζ3 = α. Consequently, ǫ = γ3, ζx′y′

1 = β and ζx′y′

2 = ǫ. Since only three elements
of supp(x′y) have different images under x′y′ than under x′y, we deduce that

x′y′ = (α)(ζ1, β, γ1, . . . , ζ2, ǫ, . . .)(δ, γ2, . . .).

This proves (3.2).
Thus, when considered as an element of Sym(supp(x) ∪ supp(y)), x′y′ is a

product of exactly three cycles, one of which is a 1-cycle. If p does not divide the
length of either of the other cycles, then x′ and y′ satisfy the conclusions of the
lemma. So suppose σwp is a cycle of x′y′ of length wp where 1 ≤ w < k, and let ρ
be the remaining non-trivial cycle of x′y′. Note that since |supp(x)∪supp(y)| =
kp, this means that p cannot divide the length of the cycle ρ. Since (x, y), and
hence (x′, y′), is tangled, and x′y′ is not a kp-cycle, we may apply Lemma 3.10
to see that there exists some cycle λ of either x′ or y′ with µ, ν ∈ supp(λ) such
that µ ∈ supp(σwp) but ν /∈ supp(σwp).

Without loss of generality suppose λ is a cycle of y′, and suppose we may
choose ν so that ν 6= α. Then since Ox′y′(µ) ∪ Ox′y′(ν) covers all of supp(x) ∪
supp(y) except α, and supp(y′) = supp(y), we have

|Oy′(µ) ∩ (Ox′y′(µ) ∪ Ox′y′(ν))| ≥ p − 1.

Now apply Lemma 3.7(ii) to construct an element y′′ such that |Ox′y′′(µ)| >
|Ox′y′(µ)|. This will ensure coprimality, unless the element y′′ which we con-
struct yields x′y′′ with |Ox′y′′(µ)| = up or |Ox′y′′(ν′)| = vp, where 1 ≤ u, v ≤
k − 1, and ν′ lies in the other cycle of x′y′ whose length has been adjusted by
applying Lemma 3.7(ii). Since, by assumption, we are already in the situation
where |Ox′y′(µ)| = wp, and applying Lemma 3.7 adjusts the length of this orbit,
we deduce that there are 2k − 3 possible problem cases.

By Lemma 3.7(iii) we have at least p − 3 choices of y′′ which yield distinct
values of c such that |Ox′y′′(µ)| = |Ox′y′(µ)| + c. Since (x, y) is tangled (so x
and y are not disjoint), 2k − 3 ≤ 2(r + s − 1) − 3. When p ≥ 17 then 4 <

√
p,

and since r, s <
√

p we have

2(r + s − 1) − 3 < 4
√

p − 5 < p − 3.

The number of problem cases is therefore fewer than the number of possibilities
for c, so we may choose y′′ to ensure coprimality. When p = 7, 11 or 13, we may
explicitly count the number of problem cases as at most 3, 7 and 7 respectively,
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which are less than p − 3 in each case. So again we may choose y′′ to ensure
coprimality.

On the other hand, it may be the case that we are forced to take ν = α.
However, we then apply Lemma 3.7(ii) to adjust the lengths of Ox′y′(µ) and
Ox′y′(α), and again use Lemma 3.7(iii) in a similar way to that above to show
we can ensure coprimality.

We now drop our assumptions on the size of supp(x) ∪ supp(y) and cycle
type of xy.

Lemma 3.13. Suppose Hyposthesis 3.11 holds. Then there exists elements
x′ ∈ xG, y′ ∈ yG such that 〈x′〉, respectively 〈y′〉, has the same orbits on Ω as
〈x〉, respectively 〈y〉, and the product x′y′ has order coprime to p.

Proof. If xy has order coprime to p, then clearly setting x′ = x, y′ = y satisfies
the lemma, so assume this is not the case. As in the proof of Lemma 3.12 we
consider xy as an element of Sym(supp(x) ∪ supp(y)). Firstly, suppose that

xy = σkp

∏l
i=1 ρi, where σkp is a cycle of length kp, and ρ1, . . . , ρl are cycles

of length coprime to p (possibly 1-cycles). If no such ρi exist, then xy is a
kp-cycle and |supp(x) ∪ supp(y)| = kp, so we may apply Lemma 3.12 to obtain
suitable elements x′ and y′. Thus we may assume there is at least one ρi. By
Lemma 3.10 there exists a cycle λ of either x or y, with α, β ∈ supp(λ) such
that α ∈ supp(σkp) and β /∈ supp(σkp). Without loss of generality we suppose
that λ is a cycle of y, and that β ∈ supp(ρ1).

We now apply Lemma 3.7(i) (if possible) to increase the length of σkp by
‘merging’ it with some of the ρi, and we do this as many times as we can until it
becomes impossible to apply (i). We therefore get an element y′ such that either
xy′ is a single cycle, or all elements of λ which do not lie in Oxy′(α) lie in only
one other orbit of 〈xy′〉, which without loss we assume to be Oxy′(β). In the case
where xy′ is a single cycle, we either have coprimality, or if p divides this cycle
length we may apply Lemma 3.12 to establish the result. In the latter case we
either have coprimality, or at least one of |Oxy′(α)| and |Oxy′(β)| is divisible by
p. Notice that |Oy′(α)∩ (Oxy′(α)∪Oxy′(β))| = p. We now apply Lemma 3.7(ii)
to adjust the lengths of these two cycles of xy′. Note that no other cycles of xy′

are affected by this. This will ensure coprimality unless the element y′′ which
we construct yields product xy′′ with |Oxy′′(α)| = up or |Oxy′′(γ)| = vp, where
1 ≤ u, v < (r + s), and Oxy′′(γ) is the other orbit whose length we affect. By
Lemma 3.7(iii) we have at least (p− 1)(p− 2)/2 choices of element y′′ for which
|Oxy′′(α)| = |Oxy′(α)| + cy′′ (where cy′′ depends on our choice of y′′, with at
least p − 2 distinct possibilities).

Suppose that both |Oxy′(α)| and |Oxy′(β)| are divisible by p. Then if we
construct y′′ so that |Oxy′′(α)| is a mutiple of p, then |Oxy′′(γ)| must also be a
multiple of p. Since we have assumed that we start with |Oxy′(α)| a multiple
of p, there are (r + s − 1) − 1 = r + s − 2 problem cases in this situation. But
for p ≥ 7, r + s − 2 < p − 2, so we can choose y′′ so that neither |Oxy′′(α)| nor
|Oxy′′(γ)| is divisible by p, thus ensuring coprimality.
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Now suppose that only one of |Oxy′(α)| and |Oxy′(β)| is divisible by p. With-
out loss we assume that |Oxy′(α)| = wp for some w ∈ N, and that |Oxy′(β)| = l
where l ∈ N is coprime to p. When applying Lemma 3.7(ii), we will ensure
coprimality unless c = ap or c = b(p − l), where there are at most r + s − 1
possibilities each for a, b ∈ N. There are a possible 2(r+s−1)−1 = 2(r+s)−3
problem cases here. Let {c1, c2, . . . , cp−2} be a set of p − 2 distinct values of c
we can guarantee by Lemma 3.7(iii), ordered so that ci > cj when i > j, and
suppose that for each i either ci = ap for some a or ci = b(p − l) for some b.
Since r + s− 1 < p− 2, it must be the case that {c1, c2, . . . , cp−2} includes both
a multiple of p and a multiple of p − l. But since p and p − l are coprime, and
by Lemma 3.7(iii) the set of possible values for c is

{ci − cj | 0 ≤ j < i ≤ p − 2},

we see there must in fact be at least 2p− 5 distinct choices for c, which ensures
coprimality.

Now suppose that xy = σ1 . . . σm

∏l

i=1 ρi, where σ1, . . . , σm are cycles with
lengths divisible by p, and m ≥ 2. By Lemma 3.10 there exists a cycle λ of
either x or y, with α, β ∈ supp(λ) such that α ∈ supp(σ1) and β /∈ supp(σ1).
Without loss of generality we suppose that λ is a cycle of y. As in the previous
case we apply Lemma 3.7(i) (if possible) to increase the length of σ1. Again, we
do this multiple times until it becomes impossible to apply Lemma 3.7(i). Then
we get an element y′ such that either the number of cycles with length divisible
by p in xy′ is less than the number in xy, or all elements of λ which do not
lie in Oxy′(α) lie in only one other orbit of xy′, which without loss we assume
to be Oxy′(β). In the former case, by induction the lemma holds for the pair
(x, y′). But since 〈y〉 and 〈y′〉 have the same orbits on Ω, this implies that the
lemma also holds for (x, y). In the latter case, then as previously we may apply
Lemma 3.7(ii) to adjust the lengths of Oxy′(α) and a subsequent orbit Oxy′(γ).
Lemma 3.7(iii) tells us that we can construct an element y′′ such that for xy′′

neither |Oxy′′(α)| nor |Oxy′′(γ)| is divisible by p. Thus the number of cycles of
xy′′ with length divisible by p is less than that of xy. By induction the lemma
holds for (x, y′′), whence it also holds for (x, y).

Lemma 3.14. Let (x, y) be a tangled pair, with x, y 6= (∅), and suppose that
x contains more p-cycles than y. Then there exists a cycle λ of x such that
(xλ−1, y) is still a tangled pair.

Proof. Since (x, y) is tangled, and x contains more cycles than y, there must
exist cycles λ and ρ of x such that for every cycle of y with which λ has a non-
empty intersection, ρ also has a non-empty intersection. But now if (xλ−1, y)
were disentangled, then (x, y) would also be disentangled, a contradiction. Thus
(xλ−1, y) is tangled.

We have reached the point where we can prove Theorem 1.3, which we now
restate.

23



Theorem 3.15. Suppose that G = Sym(n) and X is the G-conjugacy class
of elements of cycle type pr, where p is an odd prime. If r <

√
p, then

Diam(Cp′(G, X)) ≤ 5.

Proof. When p = 3 we must have r = 1, so we may apply Theorem 1.2 to
see that Diam(C3′(G, X)) ≤ 2, where X is the unique G-conjugacy class of 3-
cycles. Now suppose that p = 5, so r = 1 or 2. When r = 1 we can again
apply Theorem 1.2 to show the result holds in this case. Assume then that
r = 2. Let t ∈ X be our base point, and let x ∈ X , where X = tG. Clearly we
have 10 ≤ |supp(t) ∪ supp(x)| ≤ 20. Using Magma [8] and the class structure
constants described in Section 2, it is straightforward to verify that for 10 ≤
m ≤ 20, Diam(C5′(Sym(m), X ′) = 2, where X ′ is the Sym(m)-conjugacy class of
elements with cycle type 52. (This is done by calculating that |∆1(t)| > |X ′|/2
in each case, and applying Lemma 2.1). Consequently there exists a path of
length 2 between t and x in C5′(G, X).

We may therefore proceed on the assumption that p ≥ 7. Assume t =
t1 . . . tk, x = x1 . . . xk is a decomposition of (t, x) into tangled pairs. Note that
some of these pairs may be of the form (ti, (∅)) or ((∅), xi). Suppose there are
m1 such pairs (ti, (∅)) and m2 such pairs ((∅), xi), and without loss of generality
assume that m2 ≥ m1. By pairing up such cycles, we can get m1 pairs (ti, xj)
of disjoint p-cycles, which leaves us with m2 −m1 cycles xj which have not yet
been paired up. Note that the support of any one of these cycles intersects in
the empty set with the remainder of the support of t and x. For each such xj ,
choose a tangled pair (ti, xi) for which ti has more cycles than xi (such a pair
must exist since t and x have the same cycle type), and remove a cycle σ from ti
in such a way that (tiσ

−1, xi) remains tangled (this is possible by Lemma 3.14).
Thus (σ, xj) is a pair of disjoint p-cycles. In this way we get a new decomposition
t = t1 . . . tltl+1 . . . tv, x = x1 . . . xlxl+1 . . . xv of (t, x), where (ti, xi) is tangled
for 1 ≤ i ≤ l and consists of two disjoint p-cycles for l + 1 ≤ i ≤ v.

By Lemma 3.13, for each tangled pair (ti, xi) there exist elements t′i, x′
i

such that 〈t′i〉, respectively 〈x′
i〉, has the same orbits on Ω as 〈ti〉, respectively

〈xi〉, and for which the product t′ix
′
i has order coprime to p. By Theorem 1.2

the distance between such elements ti and t′i in the relevant coprimality graph
of Sym(supp(ti)) is at most 2, and using Corollary 3.8 if necessary there is a
path of length exactly 2. Also, for the disjoint pairs (tj , xj), Proposition 3.6
implies the existence of a p-cycle yj adjacent to both in the relevant coprimality
graph of Sym(supp(tj)∪ supp(xj)). Let t′ = t′1 . . . t′lxl+1 . . . xv. Since the cycles
xl+1, . . . , xv are disjoint from t, this element has cycle type pr, and so lies
in X . Also, by the above observations, d(t, t′) ≤ 2 in Cp′(G, X). Now let
x′ = x′

1 . . . x′
lx

−1
l+1 . . . x−1

v . This is adjacent to t′ in Cp′(G, X), and now using
Theorem 1.2 and Corollary 3.8 if necessary we see that d(x′, x) ≤ 2. We therefore
have a path of length at most 5 between t and x. Thus Diam(Cp′(G, X)) ≤ 5.

Now let X be the G-conjugacy class of elements with cycle type pr, where
p ≥ 5. Write r = 2m or r = 2m + 1 if r is even or odd respectively. For z ∈ X ,
after fixing a left-to-right ordering of the disjoint cycles of z, denote by Λz the
support of the first m cycles, and by Φz the support of the remaining cycles.
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Lemma 3.16. Let t, x ∈ X. Then there exists an element y ∈ X such that
Λt ∪ Λy is disjoint from Φt ∪ Φy, and d(x, y) = 1 in Cp′(G, X).

Proof. Let

x = (x1,1, . . . , x1,p)(x2,1, . . . , x2,p) . . . (xr,1, . . . , xr,p).

Then set

y = x−1 = (x1,p, . . . , x1,1)(x2,p, . . . , x2,1) . . . (xr,p, . . . , xr,1).

Fix an ordering of the cycles of t. Choose m cycles of y such that the intersection
of the support of these cycles with Λ = Λt is as large as possible. Without loss
of generality we assume y is labelled so that these cycles are y1, . . . , ym.

We wish to rearrange the elements of supp(y) and the cycles of y to get an
element y′ ∈ X , such that d(x, y′) = 1, and the support of the first m cycles of
y′ contains only Λ and elements of fix(t). Let

Ψ = supp(y) ∩ fix(t),

and let l = |Λ ∩ supp(y)|. Reading y from left to right, collect the first mp − l
elements which lie in Ψ into a set Σ′. We now define

Σ = (Λ ∩ supp(y)) ∪ Σ′.

We aim to have the support of the first m cycles of y′ equal to Σ, which will
ensure y′ satisfies the first requirement of the lemma.

(3.3) For each cycle y1, . . . , ym at least one element lies in Σ.

For a contradiction suppose some cycle yi does not contain an element of Σ.
If an element of Λ lies in any cycle ym+1, . . . , yr, then swapping this cycle with
yi contradicts our choice of the first m cycles of y. The only other possibility is
that

supp(yi) ∪ supp(ym+1) ∪ . . . ∪ supp(yr) ⊆ supp(tm+1) ∪ . . . ∪ supp(tr)

which is a contradiction since the cycles of y are disjoint. This proves (3.3).
Suppose there is some cycle yj of y, where j > m, and supp(yj) ⊆ Σ. We

then choose a cycle yi, i ≤ m, where supp(yi) 6⊆ Σ (such a cycle certainly exists,
since |Σ| = mp), and swap the positions of these cycles in y. We do similarly for
all such cycles. Therefore by (3.3), after the reordering of cycles, and possible
cyclic reordering within individual cycles, we may assume without loss that,
reading from left to right, the first elements of the first m cycles of y lie in Σ,
while the last elements of the remaining cycles of y lie outside Σ. We now fix
this expression for y, so we do not allow any further reordering of cycles, or of
elements within cycles.

Set y = y(1). Reading y(1) from left to right, take the first element of Λy(1)

which does not lie in Σ, and the first element of Φy(1) which does lie in Σ, and
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swap these to get an element y(2). Now, reading y(2) from left to right, take the
first element of Λy(2) which does not lie in Σ, and the first element of Φy(2) which

does lie in Σ, and swap these to get an element y(3), and so on. Continuing in
this fashion, we will eventually get an element y′ = y(q) where Λy(q) = Σ.

We must now show that d(x, y′) = 1. We claim that any cycle of xy′ has
length at most 3. Suppose αk is an element of some cycle of xy′ which also
lies in the cycle α of x. Let x be labelled so that it acts in the standard way
on the indices {1, . . . , k}, so αix = αi+1 (modulo p). Since y = x−1, we have
αiy = αi−1.

Suppose that αk+1 has been swapped (so k 6= p − 1) with an element βs+1

of some cycle β of x. Note our expression for y ensures that s 6= 0. Now βs may
also have been swapped, but since we read from left to right and βs comes after
βs+1 in y, this swap must have been with some element to the right of αk+1

in y. If this element is αk, then clearly αk is fixed by xy′. So suppose it is a
different element γu from a cycle γ, another of the first m cycles of y (note the
possibility that γ = α). By our expression for y, u 6= p. But now γu+1 cannot
have been swapped, since if it were it would have to be with an element between
βs and βs+1, a contradiction. Similarly, αk also cannot be swapped. We thus
have

y′ = . . . (. . . , βs+1, αk, . . .) . . . (. . . , γu+1, βs, . . .) . . . (. . . , αk+1, γu, . . .) . . . ,

(where only the relevant cycles of y′ are shown). So αk is contained in a 3-cycle,
namely (αk, γu, βs).

It is of course possible that not all elements in the above description have
been swapped. However, by similar reasoning to that above, the effect of any
non-swapping either gives another 3-cycle or decreases the length of the cycle
containing αk. Thus the length of any cycle in zy′ is at most 3. Since p > 3
this shows that d(x, y′) = 1, and completes the proof of the lemma.

Finally, with Lemma 3.16 to hand, we may prove Theorem 1.4, which, again
for the reader’s convenience, we restate.

Theorem 3.17. Suppose that G = Sym(n) and X is the G-conjugacy class of
elements of cycle type pr, where p ≥ 5 is prime. Let k be the least non-negative
integer such that r/2k ≤ ⌊√p⌋. Then Diam(Cp′(G, X)) ≤ 5 + k.

Proof. When r ≤ ⌊√p⌋ we have k = 0, and the result holds by Theorem 1.3. So
suppose r > ⌊√p⌋, and let t, x ∈ X . Write r = 2m or r = 2m + 1 if r is even or
odd respectively. By Lemma 3.16 there exists an element y such that d(x, y) = 1,
and we can write t = t1t2, y = y1y2, where t1, y1 have cycle type pm, t2, y2 have
cycle type pm or pm+1, and the support Λ of t1 and y1 is disjoint from the support
Φ of t2 and y2. If r = 2m, then since r/2k ≤ ⌊√p⌋, we have m/2k−1 ≤ ⌊√p⌋.
Furthermore, if r = 2m + 1, it is also the case that (m + 1)/2k−1 ≤ ⌊√p⌋.
Indeed, since (2m+1)/2k ≤ ⌊√p⌋ we have 2m+1 ≤ 2k⌊√p⌋. But since 2k⌊√p⌋
is even, this implies that 2m + 2 ≤ 2k⌊√p⌋, whence (m + 1)/2k−1 ≤ ⌊√p⌋.
Therefore, by induction there exist paths of length at most 5 + (k − 1) in the
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relevant coprimality graphs of Sym(Λ) and Sym(Φ). Since Λ and Φ are disjoint,
the products of elements from these paths are elements of X . We therefore have
a path of length at most 5 + (k − 1) + 1 from t to x, as required.

4 Connectedness of Cπ(G, X)

As promised, in this short section we prove Theorem 1.1, which we restate.

Theorem 4.1. Suppose that G = Sym(n) and that x is an element of order p,
p a prime. Let X be the G-conjugacy class of x. Then Cp′(G, X) is connected
unless n = 4 and x has cycle type 22.

Proof. Let t ∈ X be such that t = t1t2 · · · tr, where ti is the p-cycle

((i − 1)p + 1, (i − 1)p + 2, . . . , ip)

for i = 1, . . . , r. Also O1,O2, . . . ,Or will denote the orbits of 〈t〉 on Ω of length
p. So

Oi = {(i − 1)p + 1, (i − 1)p + 2, . . . , ip}.
Set Φ =

⋃r

i=1 Oi and Λ = Ω \ Φ. Let Y denote the connected component
of t in Cp′(G, X), and set K = StabG(Y ). By Theorem 2.2 the local fusion
graph F(G, X) is connected for n ≥ 5, and by checking the cases n < 5 we
see the theorem holds for p = 2. So we may suppose p is odd. Let x ∈ X .
If 〈x〉 has the same orbits on Ω as 〈t〉, then x ∈ Y by Theorem 1.2. Let H
denote the stabilizer in G of the partition of Ω given by the orbits of 〈t〉. We
note that H = J × L, where J ∼= Sym(p) ≀ Sym(r) (with the base group being
Sym(O1) × · · · × Sym(Or)) and L = Sym(Λ). Thus we have H ≤ K. We next
show that Sym(Φ)× Sym(Λ) ≤ K. If r = 1, then we have this immediately. So
we may suppose r ≥ 2. Let y = y1y2 · · · yr be the product of pairwise disjoint
cycles yi, where

y1 = (2, 1, p + 1, p + 2, . . . , 2p− 2),

y2 = (2p − 1, 2p, 3, 4, . . . , p)

and yj = t−1
j for j ≥ 3. So y ∈ X and

ty = (1)(2, 4, 6, . . . , p − 1, 2p− 1, 3, 5, . . .

. . . , p, p + 1, p + 3, p + 5, . . . , 2p − 2, 2p, p + 2, p + 4, . . . , 2p − 3)

which has order 2p − 1. As a result t and y are adjacent in Cp′(G, X) and we
infer that y ∈ K. Since y ∈ Sym(Φ)\J and J is a maximal subgroup of Sym(Φ),
we deduce that Sym(Φ) × Sym(Λ) ≤ K.

If Λ = ∅, then we obtain K = G whence Cp′(G, X) is connected. So we now
suppose Λ 6= ∅ and select α ∈ Λ. Consider z = z1z2 · · · zr ∈ X , where

z1 = (2, 3, . . . , p, α)
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and zj = t−1
j for j ≥ 2. Then

tz = (1, 3, 5, . . . , p − 2, p)(2, 4, . . . , p − 1, α)

which has order (p − 1)/2. So t and z are adjacent and thus z ∈ K. But
z /∈ Sym(Φ) × Sym(Λ), which is a maximal subgroup of G. Therefore K = G
and Cp′(G, X) is connected, so proving the theorem.
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