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Abstract

For an algebraically closed field F, we show that any matrix polynomial P (λ) ∈ F[λ]n×m,
n ≤ m, can be reduced to triangular form, preserving the degree and the finite and
infinite elementary divisors. We also characterize the real matrix polynomials that are
triangularizable over the real numbers and show that those that are not triangularizable
are quasi-triangularizable with diagonal blocks of sizes 1 × 1 and 2 × 2. The proofs we
present solve the structured inverse problem of building up triangular matrix polynomials
starting from lists of elementary divisors.
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1. Introduction

Let F[λ] be the ring of polynomials in one variable with coefficients in a field F.
We are concerned with the problem of reducing over F[λ] (when possible) a matrix

polynomial P (λ) =
∑`
j=0 λ

jAj ∈ F[λ]n×m with A` 6= 0, to triangular or trapezoidal
form preserving its degree ` and eigenstructure. If such a reduction exists then P (λ) is
said to be triangularizable. By the eigenstructure of a matrix polynomial it is meant the
eigenvalues and their partial multiplicities or, equivalently, the elementary divisors (or
invariant factors) of the matrix polynomial, including those at infinity.

We show that when F is algebraically closed, any P (λ) ∈ F[λ]n×m with n ≤ m is tri-
angularizable, thereby extending an earlier but little-known result by Gohberg, Lancaster
and Rodman for square monic matrix polynomials with complex coefficient matrices [3,
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proof of Thm. 1.7]. Over the real numbers, however, not all matrix polynomials are
triangularizable. We characterize those that are triangularizable and show that the real
matrix polynomials that are not triangularizable over R[λ] are quasi-triangularizable with
diagonal blocks of size 2 × 2 and 1 × 1. Our results hold for n ×m real matrix polyno-
mials with n ≤ m and extend in a non trivial way some recent results by Tisseur and
Zaballa for square regular (i.e., detP (λ) 6≡ 0) quadratic matrix polynomials [10]. Our
proofs concerning the reduction to triangular and quasi-triangular forms are constructive
provided that the elementary divisors (finite and at infinity) of the original matrix P (λ)
are available. Since this is the only information that are used, we are solving an inverse
problem: given a list of scalar polynomials, determine under what conditions they can
be the elementary divisors (finite and at infinity) of a real or complex triangular matrix
polynomial of fixed degree and, in that case, design a constructive procedure to obtain
it.

The paper is organized as follows. In Section 2 we review basic materials used in
the proofs of our main results. These include the Smith form, Möbius transforms, ma-
jorization of sequences of real numbers and conjugate sequences. Section 3 is concerned
with the triangularization of matrix polynomials over algebraically closed fields and Sec-
tion 4 treats the case of real matrix polynomials. In Section 5 the inverse polynomial
problems solved in the previous sections are identified and the case of self-adjoint matrix
polynomials is considered.

2. Background material

A matrix polynomial P (λ) ∈ F[λ]n×m is an n × m matrix with entries in F[λ], or
equivalently, a polynomial with coefficient matrices,

P (λ) = λ`A` + · · ·+ λA1 +A0, Aj ∈ Fn×m. (1)

We assume that A` 6= 0 and so the number ` is the degree of P (λ).
A matrix polynomial P (λ) is regular if it is square and its determinant is not iden-

tically zero and singular otherwise. The rank (also called normal rank) of a matrix
polynomial P (λ) is the order of the largest nonzero minor of P (λ). We recall that a
minor of order k of P (λ) is the determinant of a k × k submatrix of P (λ).

2.1. Smith form, partial multiplicity sequence and strong equivalence

A matrix polynomial is called unimodular if it is square and its determinant is a
nonzero constant polynomial. Any P (λ) ∈ F[λ]n×m can be transformed to the canonical
form

D(λ) =


d1

. . . 0r,m−r
dr

0n−r,r 0n−r,m−r

 = U(λ)P (λ)V (λ), (2)

where U(λ) ∈ F[λ]n×n, V (λ) ∈ F[λ]m×m are unimodular, r = rankP (λ) and d1| · · · |dr
are monic polynomials. Here, “|” stands for divisibility, thus dj |dj+1 means that dj is a
divisor of dj+1. The diagonal matrix D(λ) in (2) is called the Smith form of P (λ) and
it is unique. The nonzero scalar polynomials dj on the diagonal of D(λ) are called the
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invariant factors of P (λ). They can be decomposed into irreducible factors over F[λ] as
follows [1, Chap. VI, §3]:

d1 = φm11
1 . . . φm1s

s ,
d2 = φm21

1 . . . φm2s
s ,

...
...

dr = φmr1
1 . . . φmrs

s ,

(3)

where the φi are distinct monic polynomials irreducible over F[λ], and

0 ≤ m1j ≤ m2j ≤ · · · ≤ mrj , j = 1: s, (4)

are nonnegative integers. The factors φ
mij

j with mij > 0 are the finite elementary divisors
of P (λ) with partial multiplicity mij . Notice that when F = C, φj = λ− λj is linear and
when F = R, φj is either linear or quadratic.

We denote by F the algebraic closure of F. A finite eigenvalue of a P (λ) with rank r
is any scalar λ0 ∈ F such that rankP (λ0) < r, or equivalently, a root of some elementary
divisors φj in (3). The sequence mij (i = 1: r) in (3)–(4) is called the Segre characteristic
of the eigenvalue λ0 as a root of φj . The geometric multiplicity of λ0 is the number of
nonzero mij and the algebraic multiplicity of λ0 is

∑r
i=1mij .

The elementary divisors at infinity of the matrix polynomial P (λ) in (1) are defined
as the elementary divisors of revP (λ) at 0, where

revP (λ) = λ`P
(
λ−1

)
= A0λ

` +A1λ
`−1 + · · ·+A`

is the reversal of P (λ). For a regular P (λ) ∈ F[λ]n×n of degree `, the Smith form
of P (λ) provides the algebraic multiplicity of the eigenvalues at infinity via the degree
deficiency in detP (λ), that is, `n −

∑r
j=1 deg dj but it does not display their partial

multiplicities. For singular polynomials, the Smith form does not detect the presence
of elementary divisors at infinity but if rankP (λ) = r > rank revP (0) then P (λ) has
elementary divisors at infinity.

For any λ0 ∈ F, the invariant factors di of P (λ) can be uniquely factored as

di = (λ− λ0)aipi, ai ≥ 0, pi(λ0) 6= 0.

The sequence of exponents a1, a2, . . . , ar with 0 ≤ a1 ≤ · · · ≤ ar is called the partial
multiplicity sequence of P at λ0 and is denoted by

J (P, λ0) = (a1, a2, . . . , ar).

This sequence is usually all zeros unless λ0 is an eigenvalue of P (λ). If φi(λ0) = 0 then
J (P, λ0) = (mi1, . . . ,mir) is the Segre characteristic corresponding to λ0. The partial
multiplicity sequence for λ0 =∞ is defined to be

J (P,∞) = J (rev(P ), 0).

A matrix polynomial P1(λ) ∈ F[λ]n×m is equivalent to P2(λ) ∈ F[λ]n×m if it satisfies
any one (and hence all) of the following equivalent properties.

(i) There exist unimodular matrices U(λ) ∈ F[λ]n×n and V (λ) ∈ F[λ]m×m such that
P2(λ) = U(λ)P1(λ)V (λ).
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(ii) P1(λ) and P2(λ) have the same invariant factors, or equivalently, the same finite
elementary divisors .

(iii) J (P1, λ0) = J (P2, λ0) for any λ0 ∈ F.

Moreover, P1(λ) is said to be strongly equivalent to P2(λ) if it is equivalent to P2(λ)
and J (P1,∞) = J (P2,∞). That (i) is equivalent to (ii) is shown in [1, p. 141] or [3,
Thm. S1.11], whereas (ii) equivalent to (iii) follows from the definition of J (P, λ0).

Unimodular transformations have the property that they preserve the partial mul-
tiplicities of the finite eigenvalues but not necessarily those of infinite eigenvalues as
illustrated in the following example.

Example 2.1 The regular matrix polynomial diag(1, 1, λ) has one finite elementary di-
visor at zero and two linear elementary divisors at infinity. Multiplying P (λ) on the left
by the unimodular matrix I3 + λe1e

T
2 , where ei denotes the ith column of the identity

matrix, yields

P̃ (λ) =

 1 λ 0
0 1 0
0 0 1

P (λ) =

 1 λ 0
0 1 0
0 0 λ

 ,
which is easily seen to have one finite elementary divisor at zero and one quadratic
elementary divisor at infinity with partial multiplicity two. Hence P (λ) and P̃ (λ) are
equivalent but not strongly equivalent.

2.2. Möbius transformations

To any nonsingular matrix A =
[
a
c
b
d

]
∈ F2×2 is associated a Möbius function mA :

F ∪ {∞} → F ∪ {∞} of the form

mA(z) =
az + b

cz + d
, ad− bc 6= 0,

where

mA(∞) =

{
a/c if c 6= 0,
∞ if c = 0,

mA(−d/c) =∞ if c 6= 0.

Let P (λ) =
∑`
j=0 λ

jAj ∈ F[λ]n×m with A` 6= 0, and let A =
[
a
c
b
d

]
∈ F2×2 be

nonsingular. Then the Möbius transform of P (λ) with respect to A is the n×m matrix
polynomial MA(P ) defined by

MA(P ) = (cλ+ d)`P
(
mA(λ)

)
=
∑̀
j=0

Aj(aλ+ b)j(cλ+ d)`−j . (5)

Note that the coefficient matrices of MA(P ) are simply linear combinations of those of
P (λ), so any zero structure—and in particular the triangular structure—is preserved.

Remark 2.2 For a given matrix polynomial P (λ) ∈ F[λ]n×m we will use the following
technique to prove that it is strongly equivalent to a triangular or quasi-triangular matrix
polynomial of the same degree:
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(i) If P (λ) has elementary divisors at infinity, we apply a Möbius transform to P (λ)
with Möbius function mA such that MA(P ) only has finite elementary divisors
and (MA−1 ◦MA)(P ) = P up to a product by a nonzero scalar. If P (λ) has no
eigenvalues at infinity then we take A = I2 so that MA(P ) = P .

(ii) We then show thatMA(P ) is equivalent to a triangular or quasi-triangular matrix
polynomial, T (λ) say.

Notice that MA−1(T ) is triangular or quasi-triangular according as T (λ) is triangular
or quasi-triangular, respectively. We claim that, provided that F is an infinite field, a
Möbius function always exists that satisfies the two conditions of item (i) andMA−1(T )
is strongly equivalent to P (λ). In fact, let a, c ∈ F, c 6= 0, such that a/c is not an
eigenvalue of P (λ) and take b, d ∈ F such that A =

[
a
c
b
d

]
is nonsingular. Write P (λ) as

P (λ) = Ã`(cλ− a)` + Ã`−1(cλ− a)`−1 + · · ·+ Ã1(cλ− a) + Ã0.

Given that a/c is not an eigenvalue of P (λ) it follows that rank Ã0 = rankP (a/c) =
rankP (λ). Also,

MA(P ) = Ã0(cλ+ d)` + (bc− ad)Ã1(cλ+ d)`−1 + · · ·+ (bc− ad)`Ã`

so that the leading coefficient ofMA(P ) is c`Ã0. Hence rank rev
(
MA(P )

)
(0) = rank Ã0 =

rankP (λ) andMA(P ) has no eigenvalues at infinity. Now, mA−1(z) = (−dz+b)/(cz−a)
and

MA−1

(
MA(P )

)
= (cλ− a)`

(
MA(P )

)
(mA−1(λ)) = (bc− ad)`P (λ).

This proves our claim about the existence of a Möbius function that satisfies the two
conditions of item (i) for each matrix polynomial P (λ). The second part of the claim
(that P (λ) and MA−1(T ) are strongly equivalent) is an immediate consequence of the
following result which, in turn, is a particular case of [5, Thm. 5.3].

Theorem 2.3 Let P (λ) ∈ F[λ]n×m and let A ∈ F2×2 be nonsingular such that c 6= 0
and P (a/c) 6= 0. Then, for any λ0 ∈ F ∪ {∞},

J
(
MA(P ),m−1A (λ0)

)
= J (P, λ0).

This ends Remark 2.2.

2.3. Majorization and conjugate sequence

When dealing with real matrix polynomials in Section 4 we will need the notion of
majorization of sequences of real numbers.

Recall that if a = (a1, . . . , am) and b = (b1, . . . , bm) are two sequences of real num-
bers and a[1] ≥ · · · ≥ a[m] and b[1] ≥ · · · ≥ b[m] are the given sequences arranged in
nonincreasing order then b is majorized by a (or a majorizes b) and we write b ≺ a if

j∑
i=1

b[i] ≤
j∑
i=1

a[i], j = 1:m,

with equality for j = m.
We will need the following properties of majorization.
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Lemma 2.4 (i) If (b1, . . . , bm) ≺ (a1, . . . , am) and (d1, . . . , dm) ≺ (c1, . . . , cm) then
(b1 + d1, . . . , bm + dm) ≺ (a1 + c1, . . . , am + cm) provided that a1 ≥ · · · ≥ am and
c1 ≥ · · · ≥ cm.

(ii) Let (a1, . . . , am) be a sequence of nonnegative integers and let |a| = mq + r with
0 ≤ r < m be the Euclidean division of |a| = a1 + · · ·+ am by m. Then

(q + 1, . . . , q + 1︸ ︷︷ ︸
r times

, q, . . . , q) ≺ (a1, . . . , am).

Proof. Item (i) is an immediate consequence of [9, Ch. 6, Prop. A.1.b] and item (ii) is
trivial.

Given a sequence of nonnegative integers (a1, . . . , am), its conjugate sequence is
(a∗1, . . . , a

∗
p), where

a∗i = #{j ≥ 1 : aj ≥ i}

and # stands for “cardinality of”. We denote by (a1, . . . , am)∗ the conjugate sequence of
(a1, . . . , am). Notice that although the sequence (a1, . . . , am) may be in no specific order,
its conjugate sequence (a1, . . . , am)∗ always satisfies a∗1 ≥ a∗2 ≥ · · ·. Let (m1j , . . . ,mnj)
be the Segre characteristic of an eigenvalue λj of P (λ) ∈ F[λ]n×m. Then the conjugate se-
quence (m1j , . . . ,mnj)

∗ is called the Weyr characteristic corresponding to the eigenvalue
λj .

If (a1, . . . , am) and (b1, . . . , bm) are two sequences of real numbers we will denote by
(a1, . . . , am) ∪ (b1, . . . , bm) the sequence obtained by putting together the elements of
both sequences, that is,

(a1, . . . , am) ∪ (b1, . . . , bm) = (a1, . . . , am, b1, . . . , bm).

A proof of the following lemma can be found, for example, in [4, p. 5-6].

Lemma 2.5 Let (a1, . . . , am) and (b1, . . . , bm) be sequences of nonnegative integers. Then

(a1, . . . , am) ≺ (b1, . . . , bm) ⇐⇒ (b1, . . . , bm)∗ ≺ (a1, . . . , am)∗

and if a1 ≥ · · · ≥ am and b1 ≥ · · · ≥ bm then

(a1 + b1, . . . , am + bm)∗ = (a1, . . . , am)∗ ∪ (b1, . . . , bm)∗. (6)

Let a = (a1, . . . , am) and b = (b1, . . . , bm) be sequences of nonnegative integers.
Sequence a is said to be obtained from sequence b by an elementary transformation if
the sequences are identical except for indices j and k (j < k) where aj = bj + 1 and
ak = bk − 1. The following result will be used in the proof of Lemma 4.6. An explicit
proof can be found in [6] (see also [4, p. 9] or [9, Sec. 2B]).

Lemma 2.6 Let a = (a1, . . . , am) and b = (b1, . . . , bm) be sequences of nonnegative
integers arranged in nonincreasing order (a1 ≥ a2 ≥ · · ·, b1 ≥ b2 ≥ · · ·) such that a 6= b.
Then b ≺ a if and only if b can be obtained from a by a finite number of elementary
transformations.
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3. Triangularization of matrix polynomials over algebraically closed fields

To make the text more readable, we say that a matrix is triangular if all entries (i, j)
such that i > j are zero; this includes trapezoidal matrices. We say that P (λ) ∈ F[λ]n×m

is triangularizable over F[λ] if it is strongly equivalent to a triangular matrix polynomial
T (λ) ∈ F[λ]n×m of the same degree.

We start with a deflation procedure which will be used to construct upper triangular
matrix polynomials with diagonal entries of a specified degree.

Lemma 3.1 Let d1| · · · |dn be monic polynomials with coefficients in F and define `j :=
deg dj. Assume that for a given positive integer q and a pair of indices (i, j) such that
`i ≤ q < `j, there is a polynomial s with deg s < `j such that dk−1|sdi|dk for some index

k ≤ j. Then D(λ) = diag(d1, . . . , dn) is equivalent to D̃(λ) + diek−1e
T
j , where ei denotes

the ith column of the n× n identity matrix and

D̃(λ) = diag(d1, . . . , di−1, di+1, . . . dk−1︸ ︷︷ ︸
k − 2 terms

, sdi, dk, . . . , dj−1︸ ︷︷ ︸
j − k terms

,−dj/s, dj+1, . . . , dn︸ ︷︷ ︸
n− j terms

).

Proof. We obtain D̃(λ) +diek−1e
T
j by performing the following elementary transforma-

tions on D(λ):

(i) add to column j column i multiplied by s,

(ii) add to row j row i multiplied by −dj/(sdi),
(iii) permute columns i and j,

(iv) successively interchange rows t and t+ 1 for t = i: k − 1, so that rows i, i+ 1, . . . ,
k − 2, k − 1 of the new matrix are rows i+ 1, i+ 2, . . . , k − 1 and i, respectively,
of the former one.

(v) permute columns i to k − 1 in the same way as the rows in (iv).

A version of the next result appears for F = C in the proof of a theorem by Gohberg,
Lancaster and Rodman on the inverse problem for linearizations [3, proof of Thm. 1.7].

Lemma 3.2 Let d1| · · · |dn be monic polynomials with coefficients in an algebraically
closed field F. There exists a monic triangular matrix polynomial P (λ) ∈ F[λ]n×n of
degree ` and with d1, . . ., dn as invariant factors if and only if

∑n
j=1 deg dj = `n.

Proof. The “only if” part is trivial.
Suppose that there are monic polynomials d1| · · · |dn such that

∑n
j=1 `j = `n, where

`j = deg dj and let D(λ) = diag(d1, . . . , dn).
If `1 = ` then `i = ` for i = 2:n. Hence D(λ) is a monic triangular (in fact diagonal)

matrix polynomial of degree ` and the construction is done.
If `1 < ` then `n > ` and so `1 < `1 + `n − ` < `n, then there is a monic polynomial

s of degree `n − ` such that dk−1|sd1|dk for some index k, 1 < k ≤ n. By Lemma 3.1,
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D(λ) is equivalent to

T1(λ) =



d2
. . .

dk−1
d1s · · · · · · d1

dk
...

. . .

dn−1
...

−dn/s


=

[
D1(λ) t1

0 −dn/s

]
,

where D1(λ) = diag(d2, . . . , dk−1, d1s, . . . , dn−1) = diag(d
(1)
1 , . . . , d

(1)
n−1) is in Smith form.

If degD1 > ` then we look for a new index k and a monic polynomial s1 of degree

deg d
(1)
n−1−` such that d

(1)
k−1|s1d

(1)
1 |d

(1)
k . Apply the elementary transformations of Lemma

3.1 to the whole matrix T1(λ) so that the obtained matrix has the degree ` polynomial

−d(1)n−1/s1 as the (n− 1)st diagonal entry. Notice that these elementary transformations
can modify the off-diagonal elements of the nth column of T1(λ) but the degree ` poly-
nomial −dn/s in position (n, n) remains unchanged. We repeat this deflation process
until all diagonal entries are of degree `. The resulting matrix polynomial T (λ) is upper
triangular but not necessarily monic or of degree `. We can, however, use the diago-
nal entries to eliminate off-diagonal terms of degree larger than ` − 1 in the following
way: if deg tij > ` − 1 for i < j then tij = tiibij + cij for some bij and cij such that
deg cij < deg tjj = ` or cij = 0. Then adding to the ith column of T (λ) the jth column
multiplied by −bij reduces the (i, j) entry to zero or to some polynomial with degree
strictly less than `. Note that to reduce the degree of all the off-diagonal entries of
T (λ) we must work bottom up. We then end up with a monic upper triangular matrix
polynomial of degree `.

We notice that for a given list of invariant factors d1| · · · |dn such that
∑n
j=1 deg dj =

`n, there may be more than one monic triangular matrix polynomial of degree ` having
d1, . . . , dn as invariant factors as illustrated by the following example.

Example 3.3 Let F = C and d1(λ) = 1, d2(λ) = (λ2+1)λ2 and d3(λ) = (λ2+1)λ2(λ−1)

be given. Note that d1|d2|d3 and
∑3
j=1 deg dj = 9 so that by Lemma 3.2 there is a 3× 3

monic triangular matrix polynomial T (λ) of degree 3 with d1, d2, d3 as invariant factors.
To construct T (λ) we first look for a degree deg d3 − ` = 2 polynomial s and an index k
such that dk−1|sd1|dk. We have to take k = 2 and for s we can choose either s = λ2 or
s = λ2 + 1. Both choices yield a different upper triangular cubic matrix polynomial.

• If s = λ2 then by Lemma 3.1 D(λ) = diag(d1, d2, d3) is equivalent to T1(λ) =
diag

(
λ2, (λ2+1)λ2,−(λ2+1)(λ−1)

)
+e2e

T
3 . Then we look for a degree 1 polynomial

s1 such that λ2|s1λ2|λ2(λ2 + 1). We can take either s1 = λ− i or s1 = λ+ i. The
latter choice yields

T(a)(λ) =

λ2(λ+ i) λ2 1
−λ2(λ− i) −(λ− i)

−(λ2 + 1)(λ− 1)

 .
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• The choice s = λ2 + 1 in (b) leads to

T(b)(λ) =

 (λ2 + 1)λ λ2 + 1 1
−(λ2 + 1)λ −λ

−λ2(λ− 1)

 .
Note that T(b)(λ) is real.

We are now ready to state the main result of this section, which generalizes [5, Thm. 9.3].

Theorem 3.4 For an algebraically closed field F, any P (λ) ∈ F[λ]n×m with n ≤ m is
triangularizable.

Proof. Assume P (λ) has degree ` and rank r. Since F is algebraically closed, it is
infinite and by Remark 2.2 there is a Möbius function mA induced by a nonsingular
matrix A ∈ F2×2 such that ifMA(P ) is triangularizable then P (λ) is strongly equivalent
to a degree ` triangular matrix. We will show that MA(P ) is triangularizable. By [5,
Thm. 6.6], rankMA(P ) = rankP = r. Let

D(λ) = diag(d1, . . . , dr, 0, . . . , 0) ∈ F[λ]n×m

be the Smith form of MA(P ). Because all minors of MA(P ) of order r are of degree at
most r`, and because the greatest common divisor of all such minors is invariant under
unimodular transformations ([1, p. 140],[3, Thm. S1.2]), we know that

∑r
j=1 deg dj ≤ r`.

We consider two cases.

Case 1.
∑r
j=1 deg dj = r`. By Lemma 3.2, the regular part diag(d1, . . . , dr) ∈ F[λ]r×r

of D(λ) is equivalent to an r× r upper triangular matrix polynomial of degree `. Hence
MA(P ) is triangularizable.

Case 2.
∑r
j=1 deg dj < r`. If r = m,MA(P ) is square and regular, that is,MA(P ) has

m` eigenvalues, a contradiction. Thus r < m. Starting with T̃0(λ) = diag(d1, . . . , dr) ∈
F[λ]r×r, we follow the construction in Lemma 3.2 until we reach a step, say r − k, such
that the matrix polynomial has the form

T̃r−k(λ) =



d̃1 ∗ · · · ∗

d̃2
...

. . .
...

. . .
...

. . .
...

d̃k ∗ · · · ∗
∗ · · · ∗

. . .
...
∗


, (7)

where deg d̃j < ` for j = 1: k and the ∗’s on the diagonal denote polynomials of degree
`. Now, as in the proof of Lemma 3.2, suppose we have applied an appropriate sequence
of elementary transformations to reduce the degree of the off-diagonal entries of T̃r−k(λ)
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to polynomials of degree strictly less than `. Then MA(P ) is equivalent to the upper
triangular matrix polynomial of degree `,

Tr−k(λ) =

[
T̃r−k(λ) 0r,m−r
0n−r,r 0n−r,m−r

]
.

Note that T̃r−k(λ) has a singular leading coefficient implying that rank(rev Tr−k(0)) < r.
This means that Tr−k(λ) has elementary divisors at infinity, and it is hence not strongly
equivalent to MA(P ). We now show how to remove the elementary divisors at infinity
while maintaining the upper triangular form. Note that since r < m, the last column of
Tr−k(λ) is a zero column. Thus permuting the columns according to (1, 2, . . . , n) (cycle

notation), preserves the triangular structure. Define gi through deg(λgi d̃i) = `. Using a
sequence of k right elementary operations we obtain the equivalent matrix polynomial

T (λ) =



λg1 d̃1 d̃1 ∗ · · · ∗

λg2 d̃2 d̃2
...

. . .
...

. . .
...

. . .
...

λgk−1 d̃k−1 d̃k−1 ∗ · · · ∗
λgk d̃k d̃k ∗ · · · ∗

∗ · · · ∗
. . .

...
∗

0
. . .

0



, (8)

which is still upper triangular and of degree `. It now remains to show that rev T (λ) =

λ`T ( 1
λ ) has no elementary divisor at zero. For this we write d̃i in factorized form

d̃i =

{ ∏`−gi
j=1 (λ− λij) if ` > gi,

1 otherwise

and let

ci =

{ ∏`−gi
j=1 (1− λλij) if ` > gi,

1 otherwise.
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Then

rev T (λ) =



c1 λg1c1 ∗ · · · ∗

c2 λg2c2
...

. . .
...

. . .
...

. . .
...

ck−1 λgk−1ck−1 ∗ · · · ∗
ck λgkck ∗ · · · ∗

∗ · · · ∗
. . .

...
∗

0
. . .

0



.

By construction, the polynomials represented as ∗’s on the diagonal of rev T (λ) do not an-
nihilate when evaluated at zero, and similarly, ci(0) 6= 0. Therefore rank

((
rev T

)
(0)
)

= r
and so rev T (λ) has no elementary divisors at zero. Hence, the upper triangular matrix
polynomial T (λ) in (8) is strongly equivalent to MA(P ), that is, MA(P ) is triangular-
izable.

Remark 3.5 If n > m, we cannot always triangularize; see Example 3.7. The construc-
tion fails when we can no longer guarantee that r < m, implying that we cannot permute
the nonzero part of the matrix one step to the right. However, using similar arguments,
we can in this case ensure that r < n. By permuting the nonzero part of the matrix one
step down instead of one step to the right, we can still build a matrix polynomial with
the correct elementary divisors; the matrix will have Hessenberg structure (all entries
(i, j) are zero for i+ 1 > j).

Let us illustrate Theorem 3.4 with the following example taken from [11, Ex. 1].

Example 3.6 The quadratic matrix polynomial

Q(λ) =

λ2 + λ 4λ2 + 3λ 2λ2

λ 4λ− 1 2λ− 2
λ2 − λ 4λ2 − λ 2λ2 − 2λ


has Smith form

D(λ) =

 1 −1 −1
−λ 1 + λ λ
0 −λ 1

Q(λ)

 1 −3 6
0 1 −2
0 0 1

 =

 1 0 0
0 λ− 1 0
0 0 0

 ,
and since det(Q(λ)) = det(D(λ)) ≡ 0, Q(λ) is singular. This matrix polynomial has only
one finite elementary divisor, λ − 1. Note that rank(rev Q(0)) = 1 < 2 = rankQ(λ) so
Q(λ) has elementary divisors at infinity. Now the Smith form of rev Q(λ), given by

D̃(λ) = diag(1, λ2(λ− 1), 0),
11



reveals an elementary divisors at infinity for Q(λ) with partial multiplicity 2.
As 0 is not eigenvalue of Q(λ), bearing in mind Remark 2.2, we can take a = 0

and c = 1. In fact, if A =
[
0
1
1
0

]
then MA(Q) = rev Q(λ) has no elementary divisors

at infinity and we can follow the proof of Theorem 3.4 with this matrix. We start
the triangularization process with the submatrix diag(1, λ2(λ − 1)). Lemma 3.1 with

(i, j) = (1, 2), k = 2 and s(λ) = λ − 1 yields T̃ (λ) = diag(λ − 1,−λ2) + e1e
T
2 . Hence,

D̃(λ) is equivalent to

T1(λ) =

λ− 1 1 0
0 −λ2 0
0 0 0

 .
The matrix polynomial T1(λ), which is quadratic and upper triangular, has a singular
leading coefficient indicating that T1(λ) and MA(Q) are not strongly equivalent. Its
elementary divisors at infinity can be removed as described in the proof of Theorem 3.4.
First we permute the columns according to (1,2,3), to obtain:

T2(λ) =

 0 λ− 1 1
0 0 −λ2
0 0 0

 .
Second, multiply the second column by λ and add it to the first one. This yields:

T (λ) =

λ(λ− 1) λ− 1 1
0 0 −λ2
0 0 0

 ,
which is strongly equivalent to MA(Q). Finally,

MA−1(T ) = rev T (λ) =

λ+ 1 −λ2 + λ λ2

0 0 −1
0 0 0


is quadratic, triangular and strongly equivalent to Q(λ).

The next example shows that we cannot generalize Theorem 3.4 to include the case
n > m.

Example 3.7 The quadratic Q(λ) =
[
λ
λ2

]
has for Smith form D(λ) =

[
λ
0

]
. Since

rank((rev Q)(0)) = 1 = rankQ(λ), there is no elementary divisor at infinity and Q(λ)

has only one finite elementary divisor λ. Now the triangular matrix polynomial
[
q(λ)

0

]
has for elementary divisor λ if and only if q(λ) = λ but then rev T (λ) =

[
λ
0

]
, which shows

that T (λ) has an elementary divisor at infinity. Hence Q(λ) is not triangularizable.

4. Real matrix polynomials

We now concentrate on the non-algebraically closed field R. Although some real
matrix polynomials are triangularizable over R[λ] (see for instance Examples 2.1 and
3.3) it is shown in [10] that not all quadratic real matrix polynomials are triangularizable
over R[λ].
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We say that P (λ) ∈ R[λ]n×m is quasi-triangularizable over R[λ] if it is strongly
equivalent to a quasi-triangular matrix polynomial T (λ) ∈ R[λ]n×m of the same degree
and with 1×1 and 2×2 diagonal blocks. We begin by showing that any P (λ) ∈ R[λ]n×m

with n ≤ m is quasi-triangularizable. Section 4.2 is devoted to characterize those real
matrix polynomials that are triangularizable over R[λ].

4.1. Quasi-triangularizable real matrix polynomials

We start with an analog of Lemma 3.2 for real matrix polynomials.

Theorem 4.1 Let d1| · · · |dn be monic polynomials with coefficients in R. There exists a
quasi-triangular matrix polynomial T (λ) ∈ R[λ]n×n of degree ` with nonsingular leading
matrix coefficient and with d1, . . ., dn as invariant factors if and only if

∑n
j=1 deg dj = `n.

Proof. We only prove the“if” part as the “only if” part is trivial. Suppose that there
are monic polynomials d1| · · · |dn such that

∑n
j=1 `j = `n, where `j = deg dj and `1 < `.

Let Tn(λ) = diag(d1, . . . , dn). We start by constructing an upper triangular matrix
polynomial equivalent to Tn(λ) whose diagonal entries have degree either ` or ` + 1 or
`− 1.

Assume that there is a pair of indices (i, j) such that `i < ` < `j for which there is
a real polynomial s of degree `j − ` such that dk−1|sdi|dk for some index k ≤ j. It is
important for us to remark that the existence of such a real polynomial s is equivalent to
the existence of a real polynomial r of degree `j−`−deg (dk−1/di) such that r|(dk/dk−1).
Then by Lemma 3.1, Tn(λ) is equivalent to a matrix polynomial of the form

. . .

sdi di
. . .

−dj/s
dj+1

. . .

dn


.

By permuting rows and columns we can move the degree ` polynomial −dj/s to the lower
right corner while keeping the upper triangular form and the (n − 1) × (n − 1) leading
submatrix in Smith form. Specifically,

. . .

sdi di
. . .

dj+1

. . .

dn
−dj/s


.

We say that polynomial −dj/s has been deflated to the (n, n) position. We repeat this
deflation procedure for all possible pairs of indices (i, j) satisfying the above conditions.
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Also, by means of appropriate permutations of rows and columns which do not introduce
nonzero entries in the lower triangular part of the matrix, we can move (deflate) all the
diagonal entries of degree ` down to the lower right part of the matrix. We end up with
a matrix polynomial of the following form

Tp(λ) =



c1 ∗ · · · ∗

c2
...

. . .
...

. . .
...

. . .
...

cp ∗ · · · ∗
∗ · · · ∗

. . .
...
∗


,

where the ci’s are polynomials such that c1|c2| · · · |cp (i.e., the p × p leading principal
submatrix of Tp(λ) is in Smith form),

∑p
i=1 deg ci = p`, and the ∗’s on the diagonal

denote polynomials of degree `. We redefine `i to be the degree of ci. Note that if `1 = `
then Tp(λ) has all its diagonal entries of degree `.

Suppose that `1 < `, which implies that p ≥ 2. We show that if we cannot deflate a
degree ` polynomial, then we can consecutively deflate two polynomials of degree ` + 1
and ` − 1, respectively. If p = 2 and there is no real polynomial s of degree `2 − ` such
that c1|sc1|c2 then there is no real polynomial r of degree `2 − ` such that r|(c2/c1).
This implies that c2/c1 has no linear factor and `2 − ` is odd. Thus there is a degree
`2 − (` + 1) polynomial s1 such that c1|s1c1|c2. Then using the procedure described in
Lemma 3.1 with (i, j) = (1, 2), k = 2 and s1, we deflate a degree ` + 1 polynomial in
position (2, 2) leaving s1c1 of degree `− 1 in position (1, 1).

We now assume that p > 2 and that for any pair of indices (i, j) with `i < ` < `j we
cannot find a real polynomial s of degree `j − ` such that ck−1|sci|ck for any index k,
i < k ≤ j. Then there is no real polynomial r of degree `j − `− deg(ck−1/ci) such that
r|(ck/ck−1). It follows then that ck/ck−1 contains no linear factors and `j − ` (= deg s)
and `k−1 − `i (= deg(ck−1/ci)) have different parity. We consider three cases.

Case 1. `2 < ` < `p−1. Then `1 < ` < `p and there is a degree `p − (` + 1) polynomial
s1 such that for some index k ≤ p, ck−1|s1c1|ck. We use the procedure described in
Lemma 3.1 with (i, j) = (1, p), s1 and the index k to deflate the degree `+ 1 polynomial
−cp/s1 to position (p, p). This produces a matrix Tp−1(λ), whose (p−1)×(p−1) leading
principal submatrix is a Smith form still having c2 and cp−1 as diagonal elements. We
then repeat the argument using c2 and cp−1 and a polynomial s2 of degree `p−1− (`− 1)
such that ck−1|s2c2|ck for some index k ≤ p − 1 to deflate the degree ` − 1 polynomial
−cp−1/s2 to position (p− 1, p− 1).

Case 2. `2 > `. As explained above, there are no linear factors in c2/c1, so `1 and `2 have
the same parity. Further, `3 − ` is odd and c3/c2 contains no linear factors (otherwise
there would be a real polynomial r of degree `3 − `− deg(c3/c1) such that r|(c3/c2) and
so c2|sc1|c3 for some polynomial of degree `3 − `; a contradiction). Hence `1, `2 and
`3 have the same parity. Using c1, c2 and a polynomial s1 of even degree `2 − ` − 1
such that c1|s1c1|c2, we apply the procedure describe in Lemma 3.1 to deflate the degree
`+ 1 polynomial −c2/s1 to the (p, p) diagonal entry. This produces a triangular matrix
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whose (p − 1) × (p − 1) leading principal submatrix is diag(s1c1, c3, . . . , cp). Note that
deg(c3/(s1c1)) is even and `3 − ` is odd. Note also that `2 > ` implies that 2` ≥ `1 + `2
and so `3 − deg(s1c1) = `3 − `2 + ` + 1 − `1 ≥ `3 − ` + 1. Hence, we can always find a
polynomial s2 of degree `3 − ` + 1 such that s1c1|s2s1c1|c3 and deflate the degree ` − 1
polynomial −c3/s2 to position (p− 1, p− 1).

Case 3. `p−1 < `. The condition
∑p
i=1 deg ci = p` implies `p − ` > 0. Furthermore,

`p − ` is odd and `p − `p−1 is even because otherwise there would be a real polynomial
s of degree `p − ` such that s|(cp/cp−1) and so cp−1|scp−1|cp. This would imply that the
degree ` polynomial −cp/s could be deflated by using Lemma 3.1. Now we use cp−1, cp
and a polynomial s1 of even degree `p−`−1 satisfying cp−1|s1cp−1|cp to deflate the degree
` + 1 polynomial −cp/s1 to position (p, p). We are left with diag(c1, . . . , cp−2, s1cp−1).
Notice that `p + `p−1 ≥ 2`. If deg(s1cp−1) = `− 1 (i.e., `p + `p−1 = 2`) we have already
deflated two polynomials of degrees `+ 1 and `− 1 to positions (p, p) and (p− 1, p− 1).
Otherwise, we look for a real polynomial s2 of degree deg(s1cp−1)− `+1 = `p−1 + `p−2`
such that cp−2|s2cp−2|s1cp−1. Note that deg s2 is even so we can always construct it.
Using the procedure described in Lemma 3.1 with (i, j) = (p − 2, p − 1), k = p − 1 and
s2, we deflate the degree `− 1 polynomial −s1cp−1/s2 to the (p− 1, p− 1) position.

We repeat these processes until all diagonal entries of the matrix polynomials are
of degree either ` or ` + 1 or ` − 1. It now remains to transform the resulting upper
triangular matrix polynomial to quasi-triangular form with entries of degree at most `.
We assume that the diagonal entries have been scaled to become monic. Now suppose
that all the entries below row i are of degree ` or less. If the ith diagonal entry is of
degree ` then we use the procedure described at the end of Lemma 3.2 to reduce the
entries in row i except the (i, i) entry to polynomials of degree strictly less than `. If the
ith diagonal entry is of degree `+ 1 then the (i− 1)th diagonal entry is of degree `− 1.
We use the procedure described at the end of Lemma 3.2 to reduce the entries in rows i
and i− 1 except those on the diagonal to polynomials of degree at most ` for row i and
polynomials of degree at most `− 2 for row i− 1. Hence rows i− 1 and i look like[

0 · · · 0 d̃i−1 ♦ ♦ · · · ♦
0 · · · 0 0 d̃i × · · · ×

]
,

deg d̃i−1 = `− 1,

deg d̃i = `+ 1,

deg ♦ ≤ `− 2,
deg × ≤ `.

Next, we add λ times row i − 1 to row i, and then −λ times column i − 1 to column i
leading to [

0 · · · 0 d̃i−1 ∗ ∗ · · · ∗
0 · · · 0 λd̃i−1 ei ∗ · · · ∗

]
,

where deg ei ≤ ` and no entry hiding behind the asterisks is of degree larger than `.
Moving upwards through the matrix in this way we end up with an n × n real upper
quasi-triangular matrix polynomial T (λ) =

∑`
j=0 λ

jTj of degree ` with d1| . . . |dn as

invariant factors. Since
∑n
j=1 deg dj = `n, T (λ) has `n finite eigenvalues, implying that

leading matrix coefficient T` is nonsingular.

Example 4.2 Let D(λ) = diag
(
1, (λ2 +1)2, (λ2 +1)2, (λ2 +1)2

)
= diag(d1, d2, d3, d4) be

the Smith form of a 4× 4 cubic polynomial P (λ). We follow the proof of Lemma 4.1 to
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construct a quasi-triangular polynomial of degree ` = 3 with Smith form D(λ). Notice
that `1 < ` < `2 = `3 = `4, where `i = deg di and that there is no real polynomial s of
degree `2−` = 1 such that 1|s|d2. This corresponds to Case 2. Following the instructions
yields s1 = 1, so the first part of Case 2 is simply a permutation of d2 to the lower right
corner. Because d2 = d3 = d4, this does not modify D(λ) but to follow Case 2 in detail,
we now consider the matrix diag(d1, d3, d4, d2). Next, we look for a degree `3− `+ 1 = 2
real polynomial s2 such that 1|s2|d3. We have to take s2 = λ2 + 1. Then by Lemma
3.1 D(λ) is equivalent to T1(λ) = diag(λ2 + 1, (λ2 + 1)2,−(λ2 + 1), (λ2 + 1)2) + e1e

T
3 .

It remains to apply the last step of the proof of Theorem 4.1 to block triangularize the
polynomial. This leads to

T (λ) =


λ2 + 1 −λ(λ2 + 1) 1 −λ

λ(λ2 + 1) λ2 + 1 λ −λ2
λ2 + 1 −λ(λ2 + 1)

λ(λ2 + 1) λ2 + 1

 .
We can now state the analog of Theorem 3.4 for real polynomials.

Theorem 4.3 Any P (λ) ∈ R[λ]n×m with n ≤ m is quasi-triangularizable.

Proof. The proof is along the same line as that presented for Theorem 3.4. We only
sketch it and point out the differences.

We apply a Möbius transformMA to P (λ) induced by a real 2×2 nonsingular matrix
A such that MA(P ) has no elementary divisors at infinity. We compute the Smith
form D(λ) of MA(P ), and let diag(d1, . . . , dr) denote the regular part of D(λ), where
r = rank(P ). Starting with diag(d1, . . . , dr), we follow the triangularization procedure
in the proof of Theorem 4.1 with two small modification if

∑r
j=1 deg dj < `r:

(i) We stop the induction procedure when the remaining (non-deflated) diagonal ele-
ments are of degrees strictly less than `.

(ii) If the induction procedure reach “case 3”, item (i) assures that `p > `. We might,
however, have `p + `p−1 < 2` − 1 (`p + `p−1 is even so `p + `p−1 = 2` − 1 is not
possible), in which case we deflate a polynomial of degree ` − 1 to position (p, p).
The remaining diagonal elements are of degrees strictly less than ` so we stop the
induction.

Now, all diagonal elements of degree `+ 1 are preceded by a diagonal element of degree
` − 1. Hence, we can perform the block-triangularization as in Theorem 4.1. Finally,
we remove unwanted elementary divisors at infinity using the procedure described in
Theorem 3.4.

Remark 4.4 In the singular case n ≤ m, r < m, the procedure for removing elementary
divisors at infinity moves the nonzero quasi-triangular part of the matrix polynomial one
column to the right. This means that the resulting matrix polynomial is in fact triangular!
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4.2. Triangularizable real matrix polynomials

For n ≤ m, we give now a characterization of all P (λ) ∈ R[λ]n×m that are triangular-
izable over the real numbers. By Remark 4.4 all singular real n×m matrix polynomials
are triangularizable, so we consider only the regular n × n case. The conditions for tri-
angularizability that will be derived depend only on the partial multiplicities of the real
eigenvalues and the matrix size. These quantities, as well as the triangular structure,
are preserved under real invertible Möbius transformations. We can always find a real
Möbius transformationMA such thatMA(P ) has no elementary divisors at infinity, that
is, the partial multiplicities at infinity of P (λ) get represented as the partial multiplicities
of some real eigenvalue of MA(P ). This allow us to focus on real matrix polynomials
with nonsingular leading coefficients.

The main results in this subsection are based on the following theorem.

Theorem 4.5 [8] Let d1| · · · |dn and t1, . . . , tn be monic polynomials in F[λ]. Then there
exists a triangular matrix polynomial in F[λ]n×n with diagonal entries t1, . . . , tn and
d1, . . . , dn as invariant factors if and only if

k∏
j=1

dj

∣∣∣ gcd
{ k∏
j=1

tij : i1 < · · · < ik

}
, k = 1:n, and

n∏
j=1

dj =

n∏
j=1

tj . (9)

We remark that the proof of Theorem 4.5 is constructive. The next result will be used
in the proof of Theorem 4.8. Its proof is inspired by that of [12, Cor. 4.3]. Recall the
notion of majorization (Section 2.3).

Lemma 4.6 Let p1, . . . , ps ∈ F[λ] be irreducible and of degree g. For i = 1:n, let
di = pai11 pai22 . . . paiss , ai = ai1 + · · ·+ ais, and bi be a nonnegative integer. If

(b1, . . . , bn) ≺ (a1, . . . , an), (10)

then there exist n polynomials ti ∈ F[λ] with deg ti = gbi such that

gcd
{ k∏
j=1

dij : i1 < · · · < ik

}∣∣∣ gcd
{ k∏
j=1

tij : i1 < · · · < ik

}
, k = 1:n, (11)

and
n∏
j=1

dj =

n∏
j=1

tj . (12)

Proof. By Lemma 2.6 condition (10) implies that if (a[1], . . . , a[n]) is an arrangement of
(a1, . . . , an) in nonincreasing order (a[1] ≥ · · · ≥ a[n]) and the same for (b[1], . . . , b[n]) then
(b[1], . . . , b[n]) can be obtained from (a[1], . . . , a[n]) by a finite number of elementary trans-

formations. That is to say, there is a nonnegative integer r and sequences (c
(i)
1 , . . . , c

(i)
n ),

i = 1: r, such that

• (c
(1)
1 , . . . , c

(1)
n ) = (a[1], . . . , a[n]) and (c

(r)
1 , . . . , c

(r)
n ) = (b[1], . . . , b[n]),

• c(i)1 ≥ · · · ≥ c
(i)
n , i = 1: r, and
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• for i = 2: r, (c
(i)
1 , . . . , c

(i)
n ) is obtained from (c

(i−1)
1 , . . . , c

(i−1)
n ) by an elementary

transformation.

It is enough to prove that if (b[1], . . . , b[n]) is obtained from (a[1], . . . , a[n]) by an elemen-
tary transformation then there exist polynomials t1, . . . , tn ∈ F[λ], with deg ti = gb[i],

satisfying conditions (11)–(12). For in that case, bearing in mind that (c
(2)
1 , . . . , c

(2)
n ) can

be obtained from (a[1], . . . , a[n]) by an elementary transformation, there are polynomials

t
(2)
1 , . . . , t

(2)
n with deg t

(2)
j = gc

(2)
j such that (11)–(12) hold true with tij replaced by t

(2)
ij

.

Similarly, (c
(3)
1 , . . . , c

(3)
n ) is obtained from (c

(2)
1 , . . . , c

(2)
n ) by an elementary transforma-

tion, so there are polynomials t
(3)
1 , . . . , t

(3)
n with deg t

(3)
j = gc

(3)
j such that (11)–(12) hold

true with dij and tij replaced by t
(2)
ij

and t
(3)
ij

, respectively. By taking r− 1 steps in this

way we obtain polynomials t1 = t
(r)
1 , . . . , tn = t

(r)
n , of desired degrees, deg ti = gb[i], and

conditions (11) and (12) are satisfied.
Assume that (b[1], . . . , b[n]) is obtained from (a[1], . . . , a[n]) by an elementary transfor-

mation. This means that there are indices [j] < [m] such that

b[j] = a[j] − 1, b[m] = a[m] + 1, b[i] = a[i] + 1, i 6= j,m. (13)

As b[j] ≥ b[m], we have a[j] ≥ a[m] + 2 and so there is an index u, 1 ≤ u ≤ s such that
a[j]u ≥ a[m]u + 1 (otherwise a[m]u ≥ a[j]u for all u would imply a[m] ≥ a[j]). Define

t[m] := d[m]pu, t[j] :=
d[j]

pu
, ti := di, i 6= [j], [m].

We claim that with the polynomials ti defined in this way, conditions (11) and (12) are
fulfilled. It is plain that the latter holds true. On the other hand,

gcd
{ k∏
j=1

dij : i1 < · · · < ik

}
=

s∏
v=1

p
min{ai1v+···+aikv :i1<···<ik}
v

and

gcd
{ k∏
j=1

tij : i1 < · · · < ik

}
=

s∏
v=1

p
min{bi1v+···+bikv:i1<···<ik}
v ,

where biv = aiv, except for v = u and i = [j], [m] for which b[j]u = a[j]u] − 1 and
b[m]u = a[m]u+1. Thus, in proving condition (11) we can assume without lost of generality

that di = paiu and ti = pbiu for i = 1:n. We have

gcd
{ k∏
j=1

dij : i1 < · · · < ik

}
= p

a[n]+···+a[n−k+1]
u ,

gcd
{ k∏
j=1

tij : i1 < · · · < ik

}
= p

b[n]+···+b[n−k+1]
u ,

and it is an immediate consequence of (13) that

p
a[n]+···+a[n−k+1]
u

∣∣∣pb[n]+···+b[n−k+1]
u , k = 1:n.
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If d1,. . . , dn in Lemma 4.6 are ordered by divisibility as in Theorem 4.5 and

ti = pbi11 pbi22 · · · pbiss , i = 1 : n,

then condition (9) is equivalent to

k∑
i=1

aij ≤ min
{ k∑
r=1

birj : i1 < · · · < ik

}
, k = 1:n and j = 1: s

with equality for k = n. Hence, using the notion of majorization condition (9) is equiv-
alent to (b1j , . . . , bnj) ≺ (a1j , . . . , anj) for j = 1: s. Now, condition (10) follows at once
from Lemma 2.4 (i). We have shown the following corollary.

Corollary 4.7 Under the same conditions as in Lemma 4.6 assume that d1| · · · |dn.
Then condition (9) is equivalent to the majorization condition (10).

Now suppose that P (λ) ∈ R[λ]n×n of degree ` and with nonsingular leading coefficient
has for invariant factors d1| · · · |dn, each with a factorization

di =

s∏
j=1

(λ2 + ajλ+ bj)
qij

t∏
j=1

(λ− λj)mij , (14)

with
0 ≤ q1j ≤ q2j ≤ · · · ≤ qnj , j = 1: s,

and
0 ≤ m1j ≤ m2j ≤ · · · ≤ mnj , j = 1: t,

and λ2 +ajλ+ bj are irreducible polynomials in R[λ]. Exponents equal to zero may have
been included for notational convenience.

Suppose P (λ) is equivalent to a real n × n triangular matrix polynomial T (λ) of
degree `. We have that

∏n
i=1 di =

∏n
i=1 ti, where ti is the ith diagonal entry of T (λ) and

has the form

ti =

s∏
j=1

(λ2 + ajλ+ bj)
gij

t∏
j=1

(λ− λj)hij . (15)

We cannot assume, however, any specific order for the exponents gij and hij .
Let us define

qi :=

s∑
j=1

qij , mi :=

t∑
j=1

mij ,

and notice that qn ≥ · · · ≥ q1 and mn ≥ · · · ≥ m1.
In what follows we will adopt the following notation: if

p =

u∏
j=1

(λ2 + ajλ+ bj)
cj

v∏
j=1

(λ− λj)dj
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is the prime factorization of p ∈ R[λ] then

pc =

u∏
j=1

(λ2 + ajλ+ bj)
cj , pr =

v∏
j=1

(λ− λj)dj .

We are now ready to state and prove the main results of this section.

Theorem 4.8 Let P (λ) ∈ R[λ]n×n with nonsingular leading coefficient have invariant
factors d1| · · · |dn with prime factorizations (14). Let g1, . . . , gn and h1, . . . , hn be non-
negative integers. Then P (λ) is equivalent to a real triangular matrix polynomial T (λ)
with diagonal elements ti = tictir such that deg tic = 2gi and deg tir = hi, if and only if

(g1, . . . , gn) ≺ (qn, . . . , q1), (h1, . . . , hn) ≺ (mn, . . . ,m1). (16)

Proof. (⇒) Assume that T (λ) is a triangular matrix equivalent to P (λ) and with diag-
onal elements ti = tictir such that deg tic = 2gi and deg tir = hi. Assume also that the
prime factorization of ti is given by (15). Then gi =

∑s
j=1 gij , hi =

∑t
j=1 hij and (16)

follow from Theorem 4.5 and Corollary 4.7.
(⇐) Write di = dicdir, and notice that deg dic = qi, deg dir = mi. By Lemma 4.6 and

(h1, . . . , hn) ≺ (mn, . . . ,m1), there exist polynomials t1r,. . . , tnr such that deg tir = hi,

k∏
j=1

djr

∣∣∣ gcd
{ k∏
j=1

tijr : i1 < · · · < ik

}
, k = 1:n, and

n∏
j=1

djr =

n∏
j=1

tjr.

Similarly, by (g1, . . . , gn) ≺ (qn, . . . , q1), there exist polynomials t1c,. . . , tnc such that
deg tci = 2gi,

k∏
j=1

djc

∣∣∣ gcd
{ k∏
j=1

tijc : i1 < · · · < ik

}
, k = 1:n, and

n∏
j=1

djc =

n∏
j=1

tjc.

Defining ti := tictir, we have that deg ti = 2gi + hi and condition (9) is satisfied. The
result now follows from Theorem 4.5.

The next theorem is a consequence of Theorem 4.8.

Theorem 4.9 Let P (λ) ∈ R[λ]n×n of degree ` and with nonsingular leading coefficient
have invariant factors d1| · · · |dn with prime factorizations (14). Let nc = qn + s be the
Euclidean division of nc = q1 + · · ·+qn by n. Then P (λ) is equivalent to a real triangular
matrix with diagonal elements of degree ` if and only if

(`− 2q, . . . , `− 2q︸ ︷︷ ︸
n− s times

, `− 2q − 2, . . . , `− 2q − 2︸ ︷︷ ︸
s times

) ≺ (m1, . . . ,mn) (17)

and all integers in the left-hand side of the majorization inequality (17) are nonnegative.

Proof. Notice that since deg
(

detP (λ)
)

= n` we have

0 ≤ n`− 2nc = n`− 2qn− 2s = n(`− 2q)− 2s ⇒ `− 2q ≥ 0. (18)
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Hence the sum of the elements in the left hand side of (17) is always nonnegative. It may
happen however that `− 2q − 2 < 0. This is the case, for example, if ` = n = 3 and the
elementary divisors of P (λ) are (λ− 1) and (λ2 + 1)4.

(⇒) Assume now that P (λ) is equivalent to a real triangular matrix T (λ) with diago-
nal elements tj of degree ` and prime factorization (15). Bearing in mind that nc = nq+s,
if s > 0 then at least one element in the diagonal of T (λ) has to be of degree 2q + 2
or bigger. Hence ` ≥ 2q + 2 when s > 0 and if P (λ) is equivalent to a real triangular
matrix all integers in left hand side of (17) are nonnegative. Also, 2gi + hi = `, where

gi =
s∑
j=1

gij and hi =
t∑

j=1

hij . By Lemma 2.4 (ii) it follows from nc = qn+ s, 0 ≤ s < n,

that
(q + 1, . . . , q + 1︸ ︷︷ ︸

s times

, q, . . . , q︸ ︷︷ ︸
n− s times

) ≺ (g1, . . . , gn).

Arrange g1, . . . , gn in nonincreasing order gi1 ≥ · · · ≥ gin . Then

kq ≥ gin + · · ·+ gin−k+1
, k = 1:n− s,

(n− s)q + k(q + 1) ≥ gin + · · ·+ gis−k+1
, k = 1: s,

and g1 + · · ·+ gn = nq + s. Since hij = `− 2gij we have

hin + · · ·+ hin−k+1
≥ k(`− 2q), k = 1:n− s,

hin + · · ·+ his−k+1
≥ (n− s)(`− 2q) + k(`− 2q − 2), k = 1: s,

and h1 + · · ·+ hn = n`− 2nq − 2s. This implies

(`− 2q, . . . , `− 2q︸ ︷︷ ︸
n− s times

, `− 2q − 2, . . . , `− 2q − 2︸ ︷︷ ︸
s times

) ≺ (h1, . . . , hn)

and (17) follows from the second majorization in (16).
Conversely, assume that (17) holds with all integers in left-hand side of (17) nonneg-

ative. Define
hk = `− 2q, gk = q, k = 1:n− s,
hk = `− 2q − 2, gk = q + 1, k = n− s+ 1:n.

Then hi ≥ 0 and hi + 2gi = ` for i = 1:n. By (17) (h1, . . . , hn) ≺ (mn, . . . ,m1). In
addition, as q1 + · · · + qn = nc = qn + s, 0 ≤ s < n, by Lemma 2.4 (ii) we also have
(g1, . . . , gn) ≺ (qn, . . . , q1). Hence, by Theorem 4.8 there is a real triangular matrix T (λ)
equivalent to P (λ) with polynomials of degree ` on the diagonal.

It follows from Theorem 4.9 that when ` = 1, q and s must be zero for P (λ) to
be triangularizable because ` ≥ 2q and ` ≥ 2q + 2 if s > 0. Thus, we get the well-
known result that a real pencil is triangularizable over R[λ] if and only if it has only real
eigenvalues.

In Example 4.2, ` = 3, n = 4, nc = 6, q = 1, s = 2 and ` < 2q+ 2. Hence, there is no
real triangular cubic matrix polynomial with Smith form D(λ) = diag(1, (λ2 + 1)2, (λ2 +
1)2, (λ2 + 1)2).

It has been seen in [10, Th. 3.6] that a necessary and sufficient condition for a real
regular quadratic matrix polynomial to be triangularizable over R[λ] is n ≥ nc+p where
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p is the geometric multiplicity of the real eigenvalue with largest geometric multiplicity.
That this condition is equivalent to (17) for quadratic matrix polynomials is better
visualized if the Weyr characteristic rather than the Segre characteristic is used (see
Section 2.3 for the definition of Weyr characteristic). The following result is a rephrasing
of Theorem 4.9 in terms of the union of the elements in the Weyr characteristic of P (λ)
associated with the real eigenvalues.

Theorem 4.10 Let P (λ) ∈ R[λ]n×n be of degree ` and with nonsingular leading coeffi-
cient. Let nc be the sum of the exponents of the elementary divisors of P (λ) associated
to irreducible polynomials of degree 2. Let nc = qn + s be the Euclidean division of nc
by n and let (p1, p2, . . .), with p1 ≥ p2 ≥ . . ., be the union of the elements in the Weyr
characteristic of P (λ) corresponding to the real eigenvalues, where p1 = 0 if P (λ) has no
real eigenvalue and pk = 0 for k ≤ 0. Then P (λ) is triangularizable if and only if either
s = 0, or s > 0 and

n(`− q − 1)− nc ≥ p1 + · · ·+ p`−2q−1. (19)

Proof. By Theorem 4.9, P (λ) is triangularizable over R[λ] if and only if (17) holds with
all integers in its left hand side nonnegative. Now, by Lemma 2.5, (17) is equivalent to

(mn, . . . ,m1)∗ ≺ (`− 2q, . . . , `− 2q︸ ︷︷ ︸
n− s times

, `− 2q − 2, . . . , `− 2q − 2︸ ︷︷ ︸
s times

)∗.

Let us compute these conjugate sequences:

(`− 2q, . . . , `− 2q︸ ︷︷ ︸
n− s times

, `− 2q − 2, . . . , `− 2q − 2︸ ︷︷ ︸
s times

)∗ =


(n, . . . , n︸ ︷︷ ︸

` − 2q − 2 times

, n− s, n− s) if s > 0,

(n, . . . , n︸ ︷︷ ︸
` − 2q times

) if s = 0.

Recall that mi =
∑t
j=1mij and mnj ≥ . . . ≥ m1j ≥ 0 for j = 1: t. Hence by (6),

(mn, . . . ,m1)∗ = (mn1, . . . ,m11)∗ ∪ · · · ∪ (mnt, . . . ,m1t)
∗.

Now, (mnj , . . . ,m1j)
∗ is the Weyr characteristic corresponding to the real eigenvalue λj ,

so (mn, . . . ,m1)∗ = (p1, p2, . . .). Notice that p1 is the geometric multiplicity of the real
eigenvalue of P (λ) with largest geometric multiplicity. Hence (17) is equivalent to

(p1, p2, . . .) ≺ (n, . . . , n︸ ︷︷ ︸
`− 2q − 2 times

, n− s, n− s) (20)

if s > 0 and to
(p1, p2, . . .) ≺ (n, . . . , n︸ ︷︷ ︸

`− 2q times

) (21)

if s = 0. Since the geometric multiplicity of any real eigenvalue of P (λ) is at most n, it
follows that pi ≤ n and condition (21) is always satisfied. In addition,∑

i≥1

pi = n`− 2nc = n`− 2(qn+ s) = n(`− 2q)− 2s = n(`− 2q − 2) + 2(n− s).
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Since pi ≤ n, the only nontrivial inequality that must be satisfied for condition (20) to
be fulfilled is

n(`− 2q − 2) + n− s ≥ p1 + · · ·+ p`−2q−1,

which is equivalent to (19). Agreeing that pk = 0 for k ≤ 0, (19) implies that ` ≥ 2q+ 2.
For if ` − 2q − 1 ≤ 0 then we get from (19) that n(` − 2q − 2) + n − s ≥ 0 and so
`− 2q − 1 ≥ (s/n) > 0, a contradiction.

To conclude, if nc is a multiple of n then P (λ) is always triangularizable. The reverse
is not always true, as the case of a pencil with nonreal complex conjugate eigenvalues
shows. In this case, ` = 1 and q = 0. If nc > 0 then n(`− q − 1)− nc < 0 = p0.

For ` = 2 we have 2n ≥ 2nc and so q ≤ 1 with q = 1 if and only if nc = n. Thus P (λ)
is triangularizable if and only if nc = 0, nc = n (i.e., q = 1, s = 0 and ` = 2q) or q = 0,
s > 0 and n− nc = (n(`− q− 1)− nc ≥ p1. Taking into account that p1 = 0 means that
P (λ) has no real eigenvalues (i.e., nc = n), we conclude that P (λ) is triangularizable if
and only if n− nc ≥ p1. This is Theorem 3.6 in [10].

For ` = 3, we must have q ≤ 1 since ` ≥ 2q (see (18)). Now P (λ) is not triangularizable
over R[λ] if and only if

n(2− q)− nc < p1 + · · ·+ p2−2q, q = 0, 1,

or equivalently, if and only if q = 1 and n < nc or q = 0 and 2n − nc < p1 + p2. An
example where q = 1 and n < nc is n = ` = 3 and the elementary divisors are (λ − 1),
(λ2 + 1) and (λ2 + 1)3. Example 4.2 also corresponds to that case. An example where
q = 0 and 2n − nc < p1 + p2 is n = ` = 3 and the elementary divisors are λ, λ2, λ2,
(λ2 +1) and (λ2 +1). Finally, in Example 3.3, nc = 2 < n = 3, q = 0 and p1 = 2, p2 = 2.
Hence, 2n− nc = p1 + p2, which confirms that the matrix polynomial in Example 3.3 is
triangularizable.

5. Inverse problems

The main motivation of this paper is the characterization of the real and complex
matrices that can be reduced to triangular or trapezoidal form preserving the degree and
the finite and infinite elementary divisors. However, as a by-product, we are solving a
structured inverse polynomial eigenvalue problem. Recall that problems concerning the
construction of matrix polynomials having certain eigenvalues or elementary divisors,
are called inverse polynomial eigenvalue problems. In [3, Thm. 1.7] a monic inverse
polynomial eigenvalue problem is solved over C (in fact over any algebraically closed
field). Since monic matrix polynomials have no elementary divisors at infinity, the Smith
form contains all the information about elementary divisors. It is shown in the above
reference that in order to build such an n × n matrix polynomial of degree `, the only
constraints on the list of its elementary divisors are

(i) the geometric multiplicities are bounded by n (because any regular n × n matrix
polynomial has n invariant factors), and

(ii) the sum of the partial multiplicities of all the eigenvalues is n`.
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This is generalized to matrices with nonsingular leading coefficients over arbitrary fields
in [7, Thm. 5.2]. From Theorem 3.4 and Remark 3.5 it follows that we can realize a list
of finite and infinite elementary divisors by an n×m matrix polynomial of degree ` over
an algebraically closed field if and only if condition (i) above and

(iii) the sum of all partial multiplicities, including those at infinity, is at most `min(m,n),

are satisfied, thereby extending the result in [3, Thm. 1.7] and [7, Thm. 5.2]. Furthermore,
from Theorem 4.3, we get the solution to the corresponding inverse problem over R[λ].
As one could expect, the only additional constraint is that nonreal elementary divisors
must come in complex conjugate pairs.

Constraints on the structure of matrix polynomials often impose constraints on the
elementary divisors. We have described these constraints in the case of real triangular
matrix polynomials and have shown that there are no constraints for complex ones other
that (i) and (iii).

Recall that a matrix polynomial is called self-adjoint or Hermitian if all the coeffi-
cient matrices are Hermitian. If the leading coefficient is nonsingular it is well-known
that all nonreal elementary divisors comes in complex conjugate pairs [2, Lem. 1.2].
Given a regular self-adjoint matrix polynomial P (λ), we can always find a real Möbius
transformation mA such that MA(P ) is self-adjoint and has nonsingular leading coeffi-
cient. Hence, it follows from Theorem 2.3 that also the nonreal elementary divisors of
P (λ) must come in complex conjugate pairs. This constraint on the list of elementary
divisors is exactly the same constraint as in the inverse polynomial eigenvalue problem
over R[λ]. We have proved the following result.

Theorem 5.1 Any regular self-adjoint matrix polynomial is strongly equivalent to a real
matrix polynomial.

We conjecture that the theorem is true in the other direction too.

Conjecture 5.2 Any regular real matrix polynomial is strongly equivalent to a regular
self-adjoint matrix polynomial, and vice versa.

6. Concluding remarks

In the quasi-triangularization process described in Theorem 4.1 we are faced with
some choices. If a real matrix polynomial is triangularizable, the construction in The-
orem 4.1 does not necessarily produce a triangular matrix polynomial. It is not known
if the freedom can be exploited to obtain a triangular form. Tisseur and Zaballa [10,
Thm. 4.3] have shown that for regular real quadratic matrix polynomials Q(λ) that are
not triangularizable, the minimum number of 2×2 diagonal blocks is max{0, p1+nc−n},
where nc is the sum of the exponents of the elementary divisors of P (λ) associated to
irreducible polynomials of degree 2 and p1 is the geometric multiplicity of the real eigen-
value of P (λ) with largest geometric multiplicity. Extending their results to arbitrary
degree matrix polynomials is left as an open problem.

24



References

[1] F. R. Gantmacher. The Theory of Matrices, volume one. Chelsea, New York, 1959.
ISBN 0-8284-0131-4. x+374 pp.

[2] I. Gohberg, P. Lancaster, and L. Rodman. Spectral analysis of selfadjoint matrix
polynomials. Ann. of Math. (2), 112(1):33–71, 1980.

[3] I. Gohberg, P. Lancaster, and L. Rodman. Matrix Polynomials. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, USA, 2009. ISBN 0-898716-81-8.
xxiv+409 pp. Unabridged republication of book first published by Academic Press
in 1982.

[4] I. Macdonald. Symmetric Functions and Hall Polynomials. Oxford University Press,
New York, second edition. 488 pp.

[5] D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann. Möbius transformations of
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