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University of Paderborn, City University of Hong Kong and Oxford
University

This paper has two agendas. Firstly, we exhibit new results for
coverage processes. Let p(n,m,α) be the probability that n spherical
caps of angular radius α in Sm do not cover the whole sphere Sm.
We give an exact formula for p(n,m,α) in the case α ∈ [π/2, π] and
an upper bound for p(n,m,α) in the case α ∈ [0, π/2] which tends to
p(n,m,π/2) when α→ π/2. In the case α ∈ [0, π/2] this yields upper
bounds for the expected number of spherical caps of radius α that
are needed to cover Sm.

Secondly, we study the condition number C (A) of the linear pro-
gramming feasibility problem ∃x ∈ R

m+1Ax ≤ 0, x 6= 0 where A ∈
R

n×(m+1) is randomly chosen according to the standard normal dis-
tribution. We exactly determine the distribution of C (A) conditioned
to A being feasible and provide an upper bound on the distribution
function in the infeasible case. Using these results, we show that
E(lnC (A)) ≤ 2 ln(m + 1) + 3.31 for all n > m, the sharpest bound
for this expectancy as of today. Both agendas are related through a
result which translates between coverage and condition.

1. Introduction.

1.1. Coverage processes on spheres.

One of the oldest problems in the theory of coverage processes is that of cal-
culating the chance that a given region is completely covered by a sequence
of random sets. Unfortunately there is only a small number of useful circum-
stances where this probability may be calculated explicitly. (Hall [13], Section
1.11.)
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In 1897 Whitworth [30] considered the following problem. Assume we
place n arcs of angular radius α in the unit circle S1, whose centers are
independently and randomly chosen from the uniform distribution in S1.
What is the probability that these arcs do not cover S1?

Whitworth’s problem is arguably at the origin of the theory of coverage
processes. It was not until 1939 that an answer to the problem was given
when Stevens [28] showed that the probability in question is

k
∑

j=1

(−1)j+1

(

n
j

)(

1− jα

π

)n−1

,(1)

where k = ⌊πα⌋. Extensions of this result to other quantities related with ran-
dom arcs in S1 are given in [25]. Extensions to random arcs with different
lengths are given in [9, 16] and in [26] where an exact formula for the prob-
ability above is given for randomly placed arcs having random independent
size.

The extension of the original problem in S1 to the two-dimensional unit
sphere S2 was considered by Moran and Fazekas de St. Groth [20]. Let
p(n,α) denote the probability that n spherical caps of angular radius α, and
centers randomly and independently chosen from the uniform distribution
on S2 do not cover S2. Moran and Fazekas de St. Groth exhibited an approx-
imation of p(n,α), and numerically estimated this quantity for α = 53◦26′

(a value arising in a biological problem motivating their research). Shortly
thereafter, Gilbert [10] showed the bounds

(1− λ)n ≤ p(n,α)≤ 4
3n(n− 1)λ(1− λ)n−1,(2)

where λ= (sin α
2 )

2 = 1
2(1− cosα) is the fraction of the surface of the sphere

covered by each cap. In addition, Gilbert conjectured that, for n → ∞,
p(n,α) satisfies the asymptotic equivalence

p(n,α)≈ n(n− 1)λ2(1− λ2)n−1.

This conjecture was proven by Miles [18] who also found an explicit expres-
sion (cf. [17]) for p(n,α) if α ∈ [π/2, π], namely

p(n,α) =

(

n
2

)
∫ π−α

0
sin2(n−2)(θ/2) sin(2θ)dθ

(3)

+
3

4

(

n
3

)
∫ π−α

0
sin2(n−3)(θ/2) sin3 θ dθ.

More on the coverage problem for S1 and S2 can be found in [27]. Extensions
of these results to the unit sphere Sm in R

m+1 for m > 2 are scarce. Let
p(n,m,α) be the probability that n spherical caps of angular radius α in
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Sm do not cover Sm. That is, for α ∈ [0, π], and a1, . . . , an randomly and
independently chosen points in Sm from the uniform distribution, define

p(n,m,α) := Prob

{

Sm 6=
n
⋃

i=1

cap(ai, α)

}

,

where cap(a,α) denotes the spherical cap of angular radius α around a. It
can easily be seen that for n ≤m+ 1 and α≤ π/2 we have p(n,m,α) = 1.
Moreover, Wendel [29] has shown that

p(n,m,π/2) = 21−n
m
∑

k=0

(

n− 1
k

)

.(4)

Furthermore, a result by Janson [15] gives an asymptotic estimate of p(n,m,α)
for α→ 0. Actually, Janson’s article covers a situation much more general
than fixed radius caps on a sphere and it was preceded by a paper by Hall
[12] where bounds for the coverage probability were shown for the case of
random spheres on a torus.

A goal of this paper is to extend some of the known results for S1 and
S2 to higher dimensions. To describe our results we first introduce some
notation. We denote by

Om := volm(Sm) =
2π(m+1)/2

Γ((m+ 1)/2)

the m-dimensional volume of the sphere Sm. Also, for t ∈ [0,1], denote the
relative volume of a cap of radius arccos t ∈ [0, π/2] in Sm by λm(t). It is
well known that

λm(t) =
Om−1

Om

∫ arccos t

0
(sin θ)m−1 dθ.(5)

Our results are formulated in terms of a family of numbers C(m,k) defined
for 1 ≤ k ≤ m. These numbers are defined in Section 4.1 and studied in
Section 5 where we give bounds on C(m,k) and derive a closed form for
k ∈ {1,m− 1,m}. Furthermore, we will show that, for each m, the C(m,k)
can be obtained as the solution of a system of linear equations which easily
allows us to produce a table for their values (cf. Table 1).

A main result in this paper is the following.

Theorem 1.1. Let n > m≥ 1, α ∈ [0, π], and ε= cos(π − α). For α ∈
[π2 , π]

p(n,m,α) =

m
∑

k=1

(

n
k+1

)

C(m,k)

∫ 1

ε
tm−k(1− t2)km/2−1λn−k−1

m (t)dt
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Table 1

A few values for C(m,k)

k \m 1 2 3 4 5 6

1 2
π

2 5.0930 12 27.1639 60
2 3/4 3.9317 477/32 49.5841 78795/512
3 0.6366 39/8 25.1644 897345/8192
4 15/32 4.8525 132225/4096
5 0.3183 4335/1024
6 105/512

and for α ∈ [0, π2 ) we have

p(n,m,α)≤
∑m

k=0

(n−1
k

)

2n−1

+

(

n
m+1

)

C(m,m)

∫ |ε|

0
(1− t2)(m

2−2)/2(1− λm(t))n−m−1 dt.

We remark that this formula, for α ∈ [π/2, π] andm= 2, is identical to the
one given by Miles (3). Also, for α ∈ [0, π/2] and m= 1, our upper bound for
p(n,1, α) coincides with the first term in Steven’s formula (1) (cf. Remark
4.9 below).

We may use Theorem 1.1, together with the bound on the C(m,k), to
derive bounds for the expected value of N(m,α), the number of random
caps of radius α needed to cover Sm. The asymptotic behavior of N(m,α)
for α→ 0 has been studied by Janson [15]. Otherwise, we have not found
any bound for E(N(m,α)) in the literature.

Theorem 1.2. For α ∈ (0, π2 ] we have

E(N(m,α))≤ 3m+2+
√
m(m+1)cos(α)λm(cos(α))−2

(

1

2λm(cos(α))

)m

.

1.2. Polyhedral conic systems and their condition. Among the number of
interrelated problems collectively known as linear programming, we consider
the following two.

Feasibility of polyhedral conic systems (FPCS). Given a matrix A ∈
R
n×(m+1), decide whether there exists a nonzero x ∈R

m+1 such that Ax≤ 0
(componentwise).
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Computation of points in polyhedral cones (CPPC). Given a matrix A ∈
R
n×(m+1) such that S = {x ∈R

m+1 |Ax< 0} 6=∅, find x∈ S .

By scaling we may assume without loss of generality that the rows a1, . . . , an
of A have Euclidean norm one and interpret the matrix A as a point in
(Sm)n. We say that the elements of the set

Fn,m := {A ∈ (Sm)n | ∃x∈ Sm〈a1, x〉 ≤ 0, . . . , 〈an, x〉 ≤ 0},(6)

are feasible. Similarly, we say that the elements in

F◦
n,m := {A ∈ (Sm)n | ∃x∈ Sm〈a1, x〉< 0, . . . , 〈an, x〉< 0}(7)

are strictly feasible. Elements in (Sm)n \ Fn,m are called infeasible. Finally,
we call ill-posed the elements in Σn,m :=Fn,m \ F◦

n,m.
For several iterative algorithms solving the two problems above, it has

been observed that the number of iterations required by an instance A in-
creases with the quantity

C (A) =
1

dist(A,Σn,m)
,

(here dist is the distance with respect to an appropriate metric; for the pre-
cise definition we refer to Section 2.1). This quantity, known as the GCC-
condition number of A [3, 11], occurs together with the dimensions n and m
in the theoretical analysis (for both complexity and accuracy) of the algo-
rithms mentioned above. For example, a primal-dual interior-point method
is used in [6] to solve (FPCS) within

O(
√
m+ n(ln(m+ n) + lnC (A)))(8)

iterations. The Agmon–Motzkin–Schönberg relaxation method1 [1, 21] or
the perceptron method [23] solve (CPPC) in a number of iterations of order
O(C (A)2) (see Appendix B of [5] for a brief description of this).

The complexity bounds above, however, are of limited use since, unlike n
and m, C (A) cannot be directly read from A. A way to remove C (A) from
these bounds consists in trading worst-case by average-case analysis. To this
end, one endows the space (Sm)n of matrices A with a probability measure
and studies C (A) as a random variable with the induced distribution. In
most of these works, this measure is the unform one in (Sm)n (i.e., matrices
A are assumed to have its n rows independently drawn from the uniform
distribution in Sm).

Once a measure has been set on the space of matrices [and in what follows
we will assume the uniform measure in (Sm)n], an estimate on E(lnC (A))

1This method gives also the context in which C (A) was first studied, although in the
feasible case only [11].
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yields bounds on the average complexity for (FPCS) directly from (8). For
(CPPC) the situation is different since it is known [5], Corollary 9.4, that
E(C (A)2) =∞. Yet, an estimate for ε > 0 on

Prob{C (A)≥ 1/ε |A ∈ Fn,m}
yields bounds on the probability that the relaxation or perceptron algorithms
will need more than a given number of iterations. Efforts have therefore been
devoted to compute the expected value (or the distribution function) of C (A)
for random matrices A.

Existing results for these efforts are easily summarized. A bound for
E(lnC (A)) of the form O(min{n,m lnn}) was shown in [4]. This bound
was improved [7] to max{lnm, ln lnn} + O(1) assuming that n is moder-
ately larger than m. Still, in [5], the asymptotic behavior of both C (A)
and lnC (A) was exhaustively studied, and these results were extended in
[14] to matrices A ∈ (Sm)n drawn from distributions more general than the
uniform. Independently of this stream of results, in [8], a smoothed analy-
sis for a related condition number is performed from which it follows that
E(lnC (A)) =O(lnn).

Our second set of results adds to the line of research above. First, we
provide the exact distribution of C (A) conditioned to A being feasible and
a bound on this distribution for the infeasible case.

Theorem 1.3. Let A ∈ (Sm)n be randomly chosen from the uniform
distribution in (Sm)n, n>m. Then, for ε ∈ (0,1], we have

Prob{C (A)≥ 1/ε |A ∈Fn,m}

=
2n−1

∑m
k=0

(

n−1
k

)

m
∑

k=1

(

n
k+1

)

C(m,k)

×
∫ ε

0
tm−k(1− t2)km/2−1λm(t)n−k−1 dt,

Prob{C (A)≥ 1/ε |A /∈Fn,m}

≤ 2n−1

∑n−1
k=m+1

(

n−1
k

)

(

n
m+1

)

C(m,m)

×
∫ ε

0
(1− t2)(m

2−2)/2(1− λm(t))n−m−1 dt.

Second, we prove an upper bound on E(lnC (A)) that depends only on
m, in sharp contrast with all the previous bounds for this expected value.

Theorem 1.4. For matrices A randomly chosen from the uniform dis-
tribution in (Sm)n with n>m, we have E(lnC (A))≤ 2 ln(m+ 1) + 3.31.
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Note that the best previously established upper bound for E(lnC (A))
(for arbitrary values of n and m) was O(lnn). The bound 2 ln(m+1)+3.31
is not only sharper (in that it is independent of n) but also more precise (in
that it does not rely on the O notation).2

1.3. Coverage processes versus condition numbers. Theorems 1.1 and 1.3
are not unrelated. Our next result, which will be the first one we will prove,
shows a precise link between coverage processes and condition for polyhedral
conic systems.

Proposition 1.5. Let a1, . . . , an be randomly chosen from the uniform
distribution in Sm. Denote by A the matrix with rows a1, . . . , an. Then,
setting ε := |cos(α)| for α ∈ [0, π], we have

p(n,m,α) =































Prob

{

A ∈Fn,m and C (A)≤ 1

ε

}

, if α ∈ [π/2, π],
∑m

k=0

(

n−1
k

)

2n−1

+Prob

{

A /∈Fn,m and C (A)≥ 1

ε

}

, if α ∈ [0, π/2].

In particular, p(n,m,π/2) = Prob{A ∈Fn,m}= 21−n
∑m

k=0

(

n− 1
k

)

.

While Proposition 1.5 provides a dictionary between the coverage prob-
lem in the sphere and the condition of polyhedral conic systems, it should be
noted that, traditionally, these problems have not been dealt with together.
Interest on the second focused on the case of C (A) being large or, equiv-
alently, on α being close to π/2. In contrast, research on the first mostly
focused on asymptotics for either small α or large n (an exception being
[29]).

2. Main ideas. In this section we describe in broad strokes how the re-
sults presented in the Introduction are arrived at. In a first step in Section
2.1, we give a characterization of the GCC condition number which estab-
lishes a link to covering problems thus leading to a proof of Proposition 1.5.
We then proceed by explaining the main ideas behind the proof of Theorem
1.3.

In all that follows, we will write [n] = {1, . . . , n} for n ∈N.

2Recently a different derivation of a O(lnm) bound for E(lnC (A)) was given in [2].
However, this derivation does not provide explicit estimates for the constant in the O
notation.
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Fig. 1. A SIC with α ∈ (0, π/2) (left) and with α ∈ (π/2, π) (right).

2.1. The GCC condition number and spherical caps. A key ingredient in
what follows is a way of characterizing the GCC condition number in terms
of spherical caps. For p ∈ Sm and α ∈ [0, π], recall that

cap(p,α) := {x ∈ Sm | 〈p,x〉 ≥ cosα}.
A smallest including cap (SIC) for A = (a1, . . . , an) ∈ (Sm)n is a spherical
cap of minimal radius containing the points a1, . . . , an. If p denotes its center,
then its blocking set is defined as {i ∈ [n] | 〈p, ai〉= cosα} which can be seen
as a set of “active” rows (cf. Figure 1).

A largest excluding cap (LEC) for A is the complement of a smallest
including cap for A. Note that (by a compactness argument) a SIC always
exists, and while there may be several SIC for A, its radius is uniquely
determined. For the rest of this article, we denote this radius by ρ(A) and
set t(A) := cos ρ(A). The following is one of many equivalent ways [3, 5] of
defining the GCC condition number.

Definition 2.1. The GCC condition number of A ∈ (Sm)n is defined
as C (A) := 1/| cos ρ(A)| ∈ (1,∞].

In order to understand the relation of this condition number to distance
to ill-posedness, we review a few known facts (for more information, see [3]
and [5]). Recall the definition of Fn,m and F◦

n,m given in equations (6) and
(7). It is easy to see that Fn,m is a compact semialgebraic set with nonempty
interior F◦

n,m. The set Σn,m := Fn,m \ F◦
n,m is the topological boundary of

Fn,m. It consists of the feasible instances that are not strictly feasible. Note
that if n > m+ 1, then Σn,m is also the boundary of the set of infeasible
instances In,m := (Sm)n \ Fn,m. Hence in this case Σn,m consists of those
instances that can be made both feasible and infeasible by arbitrarily small
perturbations.

The next lemma summarizes results from [3], Theorem 1, and [5], Propo-
sition 4.1. It is enough to prove Proposition 1.5.
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Lemma 2.2. We have ρ(A) < π/2 if and only if A ∈ F◦
n,m. Moreover,

ρ(A) = π/2 if and only if A ∈Σn,m.

Proof of Proposition 1.5. We claim that

p(n,m,α) = Prob{ρ(A)≤ π−α}.(9)

Indeed,
⋃n

i=1 cap(ai, α) 6= Sm iff there exists y ∈ Sm such that y /∈ cap(ai, α)
for all i. This is equivalent to ∃y ∀i ai /∈ cap(y,α) which means that an LEC
for A has angular radius at least α. This in turn is equivalent to ρ(A)≤ π−α
thus proving the claim.

Equation (9) for α= π/2 combined with Lemma 2.2 and Wendel’s result
[29] stated in equation (4) yields

21−n
m
∑

k=0

(

n− 1
k

)

= p(n,m,π/2) = Prob{ρ(A)≤ π/2}= Prob{A ∈ Fn,m}.

Suppose now α ∈ [π/2, π]. Then

ρ(A)≤ π− α ⇐⇒ ρ(A)≤ π/2 and C (A)≤ 1

ε
,

showing the first assertion of Proposition 1.5. Furthermore, for α ∈ [0, π2 ]

ρ(A)≤ π−α

iff

ρ(A)≤ π/2 or (ρ(A)> π/2 and |cosρ(A)| ≤ |cos(π−α)|),

showing the second assertion of Proposition 1.5. �

2.2. Toward the proof of Theorem 1.3. To prove the feasible case in The-
orem 1.3 we note that

Prob

{

C (A)≥ 1

ε

∣

∣

∣
A ∈Fn,m

}

=
1

volFn,m
volFn,m(ε),

where Fn,m(ε) = {A ∈ F◦
n,m | t(A) < ε}. But volFn,m is known by Proposi-

tion 1.5. Therefore, our task is reduced to computing volFn,m(ε). As we will
see in Section 3.1, the smallest including cap SIC(A) is uniquely determined
for all A ∈ F◦

n,m. Furthermore, for such A, t(A) depends only on the block-
ing set of A. Restricting to a suitable open dense subset Rn,m(ε)⊆Fn,m(ε)
of “regular” instances, these blocking sets are of cardinality at most m+ 1.
This induces a partition

Rn,m(ε) =
⋃

I

RI
n,m(ε),
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Fig. 2. Determining (a1, a2) ∈ (S2)2 by first giving its span L ∈ G2(R
3) and then

ai ∈ S2 ∩L.

where the union is over all subsets I ⊆ [n] of cardinality at most m+1, and
RI

n,m(ε) denotes the set of matrices in Rn,m(ε) with blocking set indexed by

I . By symmetry, volRI
n,m(ε) only depends on the cardinality of I ; hence it is

enough to focus on computing volR[k+1]
n,m (ε) for k = 1, . . . ,m. The orthogonal

invariance and the particular structure of the R[k+1]
n,m (ε) (involving certain

convexity conditions) makes possible a change of coordinates that allows one
to split the occurring integral into an integral over t and a quantity C(m,k)
that depends only on m and k:

volR[k+1]
n,m (ε) =C(m,k)

∫ ε

0
g(t, n,m,k)dt.

More precisely, we proceed as follows:

(1) By Fubini, we split the integral over R[k+1]
n,m (ε) into an integral over

the first k+1 vectors a1, . . . , ak+1 (determining the blocking set [k+1]) and
an integral over ak+2, . . . , an taken from SIC(A):

volR[k+1]
n,m (ε) =

∫

A∈R[k+1]
k+1,m(ε)

(
∫

cap(p(A),ρ(A))n−k−1

d(Sm)n−k−1

)

dR[k+1]
k+1,m

(10)

=

∫

A∈R[k+1]
k+1,m(ε)

G(A)dR[k+1]
k+1,m.

This is an integral of the function G(A) := vol(cap(p(A), ρ(A)))n−k−1 which
is a certain power of the volume of the spherical cap SIC(A).

(2) The next idea is to specify A = (a1, . . . , ak+1) in R[k+1]
k+1,m(ε) by first

specifying the subspace L spanned by these vectors and then the position
of the ai on the sphere Sm ∩L∼= Sk (cf. Figure 2).

Let Gk+1(R
m+1) denote the Grassmann manifold of (k + 1)-dimensional

subspaces in R
m+1 and consider the map

R[k+1]
k+1,m(ε)→Gk+1(R

m+1),
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Fig. 3. Determining (a1, a2, a3) ∈ (S2)3 by specifying the direction p, the height t, and
the ai on the subsphere {a ∈ S2 | 〈a, p〉= t} by bi.

(11)
(a1, . . . , ak+1) 7→ L= span{a1, . . . , ak+1}.

Clearly, a vector a ∈ Sm lies in the special subspace L0 :=R
k+1× 0 iff it lies

in the subsphere Sk. Hence the fibre over L0 consists of all “regular” tuples
A= (a1, . . . , ak+1) ∈ (Sk)k+1 such that t(A)< ε, and hence the fibre can be

identified with R[k+1]
k+1,k(ε). Using the orthogonal invariance and the coarea

formula (also called Fubini’s theorem for Riemannian manifolds) we can
reduce the computation of the integral (10) to an integral over the special

fibre R[k+1]
k+1,k(ε). This leads to

∫

R[k+1]
k+1,m(ε)

G(A)dR[k+1]
k+1,m = volGk+1(R

m+1)

∫

R[k+1]
k+1,k(ε)

G(A)J(A)dR[k+1]
k+1,k ,

where J(A) is the normal Jacobian of the transformation (11).
(3) To specify a regular A= (a1, . . . , ak+1) ∈ (Sk)k+1, we first specify the

direction p= p(A) ∈ Sk and the height t= t(A) ∈ (0, ε) and then the position
of the ai on the subsphere {a ∈ Sk | 〈a, p〉= t} ≃ Sk−1 (cf. Figure 3).

More precisely, we consider the map

R[k+1]
k+1,k(ε)→ Sk × (0, ε), A 7→ (p(A), t(A)).(12)

The fibre over (p0, t), where p0 = (0, . . . ,0,1) is the “north pole,” consists of
tuples (a1, . . . , ak+1) lying on the “parallel” subsphere {a ∈ Sk | 〈a, p〉= t}.
The vectors ai can be described by points bi ∈ Sk−1, which are obtained by
projecting ai orthogonally onto R

k × 0 and scaling the resulting vector to
length one.

The orthogonal invariance and the coarea formula allow us to reduce the

computation of the integral over R[k+1]
k+1,k(ε) to the integration over t ∈ [0, ε] of

an integral over the special fibres over (p0, t). The latter integral is captured
by the coefficient C(m,k) which can be interpreted as a higher moment of
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the volume of the simplex ∆ spanned by random points b1, . . . , bk+1 on the
sphere Sk−1. However, we have to respect the convexity condition that the
origin is contained in the simplex ∆ spanned by the bi, which complicates

matters. Altogether, we are lead to a formula for volR[k+1]
n,m (ε) of the shape,

volGk+1(R
m+1)

∫

R[k+1]
k+1,k(ε)

G(A)J(A)dR[k+1]
k+1,k

=C(m,k)

∫ ε

0
g(t, n,m,k)dt,

where g(t, n,m,k) is obtained by isolating the part of the resulting integrand
that depends on t.

In order to implement this plan, we have to isolate the appropriate regu-
larity conditions, that is, to identify the sets RI

n,m(ε), and to compute the
normal Jacobians of the maps (11) and (12). For the latter task, we prefer
to use the language of differential forms as is common in integral geometry
[24].

Unfortunately, the above argument does not carry over to the infeasible
case. Nevertheless, the ideas described above are sufficient to obtain the
upper bound in Theorem 1.3.

The rest of the paper proceeds as follows. In Section 3 we describe the
basic facts on smallest including caps and integration on manifolds that will
be needed to make formal the ideas expressed above. Then, in Section 4, we
prove Theorem 1.3. Theorem 1.1 immediately follows via Proposition 1.5.
Finally, in Section 5, we give bounds for all, explicit expressions for some,
and a way to compute the coefficients C(m,k). From these bounds we derive
Theorems 1.2 and 1.4.

3. Preliminaries.

3.1. Properties of smallest including caps. Recall from Section 2.1 the
definition of smallest including caps (SICs) for a given A = (a1, . . . , an) ∈
(Sm)n. A crucial feature of our proofs is the fact that a strictly feasible
A has a uniquely determined SIC. This is a consequence of the following
crucial lemma which provides an explicit criterion for a spherical cap being
a smallest including cap of A. This lemma is a generalization of Lemma 4.5
in [5].

Lemma 3.1. (a) For a strictly feasible A ∈ F◦
n,m there exists exactly one

smallest including cap.
(b) Let (p, t) ∈ Sm × (0,1] and 1≤ k < n. Suppose that 〈ai, p〉= t for all

i ∈ [k + 1] and 〈ai, p〉> t for all i ∈ [n] \ [k + 1]. Then cap(p,arccos t) is the
smallest including cap of A if and only if

tp ∈ conv{a1, . . . , ak+1}.
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Proof. We first show that assertion (b) implies assertion (a). Suppose
cap(p1, ρ) and cap(p2, ρ) are SICs for A, and put t := cos ρ. Note that t > 0.
Assertion (b) implies that tp1 is contained in the convex hull of a1, . . . , an;
hence there exist λi ≥ 0 such that

∑

i λi = 1 and tp1 =
∑

i λiai. Therefore,
〈tp1, p2〉=

∑

i λi〈ai, p2〉 ≥ t, as 〈ai, p2〉 ≥ t for all i. This implies 〈p1, p2〉 ≥ 1
and hence p1 = p2.

The proof of assertion (b) goes along the lines of Lemma 4.5 in [5]. Suppose
first that cap(p,α) is a SIC for A where α := arccos t. It is sufficient to
show that p ∈ cone{a1, . . . , ak+1}. Indeed, if p =

∑

λiai with λi ≥ 0, then
tp =

∑

(tλi)ai. Furthermore,
∑

(tλi) =
∑

λi〈ai, p〉= 〈∑λiai, p〉= ‖p‖2 = 1.
Hence tp ∈ conv{a1, . . . , ak+1}.

We now argue by contradiction: if p is not contained in cone{a1, . . . , ak+1},
then there exists a vector v ∈ Sm such that 〈p, v〉< 0 and 〈ai, v〉> 0 for all
i ∈ {1, . . . , k+ 1}. For δ > 0 we set

pδ :=
p+ δv

‖p+ δv‖ =
p+ δv

√

1 + 2δ〈p, v〉+ δ2
.(13)

Then for 1≤ i≤ k+ 1 and sufficiently small δ we have

〈ai, pδ〉=
t+ δ〈ai, v〉

√

1 + 2δ〈p, v〉+ δ2
> t,

where we used that 〈ai, p〉= t, 〈ai, v〉> 0 and 〈p, v〉< 0.
For k+2≤ i≤ n the function δ→ 〈ai, pδ〉 is continuous at δ = 0. Since, by

hypothesis, 〈ai, p〉= 〈ai, p0〉 > t, it follows that 〈ai, pδ〉> t for δ sufficiently
small. From this we conclude that for sufficiently small δ there exists tδ > t
such that 〈ai, pδ〉 > tδ for all i ∈ [n]. Setting αδ = arccos tδ we obtain that
αδ < α and ai ∈ cap(pδ, αδ) for all i ∈ [n], contradicting the assumption that
cap(p,α) is a smallest including cap.

To prove the other direction, we suppose tp ∈ conv{a1, . . . , ak+1}. For q ∈
Sm let α(q) we denote the angular radius of the smallest spherical cap with
center q containing a1, . . . , an. If we assume that cap(p,α) is not a SIC for
A, then there exists a vector v ∈ Sm and δ0 > 0, such that 〈v, p〉 = 0 and,

for all 0< δ ≤ δ0, α(pδ)<α(p) where pδ =
p+δv√
1+δ2

(i.e., we have a direction v

along which we can move to obtain a smaller cap). This means that

min
1≤i≤n

〈ai, pδ〉> min
1≤i≤n

〈ai, p〉= t.

Therefore, for all i ∈ [k+1] we have

〈ai, pδ〉=
〈ai, p〉+ δ〈ai, v〉√

1 + δ2
> t= 〈ai, p〉
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for sufficiently small δ which implies that 〈ai, v〉> 0. Let µ ∈ R
k+1
≥0 be such

that tp=
∑

1≤i≤k+1 µiai and
∑

1≤i≤k+1µi = 1. Then we have

t〈p, v〉=
∑

1≤i≤k+1

µi〈ai, v〉> 0,

contradicting the assumption that 〈p, v〉 = 0. Thus cap(p,α) is indeed a
smallest including cap. �

For a strictly feasible A, we denote the center of its uniquely determined
SIC by p(A) and its radius by ρ(A). The blocking set BS(A) of A is defined
as the blocking set of the SIC of A. It is not hard to see that BS(A) can
have any cardinality greater than one.

However, we note that in the infeasible case, there may be more than one
smallest including cap. Consider for instance three equilateral points on the
circle (right-hand side in Figure 1). It is known [5], Proposition 4.2, that
in this case, the blocking set of a SIC has at least m+ 1 elements. In the
infeasible case, one direction of the characterization of smallest including
caps of Lemma 3.1 still holds. The proof is similar as for Lemma 3.1.

Lemma 3.2. Let cap(p,arccos t) be a SIC for A ∈ (Sm)n with p ∈ Sm

and t ∈ (−1,0). Suppose 〈ai, p〉 = t for i ∈ [m + 1] and 〈ai, p〉 > t for i =
m+2, . . . , n. Then tp ∈ conv{a1, . . . , am+1}.

Proof. Suppose tp /∈ conv{a1, . . . , am+1}. Then−p /∈ cone{a1, . . . , am+1}
and hence there exists a vector v ∈ Sm such that 〈−p, v〉< 0 and 〈ai, v〉> 0
for all i. For δ > 0 we define pδ as in (13). Take δ sufficiently small so that
t < t+ δ〈ai, v〉< 0 for all i ∈ [m+1]. Then, for i ∈ [m+1] and δ sufficiently
small, we have

〈ai, pδ〉=
t+ δ〈ai, v〉

√

1 + 2δ〈p, v〉+ δ2
> t,

where we used that 〈ai, p〉 = t, 〈ai, v〉 > 0, and 〈p, v〉 > 0. This shows that
cap(p,arccos t) is not a smallest including cap. �

We present a few more auxiliary results that are needed for the proof of
our main result.

Lemma 3.3. For given linearly independent a1, . . . , ak+1 ∈ Sm, 1≤ k ≤
m, there exist unique p ∈ Sm and t ∈ (0,1) such that

p ∈ span{a1, . . . , ak+1}
and

〈ai, p〉= t for all i ∈ [k +1].

Moreover, the map (a1, . . . , ak+1) 7→ (p, t) is differentiable.



COVERAGE PROCESSES AND CONDITION NUMBERS 15

Proof. Let A denote the affine span of a1, . . . , ak+1, L the underlying
linear space and L the linear span of A. Since the ai are linearly indepen-
dent, we have A 6= L and thus dimA= dimL= k, dimL= k+1. Hence the
intersection of L with the orthogonal complement L⊥ is one-dimensional
and contains exactly two elements of length one. Take the one such that the
common value t= 〈ai, p〉 is positive. This shows existence and at the same
time the uniqueness of p, t.

Suppose now k =m, and let A denote the square matrix with the rows
a1, . . . , am+1. The conditions 〈ai, p〉 = t can be written in matrix form as
Ap = te where e := (1, . . . ,1)⊤. By solving this equation we obtain the fol-
lowing explicit formulas:

p(A) =
1

‖A−1e‖A
−1e, t(A) =

1

‖A−1e‖ .(14)

This shows the differentiability of the map A 7→ (p, t) in the case k =m. We
leave the proof in the general case to the reader. �

The next result, though very elementary, will be useful for clarification.
Let p ∈ Sk and t 6= 0 and consider elements a1, . . . , ak+1 ∈ Sk satisfying

〈ai, p〉= t for all i. Let bi ∈ Sk−1 be the scaled-to-one orthogonal projection
of ai onto the orthogonal complement of Rp. That is, ai = rbi + tp where
r = (1− t2)1/2.

Lemma 3.4. The following conditions are equivalent:

1. The affine hull A of a1, . . . , ak+1 has dimension k.
2. The span of b1, . . . , bk+1 has dimension k.
3. a1, . . . , ak+1 are linearly independent.

Proof. The equivalence of the first two conditions is obvious. The
equivalence of the first and third condition follows from dim span(A) =
dimA+1 (here we use t 6= 0). �

3.2. Volume forms on Grassmann manifolds. Integration on Grassmann
manifolds will play a crucial role in our proofs. We recall some facts about
the relevant techniques from integral geometry and refer to Santaló’s book
[24], II.9–12, and the article [19] for more information. We recall that volume
elements are always unsigned forms.

Let M be a Riemannian manifold of dimension m, p ∈M , and let y =
(y1, . . . , ym)⊤ :U 7→ R

m be local coordinates in a neighborhood U of p such
that ∂/∂y1, . . . , ∂/∂ym are an orthonormal basis of TpM . The natural volume
form on M at p associated to its Riemannian metric is then given by dM =
dy1 ∧ · · · ∧ dym where dyi is the differential of the coordinate function yi at
p.
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In the case of a sphere, we get such local coordinates around a point
p ∈ Sm by projecting onto the orthogonal complement of p. More pre-
cisely, let 〈e1, . . . , em+1〉 be an orthonormal basis of Rm+1 satisfying e1 =
p (so that e2, . . . , em+1 span the tangent space TpS

m). For a point x =
(x1, . . . , xm+1)

⊤ ∈ Sm in a neighbourhood of p set yi = 〈x, ei〉. Then (y2, . . . ,
ym+1) are local coordinates of Sm around p such that ∂/∂yi are pairwise
orthogonal at p. Hence the volume element of Sm at p is given by

dSm = ω2 ∧ · · · ∧ ωm+1,

where ωi := dyi = 〈dx, ei〉 and dx= (dx1, . . . , dxm+1)
⊤. Hence, if we denote

by E the (m + 1) × (m + 1)-matrix having the ei as rows, we obtain the
volume form by wedging the nonzero entries of E dx.

In a similar fashion we define volume forms on Stiefel manifolds (for details
and further justification we refer to [24]). A k-frame is a set of k linearly inde-
pendent vectors. For 1≤ k ≤m+1, the Stiefel manifold Vk(R

m+1) is defined
as the set of orthonormal k-frames in R

m+1. It is a compact Riemannian
submanifold of (Sm)k. Let Q= (q1, . . . , qk) ∈ Vk(Rm+1) and 〈e1, . . . , em+1〉 an
orthonormal basis of Rm+1 such that e1 = q1, . . . , ek = qk. Then the volume
element of Vk(R

m+1) at Q is given by

dVk(R
m+1) =

∧

1≤i≤k

(ωi,i+1 ∧ · · · ∧ ωi,m+1),

where ωi,j = 〈dqi, ej〉 for 1≤ i≤ k and 1≤ j ≤m+ 1. [In terms of the (m+
1)× k matrix E dQ, this corresponds to wedging the entries below the main
diagonal.] With this volume element we have volVk(R

m+1) =Om · · ·Om+1−k.
We denote by Gk(R

m+1) the Grassmann manifold of k-dimensional sub-
spaces of Rm+1. One way of characterizing it is as a quotient of a Stiefel man-
ifold, by identifying frames that span the same subspace. Let L ∈Gk(R

m+1)
and choose a frame Q ∈ Vk(Rm+1) spanning L. If Vk(L) denotes the Stiefel
manifold of orthonormal k-frames in L and dVk(L) its volume element at
Q, then it is known that the volume element dGk(R

m+1) of the Grassmann
manifold at L satisfies (see [19], equation (10))

dVk(R
m+1) = dGk(R

m+1)∧ dVk(L).(15)

From this equality it follows that

dGk(R
m+1) =

∧

1≤i≤k

(ωi,k+1 ∧ · · · ∧ ωi,m+1)

with the ωi,j as defined in the case of the Stiefel manifold. (In terms of
the matrix EdQ, this corresponds to wedging the elements in the lower
(m + 1 − k) × k rectangle.) As a consequence of (15), the volume of the
Grassmannian is given by

Gk,m+1 := volGk(R
m+1) =

Om+1−k · · ·Om

O0 · · ·Ok−1
.
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Equation (15) has a generalization to frames that are not orthogonal,
that is, to points in a product of spheres (Sm)k. Let L ∈ Gk(R

m+1) and
set S(L) := L ∩ Sm, so that S(L) ∼= Sk−1. Choose a basis a1, . . . , ak of L
consisting of unit length vectors, that is, a point A= (a1, . . . , ak) in S(L)

k.
We denote by vol(A) the volume of the parallelepiped spanned by the ai.
Then the volume form of (Sm)k at A can be expressed as

d(Sm)k = vol(A)m−k+1 dGk(R
m+1)∧ dS(L)k.(16)

This equation can be derived as in [19] (see also [24], II.12.3). It also follows
as a special case of a general formula of Blaschke–Petkantschin-type derived
by Zähle [31] (see also the discussion in [22]).

A beautiful application of equation (16) is that it allows an easy compu-
tation of the moments of the absolute values of random determinants. The
following lemma is an immediate consequence of (16) (see also [19]).

Lemma 3.5. Let B ∈ (Sk)k+1 be a matrix with rows b1, . . . , bk indepen-
dently and uniformly distributed in Sk. Then

E(|det(B)|m−k+1) =

( Om

Ok−1

)k 1

Gk,m+1
.

4. The probability distribution of C (A). This section is devoted to the
proof of Theorem 1.3.

4.1. The feasible case. Recall that, for A ∈ F◦
n,m, we denote the center

and the angular radius of the unique smallest including cap of A by p(A)
and ρ(A), respectively, and we write t(A) = cosρ(A).

Our goal here is to prove the first part of Theorem 1.3, for which, as we
noted in Section 2.2, we just need to compute the volume of the following
sets:

Fn,m(ε) := {A ∈ F◦
n,m | t(A)< ε}.

For this purpose it will be convenient to decompose Fn,m(ε) according to the
size of the blocking sets. Recall that the blocking set of A ∈ F◦

n,m is defined
as

BS(A) = {i ∈ [n] | 〈p(A), ai〉= t(A)}.(17)

For I ⊆ [n] with |I| ≤ n and ε ∈ (0,1] we define FI
n,m(ε) to be the set of all

A ∈ Fn,m(ε) such that BS(A) = I .
For technical reasons we have to require some regularity conditions for

the elements of FI
n,m(ε).
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Definition 4.1. We call a family (a1, . . . , ak+1) of elements of a vector
space centered with respect to a vector c in the affine hull A of the ai if
dimA= k, and c lies in the relative interior of the convex hull of the ai. We
call the family centered if it is centered with respect to the origin. We now
define, for I ⊆ [n],

RI
n,m(ε) := {A ∈FI

n,m(ε) | (ai)i∈I is centered with respect to t(A)p(A)}.

Note that, by definition, the ai are affinely independent if |I| ≤m+1.

Lemma 4.2. 1. FI
n,m(ε) is of measure zero if |I|>m+ 1.

2. If |I| ≤m+1, then RI
n,m(ε) is open in (Sm)n, and FI

n,m(ε) is contained

in the closure of RI
n,m(ε).

3. FI
n,m(ε) \RI

n,m(ε) has measure zero.

Proof. 1. If A ∈FI
n,m(ε), then {ai | i ∈ I} is contained in the boundary

of the SIC of A, and hence its affine hull has dimension at most m. On the
other hand, the affine hull of (ai)i∈I is almost surely R

m+1 if |I|>m+ 1.
2. The fact that RI

n,m(ε) is open in (Sm)n easily follows from the conti-
nuity of the map A 7→ (p(A), t(A)) established in Lemma 3.3.

Suppose now A ∈ FI
n,m(ε). By Lemma 3.1 we have t(A)p(A) ∈ conv{ai |

i ∈ I} for A ∈ FI
n,m(ε). It is now easy to see that there are elements A′

arbitrarily close to A such that A′ is centered with respect to t(A′)p(A′).
This shows the second assertion.

3. By part two we haveRI
n,m(ε)⊆FI

n,m(ε)⊆RI
n,m(ε). Since we are dealing

with semialgebraic sets, the boundary of RI
n,m(ε) is of measure zero. �

It is clear that the FI
n,m with I of the same cardinality just differ by a

permutation of the vectors. Using Lemma 4.2 we obtain

volFn,m(ε) =
∑

|I|≤m+1

volFI
n,m(ε) =

m
∑

k=1

(

n
k+1

)

volRk
n,m(ε),(18)

where we have put Rk
n,m(ε) :=R[k+1]

n,m (ε) to ease notation.

Hence it is sufficient to compute the volume of Rk
n,m(ε). For this purpose

we introduce now the coefficients C(m,k).

Definition 4.3. We define for 1≤ k ≤m

C(m,k) =
(k!)m−k+1

Ok
m

Gk,m

∫

Mk

(volk∆)m−k+1 d(Sk−1)k+1,



COVERAGE PROCESSES AND CONDITION NUMBERS 19

where Mk is the following open subset of Sk−1:

Mk := {(b1, . . . , bk+1) ∈ (Sk−1)k+1 | (b1, . . . , bk+1) is centered}

and ∆ :Mk →R maps B = (b1, . . . , bk+1) to the convex hull of the bi.

Example 4.4. We compute C(m,1). Note thatM1,1 = {(−1,1), (1,−1)}
and G1,m = 1

2Om−1. Hence

C(m,1) =
1

Om

1

2
Om−1

∫

M1,1

(vol1∆)m dM1,1 =
Om−1

Om
2m.

The assertion in Theorem 1.3 about the feasible case follows immediately
from Proposition 1.5, equation (18) and the following result.

Proposition 4.5. Let ε ∈ (0,1]. The relative volume of Fk
n,m(ε) is given

by

volRk
n,m(ε)

On
m

=C(m,k)

∫ ε

0
tm−k(1− t2)km/2−1λm(t)n−k−1 dt.

Proof. Consider the projection

Rk
n,m(ε)→Rk

k+1,m(ε), (a1, . . . , an) 7→A= (a1, . . . , ak+1).

By Lemma 3.1, this map is surjective and its fiber over A consists of all
(A,ak+2, . . . , an) such that ai lies in the interior of the cap cap(p(A), ρ(A))
for all i > k+ 1. By Fubini, and using (5), we conclude that

volRk
n,m(ε)

On−k−1
m

=

∫

A∈Rk
k+1,m(ε)

λm(t(A))n−k−1 d(Sm)k+1.(19)

We consider now the following map (which is well defined [cf. Lemma 3.4]):

Rk
k+1,m(ε)→Gk+1(R

m+1), (a1, . . . , ak+1) 7→ L= span{a1, . . . , ak+1}.

We can thus integrate overRk
k+1,m(ε) by first integrating over L ∈Gk+1(R

m+1)

and then over the fiber of L. By equation (16), the volume form of (Sm)k+1

at A can be written as

d(Sm)k+1 = vol(A)m−k dGk+1(R
m+1)(L)∧ dS(L)k+1,

where S(L)k+1 denotes (k + 1)-fold product of the unit sphere of L. By
invariance under orthogonal transformations, the integral over the fiber does
not depend on L. We may therefore assume that L = R

k+1, in which case
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the fiber over L can be identified with Rk
k+1,k(ε). Thus we conclude from

equation (19) that

volRk
n,m(ε)

On−k−1
m

= Gk+1,m+1

∫

A∈Rk
k+1,k(ε)

vol(A)m−kλm(t(A))n−k−1 d(Sk)k+1.(20)

In a next step, we will perform a change of variables in order to express
the integral on the right-hand side of equation (20) as an integral over t
involving the coefficients C(m,k).

Note that by Lemma 3.3, p(A) ∈ Sk and t(A) ∈ (0,1) are defined for any
A ∈GL(k+1,R) and depend smoothly on A. A moment’s thought (together
with Lemmas 3.1 and 3.4) shows that we have the following complete char-
acterization of Rk

k+1,k(ε):

Rk
k+1,k(ε) = {A ∈ (Sk)k+1 |A is centered with respect to t(A)p(A),

0< t(A)< ε,∀i 〈ai, p(A)〉= t(A)}.

For A ∈ Rk
k+1,k(ε) set p := p(A), t := t(A), and r := r(t) := (1− t2)1/2. For

i ∈ [k+1] we define bi as the scaled-to-one orthogonal projection of ai onto
the orthogonal complement of Rp, briefly ai = rbi+tp. The matrix B =B(A)
with the rows b1, . . . , bk+1 can be written as B = 1

r (A− tep⊤). Clearly, B is
centered.

We define now

Wk = {(B,p) ∈ (Sk)k+1 × Sk |Bp= 0 and B is centered}.

This is a Riemannian submanifold of (Sk)k+2 of dimension k(k+1)− 1. We
thus have a map,

ϕk :Rk
k+1,k(ε)→Wk × (0, ε), A 7→ (B(a), p(A), t(A)).

The inverse of this map is given by (B,p, t) 7→A= rB + tep⊤. It is well de-
fined since, by Lemma 3.4, A is invertible when B is centered. The Jacobian
J(A) of the diffeomorphism ϕk is stated in the next lemma, whose proof will
be momentarily postponed. We remark that this lemma can also be derived
from [22], Lemma 1 (a special case of Zähle’s theorem [31]) with K being
the unit ball.

Lemma 4.6. The volume form of (Sk)k+1 at A can be expressed in terms
of the volume form of Wk × (0, ε) as follows:

d(Sk)k+1 = J(A)dWk ∧ dt=
r(k−2)(k+1) vol(A)

t
dWk ∧ dt.
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We now express the Jacobian J(A) in terms of (B,p, t). The volume vol(A)
of the parallelepiped spanned by the ai equals (k +1)! times the volume of
the pyramid with apex 0 and base ∆(a1, . . . , ak+1), the latter denoting the
simplex with vertices a1, . . . , ak+1. Moreover, this pyramid has height t and
it is well known that the volume of a (k + 1)-dimensional pyramid with
height t and base B is t

k+1 times the (k-dimensional) volume of B. This
implies

vol(A) = (k +1)!
t

k +1
volk−1∆(rb1, . . . , rbk+1) = k!rkt volk∆(B).

From this expression, together with (20), we conclude that

volRk
n,m(ε)

On
m

=
Gk+1,m+1

Ok+1
m

∫

Wk×(0,ε)
vol(A)m−k+1 r(t)

(k−2)(k+1)

t

× λm(t)n−k−1 d(Sk)k+1

=
Gk+1,m+1(k!)

m−k+1

Ok+1
m

∫

Wk

volk∆(B)m−k+1 dWk

×
∫ ε

0
tm−kr(t)km−2λm(t)n−k−1 dt.

Consider the projection pr :Wk → Sk, (B,p) 7→ p. We note that its fiber
over p can be identified with the set Mk (cf. Definition 4.3). By the in-
variance of volk∆(B) under rotation of p ∈ Sk, we get

∫

Wk

volk∆(B)m−k+1 dWk =Ok

∫

Mk

volk∆(B)m−k+1 d(Sk−1)k+1.

Note that, up to a scaling factor, the right-hand side above is the coefficient
C(m,k) introduced in Definition 4.3. Using (Ok/Om)Gk+1,m+1 = Gk,m we
obtain

volRk
n,m(ε)

On
m

=C(m,k)

∫ ε

0
tm−kr(t)km−2λm(t)n−k−1 dt.(21)

This completes the proof. �

Proof of Lemma 4.6. For given p ∈ Sk, let S(p⊥) denote the (k− 1)-
subsphere of Sk perpendicular to p. At a point (B,p) ∈Wk we have dWk =
dS(p⊥)k+1 ∧ dSk, and we have dS(p⊥)k+1 = dS(p⊥) ∧ · · · ∧ dS(p⊥) at the
point B = (b1, . . . , bk+1). The Jacobian J(A) we are looking for is hence
determined by

d(Sk)k+1(A) = J(A)dS(p⊥)k+1(B)∧ dSk(p)∧ dt.
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Choose an orthonormal moving frame e1, . . . , ek, ek+1 with p(A) = ek+1.
For 1 ≤ i ≤ k define the one-forms µi := −〈ei, dp〉 (compare Section 3.2).
Then the volume form of Sk at p is given by dSk(p) = µ1 ∧ · · · ∧ µk.

Differentiating te = Ap we get edt = dAp + Adp. By multiplying both
sides with A−1 and using formula (14) we obtain

p(dt/t)− dp=A−1 dAp.

Let Q denote the (k+1)× (k+1) matrix having the ei as rows. With respect
to this basis, the above equation takes the form

(µ1, . . . , µk, dt/t)
⊤ =Q(p(dt/t)− dp) =QA−1 dAp.(22)

Wedging the entries on both sides yields

dSk(p)∧ dt= t vol(A)−1〈p, da1〉 ∧ · · · ∧ 〈p, dak+1〉.(23)

The volume form of S(p⊥) at bi is given by

dS(p⊥) = 〈e1, dbi〉 ∧ · · · ∧ 〈ek−1, dbi〉.
In order to compare dS(p⊥)k+1 ∧ dSk ∧ dt with d(Sk)k+1 we use a different
moving frame. Fix an i, 1 ≤ i ≤ k + 1, and choose the moving frame as
above and additionally with ek = bi. Consider the modified frame ẽ1, . . . , ẽk+1

that arises after rotating bi to ai and leaving the orthogonal complement of
span〈ai, p〉 fixed, that is, ẽj = ej for 1 ≤ j ≤ k − 1, ẽk := ai, and ẽk+1 =
−tbi + rp (cf. Figure 4).

This implies 〈ẽk+1, dai〉 = r〈p, dai〉 − t〈bi, dai〉 = (1/r)〈p, dai〉 where we
have used that bi = (ai − tp)/r for the last equality. Hence the volume form
of Sk at ai equals

dSk(ai) = (1/r)〈e1, dai〉 ∧ · · · ∧ 〈ek−1, dai〉 ∧ 〈p, dai〉.

Fig. 4. The frame (ei) and its modification (ẽi).
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If we wedge the 〈e1, dai〉∧ · · · ∧ 〈ek−1, dai〉 to both sides of equation (23), we
obtain, on the right-hand side,

t

vol(A)

k+1
∧

i=1

〈e1, dai〉 ∧ · · · ∧ 〈ek−1, dai〉 ∧ 〈p, dai〉=
t

vol(A)
rk+1 d(Sk)k+1(A).

On the left-hand side we obtain, using 〈ej , dai〉 = r〈ej , dbi〉+ t〈ej , dp〉 and

taking into account that 〈ej , dp〉 ∧ dSk(p) = 0 since dSk(p) =
∧k

j=1〈ej , dp〉,
k+1
∧

i=1

k−1
∧

j=1

〈ej , dai〉 ∧ dSk ∧ dt= r(k−1)(k+1)
k+1
∧

i=1

k−1
∧

j=1

〈ej , dbi〉 ∧ dSk ∧ dt

= r(k−1)(k+1)dS(p⊥)k+1 ∧ dSk ∧ dt.
This implies that J(A) = t−1r(k−2)(k+1) vol(A) as claimed. �

4.2. The infeasible case. Recall that In,m = (Sm)n \Fn,m denotes the set
of infeasible instances. We define, for I ⊆ [n],

II
n,m(ε) := {A ∈ In,m | C (A)> ε−1 and A has a SIC with blocking set I}.

We note that by symmetry, the volume of II
n,m(ε) only depends on the

cardinality of I .

Lemma 4.7. II
n,m(ε) has measure zero if |I|>m+1.

Proof. If A ∈ II
n,m(ε), then {ai | i ∈ I} is contained in the boundary of

a SIC of A with blocking set I . Hence the affine hull of (ai)i∈I has dimension
less than m. However, if |I| >m+ 1, the latter dimension is almost surely
m+1. �

It is known [5], Proposition 4.2, that in the infeasible case, blocking sets
have at least m+ 1 elements. This fact, together with Lemma 4.7, implies
that

volIn,m(ε)≤
(

n
m+ 1

)

volI [m+1]
n,m (ε).(24)

As with Fn,m, for ease of notation, we write Im
n,m(ε) := I [m+1]

n,m (ε).
The inequality in Theorem 1.3 for the infeasible case follows immediately

from (24) and the following proposition.

Proposition 4.8. We have for ε ∈ (0,1],

volIm
n,m(ε)

On
m

≤C(m,m)

∫ ε

0
(1− t2)(m

2−2)/2(1− λm(t))n−m−1 dt.
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Proof. Consider the projection

ψ :Im
n,m(ε)→ (Sm)m+1, A′ = (a1, . . . , an) 7→A= (a1, . . . , am+1).

To investigate the image and the fibers of ψ assume A′ ∈ Im
n,m(ε). Then there

exists p ∈ Sm and α ∈ (π/2, π] such that cap(p,α) is a SIC of A′ ∈ Im
n,m(ε)

with blocking set [m+ 1]. Then we have that 〈ai, p〉= t for all i ∈ [m+ 1]
and 〈ai, p〉 > t for all i ∈ [n] \ [m + 1] where t := cosα ∈ [−1,0). Lemma
3.2 implies that tp ∈ conv{a1, . . . , am+1}. In turn, Lemma 3.1 implies that
cap(−p,π − α) is a SIC of A with blocking set [m+ 1], and we obtain that
A ∈ Fm

m+1,m(ε). These reasonings show that the image of ψ is contained in
Fm
m+1,m(ε).
Suppose now that a1, . . . , am+1 are linearly independent. Then it follows

from Lemma 3.3 that the vector p is uniquely determined by A. This im-
plies that the fiber of A under ψ is contained in {A} × cap(p,α)n−m−1. We
conclude that for almost all A ∈Fm

m+1,m

volψ−1(A)

On−m−1
m

≤ (1− λm(t))n−m−1.

From these observations we obtain, by Fubini,

volIm
n,m(ε)

On−m−1
m

≤
∫

A∈Fm
m+1,m(ε)

(1− λm(t(A)))n−m−1 d(Sm)m+1.

In the proof of Proposition 4.5 we derived, from the integral representation

(19) for
volFk

n,m(ε)

On−k−1
m

, formula (21). In exactly the same way we can show that

volIm
n,m(ε)

On
m

≤C(m,m)

∫ ε

0
(1− t2)(m

2−2)/2(1− λm(t))n−m−1 dt,

which proves the assertion. �

Remark 4.9. (i) It may be of interest to compare, in the case m= 1,
the upper bound for p(n,1, α) which follows from our results with the exact
expression (1) for this quantity shown by Stevens. Recall that the latter is

p(n,1, α) = n

(

1− α

π

)n−1

−
(

n
2

)(

1− 2α

π

)n−1

+ · · ·

+ (−1)k+1

(

n
k

)(

1− kα

π

)n−1

,

where k = ⌊πα⌋. For α ∈ [0, π/2], Propositions 1.5 and 4.8 yield

p(n,1, α) = Prob{A ∈Fn,1}+ Prob

{

A /∈Fn,1 and C (A)≥ 1

cos(α)

}

≤ n

2n−1
+

(

n
2

)

C(1,1)

∫ cosα

0
(1− t2)−1/2(1− λ1(t))

n−2 dt.
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We use now that C(1,1) = 2
π , as shown in Example 4.4. Then

p(n,1, α) =
n

2n−1
+
n(n− 1)

π

∫ cosα

0
(1− t2)−1/2

(

1− arccos t

π

)n−2

dt

≤ n

2n−1
+ n(n− 1)

∫ 1/2

α/π
(1− x)n−2 dx

= n

(

1− α

π

)n−1

.

That is, we get Stevens’s first term.
(ii) It may also be of interest to compare, for the case m= 2, our upper

bound for p(n,2, α) with the upper bound in (2) obtained by Gilbert [10].
Recall that the latter gives

p(n,2, α)≤ 4
3n(n− 1)λ(1− λ)n−1,

where λ denotes the fraction of the surface of the sphere covered by the cap
of radius α. It is easy to see that our bound implies

p(n,2, α)≤ 1

2n
(n2 − n+2) +

1

2
n(n− 2)(1− λ)n−1.

The first term in this sum is negligible for large n. The second term compares
with Gilbert’s for moderately large caps but it becomes considerably worse
for small caps.

5. On the values of the coefficients C(m,k). In this section we provide
estimates for the numbers C(m,k). In Section 5.1 we derive upper and lower
bounds for them which are elementary functions in m and k. In the case
m= k the upper bound is actually an equality, yielding an exact expression
for C(m,m). Then in Section 5.2 we use these bounds to prove Theorems
1.2 and 1.4. Finally, in Section 5.3 we briefly describe how to derive an exact
expression for C(m,m− 1) and how, for any given m, one may obtain the
values of the C(m,k), k = 1, . . . ,m, by solving an m×m linear system.

5.1. Bounding the coefficients C(m,k). Our first result provides bounds
for C(m,k) in terms of volumes of spheres.

Lemma 5.1. We have for 1≤ k ≤m,

k+ 1

2k
Ok−1Om−k

Om
≤C(m,k)≤ (k+1)m−k+1

2k
Ok−1Om−k

Om

with equalities if k =m. In particular, C(m,m) = m+1
2m−1

Om−1

Om
.
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Proof. Recall Definition 4.3 of the C(m,k),

C(m,k) =
(k!)m−k+1

Ok
m

Gk,m

∫

Mk

(vol∆)m−k+1 dS.

We set S := (Sk−1)k+1 and denote by U the open dense subset of S consist-
ing of all B = (b1, . . . , bk+1) such that every k of these vectors are linearly
independent. By Definition 4.1, Mk is contained in U .

Set ∆(B) = conv{b1, . . . , bk+1} and ∆i(B) = conv(0, b1, . . . , b̂i, . . . , bk+1)

(where b̂i means that bi is omitted). We define, for B ∈ U ,

mvol(B) :=

k+1
∑

i=1

vol∆i(B).

For B ∈Mk we clearly have mvol(B) = vol∆(B), but in general this is not
the case.

The essential observation is now the following:
∫

Mk

(vol∆)m−k+1 dS =
1

2k

∫

U
mvolm−k+1 dS.(25)

In order to show this, note that for B ∈ U there exists a unique µ ∈ R
k+1

with µk+1 = 1, µ1 · · ·µk 6= 0, and such that
∑k+1

i=1 µibi = 0. This allows to
define the map φ :U →{−1,1}k,B 7→ (sgn(µ1), . . . , sgn(µk)). Note thatMk =
φ−1(1, . . . ,1). Moreover, each σ ∈ {−1,1}k defines an isometry,

Mk → φ−1(σ), B 7→ σB := (σ1b1, . . . , σkbk, bk+1).

It follows that mvol(B) = mvol(σB) since changing the signs of rows does
not alter the absolute values of determinants. This implies

∫

U
mvolm−k+1 dS =

∑

σ∈{−1,1}k

∫

φ−1(σ)
mvolm−k+1 dS

= 2k
∫

Mk

mvolm−k+1 dS,

which proves the claimed equation (25).
Recall now the norm inequalities

(xℓ1 + · · ·+ xℓp)≤ (x1 + · · ·+ xp)
ℓ

(26)
≤ pℓ−1(xℓ1 + · · ·+ xℓp) for xi ≥ 0, ℓ≥ 1,

where the last follows from the convexity of the function R → R, y 7→ yℓ.
For the upper bound in the statement we now estimate the right-hand side
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of equation (25) using the last inequality above (with p = k + 1 and ℓ =
m− k+1). We obtain

∫

S
mvolm−k+1 dS ≤ (k+1)m−k

k+1
∑

i=1

∫

S
(vol∆i)

m−k+1 dS

= (k+1)m−k+1

∫

S
(vol∆k+1)

m−k+1 dS

=
(k+1)m−k+1

k!m−k+1

∫

S
|det B̃|m−k+1 dS,

where B̃ ∈R
k×k denotes the matrix with rows b1, . . . , bk. Since the integrand

on the right does not depend on bk+1, we can integrate over B̃ ∈ (Sk−1)k

and pull out a factor Ok−1 obtaining

∫

S
mvolm−k+1 dS ≤ (k+ 1)m−k+1

k!m−k+1
Ok−1

∫

(Sk−1)k
|det B̃|m−k+1 d(Sk−1)k

=
(k+ 1)m−k+1

k!m−k+1
Ok+1

k−1E(|det B̃|m−k+1).

We plug in here the formula of the moments from Lemma 3.5. Putting ev-
erything together, and using Gk,m = (Om−k/Om)Gk,m+1, the claimed upper
bound on C(m,k) follows. The lower bound is obtained by doing the same
reasoning but now using the left-hand side inequality in (26).

In the case k =m upper and lower bounds coincide and we get equalities
for C(m,m). �

Remark 5.2. In the case k = 1 the upper bound in Lemma 5.1 coincides
with the value for C(m,1) shown in Example 4.4.

For the proofs of Theorems 1.2 and 1.4 we need a more explicit expression
for the bounds on the C(m,k). We devote the rest of this section to deriving
such expressions.

Lemma 5.3. For 1≤ k ≤m we have

Ok−1Om−k

Om
≤
√

π

2
k3/4

√

(

m
k

)

.

In the cases k = 1 or k =m one has the sharper bound 2Om−1

Om
≤√

m.

The proof uses bounds on Gamma functions, which we derive next.
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Lemma 5.4. For all r≥ 1,

r1/42−(r−1)/2
√

(r− 1)!≤ Γ

(

r+ 1

2

)

≤
√

π

2
r1/42−(r−1)/2

√

(r− 1)!.

Proof. The double factorials k!! are defined as follows. For k even,
k!! := k(k− 2)(k− 4) · · ·2, and for k odd, k!! := k(k− 2)(k− 4) · · ·3 · 1. Also,
by convention, 0!! = 1. By the functional equation Γ(x+ 1) = xΓ(x) of the
Gamma function, it easily follows that for r ∈N, r ≥ 1,

Γ

(

r+1

2

)

=







√

π

2
(r− 1)!!2−(r−1)/2, if r is even,

(r− 1)!!2−(r−1)/2, if r is odd.

(27)

We estimate now double factorials in terms of factorials. If r≥ 2 is even,

(r!!)2 = rr(r− 2)(r − 2) · · ·4 · 4 · 2 · 2

= r(r− 1)
r

r− 1
(r− 2)(r− 3)

r− 2

r− 3
· · ·4 · 34

3
2 · 2

= r!
r

r− 1

r− 2

r− 3
· · · 4

3
2

= r!

√

r

r− 1

r

r− 1

r− 2

r− 3

r− 2

r− 3
· · · 4

3

4

3
2 · 2.

We use that ℓ+1
ℓ ≤ ℓ

ℓ−1 for ℓ≥ 2 to deduce from this

r!
√
r+1≤ (r!!)2 ≤ r!

√
2r for r ≥ 2 even.(28)

Similarly, for r≥ 1 odd, one shows that

(r!!)2 = r!

√

r

r− 1

r

r− 1

r− 2

r− 3

r− 2

r− 3
· · · 5

4

5

4

3

2

3

2
,

which implies

r!

√

r+ 1

2
≤ (r!!)2 ≤ r!

√
r for r ≥ 1 odd.(29)

By applying the bounds (28) and (29) to (27) and noting that 21/4 ≤
√

π
2 ,

the claim follows. �

Proof of Lemma 5.3. Assume that 2 ≤ k < m. Then, using Lemma
5.4, we deduce that

Ok−1Om−k

Om
= 2

Γ((m+ 1)/2)

Γ(k/2)Γ((m− k+1)/2)
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≤
√

π

2

√

(m− 1)!

(k− 2)!(m− k− 1)!

(

m

(k− 1)(m− k)

)1/4

=

√

π

2

√

(

m
k

)

√

(m− k)k(k − 1)

m

(

m

(k− 1)(m− k)

)1/4

≤
√

π

2

√

(

m
k

)

k3/4.

The cases k = 1 and k =m follow similarly from Lemma 5.4. �

An immediate consequence of Lemmas 5.3 and 5.4 are the following
bounds on the coefficients C(m,k).

Proposition 5.5. For 1≤ k <m,

C(m,k)≤
√

π

2

(k+ 1)m−k+1

2k
k3/4

√

(

m
k

)

.

In addition, for all m≥ 1,

C(m,m)≤ (m+ 1)
√
m

2m
.

Remark 5.6. Using Lemmas 5.1 and 5.4 it is easy to obtain lower
bounds for the C(m,k) similar to the upper bounds in Proposition 5.5.

5.2. Proof of Theorems 1.2 and 1.4. The following identity is repeatedly
used in the proof.

Lemma 5.7. We have
∑∞

n=k

(n
k

)

zn−k = (1 − z)−k−1 for k ∈ N and z ∈
(0,1).

Proof. Take the kth derivative on both sides of
∑∞

n=0 z
n = 1

1−z . �

Proof of Theorem 1.2. By definition, we have N(m,α)> n iff cap(a1,
α) ∪ · · · ∪ cap(an, α) 6= Sn. Hence

E(N(m,α)) =

∞
∑

n=0

Prob(N(m,α)> n) =

∞
∑

n=0

p(n,m,α).

We assume that α≤ π/2. Since p(n,m,α) = 1 for n≤m+ 1, we conclude

E(N(m,α)) =m+1+
∞
∑

n=m+1

p(n,m,α).(30)
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Proposition 1.5 states that, for α ∈ (0, π2 ], and ε= cos(α)

p(n,m,α) = 21−n
m
∑

k=0

(

n− 1
k

)

+Pn,m(ε),

where we have put

Pn,m(ε) := Prob{A ∈ In,m and C (A)≥ ε−1}.
We first estimate

T :=

∞
∑

n=m+1

21−n
m
∑

k=0

(

n− 1
k

)

as follows (take r= n− 1)

T =
m
∑

k=0

∞
∑

r=m

(

r
k

)(

1

2

)r

≤
m
∑

k=0

(

1

2

)k ∞
∑

r=k

(

r
k

)(

1

2

)r−k

−
m−1
∑

k=0

1

2k
.

Applying Lemma 5.7 to the last expression we obtain

T ≤
m
∑

k=0

(

1

2

)k

2k+1 − 2 +
1

2m−1
≤ 2m+1.

We now estimate T ∗ :=
∑∞

n=m+1Pn,m(ε) using Theorem 1.3 which tells
us that

Pn,m(ε)≤
(

n
m+ 1

)

C(m,m)

∫ ε

0
(1− t2)(m

2−2)/2(1− λm(t))n−m−1 dt.

Hence, using Lemma 5.7 again,

T ∗ = C(m,m)

∞
∑

n=m+1

(

n
m+1

)
∫ ε

0
(1− t2)(m

2−2)/2(1− λm(t))n−m−1 dt

≤ C(m,m)

∫ ε

0

∞
∑

n=m+1

(

n
m+ 1

)

(1− λm(t))n−m−1 dt

= C(m,m)

∫ ε

0
λm(t)−m−2 dt≤C(m,m)

ε

λ(ε)m+2
.

Plugging in the estimate for C(m,m) from Proposition 5.5, we obtain the
claimed bound for E(N(m,α))≤m+ 1+ T + T ∗. �

We now turn to Theorem 1.4 on the expected value of lnC (A). In Theo-
rem 1.3 we derived tail estimates on the probability distribution of the GCC
condition number. For the sake of clarity, we include the following simple
observation showing how to use these tail estimates to bound the expected
value of the logarithm of the condition number.
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Proposition 5.8. Let Z be a random variable, almost surely greater or
equal than 1, satisfying, for some K, t0 > 0, that Prob{Z ≥ t} ≤Kt−1 for all
t≥ t0. Then E(lnZ)≤ ln t0 +

K
t0
.

Proof. We have Prob{lnZ ≥ s} ≤Ke−s for all s > ln t0. Therefore,

E(lnZ) =

∫ ∞

0
Prob{lnZ ≥ s}ds≤ ln t0 +

∫ ∞

ln t0

Ke−s dt= ln t0 +
K

t0

as claimed. �

We next proceed to prove Theorem 1.4. To simplify notation we put

Pn,m(ε) := Prob{A ∈ In,m and C (A)≥ ε−1},
Qn,m(ε) := Prob{A ∈Fn,m and C (A)≥ ε−1}.

Lemma 5.9. For any n>m≥ 1 and ε ∈ (0,1] we have:

(i) If ε−1 ≥ 13(m+1)3/2 then Pn,m(ε)≤ 2e(m+1)3/2ε.

(ii) If ε−1 ≥ (m+1)2 then Qn,m(ε)≤
√
2πe(m+1)7/4ε.

Proof. (i) Theorem 1.3 tells us that

Pn,m(ε)≤
(

n
m+ 1

)

C(m,m)

∫ ε

0
(1− t2)(m

2−2)/2(1− λm(t))n−m−1 dt.

Recall formula (5) for the relative volume λm(t) of a cap of radius arccos(t)

on Sm. Recall also from Lemma 5.3 that αm := 2Om−1

Om
≤√

m. The first order
derivative of λm(t)

dλm(t)

dt
=−1

2
αm(1− t2)(m−2)/2

is increasing; hence λm is a convex function. Moreover, λm(0) = 1/2. This
implies 2λm(t)≥ 1−αmt for all t ∈ [0,1]; hence 1− λm(t)≤ 1

2(1 +αmt).
Bounding C(m,m) as in Proposition 5.5 we arrive at the estimate

Pn,m(ε)≤ 2(m+1)
√
m

1

2n

(

n

m+1

)

(1 +
√
mε)n−m−1ε.(31)

We now proceed dividing by cases. Suppose that ε−1 ≥ 13(m+1)3/2.

Case 1 [n≤ 13(m+1)]. In this case ε−1 ≥ n
√
m and hence, using (31),

Pn,m(ε)≤ 2(m+1)
√
m(1 + 1/n)n−m−1ε≤ 2e(m+ 1)

√
mε.
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Case 2 [n > 13(m+1)]. This implies ln(e n
m+1 )≤ n

m+1 ln(
4
3 ), and it fol-

lows that
(

n
m+1

)

≤ 1

(m+1)!
nm+1 ≤

(

en

m+1

)m+1

≤
(

4

3

)n

.(32)

Since, in addition, ε−1 ≥ 13(m+1)
√
m≥ 2

√
m we get from (31)

Pn,m(ε)≤ 2(m+ 1)
√
m

1

2n

(

n
m+1

)(

3

2

)n

ε≤ 2(m+ 1)
√
mε.

(ii) Theorem 1.3 implies that

Qn,m(ε) =

m
∑

k=1

(

n
k+ 1

)

C(m,k)

∫ ε

0
tm−k(1− t2)km/2−1λm(t)n−k−1 dt

≤
m
∑

k=1

(

n
k+ 1

)

C(m,k)εm−k+12−(n−k−1)

≤
m
∑

k=1

C(m,k)εm−k+12k+1,

the second line since λm(t)≤ 1
2 . Using Proposition 5.5 we obtain

Qn,m(ε)≤ ε
√
2π(m+ 1)7/4

m
∑

k=1

√

(

m
k

)

((m+ 1)ε)m−k

≤ ε
√
2π(m+ 1)7/4

m
∑

k=1

(

m
k

)

((m+1)ε)m−k

≤ ε
√
2π(m+ 1)7/4(1 + (m+ 1)ε)m.

Under the assumption ε−1 ≥ (m+1)2 we have (m+1)ε≤ 1
(m+1) , and hence

Qn,m(ε)≤ ε
√
2π(m+ 1)7/4

√
e. �

Proof of Theorem 1.4. For ε−1 ≥ 13(m + 1)2 we have, by Lemma
5.9,

Prob{C (A)≥ ε−1}= Pn,m(ε) +Qn,m(ε)

≤ (2e(m+ 1)3/2 +
√
2πe(m+ 1)7/4)ε

≤ 9.6(m+ 1)2ε.

An application of Proposition 5.8 with K = 9.6(m+1)2 and t0 = 13(m+1)2

shows that

E(lnC (A))≤ 2 ln(m+ 1) + ln13 + 9.6/13≤ 2 ln(m+1) + 3.31. �
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5.3. On calculating the C(m,k). We describe a method for calculating
the C(m,k). For 1≤ k ≤m<n we define the following integrals:

I(n,m,k) := 2n−1

(

n
k+ 1

)
∫ 1

0
tm−k(1− t2)km/2−1λm(t)n−k−1 dt.

By setting ε= 1 in the first part of Theorem 1.3 we get from (4) that, for
all n >m,

m
∑

k=1

I(n,m,k)C(m,k) =

m−1
∑

k=0

(

n− 1
k

)

.(33)

By taking m different values of n (e.g., n =m+ 1, . . . ,2m) one obtains a
(square) system of linear equations in the C(m,k). Solving this system with
Maple (symbolically for even m and numerically for odd m) we obtained
Table 1.

We can further use (33) to obtain expressions for C(m,k) for values of k
other than 1 and m. We do so for k =m− 1.

Proposition 5.10. For all m≥ 2,

C(m,m− 1) =
m(m− 1)

2m−1
(1 +α2

m) where αm =
2Om−1

Om
.

Sketch of proof. Put J(n,m,k) :=
∫ 1
0 t

m−k(1−t2)km/2−1λm(t)n−k−1 dt

so that I(n,m,k) = 2n−1
( n
k+1

)

J(n,m,k). In the following we write N =
n−m. One can prove that for fixed m the following asymptotic expansion
holds for N →∞:

2n−m−1J(n,m,m) =
1

αm

1

N
− m(m− 1)

α3
m

1

N3
+O

(

1

N5

)

,

2n−mJ(n,m,m− 1) =
1

α2
m

1

(N +1)(N +2)
+O

(

1

N4

)

.

It follows after a short calculation that the left-hand side of (33) has the
following expansion:

C(m,m)
2m

(m+1)!

(

1

αm
Nm +

a1(m)

αm
Nm−1 +

(

a2(m)

αm
− m(m− 1)

α3
m

)

Nm−2

)

+C(m,m− 1)
2m−1

m!

1

α2
m

Nm−2 +O(Nm−3),

where

a1(m) :=
∑

0≤j≤m

j =
1

2
m(m+1),
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a2(m) :=
∑

0≤i<j≤m

ij =
1

24
(m+1)m(m− 1)(m− 2)(3m+2).

Now we expand the right-hand side of (33) to obtain

1

m!
Nm +

(

a1(m− 1)

m!
+

1

(m− 1)!

)

Nm−1

+

(

a2(m− 1)

m!
+
a1(m− 1)

(m− 1)!
+

1

(m− 2)!

)

Nm−2

+O(Nm−3).

By comparing the coefficients of Nm (or those of Nm−1) we obtain

C(m,m) =
m+1

2m
αm.

By comparing the coefficients of Nm−2 we get, after a short calculation,

C(m,m− 1) =
O2

m−1

O2
m2m−3

(

a2(m− 1)− a2(m) +ma1(m− 1)

+m(m− 1) +
m(m− 1)O2

m

4O2
m−1

)

,

and simplifying this expression, the claimed result follows. �

Finding a closed form for all coefficients C(m,k) remains a challenging
task.
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[24] Santaló, L. A. (1976). Integral Geometry and Geometric Probability. Addison-

Wesley, Reading, MA. MR0433364
[25] Siegel, A. F. (1979). Asymptotic coverage distributions on the circle. Ann. Probab.

7 651–661. MR537212
[26] Siegel, A. F. and Holst, L. (1982). Covering the circle with random arcs of random

sizes. J. Appl. Probab. 19 373–381. MR649974
[27] Solomon, H. (1978). Geometric Probability. SIAM, Philadelphia, PA. MR0488215
[28] Stevens, W. L. (1939). Solution to a geometrical problem in probability. Ann.

Eugenics 9 315–320. MR0001479
[29] Wendel, J. G. (1962). A problem in geometric probability.Math. Scand. 11 109–111.

MR0146858
[30] Whitworth, W. A. (1965). DCC Exercises in Choice and Chance. Dover, New York.

http://www.ams.org/mathscinet-getitem?mr=1885574
http://www.ams.org/mathscinet-getitem?mr=1981163
http://arxiv.org/abs/cs/0302011v2
http://www.ams.org/mathscinet-getitem?mr=0079365
http://www.ams.org/mathscinet-getitem?mr=0207005
http://www.ams.org/mathscinet-getitem?mr=594854
http://www.ams.org/mathscinet-getitem?mr=799434
http://www.ams.org/mathscinet-getitem?mr=973404
http://www.ams.org/mathscinet-getitem?mr=2496555
http://www.ams.org/mathscinet-getitem?mr=822331
http://www.ams.org/mathscinet-getitem?mr=0103533
http://www.ams.org/mathscinet-getitem?mr=0254953
http://www.ams.org/mathscinet-getitem?mr=0309164
http://www.ams.org/mathscinet-getitem?mr=0156434
http://www.ams.org/mathscinet-getitem?mr=0062787
http://www.ams.org/mathscinet-getitem?mr=1885651
http://www.ams.org/mathscinet-getitem?mr=0135635
http://www.ams.org/mathscinet-getitem?mr=0433364
http://www.ams.org/mathscinet-getitem?mr=537212
http://www.ams.org/mathscinet-getitem?mr=649974
http://www.ams.org/mathscinet-getitem?mr=0488215
http://www.ams.org/mathscinet-getitem?mr=0001479
http://www.ams.org/mathscinet-getitem?mr=0146858
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