

The University of Manchester

Automorphisms of finite *p*-groups admitting a partition

Khukhro, E. I.

2012

MIMS EPrint: 2012.100

Manchester Institute for Mathematical Sciences School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/ And by contacting: The MIMS Secretary School of Mathematics The University of Manchester Manchester, M13 9PL, UK

ISSN 1749-9097

Automorphisms of finite p-groups admitting a partition

E. I. Khukhro

March 2012

E. I. Khukhro (Inst. Math., NovosibiiAutomorphisms of finite p-groups adm

March 2012 1 / 22

Finite $\boldsymbol{\rho}$ -groups with a partition

Henceforth, \boldsymbol{P} is a finite \boldsymbol{p} -group.

Equivalent definitions:

(a) $P = \bigcup P_i$ for some $P_i < P$ such that $P_i \cap P_j = 1$;

2/22

Henceforth, \boldsymbol{P} is a finite \boldsymbol{p} -group.

Equivalent definitions:

- (a) $P = \bigcup P_i$ for some $P_i < P$ such that $P_i \cap P_j = 1$;
- ${\rm (b)} \ \ P \neq H_{p}(P) := \langle g \in P \mid g^{p} \neq 1 \rangle \ {\rm (proper Hughes subgroup)};$

(日本)(日本)(日本)(日本)(日本)

Henceforth, \boldsymbol{P} is a finite \boldsymbol{p} -group.

Equivalent definitions:

(a) $P = \bigcup P_i$ for some $P_i < P$ such that $P_i \cap P_j = 1$;

 ${\rm (b)} \ \ P \neq H_p(P) := \langle g \in P \mid g^p \neq 1 \rangle \ {\rm (proper Hughes subgroup)};$

(c) $P = P_1 \rtimes \langle \varphi \rangle$, where $\varphi^p = 1$ and $xx^{\varphi}x^{\varphi^2} \cdots x^{\varphi^{p-1}} = 1$ for all $x \in P$ (splitting automorphism of P_1).

Henceforth, \boldsymbol{P} is a finite \boldsymbol{p} -group.

Equivalent definitions:

(a) $P = \bigcup P_i$ for some $P_i < P$ such that $P_i \cap P_j = 1$;

 ${\rm (b)} \ \ {\pmb{P}} \neq {\pmb{H}}_{\pmb{\rho}}({\pmb{P}}) := \langle {\pmb{g}} \in {\pmb{P}} \mid {\pmb{g}}^{\pmb{\rho}} \neq {\pmb{1}} \rangle \ {\rm (proper Hughes subgroup)};$

(c) $P = P_1 \rtimes \langle \varphi \rangle$, where $\varphi^p = 1$ and $xx^{\varphi}x^{\varphi^2} \cdots x^{\varphi^{p-1}} = 1$ for all $x \in P$ (splitting automorphism of P_1).

Such groups generalize (are close to) groups of exponent p:

outside a proper subgroup all elements are of order \boldsymbol{p} ,

Henceforth, \boldsymbol{P} is a finite \boldsymbol{p} -group.

Equivalent definitions:

(a) $P = \bigcup P_i$ for some $P_i < P$ such that $P_i \cap P_j = 1$;

 ${\rm (b)} \ \ {\pmb{P}} \neq {\pmb{H}}_{\pmb{\rho}}({\pmb{P}}) := \langle {\pmb{g}} \in {\pmb{P}} \mid {\pmb{g}}^{\pmb{\rho}} \neq {\pmb{1}} \rangle \ {\rm (proper Hughes subgroup)};$

(c) $P = P_1 \rtimes \langle \varphi \rangle$, where $\varphi^p = 1$ and $xx^{\varphi}x^{\varphi^2} \cdots x^{\varphi^{p-1}} = 1$ for all $x \in P$ (splitting automorphism of P_1).

Such groups generalize (are close to) groups of exponent p:

outside a proper subgroup all elements are of order $\boldsymbol{\rho}$,

and $\varphi = 1 \Rightarrow$ exponent p.

Henceforth, \boldsymbol{P} is a finite \boldsymbol{p} -group.

Equivalent definitions:

(a) $P = \bigcup P_i$ for some $P_i < P$ such that $P_i \cap P_j = 1$;

 ${\rm (b)} \ \ \boldsymbol{P} \neq \boldsymbol{H}_{\!\boldsymbol{\rho}}(\boldsymbol{P}) := \langle \boldsymbol{g} \in \boldsymbol{P} \mid \boldsymbol{g}^{\boldsymbol{\rho}} \neq \boldsymbol{1} \rangle \ ({\rm proper \ Hughes \ subgroup});$

(c) $P = P_1 \rtimes \langle \varphi \rangle$, where $\varphi^p = 1$ and $xx^{\varphi}x^{\varphi^2} \cdots x^{\varphi^{p-1}} = 1$ for all $x \in P$ (splitting automorphism of P_1).

Such groups generalize (are close to) groups of exponent p:

outside a proper subgroup all elements are of order p,

and $\varphi = 1 \Rightarrow$ exponent p.

(But there is no bound for the exponent of a p-group with a partition.)

・ロト ・ 同ト ・ ヨト ・ ヨト ・ シック

March 2012

2/22

Splitting automorphism approach

Splitting automorphism approach of condition (c) turned out to be most efficient. Recall:

(*)

(c) $P = P_1 \rtimes \langle \varphi \rangle$, where $\varphi^p = 1$ and $x x^{\varphi} x^{\varphi^2} \cdots x^{\varphi^{p-1}} = 1$ for all $x \in P$

(φ is a splitting automorphism of P_1).

Splitting automorphism approach

Splitting automorphism approach of condition (c) turned out to be most efficient. Recall:

(c) $\boldsymbol{P} = \boldsymbol{P}_1 \rtimes \langle \varphi \rangle$, where

 $\varphi^{p} = 1$ and $xx^{\varphi}x^{\varphi^{2}}\cdots x^{\varphi^{p-1}} = 1$ for all $x \in P$

(φ is a splitting automorphism of P_1).

(Note that we do not exclude the case where φ acts trivially on P_1 , when, of course, P_1 must have exponent p.)

(*)

Splitting automorphism approach

Splitting automorphism approach of condition (c) turned out to be most efficient. Recall:

(c) $\boldsymbol{P} = \boldsymbol{P}_1 \rtimes \langle \varphi \rangle$, where

 $\varphi^{p} = 1$ and $xx^{\varphi}x^{\varphi^{2}}\cdots x^{\varphi^{p-1}} = 1$ for all $x \in P$

(φ is a splitting automorphism of P_1).

(Note that we do not exclude the case where φ acts trivially on P_1 , when, of course, P_1 must have exponent p.)

All groups with a splitting automorphism of order p form a variety of groups with operators defined by the laws (*).

(*)

Analogues of theorems on group of exponent pare natural for finite p-groups with a partition (equivalently, for p-groups with a splitting automorphism of order p).

Analogues of theorems on group of exponent pare natural for finite p-groups with a partition (equivalently, for p-groups with a splitting automorphism of order p).

Recall: (c) $P = P_1 \rtimes \langle \varphi \rangle$, where $\varphi^p = 1$ and $x x^{\varphi} x^{\varphi^2} \cdots x^{\varphi^{p-1}} = 1$ for all $x \in P$.

Analogues of theorems on group of exponent pare natural for finite p-groups with a partition (equivalently, for p-groups with a splitting automorphism of order p).

Recall: (c) $P = P_1 \rtimes \langle \varphi \rangle$, where $\varphi^p = 1$ and $x x^{\varphi} x^{\varphi^2} \cdots x^{\varphi^{p-1}} = 1$ for all $x \in P$.

For example, EKh-1981: if P_1 in condition (c) has derived length d, then P_1 is nilpotent of (p, d)-bounded class.

Analogues of theorems on group of exponent pare natural for finite p-groups with a partition (equivalently, for p-groups with a splitting automorphism of order p).

Recall: (c) $P = P_1 \rtimes \langle \varphi \rangle$, where $\varphi^p = 1$ and $x x^{\varphi} x^{\varphi^2} \cdots x^{\varphi^{p-1}} = 1$ for all $x \in P$.

For example, EKh-1981: if P_1 in condition (c) has derived length d, then P_1 is nilpotent of (p, d)-bounded class.

Plus, based on Kostrikin's theorem for groups of prime exponent, EKh-1986: analogue of the affirmative solution of the Restricted Burnside Problem: the nilpotency class of P_1 is bounded in terms of p and the number of generators.

March 2012

4/22

Analogues of theorems on group of exponent pare natural for finite p-groups with a partition (equivalently, for p-groups with a splitting automorphism of order p).

Recall: (c) $P = P_1 \rtimes \langle \varphi \rangle$, where $\varphi^p = 1$ and $x x^{\varphi} x^{\varphi^2} \cdots x^{\varphi^{p-1}} = 1$ for all $x \in P$.

For example, EKh-1981: if P_1 in condition (c) has derived length d, then P_1 is nilpotent of (p, d)-bounded class.

Plus, based on Kostrikin's theorem for groups of prime exponent, EKh-1986: analogue of the affirmative solution of the Restricted Burnside Problem: the nilpotency class of P_1 is bounded in terms of p and the number of generators.

March 2012

4 / 22

As a corollary, a positive solution for the Hughes problem was obtained for "almost all" finite p-groups.

EKh–Shumyatsky, 1995: if a finite group G of exponent p admits a soluble group of automorphisms A of coprime order such that the fixed-point subgroup $C_G(A)$ is soluble of derived length d, then G is nilpotent of (p, d, |A|)-bounded class.

EKh–Shumyatsky, 1995: if a finite group G of exponent p admits a soluble group of automorphisms A of coprime order such that the fixed-point subgroup $C_G(A)$ is soluble of derived length d, then G is nilpotent of (p, d, |A|)-bounded class.

Theorem 1

Suppose that a finite p-group P with a partition admits a soluble group of automorphisms A of coprime order such that $C_P(A)$ has derived length d. Then any maximal subgroup of P containing $H_p(P)$ is nilpotent of (p, d, |A|)-bounded class.

EKh–Shumyatsky, 1995: if a finite group G of exponent p admits a soluble group of automorphisms A of coprime order such that the fixed-point subgroup $C_G(A)$ is soluble of derived length d, then G is nilpotent of (p, d, |A|)-bounded class.

Theorem 1

Suppose that a finite p-group P with a partition admits a soluble group of automorphisms A of coprime order such that $C_P(A)$ has derived length d. Then any maximal subgroup of P containing $H_p(P)$ is nilpotent of (p, d, |A|)-bounded class.

Note: the nilpotency class of the whole group \boldsymbol{P} cannot be bounded.

(本部) (本語) (本語)

EKh–Shumyatsky, 1995: if a finite group G of exponent p admits a soluble group of automorphisms A of coprime order such that the fixed-point subgroup $C_G(A)$ is soluble of derived length d, then G is nilpotent of (p, d, |A|)-bounded class.

Theorem 1

Suppose that a finite p-group P with a partition admits a soluble group of automorphisms A of coprime order such that $C_P(A)$ has derived length d. Then any maximal subgroup of P containing $H_p(P)$ is nilpotent of (p, d, |A|)-bounded class.

Note: the nilpotency class of the whole group \boldsymbol{P} cannot be bounded.

The bound for the nilpotency class of that maximal subgroup can be chosen the same as in EKh–Shumyatsky-95 for groups of exponent $\pmb{p}.$

Exponent

Theorem 2

If a finite p-group P with a partition admits a group of automorphisms A that acts faithfully on $P/H_p(P)$, then the exponent of P is bounded in terms of the exponent of $C_P(A)$.

6 / 22

Frobenius groups of automorphisms

Corollary

Suppose that a finite group G admits a Frobenius group of automorphisms FH with cyclic kernel $F = \langle \varphi \rangle$ of prime order p such that φ is a splitting automorphism, that is, $xx^{\varphi}x^{\varphi^2}\cdots x^{\varphi^{p-1}} = 1$ for all $x \in G$.

Frobenius groups of automorphisms

Corollary

Suppose that a finite group G admits a Frobenius group of automorphisms FH with cyclic kernel $F = \langle \varphi \rangle$ of prime order p such that φ is a splitting automorphism, that is, $xx^{\varphi}x^{\varphi^2}\cdots x^{\varphi^{p-1}} = 1$ for all $x \in G$.

(a) If $C_G(H)$ is soluble of derived length d, then G is nilpotent of (p, d)-bounded class.

Frobenius groups of automorphisms

Corollary

Suppose that a finite group G admits a Frobenius group of automorphisms FH with cyclic kernel $F = \langle \varphi \rangle$ of prime order p such that φ is a splitting automorphism, that is, $xx^{\varphi}x^{\varphi^2}\cdots x^{\varphi^{p-1}} = 1$ for all $x \in G$.

- (a) If $C_G(H)$ is soluble of derived length d, then G is nilpotent of (p, d)-bounded class.
- (b) The exponent of G is bounded in terms of p and the exponent of $C_G(H).$

E. I. Khukhro (Inst. Math., NovosibiiAutomorphisms of finite p-groups adn March 2012 8 / 22

イロト イヨト イヨト イヨト

æ

The group \boldsymbol{G} is nilpotent by Kegel–Thompson–Hughes.

э

8 / 22

The group G is nilpotent by Kegel–Thompson–Hughes. φ is fixed-point-free on $G_{p'}$: for any $g \in C_G(\varphi)$ we have $1 = gg^{\varphi}g^{\varphi^2} \cdots g^{\varphi^{p-1}} = g^p$.

The group G is nilpotent by Kegel–Thompson–Hughes. φ is fixed-point-free on $G_{\rho'}$: for any $g \in C_G(\varphi)$ we have $1 = gg^{\varphi}g^{\varphi^2} \cdots g^{\varphi^{p-1}} = g^p$. Hence $G_{\rho'}$ is nilpotent of p-bounded class by Higman–Kreknin–Kostrikin.

The group G is nilpotent by Kegel–Thompson–Hughes. φ is fixed-point-free on $G_{p'}$: for any $g \in C_G(\varphi)$ we have $1 = gg^{\varphi}g^{\varphi^2} \cdots g^{\varphi^{p-1}} = g^p$. Hence $G_{p'}$ is nilpotent of p-bounded class by Higman–Kreknin–Kostrikin.

For (a) it now remains to consider the Sylow *p*-subgroup G_p of *G*. The result follows from Theorem 1 applied to $P = G_p \langle \varphi \rangle$ and A = H.

The group G is nilpotent by Kegel–Thompson–Hughes. φ is fixed-point-free on $G_{p'}$: for any $g \in C_G(\varphi)$ we have $1 = gg^{\varphi}g^{\varphi^2} \cdots g^{\varphi^{p-1}} = g^p$. Hence $G_{p'}$ is nilpotent of p-bounded class by Higman–Kreknin–Kostrikin. For (a) it now remains to consider the Sylew p subgroup

For (a) it now remains to consider the Sylow *p*-subgroup G_p of *G*. The result follows from Theorem 1 applied to $P = G_p \langle \varphi \rangle$ and A = H.

By a lemma in EKh–Makarenko–Shumyatsky-2010
$$\mathcal{G}_{p'} = \langle \mathcal{C}_{\mathcal{G}_{p'}}(\mathcal{H})^f \mid f \in \mathcal{F} \rangle.$$

The group G is nilpotent by Kegel–Thompson–Hughes. φ is fixed-point-free on $G_{p'}$: for any $g \in C_G(\varphi)$ we have $1 = gg^{\varphi}g^{\varphi^2}\cdots g^{\varphi^{p-1}} = g^p$. Hence $G_{p'}$ is nilpotent of p-bounded class by Higman–Kreknin–Kostrikin.

For (a) it now remains to consider the Sylow *p*-subgroup G_p of *G*. The result follows from Theorem 1 applied to $P = G_p \langle \varphi \rangle$ and A = H.

By a lemma in EKh–Makarenko–Shumyatsky-2010 $G_{p'} = \langle C_{G_{p'}}(H)^f \mid f \in F \rangle.$ So $G_{p'}$ is generated by elements of orders dividing the exponent of $C_G(H).$

The group G is nilpotent by Kegel–Thompson–Hughes. φ is fixed-point-free on $G_{p'}$: for any $g \in C_G(\varphi)$ we have $1 = gg^{\varphi}g^{\varphi^2}\cdots g^{\varphi^{p-1}} = g^p$. Hence $G_{p'}$ is nilpotent of p-bounded class by Higman–Kreknin–Kostrikin.

For (a) it now remains to consider the Sylow p-subgroup G_p of G. The result follows from Theorem 1 applied to $P = G_p \langle \varphi \rangle$ and A = H.

By a lemma in EKh–Makarenko–Shumyatsky-2010

$$G_{p'} = \langle C_{G_{p'}}(H)^f | f \in F \rangle.$$

So G , is generated by elements of orders dividing the

So $G_{p'}$ is generated by elements of orders dividing the exponent of $C_G(H)$.

Plus *p*-bounded nilpotency class of $G_{p'} \Rightarrow$ exponent of $G_{p'}$ is bounded in terms of *p* and exponent of $C_G(H)$.

The group G is nilpotent by Kegel–Thompson–Hughes. φ is fixed-point-free on $G_{p'}$: for any $g \in C_G(\varphi)$ we have $1 = gg^{\varphi}g^{\varphi^2} \cdots g^{\varphi^{p-1}} = g^p$. Hence $G_{p'}$ is nilpotent of p-bounded class by Higman–Kreknin–Kostrikin.

For (a) it now remains to consider the Sylow p-subgroup G_p of G. The result follows from Theorem 1 applied to $P = G_p \langle \varphi \rangle$ and A = H.

By a lemma in EKh–Makarenko–Shumyatsky-2010
 $G_{p'} = \langle C_{G_{p'}}(H)^f \mid f \in F \rangle.$

So $G_{p'}$ is generated by elements of orders dividing the exponent of $C_G(H)$.

Plus *p*-bounded nilpotency class of $G_{p'} \Rightarrow$ exponent of $G_{p'}$ is bounded in terms of *p* and exponent of $C_G(H)$.

So in (b) it remains to consider G_p . The result follows from Theorem 2 applied to $P = G_p \langle \varphi \rangle$ and A = H.

Comments on Frobenius groups of automorphisms

Examples show that dependence of the nilpotency class on \pmb{p} is essential in part (a) of Corollary

9 / 22

Comments on Frobenius groups of automorphisms

Examples show that dependence of the nilpotency class on p is essential in part (a) of Corollary (obviously also true for exponent in part (b)).

9 / 22

Comments on Frobenius groups of automorphisms

Examples show that dependence of the nilpotency class on p is essential in part (a) of Corollary (obviously also true for exponent in part (b)).

Recent papers of EKh, Makarenko, Shumyatsky on finite groups G with a Frobenius group of automorphisms FH with fixed-point-free kernel F:
Comments on Frobenius groups of automorphisms

Examples show that dependence of the nilpotency class on p is essential in part (a) of Corollary (obviously also true for exponent in part (b)).

Recent papers of EKh, Makarenko, Shumyatsky on finite groups G with a Frobenius group of automorphisms FH with fixed-point-free kernel F:

Mazurov's problem 17.72(a) from Kourovka Notebook was solved in the affirmative,

Comments on Frobenius groups of automorphisms

Examples show that dependence of the nilpotency class on p is essential in part (a) of Corollary (obviously also true for exponent in part (b)).

Recent papers of EKh, Makarenko, Shumyatsky on finite groups G with a Frobenius group of automorphisms FH with fixed-point-free kernel F:

Mazurov's problem 17.72(a) from Kourovka Notebook was solved in the affirmative, and moreover, for any metacyclic Frobenius group of automorphisms FH and nilpotent G, a bound for the nilpotency class of G was obtained in terms of |H| and the nilpotency class of $C_G(H)$,

Comments on Frobenius groups of automorphisms

Examples show that dependence of the nilpotency class on p is essential in part (a) of Corollary (obviously also true for exponent in part (b)).

Recent papers of EKh, Makarenko, Shumyatsky on finite groups G with a Frobenius group of automorphisms FH with fixed-point-free kernel F:

Mazurov's problem 17.72(a) from Kourovka Notebook was solved in the affirmative, and moreover, for any metacyclic Frobenius group of automorphisms FH and nilpotent G, a bound for the nilpotency class of G was obtained in terms of |H| and the nilpotency class of $C_G(H)$, as well as a bound for the exponent of G in terms of |FH| and the exponent of $C_G(H)$.

Question

Question: can results like Corollary be obtained for Frobenius groups of automorphisms with kernel generated by a splitting automorphism of composite order?

Question

Question: can results like Corollary be obtained for Frobenius groups of automorphisms with kernel generated by a splitting automorphism of composite order?

Examples show that nilpotency class cannot be bounded (even for cyclic kernel of order p^2 generated by a splitting automorphism and complement of order 2 with abelian fixed points).

Question

Question: can results like Corollary be obtained for Frobenius groups of automorphisms with kernel generated by a splitting automorphism of composite order?

Examples show that nilpotency class cannot be bounded (even for cyclic kernel of order p^2 generated by a splitting automorphism and complement of order 2 with abelian fixed points).

Question remains open for the exponent, as well as for the derived length.

Proof of Theorem 1 uses a modification of the method of elimination of automorphisms by nilpotency, which was used in EKh-1991 earlier in the study of splitting automorphisms of prime order.

Proof of Theorem 1 uses a modification of the method of elimination of automorphisms by nilpotency, which was used in EKh-1991 earlier in the study of splitting automorphisms of prime order.

Reduction by known results to the main case:

Proof of Theorem 1 uses a modification of the method of elimination of automorphisms by nilpotency, which was used in EKh-1991 earlier in the study of splitting automorphisms of prime order.

Reduction by known results to the main case:

Theorem 1'

Suppose that a soluble group FA with normal Sylow p-subgroup $F = \langle \varphi \rangle$ of order p and Hall p'-subgroup A acts by automorphisms on a finite p-group G in such a manner that φ is a splitting automorphism, that is, $xx^{\varphi}x^{\varphi^2}\cdots x^{\varphi^{p-1}} = 1$ for all $x \in G$. If $C_G(A)$ is soluble of derived length d, then G is nilpotent of (p, d, |A|)-bounded class.

э

・ロト ・ 日 ・ ・ ヨ ・

Proof of Theorem 1 uses a modification of the method of elimination of automorphisms by nilpotency, which was used in EKh-1991 earlier in the study of splitting automorphisms of prime order.

Reduction by known results to the main case:

Theorem 1'

Suppose that a soluble group FA with normal Sylow p-subgroup $F = \langle \varphi \rangle$ of order p and Hall p'-subgroup A acts by automorphisms on a finite p-group G in such a manner that φ is a splitting automorphism, that is, $xx^{\varphi}x^{\varphi^2}\cdots x^{\varphi^{p-1}} = 1$ for all $x \in G$. If $C_G(A)$ is soluble of derived length d, then G is nilpotent of (p, d, |A|)-bounded class. Furthermore, the bound for the nilpotency class can be chosen to be the same as in the case $\varphi = 1$ (given by EKh-Shumyatsky-95).

3

・ロン ・四と ・ヨン・・ロン

The trick of elimination of automorphisms requires passing to a free *FA*-group $X = \langle x_1, x_2, ... \rangle$ of some exponent p^M and some nilpotency class *N*.

The trick of elimination of automorphisms requires passing to a free *FA*-group $X = \langle x_1, x_2, ... \rangle$ of some exponent p^M and some nilpotency class *N*.

There is an FA-homomorphism $\xi : X \to G$ given by $x_i \to g_i$ for any $g_i \in G$ (provided M, N are a large enough.)

The trick of elimination of automorphisms requires passing to a free *FA*-group $X = \langle x_1, x_2, \dots \rangle$ of some exponent p^M and some nilpotency class *N*.

There is an FA-homomorphism $\xi : X \to G$ given by $x_i \to g_i$ for any $g_i \in G$ (provided M, N are a large enough.)

Let C be the FA-invariant normal closure of $(C_X(A))^{(d)}$.

The trick of elimination of automorphisms requires passing to a free *FA*-group $X = \langle x_1, x_2, ... \rangle$ of some exponent p^M and some nilpotency class *N*.

There is an FA-homomorphism $\xi : X \to G$ given by $x_i \to g_i$ for any $g_i \in G$ (provided M, N are a large enough.)

Let C be the FA-invariant normal closure of $(C_X(A))^{(d)}$.

Let **S** be the **FA**-invariant normal closure of all $xx^{\varphi}x^{\varphi^2}\cdots x^{\varphi^{p-1}}$.

The trick of elimination of automorphisms requires passing to a free *FA*-group $X = \langle x_1, x_2, ... \rangle$ of some exponent p^M and some nilpotency class *N*.

There is an FA-homomorphism $\xi : X \to G$ given by $x_i \to g_i$ for any $g_i \in G$ (provided M, N are a large enough.)

Let C be the *FA*-invariant normal closure of $(C_X(A))^{(d)}$.

Let **S** be the **FA**-invariant normal closure of all $xx^{\varphi}x^{\varphi^2}\cdots x^{\varphi^{p-1}}$.

Clearly, $C, S \leq Ker \xi$ by hypothesis.

The trick of elimination of automorphisms requires passing to a free *FA*-group $X = \langle x_1, x_2, ... \rangle$ of some exponent p^M and some nilpotency class *N*.

There is an FA-homomorphism $\xi : X \to G$ given by $x_i \to g_i$ for any $g_i \in G$ (provided M, N are a large enough.)

Let C be the FA-invariant normal closure of $(C_X(A))^{(d)}$.

Let **S** be the **FA**-invariant normal closure of all $xx^{\varphi}x^{\varphi^2}\cdots x^{\varphi^{p-1}}$.

Clearly, $C, S \leq Ker \xi$ by hypothesis.

Lemma

The subgroups C and S are invariant under any FA-endomorphism ϑ of X.

(4月) イヨト イヨト

Trivialization of \boldsymbol{F}

Since there is an *FA*-homomorphism $\xi : X \to G$ with $C, S \leq Ker \xi$, it is sufficient (and even necessary) to prove that

 $[x_1, \ldots, x_{c+1}] \in CS$, where *c* is the nilpotency class given by EKh-Shumyatsky theorem when $\varphi = 1$.

Trivialization of \boldsymbol{F}

Since there is an *FA*-homomorphism $\xi : X \to G$ with $C, S \leq Ker \xi$, it is sufficient (and even necessary) to prove that

 $[x_1, \ldots, x_{c+1}] \in CS$, where *c* is the nilpotency class given by EKh-Shumyatsky theorem when $\varphi = 1$.

Let T = [X, F]F ("trivialization of F")

Trivialization of \boldsymbol{F}

Since there is an *FA*-homomorphism $\xi : X \to G$ with $C, S \leq Ker \xi$, it is sufficient (and even necessary) to prove that

 $[x_1, \ldots, x_{c+1}] \in CS$, where *c* is the nilpotency class given by EKh-Shumyatsky theorem when $\varphi = 1$.

Let T = [X, F]F ("trivialization of F")

By EKh-Shumyatsky theorem, $[x_1, \ldots, x_{c+1}] \in CST$,

that is, we need to eliminate T.

A D A D A D A

13 / 22

Higman's lemma

We have $[x_1, \ldots, x_{c+1}] \equiv c_1^{k_1} \cdots c_m^{k_m} \pmod{CS}$, where $c_i \in T$.

A 3 b

3

Higman's lemma

We have $[x_1, \ldots, x_{c+1}] \equiv c_1^{k_1} \cdots c_m^{k_m} \pmod{CS}$, where $c_i \in T$.

An analogue of Higman's lemma gives that we can assume that each C_i depends on all x_1, \ldots, x_{c+1} , and on φ .

Higman's lemma

We have $[x_1, \ldots, x_{c+1}] \equiv c_1^{k_1} \cdots c_m^{k_m} \pmod{CS}$, where $c_i \in T$.

An analogue of Higman's lemma gives that we can assume that each C_i depends on all x_1, \ldots, x_{C+1} , and on φ .

One can show that we can furthermore assume that each \boldsymbol{c}_i has the form

$$[[x_{i_1}^{a_*},\ldots], [x_{i_2}^{a_*},\ldots],\ldots, [x_{i_{c+1}}^{a_*},\ldots]] \qquad (a_* \in A),$$

where $\{i_1, i_2, \ldots, i_{c+1}\} = \{1, 2, \ldots, c+1\}$ and there is at least one φ among "dots" in at least one of the subcommutators $[X_{i_k}^{a_*}, \ldots]$.

(1月) (2) (2) (2) (2) (2)

(*)

ъ

< (T) >

æ

We "iterate", "self-amplify": by homomorphisms of the type

$$x_k \rightarrow [x_{i_k}^{a_*},\ldots], \qquad k=1,\ldots,c+1$$

we express each $c_i = [[x_{i_1}^{a_*}, \ldots], \ldots, [x_{i_{c+1}}^{a_*}, \ldots]]$ as the image of the left-hand-side,

(*)

We "iterate", "self-amplify": by homomorphisms of the type

$$x_k \rightarrow [x_{i_k}^{a_*},\ldots], \qquad k=1,\ldots,c+1$$

we express each $c_i = [[x_{i_1}^{a_*}, \ldots], \ldots, [x_{i_{c+1}}^{a_*}, \ldots]]$ as the image of the left-hand-side,

(*)

then substitute the result into right-hand side of the original (*).

We "iterate", "self-amplify": by homomorphisms of the type

$$x_k \rightarrow [x_{i_k}^{a_*},\ldots], \qquad k=1,\ldots,c+1$$

we express each $c_i = [[x_{i_1}^{a_*}, \ldots], \ldots, [x_{i_{c+1}}^{a_*}, \ldots]]$ as the image of the left-hand-side,

(*)

(周) (日) (日) 日

then substitute the result into right-hand side of the original (*).

As a result, the new (*) has the same form but now each new c_i has at least two occurrences of φ .

We "iterate", "self-amplify": by homomorphisms of the type

$$x_k \rightarrow [x_{i_k}^{a_*},\ldots], \qquad k=1,\ldots,c+1$$

we express each $C_i = [[x_{i_1}^{a_*}, \ldots], \ldots, [x_{i_{c+1}}^{a_*}, \ldots]]$ as the image of the left-hand-side,

then substitute the result into right-hand side of the original (*).

As a result, the new (*) has the same form but now each new c_i has at least two occurrences of φ .

And so on, at each step we double the number of occurrences of φ in the new C_i .

→ 同 → → 目 → → 目 → つへの

(*)

We "iterate", "self-amplify": by homomorphisms of the type

$$x_k \rightarrow [x_{i_k}^{a_*},\ldots], \qquad k=1,\ldots,c+1$$

we express each $c_i = [[x_{i_1}^{a_*}, \ldots], \ldots, [x_{i_{c+1}}^{a_*}, \ldots]]$ as the image of the left-hand-side,

then substitute the result into right-hand side of the original (*).

As a result, the new (*) has the same form but now each new c_i has at least two occurrences of φ .

And so on, at each step we double the number of occurrences of φ in the new C_i .

Since $X\langle\varphi\rangle$ is nilpotent (being a finite *p*-group!), in the end we get $\equiv 1$, as required.

(*)

By known results, proof of Theorem 2 reduces to the following result.

Theorem 2'

If a finite p-group G admits a Frobenius group of automorphisms FA with kernel $F = \langle \varphi \rangle$ of order p and complement A such that φ is a splitting automorphism, that is, $xx^{\varphi}x^{\varphi^2}\cdots x^{\varphi^{p-1}} = 1$ for all $x \in G$, then the exponent of P is bounded in terms of the exponent of $C_P(A)$.

By known results, proof of Theorem 2 reduces to the following result.

Theorem 2'

If a finite p-group G admits a Frobenius group of automorphisms FA with kernel $F = \langle \varphi \rangle$ of order p and complement A such that φ is a splitting automorphism, that is, $xx^{\varphi}x^{\varphi^2}\cdots x^{\varphi^{p-1}} = 1$ for all $x \in G$, then the exponent of P is bounded in terms of the exponent of $C_P(A)$.

Since any $g \in G$ belongs to $\langle g^{FA} \rangle$, we can assume that G is generated by |FA| elements.

By known results, proof of Theorem 2 reduces to the following result.

Theorem 2'

If a finite p-group G admits a Frobenius group of automorphisms FA with kernel $F = \langle \varphi \rangle$ of order p and complement A such that φ is a splitting automorphism, that is, $xx^{\varphi}x^{\varphi^2}\cdots x^{\varphi^{p-1}} = 1$ for all $x \in G$, then the exponent of P is bounded in terms of the exponent of $C_P(A)$.

Since any $g \in G$ belongs to $\langle g^{FA} \rangle$, we can assume that G is generated by |FA| elements.

By EKh-86 affirmative solution to an analogue of the Restricted Burnside Problem for groups with a splitting automorphism of prime order p, the nilpotency class of G is bounded in terms of p and the number of generators, which is at most p(p-1).

コン スポン メヨン メヨン

16 / 22

By known results, proof of Theorem 2 reduces to the following result.

Theorem 2'

If a finite p-group G admits a Frobenius group of automorphisms FA with kernel $F = \langle \varphi \rangle$ of order p and complement A such that φ is a splitting automorphism, that is, $xx^{\varphi}x^{\varphi^2}\cdots x^{\varphi^{p-1}} = 1$ for all $x \in G$, then the exponent of P is bounded in terms of the exponent of $C_P(A)$.

Since any $g \in G$ belongs to $\langle g^{FA} \rangle$, we can assume that G is generated by |FA| elements.

By EKh-86 affirmative solution to an analogue of the Restricted Burnside Problem for groups with a splitting automorphism of prime order p, the nilpotency class of G is bounded in terms of p and the number of generators, which is at most p(p-1).

It remains to obtain a bound for the exponent of V = G/[G, G].

Consider V = G/[G, G] as a $\mathbb{Z}FA$ -module, with additive notation. In particular, $v + v\varphi + v\varphi^2 + \cdots + v\varphi^{p-1} = 0$ for all $v \in V$ by hypothesis.

Consider V = G/[G, G] as a $\mathbb{Z}FA$ -module, with additive notation. In particular, $v + v\varphi + v\varphi^2 + \cdots + v\varphi^{p-1} = 0$ for all $v \in V$ by hypothesis.

Extend the ground ring by a primitive pth root of unity ω , forming $W = V \otimes_{\mathbb{Z}} \mathbb{Z}[\omega]$. Still have $w + w\varphi + w\varphi^2 + \cdots + w\varphi^{p-1} = 0$ for all $w \in W$.

Consider V = G/[G, G] as a $\mathbb{Z}FA$ -module, with additive notation. In particular, $v + v\varphi + v\varphi^2 + \cdots + v\varphi^{p-1} = 0$ for all $v \in V$ by hypothesis.

Extend the ground ring by a primitive pth root of unity ω , forming $W = V \otimes_{\mathbb{Z}} \mathbb{Z}[\omega]$. Still have $w + w\varphi + w\varphi^2 + \cdots + w\varphi^{p-1} = 0$ for all $w \in W$.

Define analogues of eigenspaces for the "linear transformation" φ :

$$\boldsymbol{W}_{i} = \{ \boldsymbol{w} \in \boldsymbol{W} \mid \boldsymbol{w} \varphi = \omega^{i} \boldsymbol{w} \}.$$

Consider V = G/[G, G] as a $\mathbb{Z}FA$ -module, with additive notation. In particular, $\mathbf{v} + \mathbf{v}\varphi + \mathbf{v}\varphi^2 + \dots + \mathbf{v}\varphi^{p-1} = \mathbf{0}$ for all $\mathbf{v} \in \mathbf{V}$ by hypothesis.

Extend the ground ring by a primitive pth root of unity ω , forming $W = V \otimes_{\mathbb{Z}} \mathbb{Z}[\omega]$. Still have $w + w\varphi + w\varphi^2 + \cdots + w\varphi^{p-1} = 0$ for all $w \in W$.

Define analogues of eigenspaces for the "linear transformation" φ :

$$\boldsymbol{W}_{i} = \{ \boldsymbol{w} \in \boldsymbol{W} \mid \boldsymbol{w} \varphi = \omega^{i} \boldsymbol{w} \}.$$

Then W is an "almost direct sum" of the W_i :

vosibiiAute

$$\rho W \subseteq W_0 + W_1 + \cdots + W_{\rho-1}$$

and

if
$$W_0 + W_1 + \dots + W_{p-1} = 0$$
 for $W_i \in W_i$, then $pW_i = 0$ for all i .

March 2012
First: since $\varphi = 1$ on W_0 , for $x \in W_0$ we have $px = x + x\varphi + \cdots + x\varphi^{p-1} = 0$, so that $pW_0 = 0$.

A (10) > (10)

3 . 3

First: since $\varphi = 1$ on W_0 , for $x \in W_0$ we have $px = x + x\varphi + \cdots + x\varphi^{p-1} = 0$, so that $pW_0 = 0$.

Action of A: permutes the W_i in the same way as it acts on $\langle \varphi \rangle$.

First: since $\varphi = 1$ on W_0 , for $x \in W_0$ we have $px = x + x\varphi + \cdots + x\varphi^{p-1} = 0$, so that $pW_0 = 0$.

Action of A: permutes the W_i in the same way as it acts on $\langle \varphi \rangle$. Let $A = \langle \alpha \rangle$ and let $\varphi^{\alpha^{-1}} = \varphi^r$ for some $1 \leq r \leq p - 1$. Let $|\alpha| = n$; then r is a primitive *n*th root of 1 in $\mathbb{Z}/p\mathbb{Z}$.

First: since $\varphi = 1$ on W_0 , for $x \in W_0$ we have $px = x + x\varphi + \cdots + x\varphi^{p-1} = 0$, so that $pW_0 = 0$.

Action of A: permutes the W_i in the same way as it acts on $\langle \varphi \rangle$. Let $A = \langle \alpha \rangle$ and let $\varphi^{\alpha^{-1}} = \varphi^r$ for some $1 \leq r \leq p - 1$. Let $|\alpha| = n$; then r is a primitive *n*th root of 1 in $\mathbb{Z}/p\mathbb{Z}$.

 $\begin{array}{l} A \text{ "almost permutes" the } W_i \text{:} \\ W_i \alpha \subseteq W_{ri} \text{ for all } i \in \mathbb{Z}/p\mathbb{Z}. \text{ Indeed, if } x_i \in W_i \text{, then} \\ (x_i \alpha) \varphi = x_i (\alpha \varphi \alpha^{-1} \alpha) = (x_i \varphi^r) \alpha = \omega^{ir} x_i \alpha. \end{array}$

First: since $\varphi = 1$ on W_0 , for $x \in W_0$ we have $px = x + x\varphi + \cdots + x\varphi^{p-1} = 0$, so that $pW_0 = 0$.

Action of A: permutes the W_i in the same way as it acts on $\langle \varphi \rangle$. Let $A = \langle \alpha \rangle$ and let $\varphi^{\alpha^{-1}} = \varphi^r$ for some $1 \leq r \leq p - 1$. Let $|\alpha| = n$; then r is a primitive *n*th root of 1 in $\mathbb{Z}/p\mathbb{Z}$.

 $\begin{array}{l} A \text{ "almost permutes" the } W_i \text{:} \\ W_i \alpha \subseteq W_{ri} \text{ for all } i \in \mathbb{Z}/p\mathbb{Z}. \text{ Indeed, if } x_i \in W_i \text{, then} \\ (x_i \alpha) \varphi = x_i (\alpha \varphi \alpha^{-1} \alpha) = (x_i \varphi^r) \alpha = \omega^{ir} x_i \alpha. \end{array}$

Given $u_k \in W_k$ for $k \neq 0$, to lighten the notation we denote $u_k \alpha^i$ by $u_{r^i k}$; note that $u_{r^i k} \in W_{r^i k}$.

• • • • •

きょう き

For any $k \neq 0$ and for any $u_k \in W_k$ we have

$$u_k + u_k \alpha + \cdots + u_k \alpha^{n-1} = u_k + u_{rk} + \cdots + u_{r^{n-1}k} \in C_W(A)$$

(the sum over an *A*-orbit).

For any $k \neq 0$ and for any $u_k \in W_k$ we have

$$u_k + u_k \alpha + \cdots + u_k \alpha^{n-1} = u_k + u_{rk} + \cdots + u_{r^{n-1}k} \in C_W(A)$$

(the sum over an A-orbit). Since $p^e C_V(A) = 0$ (as $C_V(A)$ is the image of $C_G(A)$ by coprimeness of the action), also $p^e C_W(A) = 0$.

For any $k \neq 0$ and for any $u_k \in W_k$ we have

$$u_k + u_k \alpha + \cdots + u_k \alpha^{n-1} = u_k + u_{rk} + \cdots + u_{r^{n-1}k} \in C_W(A)$$

(the sum over an A-orbit). Since $p^e C_V(A) = 0$ (as $C_V(A)$ is the image of $C_G(A)$ by coprimeness of the action), also $p^e C_W(A) = 0$. Thus,

$$p^e u_k + p^e u_{rk} + \cdots + p^e u_{r^{n-1}k} = 0.$$

For any $k \neq 0$ and for any $u_k \in W_k$ we have

$$u_k + u_k \alpha + \cdots + u_k \alpha^{n-1} = u_k + u_{rk} + \cdots + u_{r^{n-1}k} \in C_W(A)$$

(the sum over an A-orbit). Since $p^e C_V(A) = 0$ (as $C_V(A)$ is the image of $C_G(A)$ by coprimeness of the action), also $p^e C_W(A) = 0$. Thus,

$$p^e u_k + p^e u_{rk} + \cdots + p^e u_{r^{n-1}k} = 0.$$

By "almost direct sum", in particular, $pp^e u_k = 0$.

For any $k \neq 0$ and for any $u_k \in W_k$ we have

$$u_k + u_k \alpha + \cdots + u_k \alpha^{n-1} = u_k + u_{rk} + \cdots + u_{r^{n-1}k} \in C_W(A)$$

(the sum over an A-orbit). Since $p^e C_V(A) = 0$ (as $C_V(A)$ is the image of $C_G(A)$ by coprimeness of the action), also $p^e C_W(A) = 0$. Thus,

$$p^e u_k + p^e u_{rk} + \cdots + p^e u_{r^{n-1}k} = 0.$$

By "almost direct sum", in particular, $\rho p^e u_k = 0$.

Recall that $\rho W_0 = 0$. As a result,

$$p^{2+e}W\subseteq p^{1+e}(W_0+W_1+\cdots+W_{p-1})=0,$$

so also $p^{2+e}V = 0$.

19 / 22

For any $k \neq 0$ and for any $u_k \in W_k$ we have

$$u_k + u_k \alpha + \cdots + u_k \alpha^{n-1} = u_k + u_{rk} + \cdots + u_{r^{n-1}k} \in C_W(A)$$

(the sum over an A-orbit). Since $p^e C_V(A) = 0$ (as $C_V(A)$ is the image of $C_G(A)$ by coprimeness of the action), also $p^e C_W(A) = 0$. Thus,

$$p^e u_k + p^e u_{rk} + \cdots + p^e u_{r^{n-1}k} = 0.$$

By "almost direct sum", in particular, $\rho p^e u_k = 0$.

Recall that $\rho W_0 = 0$. As a result,

$$p^{2+e}W\subseteq p^{1+e}(W_0+W_1+\cdots+W_{p-1})=0,$$

so also $p^{2+e}V = 0$.

In multiplicative notation, the exponent of G/[G, G] divides p^{2+e} ,

For any $k \neq 0$ and for any $u_k \in W_k$ we have

$$u_k + u_k \alpha + \cdots + u_k \alpha^{n-1} = u_k + u_{rk} + \cdots + u_{r^{n-1}k} \in C_W(A)$$

(the sum over an A-orbit). Since $p^e C_V(A) = 0$ (as $C_V(A)$ is the image of $C_G(A)$ by coprimeness of the action), also $p^e C_W(A) = 0$. Thus,

$$p^e u_k + p^e u_{rk} + \cdots + p^e u_{r^{n-1}k} = 0.$$

By "almost direct sum", in particular, $\rho p^e u_k = 0$.

Recall that $\rho W_0 = 0$. As a result,

$$p^{2+e}W\subseteq p^{1+e}(W_0+W_1+\cdots+W_{p-1})=0,$$

so also $p^{2+e}V = 0$.

In multiplicative notation, the exponent of G/[G, G] divides p^{2+e} , so the exponent of G divides $p^{c(2+e)}$, where c is the nilpotency class of G, which is bounded in terms of p.

March 2012

19 / 22

Remark

If, for some reason, it is known that the derived length \boldsymbol{s} of the group \boldsymbol{G} in Theorems 1 or 2, or in the Corollary, is relatively small, then EKh-81 can be used instead to give a possibly better estimate

$$\frac{(p-1)^s - 1}{p-2}$$

for the nilpotency class of G (in Theorems 1' and 2').

Remark

If, for some reason, it is known that the derived length \boldsymbol{s} of the group \boldsymbol{G} in Theorems 1 or 2, or in the Corollary, is relatively small, then EKh-81 can be used instead to give a possibly better estimate

$$\frac{(p-1)^s - 1}{p-2}$$

for the nilpotency class of G (in Theorems 1' and 2').

A smaller bound for the nilpotency class would also imply a smaller bound for the exponent.

In EKh-91 general nilpotency theorem was proved: if a group G admits a group of operators Ω such that $G\Omega$ is nilpotent, G satisfies Ω -laws which after $\Omega \to 1$ imply nilpotency of class c,

In EKh-91 general nilpotency theorem was proved: if a group G admits a group of operators Ω such that $G\Omega$ is nilpotent, G satisfies Ω -laws which after $\Omega \to 1$ imply nilpotency of class c, then G is nilpotent of class c.

In EKh-91 general nilpotency theorem was proved: if a group G admits a group of operators Ω such that $G\Omega$ is nilpotent, G satisfies Ω -laws which after $\Omega \to 1$ imply nilpotency of class c, then G is nilpotent of class c.

Similarly, the same arguments as above prove

Theorem 1''

Suppose that a soluble group FA with normal Sylow p-subgroup F and Hall p'-subgroup A acts by automorphisms on a finite p-group G in such a manner that for some fixed $\varphi_1, \ldots, \varphi_p \in F$ we have $x^{\varphi_1} x^{\varphi_2} \cdots x^{\varphi_p} = 1$ for all $x \in G$. If $C_G(A)$ is soluble of derived length d, then G is nilpotent of (p, d, |A|)-bounded class.

- 4 周 ト 4 日 ト 4 日 ト

In EKh-91 general nilpotency theorem was proved: if a group G admits a group of operators Ω such that $G\Omega$ is nilpotent, G satisfies Ω -laws which after $\Omega \to 1$ imply nilpotency of class c, then G is nilpotent of class c.

Similarly, the same arguments as above prove

Theorem 1''

Suppose that a soluble group FA with normal Sylow p-subgroup F and Hall p'-subgroup A acts by automorphisms on a finite p-group G in such a manner that for some fixed $\varphi_1, \ldots, \varphi_p \in F$ we have $x^{\varphi_1} x^{\varphi_2} \cdots x^{\varphi_p} = 1$ for all $x \in G$. If $C_G(A)$ is soluble of derived length d, then G is nilpotent of (p, d, |A|)-bounded class. Furthermore, the bound for the nilpotency class can be chosen to be the same as in the case $G^p = 1$ (given by EKh-Shumyatsky-95).

・ロン ・四と ・ヨン・・ロン

There is also local nilpotency theorem in EKh-93, which may also have generalizations in the context of additional group of automorphisms...

< 17 b