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Finite p-groups with a partition

Henceforth, P is a finite p-group.

Equivalent definitions:

(a) P =
⋃

Pi for some Pi < P such that Pi ∩ Pj = 1;

(b) P 6= Hp(P) := 〈g ∈ P | gp 6= 1〉 (proper Hughes subgroup);

(c) P = P1 o 〈ϕ〉, where ϕp = 1 and xxϕxϕ
2 · · · xϕp−1

= 1 for all x ∈ P
(splitting automorphism of P1).

Such groups generalize (are close to) groups of exponent p:

outside a proper subgroup all elements are of order p,

and ϕ = 1 ⇒ exponent p.

(But there is no bound for the exponent of a p-group with a partition.)
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Splitting automorphism approach

Splitting automorphism approach of condition (c) turned out to be
most efficient. Recall:

(c) P = P1 o 〈ϕ〉, where

ϕp = 1 and xxϕxϕ
2 · · · xϕp−1

= 1 for all x ∈ P (∗)

(ϕ is a splitting automorphism of P1).

(Note that we do not exclude the case where ϕ acts trivially on P1,
when, of course, P1 must have exponent p.)

All groups with a splitting automorphism of order p form a variety of
groups with operators defined by the laws (∗).
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Analogues of theorems on group of exponent p

Analogues of theorems on group of exponent p
are natural for finite p-groups with a partition
(equivalently, for p-groups with a splitting automorphism of order p).

Recall: (c) P = P1 o 〈ϕ〉, where ϕp = 1 and xxϕxϕ
2 · · · xϕp−1

= 1 for
all x ∈ P.

For example, EKh-1981: if P1 in condition (c) has derived length d ,
then P1 is nilpotent of (p,d)-bounded class.

Plus, based on Kostrikin’s theorem for groups of prime exponent,
EKh-1986: analogue of the affirmative solution of the Restricted
Burnside Problem: the nilpotency class of P1 is bounded in terms of p
and the number of generators.

As a corollary, a positive solution for the Hughes problem
was obtained for “almost all” finite p-groups.
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Nilpotency class depending on automorphisms

EKh–Shumyatsky, 1995: if a finite group G of exponent p admits a
soluble group of automorphisms A of coprime order such that the
fixed-point subgroup CG(A) is soluble of derived length d , then G is
nilpotent of (p,d , |A|)-bounded class.

Theorem 1
Suppose that a finite p-group P with a partition admits a soluble group
of automorphisms A of coprime order such that CP(A) has derived
length d . Then any maximal subgroup of P containing Hp(P) is
nilpotent of (p,d , |A|)-bounded class.

Note: the nilpotency class of the whole group P cannot be bounded.

The bound for the nilpotency class of that maximal subgroup can be
chosen the same as in EKh–Shumyatsky-95 for groups of exponent p.
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Exponent

Theorem 2
If a finite p-group P with a partition admits a group of automorphisms
A that acts faithfully on P/Hp(P), then the exponent of P is bounded
in terms of the exponent of CP(A).
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Frobenius groups of automorphisms

Corollary
Suppose that a finite group G admits a Frobenius group of
automorphisms FH with cyclic kernel F = 〈ϕ〉 of prime order p such
that ϕ is a splitting automorphism, that is, xxϕxϕ

2 · · · xϕp−1
= 1 for all

x ∈ G.

(a) If CG(H) is soluble of derived length d , then G is nilpotent of
(p,d)-bounded class.

(b) The exponent of G is bounded in terms of p and the exponent of
CG(H).
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Proof of Corollary

The group G is nilpotent by Kegel–Thompson–Hughes.
ϕ is fixed-point-free on Gp′ : for any g ∈ CG(ϕ) we have
1 = ggϕgϕ

2 · · · gϕp−1
= gp.

Hence Gp′ is nilpotent of p-bounded class by
Higman–Kreknin–Kostrikin.
For (a) it now remains to consider the Sylow p-subgroup Gp of G. The
result follows from Theorem 1 applied to P = Gp〈ϕ〉 and A = H.

By a lemma in EKh–Makarenko–Shumyatsky-2010
Gp′ = 〈CGp′

(H)f | f ∈ F 〉.
So Gp′ is generated by elements of orders dividing the exponent of
CG(H).
Plus p-bounded nilpotency class of Gp′ ⇒ exponent of Gp′ is bounded
in terms of p and exponent of CG(H).
So in (b) it remains to consider Gp. The result follows from Theorem 2
applied to P = Gp〈ϕ〉 and A = H.
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Comments on Frobenius groups of automorphisms

Examples show that dependence of the nilpotency class on p is essential
in part (a) of Corollary

(obviously also true for exponent in part (b)).

Recent papers of EKh, Makarenko, Shumyatsky on finite groups G with
a Frobenius group of automorphisms FH with fixed-point-free kernel F :

Mazurov’s problem 17.72(a) from Kourovka Notebook was solved in the
affirmative, and moreover, for any metacyclic Frobenius group of
automorphisms FH and nilpotent G, a bound for the nilpotency class of
G was obtained in terms of |H| and the nilpotency class of CG(H), as
well as a bound for the exponent of G in terms of |FH| and the
exponent of CG(H).
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Question

Question: can results like Corollary be obtained for Frobenius groups of
automorphisms with kernel generated by a splitting automorphism of
composite order?

Examples show that nilpotency class cannot be bounded (even for
cyclic kernel of order p2 generated by a splitting automorphism and
complement of order 2 with abelian fixed points).

Question remains open for the exponent, as well as for the derived
length.
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Proof of Theorem 1: elimination of automorphisms by
nilpotency
Proof of Theorem 1 uses a modification of the method of elimination of
automorphisms by nilpotency, which was used in EKh-1991 earlier in
the study of splitting automorphisms of prime order.

Reduction by known results to the main case:

Theorem 1′

Suppose that a soluble group FA with normal Sylow p-subgroup
F = 〈ϕ〉 of order p and Hall p′-subgroup A acts by automorphisms on a
finite p-group G in such a manner that ϕ is a splitting automorphism,
that is, xxϕxϕ

2 · · · xϕp−1
= 1 for all x ∈ G. If CG(A) is soluble of

derived length d , then G is nilpotent of (p,d , |A|)-bounded class.
Furthermore, the bound for the nilpotency class can be chosen to be
the same as in the case ϕ = 1 (given by EKh-Shumyatsky-95).
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Free FA-group

The trick of elimination of automorphisms requires passing to a free
FA-group X = 〈x1, x2, . . . 〉 of some exponent pM and some nilpotency
class N.

There is an FA-homomorphism ξ : X → G given by xi → gi for any
gi ∈ G (provided M, N are a large enough.)

Let C be the FA-invariant normal closure of (CX (A))(d).

Let S be the FA-invariant normal closure of all xxϕxϕ
2 · · · xϕp−1 .

Clearly, C,S 6 Ker ξ by hypothesis.

Lemma
The subgroups C and S are invariant under any FA-endomorphism ϑ
of X .
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Trivialization of F

Since there is an FA-homomorphism ξ : X → G with C,S 6 Ker ξ, it is
sufficient (and even necessary) to prove that

[x1, . . . , xc+1] ∈ CS, where c is the nilpotency class given by
EKh-Shumyatsky theorem when ϕ = 1.

Let T = [X ,F ]F (“trivialization of F ”)

By EKh-Shumyatsky theorem, [x1, . . . , xc+1] ∈ CST ,

that is, we need to eliminate T .
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Higman’s lemma

We have
[x1, . . . , xc+1] ≡ ck1

1 · · · c
km
m (mod CS), where ci ∈ T .

An analogue of Higman’s lemma gives that we can assume that
each ci depends on all x1, . . . , xc+1, and on ϕ.

One can show that we can furthermore assume that each ci has the form

[[xa∗
i1
, . . .], [xa∗

i2
, . . .], . . . , [xa∗

ic+1
, . . .]] (a∗ ∈ A),

where {i1, i2, . . . , ic+1} = {1,2, . . . , c + 1} and there is at least one ϕ
among “dots” in at least one of the subcommutators [xa∗

ik
, . . .] .
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Self-amplification process
[x1, . . . , xc+1] ≡ ck1

1 · · · c
km
m (mod CS) (∗)

We “iterate”, “self-amplify”: by homomorphisms of the type

xk → [xa∗
ik
, . . .], k = 1, . . . , c + 1

we express each ci = [[xa∗
i1
, . . .], . . . , [xa∗

ic+1
, . . .]] as the image of the

left-hand-side,

then substitute the result into right-hand side of the original (∗).

As a result, the new (∗) has the same form but now each new ci has
at least two occurrences of ϕ.

And so on, at each step we double the number of occurrences of ϕ in
the new ci .

Since X 〈ϕ〉 is nilpotent (being a finite p-group!), in the end we get
≡ 1, as required.
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Proof of exponent theorem.
By known results, proof of Theorem 2 reduces to the following result.

Theorem 2′

If a finite p-group G admits a Frobenius group of automorphisms FA
with kernel F = 〈ϕ〉 of order p and complement A such that ϕ is a
splitting automorphism, that is, xxϕxϕ

2 · · · xϕp−1
= 1 for all x ∈ G,

then the exponent of P is bounded in terms of the exponent of CP(A).

Since any g ∈ G belongs to 〈gFA〉, we can assume that G is generated
by |FA| elements.

By EKh-86 affirmative solution to an analogue of the Restricted
Burnside Problem for groups with a splitting automorphism of prime
order p, the nilpotency class of G is bounded in terms of p and the
number of generators, which is at most p(p − 1).

It remains to obtain a bound for the exponent of V = G/[G,G].
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Abelian case: eigenspaces.
Consider V = G/[G,G] as a ZFA-module, with additive notation. In
particular, v + vϕ+ vϕ2 + · · ·+ vϕp−1 = 0 for all v ∈ V by hypothesis.

Extend the ground ring by a primitive pth root of unity ω, forming
W = V ⊗Z Z[ω]. Still have w + wϕ+ wϕ2 + · · ·+ wϕp−1 = 0 for all
w ∈W .

Define analogues of eigenspaces for the “linear transformation” ϕ:

Wi = {w ∈W | wϕ = ωiw}.

Then W is an “almost direct sum” of the Wi :

pW ⊆W0 + W1 + · · ·+ Wp−1

and

if w0+w1+· · ·+wp−1 = 0 for wi ∈Wi , then pwi = 0 for all i .
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A-orbits.

First: since ϕ = 1 on W0, for x ∈W0 we have
px = x + xϕ+ · · ·+ xϕp−1 = 0, so that pW0 = 0.

Action of A: permutes the Wi in the same way as it acts on 〈ϕ〉.
Let A = 〈α〉 and let ϕα−1

= ϕr for some 1 6 r 6 p − 1. Let |α| = n;
then r is a primitive nth root of 1 in Z/pZ.

A “almost permutes” the Wi :
Wiα ⊆Wri for all i ∈ Z/pZ. Indeed, if xi ∈Wi , then
(xiα)ϕ = xi(αϕα

−1α) = (xiϕ
r )α = ωir xiα.

Given uk ∈Wk for k 6= 0, to lighten the notation we denote ukα
i by

ur i k ; note that ur i k ∈Wr i k .
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Let pe be the exponent of CG(A). Claim: Wi are annihilated by p1+e.

For any k 6= 0 and for any uk ∈Wk we have

uk + ukα + · · ·+ ukα
n−1 = uk + urk + · · ·+ urn−1k ∈ CW (A)

(the sum over an A-orbit). Since peCV (A) = 0 (as CV (A) is the image
of CG(A) by coprimeness of the action), also peCW (A) = 0. Thus,

peuk + peurk + · · ·+ peurn−1k = 0.

By “almost direct sum”, in particular, ppeuk = 0.

Recall that pW0 = 0. As a result,

p2+eW ⊆ p1+e(W0 + W1 + · · ·+ Wp−1) = 0,

so also p2+eV = 0.

In multiplicative notation, the exponent of G/[G,G] divides p2+e, so
the exponent of G divides pc(2+e), where c is the nilpotency class of G,
which is bounded in terms of p.
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Remark

If, for some reason, it is known that the derived length s of the group G
in Theorems 1 or 2, or in the Corollary, is relatively small, then EKh-81
can be used instead to give a possibly better estimate

(p − 1)s − 1
p − 2

for the nilpotency class of G (in Theorems 1′ and 2′).

A smaller bound for the nilpotency class would also imply a smaller
bound for the exponent.
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Generalizations

In EKh-91 general nilpotency theorem was proved: if a group G admits
a group of operators Ω such that GΩ is nilpotent, G satisfies Ω-laws
which after Ω→ 1 imply nilpotency of class c,

then G is nilpotent of
class c.

Similarly, the same arguments as above prove

Theorem 1′′

Suppose that a soluble group FA with normal Sylow p-subgroup F and
Hall p′-subgroup A acts by automorphisms on a finite p-group G in
such a manner that for some fixed ϕ1, . . . , ϕp ∈ F we have
xϕ1xϕ2 · · · xϕp = 1 for all x ∈ G. If CG(A) is soluble of derived length d ,
then G is nilpotent of (p,d , |A|)-bounded class. Furthermore, the bound
for the nilpotency class can be chosen to be the same as in the case
Gp = 1 (given by EKh-Shumyatsky-95).
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Generalizations

There is also local nilpotency theorem in EKh-93, which may also have
generalizations in the context of additional group of automorphisms...
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