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STRUCTURED POLYNOMIAL EIGENVALUE PROBLEMS:

GOOD VIBRATIONS FROM GOOD LINEARIZATIONS∗
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Abstract. Many applications give rise to nonlinear eigenvalue problems with an underlying
structured matrix polynomial. In this paper several useful classes of structured polynomial (e.g.,
palindromic, even, odd) are identified and the relationships between them explored. A special class
of linearizations that reflect the structure of these polynomials, and therefore preserve symmetries
in their spectra, is introduced and investigated. We analyze the existence and uniqueness of such
linearizations, and show how they may be systematically constructed.
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trix polynomial, odd matrix polynomial, Cayley transformation, structured linearization,
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1. Introduction. We consider n × n matrix polynomials of the form

P (λ) =
k∑

i=0

λiAi, A0, . . . Ak ∈ F
n×n, Ak 6= 0 (1.1)

where F denotes the field R or C. The numerical solution of the associated polynomial
eigenvalue problem P (λ)x = 0 is one the most important tasks in the vibration
analysis of buildings, machines and vehicles [11], [21], [34]. In many applications,
several of which are summarized in [26], the coefficient matrices have further structure
which reflects the properties of the underlying physical model, and it is important that
numerical methods respect this structure.

Our main motivation stems from a project with the company SFE GmbH in
Berlin which investigates rail traffic noise caused by high speed trains [16], [17]. The
eigenvalue problem that arises in this project from the vibration analysis of rail tracks
has the form

(λ2A + λB + AT )x = 0, (1.2)

where A,B are complex square matrices with B complex symmetric and A singular.
The impact of the theory developed in this paper on the solution of this particular
eigenvalue problem will be discussed further in Section 4.

Observe that the matrix polynomial in (1.2) has the property that reversing the
order of the coefficient matrices, followed by taking their transpose, leads back to the
original matrix polynomial. By analogy with linguistic palindromes, of which
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is perhaps a less well-known example∗∗, we say such matrix polynomials are T-
palindromic.

Quadratic real and complex T -palindromic eigenvalue problems also arise in the
mathematical modelling and numerical simulation of the behavior of periodic surface
acoustic wave (SAW) filters [35], whereas the computation of the Crawford number
[15] associated with the perturbation analysis of symmetric generalized eigenvalue
problems produces a quadratic ∗-palindromic eigenvalue problem, where ∗ stands for
conjugate transpose. Higher order matrix polynomials with a ∗-palindromic structure
arise in the optimal control of higher order difference equations [26].

A related class of structured eigenvalue problems arises in the study of corner
singularities in anisotropic elastic materials [3], [4], [24], [32] and gyroscopic systems
[34]. Here the problem is of the form

P (λ)v = (λ2M + λG + K)v = 0, (1.3)

with large and sparse coefficients M = MT , G = −GT , K = KT in R
n×n. The matrix

polynomial in (1.3) is reminiscent of an even function: replacing λ by −λ, followed by
taking the transpose leads back to the original matrix polynomial. We therefore say
such matrix polynomials are T -even. Higher order ∗-even eigenvalue problems arise
in the linear quadratic optimal control problem for higher order systems of ordinary
differential equations [33]. Under different nomenclature, even matrix polynomials
have recently received a lot of attention in [3], [5], [32], [33].

The classical approach to investigate or numerically solve polynomial eigenvalue
problems is linearization, in which the given polynomial (1.1) is transformed into a
kn × kn matrix pencil L(λ) = λX + Y that satisfies

E(λ)L(λ)F (λ) =

[
P (λ) 0

0 I(k−1)n

]
, (1.4)

where E(λ) and F (λ) are unimodular matrix polynomials [11]. (A matrix polynomial
is unimodular if its determinant is a nonzero constant, independent of λ.) Standard
methods for linear eigenvalue problems as in [2], [25], [29] can then be applied.

The companion forms [11] provide the standard examples of linearizations for a
matrix polynomial P (λ) as in (1.1). Let X1 = X2 = diag(Ak, In, · · · , In),

Y1 =




Ak−1 Ak−2 . . . A0

−In 0 . . . 0
. . .

. . .
...

0 −In 0


 , and Y2 =




Ak−1 −In 0

Ak−2 0
. . .

...
...

. . . −In

A0 0 . . . 0


 .

Then C1(λ) = λX1 + Y1 and C2(λ) = λX2 + Y2 are repectively the first and second
companion forms for P (λ). Unfortunately, since these companion linearizations do
not reflect the structure present in palindromic, even, or odd matrix polynomials, the
corresponding linearized pencil can usually only be treated with methods for general
matrix pencils. In a finite precision environment, a numerical method that ignores
the structure may produce physically meaningless results [34], e.g., lose symmetries

∗∗Invented by the mathematician Peter Hilton in 1947 for his thesis advisor J.H.C. Whitehead. It
is probable, Hilton says, that this palindrome may have been known before 1947. When Whitehead
lamented its brevity, Hilton responded by crafting the palindromic masterpiece “Doc, note, I dissent.
A fast never prevents a fatness. I diet on cod.” [18]
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in the spectrum. Therefore, it is important to construct linearizations that reflect the
structure of the given matrix polynomial, and then develop numerical methods for
the corresponding linear eigenvalue problem that properly address these structures as
well. The latter topic has been an important area of research in the last decade, see,
e.g., [5], [6], [7], [30], [32] and the references therein.

In this paper we show that the pencil spaces L1(P ) and L2(P ), developed in
[27] by generalizing the first and second companion forms, are rich enough to include
subspaces of pencils that reflect palindromic, even, or odd structure of a matrix poly-
nomial P . Extending the notion of Cayley transformation to matrix polynomials, we
show in section 2.2 how this transformation connects (anti)-palindromic and odd/even
structures. Section 3 is devoted to the introduction and analysis of structured lin-
earizations for the various structured matrix polynomials under consideration. The
general linearization approach of [27] is summarized, and then exploited to obtain the
main results of this paper: identification of structured pencils in L1(P ), a constructive
method for generating them, and necessary and sufficient conditions for these pen-
cils to be linearizations, thereby correctly retaining information on eigenvalues and
eigenvectors of the original matrix polynomial. These results are then used to identify
situations when existence of structure-preserving linearizations is not guaranteed.

Finally, in Section 4 we elucidate the subtitle “good vibrations from good lin-
earizations” by discussing the impact of the theory developed in this paper on the
palindromic eigenvalue problem (1.2) arising in the vibration analysis of rail tracks.

2. Basic structures, spectral properties, and Cayley transformations.

In this section we formally define the structured polynomials that are studied in this
paper, show how the structure of a polynomial is reflected in its spectra, and establish
connections between the various classes of structured polynomials by extending the
classical definition of Cayley transformations to matrix polynomials. For conciseness,
the symbol ⋆ is used as an abbreviation for transpose T in the real case and either T
or conjugate transpose ∗ in the complex case.

Definition 2.1. Let Q(λ) =
∑k

i=0 λiBi, where B0, . . . , Bk ∈ F
m×n, be a matrix

polynomial of degree k, that is, Bk 6= 0. Then we define the adjoint Q⋆(λ) and the
reversal rev Q(λ) of Q(λ), respectively, by

Q⋆(λ) :=

k∑

i=0

λiB⋆
i and rev Q(λ) := λkQ(1/λ) =

k∑

i=0

λk−iBi. (2.1)

If deg(Q(λ)) denotes the degree of the matrix polynomial Q(λ), then, in general,
deg(rev Q(λ)) ≤ deg(Q(λ)) and rev

(
Q1(λ) ·Q2(λ)

)
= rev Q1(λ) · rev Q2(λ), whenever

the product Q1(λ) · Q2(λ) is defined. Using (2.1), the various structured matrix
polynomials under consideration are now defined in Table 2.1.

Table 2.1
Definitions of basic structures

palindromic rev P (λ) = P (λ) anti-palindromic rev P (λ) = −P (λ)
⋆ -palindromic rev P⋆(λ) = P (λ) ⋆ -anti-palindromic rev P⋆(λ) = −P (λ)

even P (−λ) = P (λ) odd P (−λ) = −P (λ)
⋆ -even P⋆(−λ) = P (λ) ⋆ -odd P⋆(−λ) = −P (λ)

For a scalar polynomial p(x), T -palindromic is the same as palindromic (i.e.,
rev p(x) = p(x)), while ∗-palindromic is equivalent to conjugate-palindromic (i.e.,
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rev p(x) = p(x)). Analogous simplifications occur for the T -even, ∗-even, and all the
anti-variants in the scalar polynomial case.

Two matrices that play an important role in our investigation are the k×k reverse
identity Rk in the context of palindromic structures, and the k × k diagonal matrix
Σk of alternating signs in the context of even/odd structures (the subscript k will be
suppressed whenever it is clear from the context):

R := Rk :=




0 1

. .
.

1 0




k×k

and Σ := Σk :=




(−1)k−1 0
. . .

0 (−1)0


 . (2.2)

2.1. Spectral symmetry. A distinguishing feature of the structured matrix
polynomials in Table 2.1 is the special symmetry properties of their spectra, described
in the following result.

Theorem 2.2. Let P (λ) =
∑k

i=0 λiAi , Ak 6= 0 be a regular matrix polynomial
that has one of the structures listed in Table 2.1. Then the spectrum of P (λ) has
the pairing depicted in Table 2.2. Moreover, the algebraic, geometric, and partial
multiplicities of the two eigenvalues in each such pair are equal. (Here, we allow
λ = 0 and interpret 1/λ as the eigenvalue ∞.)

Table 2.2
Spectral symmetries

Structure of P (λ) eigenvalue pairing

(anti)-palindromic, T -(anti)-palindromic (λ, 1/λ)

∗-palindromic, ∗-anti-palindromic (λ, 1/ λ)

even, odd, T -even, T -odd (λ,−λ)

∗-even, ∗-odd (λ,−λ)

Proof. We first recall some well-known facts [8], [10], [11] about the companion
forms C1(λ) and C2(λ) of a regular matrix polynomial P (λ):

• P (λ) and C1(λ) have the same eigenvalues (including ∞) with the same
algebraic, geometric, and partial multiplicities.

• C1(λ) and C2(λ) are always strictly equivalent , i.e., there exist nonsingular
constant matrices E and F such that C1(λ) = E · C2(λ) · F .

• Any pair of strictly equivalent pencils have the same eigenvalues (including
∞), with the same algebraic, geometric, and partial multiplicities.

With these facts in hand, we first consider the case when P (λ) is ⋆ -palindromic or
⋆ -anti-palindromic, so that rev P⋆(λ) = χ

P
P (λ) for χ

P
= ±1. Our strategy is to

show that C1(λ) is strictly equivalent to rev C⋆
1 (λ), from which the desired eigenvalue

pairing and equality of multiplicities then follows. Using the nonsingular matrix

T :=




χ
P

I χ
P

Ak−1 · · · χ
P

A1

0 0 −I
... . .

.

0 −I 0


 ,
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we first show that C1(λ) is strictly equivalent to rev C⋆
2 (λ).

T · C1(λ) · (Rk ⊗ In) = T ·


λ




0 Ak

I
. .

.

I 0


 +




A0 A1 · · · Ak−1

0 0 −I... . .
.

0 −I 0







= λ




χ
P

A1 · · · χ
P

Ak−1 χ
P

Ak

−I 0 0
. . .

...
0 −I 0


 +




χ
P

A0 0
I

. . .
0 I




= λ




Ak−1 −I 0
...

. . .
A1 0 −I
A0 0 · · · 0




⋆

+




Ak 0
I

. . .
0 I




⋆

= rev C⋆
2 (λ).

But rev C⋆
2 (λ) is always strictly equivalent to rev C⋆

1 (λ), since C1(λ) and C2(λ) are.
This completes the proof for this case.

For the case of palindromic or anti-palindromic matrix polynomials, i.e., polyno-
mials P (λ) satisfying rev P (λ) = χ

P
P (λ), an analogous computation shows that

T · C1(λ) · (Rk ⊗ In) = rev C1(λ),

i.e., C1(λ) is strictly equivalent to rev C1(λ), which again implies the desired eigenvalue
pairing and equality of multiplicities.

Next assume that P (λ) is ⋆ -even or ⋆ -odd, so P⋆(−λ) = ε
P

P (λ) for ε
P

= ±1.
We show that C1(λ) is strictly equivalent to C⋆

1 (−λ), from which the desired pairing
of eigenvalues and equality of multiplicities follows. We begin by observing that C1(λ)
is strictly equivalent to C⋆

2 (−λ):
(
diag(ε

P
,−Σk−1) ⊗ In

)
· C1(λ) · (Σk ⊗ In)

= λ




ε
P

(−1)k−1Ak 0
−I

. . .

0 −I


 +




ε
P

(−1)k−1Ak−1 · · · ε
P

(−1)1A1 ε
P

A0

−I 0 0
. . .

...
0 −I 0




= −λ




Ak 0
I

. . .

0 I




⋆

+




Ak−1 −I 0
...

. . .

A1 0 −I
A0 0 · · · 0




⋆

= C⋆
2 (−λ).

The strict equivalence of C⋆
2 (−λ) and C⋆

1 (−λ) now follows from that of C2(λ) and
C1(λ), and the proof for this case is complete.

For even or odd polynomials, that is when P (−λ) = ε
P

P (λ), an analogous com-
putation

(
diag(ε

P
,−Σk−1) ⊗ In

)
· C1(λ) · (Σk ⊗ In) = C1(−λ)

shows that C1(λ) is strictly equivalent to C1(−λ), which implies the desired eigenvalue
pairing and equality of multiplicities.
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If the coefficient matrices of P are real, then the eigenvalues of a ⋆ -even or ⋆ -odd
matrix polynomial occur in quadruples (λ, λ,−λ,−λ). This property has sometimes
been referred to as “Hamiltonian spectral symmetry”, since the eigenvalues of real
Hamiltonian matrices have such symmetry [30], [33]. Note however that this is ac-
tually a feature common to matrices in Lie algebras associated with any real scalar
product, and is not confined to Hamiltonian matrices [28]. Similarly, the eigenvalues of
real ⋆ -palindromic and anti-⋆ -palindromic matrix polynomials occur not just in pairs
but in quadruples (λ, λ, 1/λ, 1/λ), a property sometimes referred to as “symplectic
spectral symmetry”, since real symplectic matrices exhibit this behavior. But once
again, this type of eigenvalue symmetry is an instance of a more general phenomenon
associated with matrices in the Lie group of any real scalar product, such as the real
pseudo-orthogonal (Lorentz) groups. See [1], [7], [23], [30] for detailed coverage of
Hamiltonian and symplectic matrices, and [12], [28] for properties of matrices in the
Lie algebra or Lie group of more general scalar products.

Remark 2.3. In Definition 2.1 we could have defined the adjoint of an n × n
matrix polynomial with respect to the adjoint of a more general scalar product, rather
than restricting ⋆ to just transpose or conjugate transpose. For example, with any
nonsingular matrix M we can define a bilinear scalar product 〈x, y〉 := xT My, and
denote the adjoint of a matrix A ∈ F

n×n with respect to this scalar product by
A⋆ = M−1AT M . (Similarly for a sesquilinear scalar product 〈x, y〉 := x∗My and
its corresponding adjoint A⋆ = M−1A∗M .) Then for an n × n matrix polynomial
P (λ) the definition of the corresponding adjoint P⋆(λ) is formally identical to Def-
inition 2.1; the structures in Table 2.1 also make sense as written with ⋆ denoting
the adjoint of a general scalar product. Well-known examples of this are the skew-
Hamiltonian/Hamiltonian pencils [32], which are ⋆ -odd with respect to the symplectic
form defined by M = J =

[
0 I
−I 0

]
.

However, if the matrix M defining a bilinear scalar product satisfies MT = εM
for ε = ±1 (or M∗ = εM , |ε| = 1, ε ∈ C in the sesquilinear case), then not much
is gained by this apparent extra generality. Note that this includes all the standard
examples, which are either symmetric or skew-symmetric bilinear forms or Hermitian
sesquilinear forms. In the bilinear case we have

P (λ) is ⋆ -palindromic ⇔ rev P⋆(λ) = rev
(
M−1PT (λ)M

)
= P (λ)

⇔ rev (MP (λ))T = rev
(
PT (λ)MT

)
= εMP (λ)

⇔ MP (λ) is T -palindromic or T -anti-palindromic,

depending on the sign of ε . A similar argument shows that ⋆ -evenness or ⋆ -oddness
of P (λ) is equivalent to the T -evenness or T -oddness of MP (λ). Analogous results
also hold in the sesquilinear case when M∗ = εM . Thus for any of the standard scalar
products with adjoint ⋆ , the ⋆ -structures in Table 2.1 can be reduced to either the
⋆ = T or ⋆ = ∗ case; in particular this implies that the eigenvalue pairing results
of Theorem 2.2 extend to these more general ⋆ -structures. Note that this reduction
shows the skew-Hamiltonian/Hamiltonian pencils mentioned above are equivalent to
T -even or ∗ -even pencils.

2.2. Cayley transformations of matrix polynomials. It is well known that
the Cayley transformation and its generalization to matrix pencils [23], [31] relates
Hamiltonian structure to symplectic structure for both matrices and pencils. By
extending the classical definition of this transformation to matrix polynomials, we
now develop analogous relationships between (anti)-palindromic and odd/even matrix
polynomials, and their ⋆ -variants.
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Our choice of definition is motivated by the following observation: the only Möbius
transformations of the complex plane that map reciprocal pairs (µ, 1/µ) to plus/minus
pairs (λ,−λ) are α

(
µ−1
µ+1

)
and β

(
1+µ
1−µ

)
, where α, β ∈ C are nonzero constants. When

α = β = 1, these transformations also map conjugate reciprocal pairs (µ, 1/µ) to
conjugate plus/minus pairs (λ,−λ). Putting this together with Theorem 2.2, we
see that the Möbius transformations µ−1

µ+1 , 1+µ
1−µ

translate the spectral symmetries of

(anti)-palindromic matrix polynomials and their ⋆ -variants to those of odd/even ma-
trix polynomials and their ⋆ -variants. Consequently, it is reasonable to anticipate that
Cayley transformations modelled on these particular Möbius transformations might
have an analogous effect on structure at the level of matrix polynomials. These ob-
servations therefore lead us to adopt the following definition as the natural extension,
given our context, of the Cayley transformation to matrix polynomials.

Definition 2.4. Let P (λ) be a matrix polynomial of degree k as in (1.1). Then
the Cayley transformation of P (λ) with pole at −1 or +1, respectively, is the matrix
polynomial

C−1(P )(µ) := (µ+1)kP

(
µ − 1

µ + 1

)
, resp., C+1(P )(µ) := (1−µ)kP

(
1 + µ

1 − µ

)
. (2.3)

When viewed as maps on the space of n× n matrix polynomials of degree k ≥ 1,
the Cayley transformations in (2.3) can be shown by a direct calculation to be inverses
of each other, up to a scaling factor.

Proposition 2.5. For any n × n matrix polynomial P of degree k ≥ 1 we have
C+1(C−1(P )) = C−1(C+1(P )) = 2k · P .

The next lemma gives some straightforward observations that are helpful in re-
lating the structure in a matrix polynomial to that in its Cayley transformations.

Lemma 2.6. Let P be a matrix polynomial of degree k ≥ 1. Then

(
C−1(P )

)⋆(µ) = C−1(P
⋆)(µ),

(
C+1(P )

)⋆(µ) = C+1(P
⋆)(µ), (2.4)

rev
(
C−1(P )

)⋆(µ) = (µ + 1)kP⋆
(
−

µ − 1

µ + 1

)
, µ 6= −1, (2.5a)

rev
(
C+1(P )

)⋆(µ) = (−1)k(1 − µ)kP⋆
(
−

1 + µ

1 − µ

)
, µ 6= 1. (2.5b)

Proof. The proof of (2.4) is straightforward. We only prove (2.5b); the proof of
(2.5a) is similar. Since C+1(P ) and hence C+1(P )⋆ are matrix polynomials of degree k,

rev
(
C+1(P )

)⋆(µ) = µk
(
C+1(P )

)⋆
(

1

µ

)
= µkC+1(P

⋆)

(
1

µ

)
by (2.4), (2.1)

= µk(1 − 1/µ)kP⋆
(

1 + 1/µ

1 − 1/µ

)
by (2.3)

and (2.5b) is now immediate.
Theorem 2.7. Let P (λ) be a matrix polynomial of degree k ≥ 1. Then the

correspondence between structure in P (λ) and in its Cayley transformations is as
stated in Table 2.3.

Proof. Since the proofs of the equivalences are similar, we only establish one of
them. We show that P (λ) is ⋆ -even if and only if C+1(P )(µ) is ⋆ -palindromic when k
is even and ⋆ -anti-palindromic when k is odd. Now P (λ) being ⋆ -even is equivalent,
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Table 2.3
Cayley transformations of structured matrix polynomials

C−1(P )(µ) C+1(P )(µ)

P (λ) k even k odd k even k odd

palindromic even odd even
⋆ -palindromic ⋆ -even ⋆ -odd ⋆ -even

anti-palindromic odd even odd
⋆ -anti-palindromic ⋆ -odd ⋆ -even ⋆ -odd

even palindromic palindromic anti-palindromic
⋆ -even ⋆ -palindromic ⋆ -palindromic ⋆ -anti-palindromic

odd anti-palindromic anti-palindromic palindromic
⋆ -odd ⋆ -anti-palindromic ⋆ -anti-palindromic ⋆ -palindromic

by definition, to P⋆(−λ) = P (λ) for all λ. Setting λ = 1+µ
1−µ

and multiplying by

(1 − µ)k yields

P (λ) is ⋆ -even ⇐⇒ (1 − µ)kP⋆
(
−

1 + µ

1 − µ

)
= (1 − µ)kP

(
1 + µ

1 − µ

)
for all µ 6= 1

⇐⇒ (−1)krev (C+1(P ))⋆(µ) = C+1(P )(µ) by Lemma 2.6,

from which the desired result follows.
Observe that the results in Table 2.3 are consistent with C−1(P ) and C+1(P ) being

essentially inverses of each other (Proposition 2.5).
Theorem 2.7 establishes a relationship between ⋆ -palindromic and ⋆ -even/odd

matrix polynomials via the Cayley transformation. Since ⋆ -even/odd matrix poly-
nomials can be interpreted as generalizations of Hamiltonian matrices [32], [33] and
since it is well known that Hamiltonian matrices and symplectic matrices are related
via the Cayley transformation [30], ⋆ -(anti)-palindromic matrix polynomials can be
thought of as generalizations of symplectic matrices.

3. Structured linearizations. As sources of structured linearizations for the
structured polynomials listed in Table 2.1, we consider the vector spaces L1(P ) and
L2(P ), introduced in [27]. We establish the existence of structured pencils in these
spaces, show how they can be explicitly constructed, and give necessary and sufficient
conditions for them to be linearizations of the given matrix polynomial P .

3.1. Vector spaces of potential linearizations. The vector spaces L1(P ),
and L2(P ) consist of pencils that generalize the first and second companion forms
C1(λ) and C2(λ) of P (λ), respectively:

L1(P ) :=
{

L(λ) = λX + Y : L(λ) · (Λ ⊗ In) = v ⊗ P (λ), v ∈ F
k
}

, (3.1)

L2(P ) :=
{

L(λ) = λX + Y :
(
ΛT ⊗ In

)
· L(λ) = wT ⊗ P (λ), w ∈ F

k
}

, (3.2)

where Λ =
[
λk−1 λk−2 . . . λ 1

]T
, and ⊗ denotes the Kronecker product. A

direct calculation shows that

C1(λ) · (Λ ⊗ In) = e1 ⊗ P (λ) and
(
ΛT ⊗ In

)
· C2(λ) = eT

1 ⊗ P (λ),
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so C1(λ) ∈ L1(P ) and C2(λ) ∈ L2(P ) for any P (λ). The vector v in (3.1) is called
the right ansatz vector of L(λ) ∈ L1(P ), because L(λ) is multiplied on the right by
Λ ⊗ In to give v ⊗ P (λ). Analogously, the vector w in (3.2) is called the left ansatz
vector of L(λ) ∈ L2(P ).

The pencil spaces Lj(P ) were designed with the aim of providing an arena of
potential linearizations that is fertile enough to contain those that reflect additional
structures in P , but small enough that these linearizations still share salient features
of the companion forms Cj(λ). First, when P (λ) is regular, the mild hypothesis of a
pencil in Lj(P ) being regular is sufficient to guarantee that it is indeed a linearization
for P . In fact, as shown in [27], regularity makes these pencils strong linearizations for
P (λ), i.e., rev L(λ) is also a linearization for rev P (λ). This ensures that the Jordan
structures of both the finite and infinite eigenvalues of P are always faithfully reflected
in L, just as is done by the companion forms. Without this extra property of being a
strong linearization, any Jordan structure compatible with the algebraic multiplicity
of the infinite eigenvalue of P (λ) can be realized by some linearization [22]. Secondly,
eigenvectors of P (λ) are easily recoverable from those of L(λ). Indeed, the definition
of L1(P ) implies that L(λ) · (Λ ⊗ x) = v ⊗ (P (λ)x) for all x ∈ F

n. Thus, whenever
x is a right eigenvector of P (λ) associated with an eigenvalue λ then Λ ⊗ x is a right
eigenvector of L(λ) associated with λ. Similar observations hold for L(λ) ∈ L2(P )
and left eigenvectors. Finally, when P (λ) is regular, almost all pencils in Lj(λ) are
regular, and thus strong linearizations for P (λ) — the ones that are not form a closed
nowhere dense set of measure zero [27].

3.1.1. Shifted sums. The column-shifted sum and row-shifted sum are conve-
nient tools that readily allow one to construct pencils in L1(P ) and L2(P ), respec-
tively. They also enable one to easily test when a given pencil is in Lj(P ).

Definition 3.1 (Shifted sums). Let X = (Xij) and Y = (Yij) be block k × k
matrices in F

kn×kn with blocks Xij , Yij ∈ F
n×n. Then the column shifted sum X ⊞→Y ,

and row shifted sum X ⊞↓ Y of X and Y are defined to be

X ⊞→Y :=




X11 · · · X1k 0
...

. . .
...

...
Xk1 · · · Xkk 0


 +




0 Y11 · · · Y1k

...
...

. . .
...

0 Yk1 · · · Ykk


 ∈ F

kn×k(n+1),

X ⊞↓ Y :=




X11 · · · X1m

...
. . .

...
Xm1 · · · Xmm

0 · · · 0


 +




0 · · · 0
Y11 · · · Y1m

...
. . .

...
Ym1 · · · Ymm


 ∈ F

k(n+1)×kn.

With P (λ) =
∑k

i=0 λiAi, and L(λ) = λX +Y , a straightforward calculation with
the shifted sums now reveals the equivalences

L(λ) ∈ L1(P )
with right ansatz vector v

⇐⇒ X ⊞→Y = v ⊗ [Ak Ak−1 · · · A0] (3.3)

L(λ) ∈ L2(P )
with left ansatz vector w

⇐⇒ X ⊞↓ Y = wT ⊗




Ak

...
A0


 . (3.4)

3.2. Building T -palindromic pencils in L1(P ). For the moment, let us focus
our attention on L1(P ) and try to construct a T -palindromic pencil in L1(P ) for a
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matrix polynomial P (λ) that is T -palindromic. We begin with the simplest nontrivial
example.

Example 3.2. Consider the T -palindromic matrix polynomial λ2A + λB + AT ,
where B = BT and A 6= 0. We try to construct a T -palindromic pencil L(λ) ∈ L1(P )
with a nonzero right ansatz vector v = [ v1, v2 ]T ∈ F

2. This means that L(λ) must
be of the form

L(λ) = λZ + ZT =: λ

[
D E
F G

]
+

[
DT FT

ET GT

]
, D,E, F,G ∈ F

n×n.

Since L(λ) ∈ L1(P ), the equivalence given by (3.3) implies that

Z ⊞→ZT =

[
D E + DT FT

F G + ET GT

]
=

[
v1A v1B v1A

T

v2A v2B v2A
T

]
.

Equating corresponding blocks in the first and in the last columns, we obtain D = v1A,
F = v2A = v1A, and G = v2A. This forces v1 = v2, since A 6= 0 by assumption.
From either block of the middle column we see that E = v1(B−AT ); with this choice
for E all the equations are consistent, thus yielding

L(λ) = λZ + ZT = v1

(
λ

[
A B − AT

A A

]
+

[
AT AT

B − A AT

])
. (3.5)

This example illustrates three important properties: (1) the choice of right ansatz
vectors v for which L(λ) ∈ L1(P ) is T -palindromic is restricted; (2) once one of these
restricted right ansatz vectors v is chosen, a T -palindromic pencil L(λ) ∈ L1(P ) is
uniquely determined; (3) interchanging the first and second block rows of L(λ), i.e.,
premultiplying by R2 ⊗ I, yields the pencil

(R2 ⊗ I)L(λ) = v1

(
λ

[
A A
A B − AT

]
+

[
B − A AT

AT AT

])
,

which the column and row shifted sums easily confirm to be a pencil in the double
ansatz space DL(P ) := L1(P )∩L2(P ) with left and right ansatz vector v = [v1, v1]

T .
These three observations turn out to be true in general for T -palindromic matrix
polynomials P and T -palindromic pencils in L1(P ).

Theorem 3.3. Let P (λ) be a T -palindromic matrix polynomial and L(λ) ∈ L1(P )
with right ansatz vector v. Then the pencil L(λ) is T -palindromic if and only if Rv = v
and (R⊗ I)L(λ) ∈ DL(P ) with right and left ansatz vector Rv, where R is the reverse
identity as in (2.2). Moreover, for any v ∈ F

k satisfying Rv = v there exists a unique
pencil L(λ) ∈ L1(P ) with right ansatz vector v and T -palindromic structure.

The proof of this theorem is deferred to the next section, where it is subsumed
under the even more general result stated in Theorem 3.5.

The double ansatz space DL(P ) was introduced in [27] as a natural space in
which to look for pencils that enjoy both the right and the left eigenvector recovery
properties. This feature was successfully exploited in [14] to find linearizations with
optimally conditioned eigenvalues. Now Example 3.2 suggests that DL(P ) could also
play an important role in the search for structured linearizations.

3.3. Existence of structured pencils in L1(P ). For a ⋆ -(anti)-palindromic or
⋆ -even/odd polynomial it is natural to seek a linearization with the same structure as
P . From the point of view of numerical analysis, however, one of the most important
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reasons for using a structure-preserving method is to preserve spectral symmetries.
But we see in Table 2.2 that for each structure under consideration there is also an
“anti” version of that structure with the same spectral symmetry. Thus it makes
sense to try to linearize a structured polynomial with an “anti-structured” pencil as
well as with a structured one; so in this section we also characterize the pencils in
L1(P ) having the “anti-structure” of P .

Before turning to the main results of this section, we draw the reader’s attention to
two key properties of DL(P ) that will be systematically used in their proofs. Recall
that the left and right ansatz vectors of the double ansatz pencil (R2 ⊗ I)L(λ) in
Example 3.2 coincide. This is, in fact, a property shared by all pencils in DL(P ), thus
leading to the notion of a single ansatz vector instead of separate left/right ansatz
vectors for these pencils. Furthermore, every pencil in DL(P ) is uniquely determined
by its ansatz vector.

Theorem 3.4 ([13], [27]). Let P (λ) =
∑k

i=0 λiAi be a (not necessarily regular)
matrix polynomial with coefficients in F

n×n and Ak 6= 0. Then for vectors v, w ∈ F
k

there exists a kn×kn matrix pencil L(λ) ∈ DL(P ) with right ansatz vector w and left
ansatz vector v if and only if v = w. Moreover, the pencil L(λ) ∈ DL(P ) is uniquely
determined by v.

We now extend the result of Theorem 3.3 to ⋆-(anti)-palindromic structures, show-
ing that there is only a restricted class of admissible right ansatz vectors v that can
support a structured or “anti-structured” pencil in L1(P ). In each case the restric-
tions on the vector v can be concisely described using the reverse identity R = Rk as
defined in (2.2).

Theorem 3.5. Suppose the matrix polynomial P (λ) is ⋆ -palindromic or ⋆ -anti-
palindromic. Then for pencils L(λ) ∈ L1(P ) with right ansatz vector v, conditions (i)
and (ii) in Table 3.1 are equivalent. Moreover, for any v ∈ F

k satisfying one of the
admissibility conditions for v in (ii), there exists a unique pencil L(λ) ∈ L1(P ) with
right ansatz vector v and the corresponding structure in (i).

Table 3.1

Structure
Equivalent conditions

of P (λ) (i) L(λ) is (ii) (R ⊗ I)L(λ) ∈ DL(P ) with
ansatz vector Rv and

T -palindromic
T -palindromic Rv = v

T -anti-palindromic Rv = −v

T -anti-palindromic
T -palindromic Rv = −v

T -anti-palindromic Rv = v

∗-palindromic
∗-palindromic Rv = v

∗-anti-palindromic Rv = −v

∗-anti-palindromic
∗-palindromic Rv = −v

∗-anti-palindromic Rv = v

Proof. We consider all eight cases simultaneously. Let P (λ) be ⋆ -palindromic or
⋆ -anti-palindromic, so that rev P⋆(λ) = χ

P
P (λ) for χ

P
= ±1.

“(i) ⇒ (ii)”: By (i), rev L⋆(λ) = χ
L
L(λ) for χ

L
= ±1. Since L(λ) ∈ L1(P ), we have

L(λ)(Λ ⊗ I) = v ⊗ P (λ). (3.6)
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Taking the reversal of both sides of (3.6), and noting that RΛ = rev Λ, we have

rev L(λ)(R ⊗ I)(Λ ⊗ I) = rev L(λ)
(
(rev Λ) ⊗ I

)
= v ⊗ rev P (λ).

Now applying the adjoint ⋆ to both sides, we obtain

(Λ⋆ ⊗ I)(R ⊗ I) rev L⋆(λ⋆) = v⋆ ⊗ rev P⋆(λ⋆) ,

or equivalently
(
Λ⋆ ⊗ I

)
(R ⊗ I)L(λ⋆) = (χ

P
χ

L
v⋆) ⊗ P (λ⋆) , (3.7)

since L(λ) and P (λ) are either ⋆ -palindromic or ⋆ -anti-palindromic. Then using the
fact that (3.7) is an identity, we replace λ⋆ by λ to obtain

(ΛT ⊗ I)(R ⊗ I)L(λ) = (χ
P

χ
L
v⋆) ⊗ P (λ) ,

thus showing (R⊗ I)L(λ) to be in L2(P ) with left ansatz vector w = χ
P

χ
L
(v⋆)T. On

the other hand, multiplying (3.6) on the left by R ⊗ I yields

(R ⊗ I)L(λ)(Λ ⊗ I) = (Rv) ⊗ P (λ) ,

so (R ⊗ I)L(λ) is also in L1(P ) with right ansatz vector Rv. Thus (R ⊗ I)L(λ) is in
DL(P ) = L1(P ) ∩ L2(P ), and from Theorem 3.4 the equality of right and left ansatz
vectors implies that Rv = χ

P
χ

L
(v⋆)T . All eight variants of condition (ii) now follow

by noting that (v∗)T = v and (vT )T = v.

“(ii) ⇒ (i)”: Since (R ⊗ I)L(λ) is in DL(P ) with ansatz vector Rv, we have

(R ⊗ I)L(λ)(Λ ⊗ I) = (Rv) ⊗ P (λ) , (3.8)(
(ΛT R) ⊗ I

)
L(λ) = (ΛT ⊗ I)(R ⊗ I)L(λ) = (Rv)T ⊗ P (λ) . (3.9)

Applying the adjoint ⋆ to both ends of (3.9) gives

L⋆(λ⋆)
(
(R(ΛT )⋆) ⊗ I

)
= R(vT )⋆ ⊗ P⋆(λ⋆),

or equivalently

L⋆(λ)
(
(RΛ) ⊗ I

)
= R(vT )⋆ ⊗ P⋆(λ). (3.10)

Note that all cases of condition (ii) may be expressed in the form R(vT )⋆ = εχ
P

v,
where ε = ±1. Then taking the reversal of both sides in (3.10) and using RΛ = rev Λ,
we obtain

rev L⋆(λ)(Λ ⊗ I) = (εχ
P

v) ⊗ rev P⋆(λ) = (εv) ⊗ P (λ) ,

and after multiplying by ε(R ⊗ I),

ε(R ⊗ I) rev L⋆(λ)(Λ ⊗ I) = (Rv) ⊗ P (λ).

Thus we see that the pencil ε(R ⊗ I) rev L⋆(λ) is in L1(P ) with right ansatz vector
Rv. Starting over again from identity (3.8) and taking the adjoint ⋆ of both sides,
we obtain by analogous reasoning that

(R ⊗ I)L(λ)(Λ ⊗ I) = (Rv) ⊗ P (λ)

⇐⇒ (ΛT ⊗ I)L⋆(λ)(R ⊗ I) = (v⋆R) ⊗ P⋆(λ) =
(
v⋆ ⊗ P⋆(λ)

)
(R ⊗ I)

⇐⇒ (ΛT ⊗ I)L⋆(λ) = v⋆ ⊗ P⋆(λ)

⇐⇒ (rev ΛT ⊗ I) rev L⋆(λ) = v⋆ ⊗ rev P⋆(λ)

⇐⇒ (ΛT R ⊗ I) rev L⋆(λ) = (εχ
P

Rv)T ⊗ rev P⋆(λ) = (εRv)T ⊗ P (λ)

⇐⇒ (ΛT ⊗ I)
(
ε(R ⊗ I)rev L⋆(λ)

)
= (Rv)T ⊗ P (λ) .

12



Thus the pencil ε(R ⊗ I)rev L⋆(λ) is also in L2(P ) with left ansatz vector Rv, and
hence in DL(P ) with ansatz vector Rv. But (R ⊗ I)L(λ) ∈ DL(P ) with exactly the
same ansatz vector Rv, and so the uniqueness property of Theorem 3.4 implies that

ε(R ⊗ I) rev L⋆(λ) = (R ⊗ I)L(λ) ,

or equivalently ε rev L⋆(λ) = L(λ). Hence L(λ) is ⋆ -palindromic or ⋆ -anti-palindro-
mic, depending on the parameter ε, which implies all the variants of condition (i) in
Table 3.2.

Finally, the existence and uniqueness of a structured pencil L(λ) corresponding to
any admissible right ansatz vector v follows directly from the existence and uniqueness
in Theorem 3.4 of the DL(P )-pencil (R ⊗ I)L(λ) for the ansatz vector Rv.

We next present the analog of Theorem 3.5 for ⋆ -even and ⋆ -odd polynomials.
Here Σ = Σk as defined in (2.2) helps to concisely describe the restriction on the
ansatz vector v.

Theorem 3.6. Suppose the matrix polynomial P (λ) is ⋆ -even or ⋆ -odd. Then
for pencils L(λ) ∈ L1(P ) with right ansatz vector v, conditions (i) and (ii) in Table 3.2
are equivalent. Moreover, for any v ∈ F

k satisfying one of the admissibility conditions
for v in (ii), there exists a unique pencil L(λ) ∈ L1(P ) with right ansatz vector v and
the corresponding structure in (i).

Table 3.2

Structure
Equivalent conditions

of P (λ) (i) L(λ) is (ii) (Σ ⊗ I)L(λ) ∈ DL(P ) with
ansatz vector Σv and

T -even
T -even Σv = v

T -odd Σv = −v

T -odd
T -even Σv = −v

T -odd Σv = v

∗-even
∗-even Σv = v

∗-odd Σv = −v

∗-odd
∗-even Σv = −v

∗-odd Σv = v

Proof. Follow the strategy, mutatis mutandis, of the proof of Theorem 3.5: replace
multiplications by R⊗ I with multiplications by Σ ⊗ I, and reversals of both sides of
an equation by the substitution of −λ for λ. Observe that for Λ, this substitution is
equivalent to premultiplication by Σ, since ΣΛ = [(−λ)k−1, . . . ,−λ, 1]T .

Thus we see that the ansatz vectors of structured pencils closely reflect the struc-
ture of the pencil itself. This pleasing fact influences both the existence and the
construction of structured linearizations, as we will see in the following sections.

3.4. Construction of structured pencils. As we have seen in Theorem 3.5
and Theorem 3.6, pencils in L1(P ) with one of the ⋆-structures listed in Table 2.1
are strongly related to pencils in DL(P ). This observation leads to the following
procedure for the construction of potential structured linearizations:

(1) choose a right ansatz vector v ∈ F
k that is admissible for the desired type of

⋆-structure;
(2) construct the unique L̃(λ) ∈ DL(P ) with ansatz vector w = Rv or w = Σv,

according to the desired structure;
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(3) premultiply L̃(λ) by R−1 ⊗ I or Σ−1 ⊗ I to obtain a structured pencil in
L1(P ) with right ansatz vector v.

All that remains is to show how to carry out step (2). This can be done concretely
and explicitly using the following canonical basis for DL(P ) derived in [13]. Given a

matrix polynomial P (λ) =
∑k

i=0 λiAi, consider for j = 0, . . . , k the block diagonal
matrices Xj = diag(Lj ,−Uk−j) whose diagonal blocks are the block j×j block-Hankel
matrices

Lj =




Ak

. .
.

Ak−1

. .
.

. .
. ...

Ak Ak−1 . . . Ak−j+1




and Uj =




Aj−1 . . . A1 A0
... . .

.
. .

.

A1 . .
.

A0




.

Observe that Lj ,Uj ∈ F
jn×jn, with the convention that they are empty when j = 0.

Thus each Xj is a block k × k matrix in F
kn×kn. As an illustration we give the

complete list of matrices X0,X1,X2,X3 for k = 3:


−A2 −A1 −A0

−A1 −A0 0
−A0 0 0


 ,




A3 0 0
0 −A1 −A0

0 −A0 0


 ,




0 A3 0
A3 A2 0
0 0 −A0


 ,




0 0 A3

0 A3 A2

A3 A2 A1


 .

Matrices of this type have appeared in the literature before; see, e.g., [9], [21], and for
the scalar (n = 1) case [20]. One can easily compute the shifted sums

Xj ⊞→(−Xj−1) = ej ⊗
[
Ak . . . A0

]
and Xj ⊞↓ (−Xj−1) = eT

j ⊗




Ak

...
A0


 ,

thus verifying by (3.3) and (3.4) that the pencil λXj −Xj−1 is in DL(P ) with ansatz
vector ej for j = 1, . . . k. Consequently the set {λXj −Xj−1 : j = 1, . . . k} constitutes
the natural or canonical basis for DL(P ). A pencil λX + Y in DL(P ) with ansatz
vector w = [w1, . . . , wk]T can now be uniquely expressed as a linear combination

λX + Y =

k∑

j=1

wj

(
λXj − Xj−1

)
= λ

k∑

j=1

wjXj −

k∑

j=1

wjXj−1. (3.11)

Note that there are alternative procedures for the construction of pencils from DL(P )
— an explicit formula, for example, is given in [27] while a recursive method using
the shifted sum has been presented in [26].

3.5. Which Structured Pencils are Linearizations?. Recall from section 3.1
that when P (λ) is regular, then any regular pencil in L1(P ) is a (strong) linearization
for P . Although there is a systematic procedure [27] for determining the regularity of
a pencil L(λ) ∈ L1(P ), there is in general no connection between this regularity and
the right ansatz vector of L(λ). By contrast, for pencils in DL(P ) there is a criterion
that characterizes regularity directly in terms of their ansatz vectors, which gives
these pencils an important advantage. Let v = [v1, v2, . . . , vk]T be the ansatz vector
of L(λ) ∈ DL(P ), and define the associated v-polynomial to be the scalar polynomial

p(x ; v) := v1x
k−1 + v2x

k−2 + · · · + vk−1x + vk.

By convention, we say that ∞ is a root of p(x ; v) if v1 = 0. Then regularity of
L(λ) ∈ DL(P ) can be expressed in terms of the roots of this v-polynomial and the
eigenvalues of P , as follows.
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Theorem 3.7 (Eigenvalue Exclusion Theorem [27]). Suppose that P (λ) is a
regular matrix polynomial and L(λ) is in DL(P ) with nonzero ansatz vector v. Then
L(λ) is regular and thus a (strong) linearization for P (λ) if and only if no root of the
v-polynomial p(x ; v) is an eigenvalue of P (λ).

Note that in Theorem 3.7 we include ∞ as one of the possible roots of p(x ; v) or
eigenvalues of P . We can now quickly deduce the following theorem.

Theorem 3.8 (Structured Linearization Theorem). Suppose the regular matrix
polynomial P (λ) and the nonzero pencil L(λ) ∈ L1(P ) have one of the sixteen com-
binations of ⋆ -structure considered in Tables 3.1 and 3.2. Let v be the nonzero right
ansatz vector of L(λ), and let

w =

{
Rv if P is ⋆ -palindromic or ⋆ -anti-palindromic ,

Σv if P is ⋆ -even or ⋆ -odd .

Then L(λ) is a (strong) linearization for P (λ) if and only if no root of the v-polynomial
p(x ;w) is an eigenvalue of P (λ).

Proof. For all eight structure combinations in Table 3.1 it was shown in The-
orem 3.5 that (R ⊗ I)L(λ) is in DL(P ) with ansatz vector Rv. Similarly for the
eight even/odd structure combinations in Table 3.2 it was shown in Theorem 3.6 that
(Σ⊗I)L(λ) is in DL(P ) with ansatz vector Σv. Since L(λ) is a linearization for P (λ)
if and only if (R ⊗ I)L(λ) or (Σ ⊗ I)L(λ) is, the desired result follows immediately
from the eigenvalue exclusion theorem.

We illustrate the implications of Theorem 3.8 with an example.
Example 3.9. Suppose the T -palindromic polynomial P (λ) = λ2A + λB + AT

from Example 3.2 is regular. Theorem 3.3 restricts the admissible ansatz vectors
v ∈ F

2 of a T -palindromic pencil L(λ) ∈ L1(P ) to those that satisfy Rv = v, or
equivalently, v = (v1, v1)

T . We see from Theorem 3.8 that such an L(λ) will be
a strong linearization for P (λ) if and only if none of the roots of the v-polynomial
p(x ;Rv) = v1x + v1 are eigenvalues of P (λ), that is, if and only if −1 is not an

eigenvalue of P (λ). On the other hand, a T -anti-palindromic pencil L̃(λ) ∈ L1(P )
will be a linearization for P if and only if λ = 1 is not an eigenvalue of P (λ). This is

because every admissible ansatz vector for L̃(λ) is constrained by Theorem 3.5 to be
of the form ṽ = [ v1,−v1 ]T , forcing p(x ;Rṽ) = −v1x + v1, with only +1 as a root.

This example also illustrates another way in which structure influences the play-
ers in our story: when P is T -palindromic, any ansatz vector admissible for a T -
(anti)-palindromic pencil in L1(P ) has components that read the same forwards or
backwards (up to sign). This in turn forces the corresponding v-polynomial to be
(anti)-palindromic. Theorems 3.5 and 3.6 imply that analogous parallels in structure
hold for other combinations of ⋆ -structures in P and L and the relevant v-polynomial
p(x ;Rv) or p(x ;Σv); for convenience these are listed together in Table 3.3.

Table 3.3
Parallelism of Structures

P (λ) L(λ) ∈ L1(P ) v-polynomial P (λ) L(λ) ∈ L1(P ) v-poly.

⋆ -palin.
⋆ -palin. ⋆ -palin.

⋆ -even
⋆ -even ⋆ -even

⋆ -anti-palin. ⋆ -anti-palin. ⋆ -odd ⋆ -odd

⋆ -anti-palin.
⋆ -palin. ⋆ -anti-palin.

⋆ -odd
⋆ -even ⋆ -odd

⋆ -anti-palin. ⋆ -palin. ⋆ -odd ⋆ -even
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3.6. When pairings degenerate. The parallel of structures between matrix
polynomial, L1(P )-pencil, and v-polynomial (see Table 3.3) is aesthetically very pleas-
ing: structure in a v-polynomial forces a pairing of its roots as in Theorem 2.2 which
is always of the same qualitative type as the eigenvalue pairing present in the original
structured matrix polynomial. However, it turns out that this root pairing can some-
times be an obstruction to the existence of any structured linearization in L1(P ) at
all.

Using an argument based mainly on the very simple form of admissible ansatz vec-
tors when k = 2, we saw in Example 3.9 that a quadratic T -palindromic matrix poly-
nomial having both 1 and −1 as eigenvalues cannot have a structured linearization in
L1(P ): the presence of −1 in the spectrum precludes the existence of a T -palindromic
linearization, while the eigenvalue 1 excludes T -anti-palindromic linearizations. We
now show that this difficulty is actually a consequence of root pairing, and therefore
can occur for higher degree polynomials.

When P (λ) has even degree, all its ansatz vectors have even length, and hence the
corresponding v-polynomials all have an odd number of roots (counting multiplicities
and including ∞). Root pairing then forces at least one root of every v-polynomial
to lie in a subset of C where this pairing “degenerates”. This means that for any
T -(anti)-palindromic matrix polynomial P (λ) of even degree, every v-polynomial of a
T -(anti)-palindromic pencil in L1(P ) has at least one root belonging to {−1,+1}. It
follows that any such P (λ) having both +1 and −1 as eigenvalues can have neither a T -
palindromic nor a T -anti-palindromic linearization in L1(P ). For T -even/odd matrix
polynomials P (λ) of even degree, every relevant v-polynomial has a root belonging to
{0,∞}; thus if the spectrum of P (λ) includes both 0 and ∞, then P cannot have a
T -even or T -odd linearization in L1(P ).

In a situation where no structured linearization for P (λ) exists in L1(P ), it is
natural to ask whether P (λ) has a structured linearization that is not in L1(P ), or
perhaps has no structured linearizations at all. The next examples show that both
alternatives may occur.

Example 3.10. Consider the T -palindromic polynomial P (λ) = λ2 + 2λ + 1.
Then the only eigenvalue of P (λ) is −1, so by the observation in Example 3.9 we see
that P (λ) cannot have any T -palindromic linearization in L1(P ). But does P (λ) have
a T -palindromic linearization L(λ) which is not in L1(P )? Consider the general 2× 2
T -palindromic pencil

L(λ) = λZ + ZT = λ

[
w x
y z

]
+

[
w y
x z

]
=

[
w(λ + 1) λx + y
λy + x z(λ + 1)

]
, (3.12)

and suppose it is a linearization for P . Since the only eigenvalue λ = −1 of P (λ) has
geometric multiplicity one, the same must be true for L(λ), that is, rank L(−1) = 1.
But inserting λ = −1 in (3.12), we obtain a matrix that does not have rank one for
any values of w, x, y, z. Thus P (λ) does not have any T -palindromic linearization.

However, P (λ) does have a T -anti-palindromic linearization L̃(λ) in L1(P ), because
it does not have the eigenvalue +1. Choosing ṽ = (1,−1)T as right ansatz vector and
following the procedure in section 3.4 yields the structured linearization

L̃(λ) = λZ̃ − Z̃T = λ

[
1 3
−1 1

]
−

[
1 −1
3 1

]
∈ L1(P ).
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Example 3.11. Consider the T -palindromic matrix polynomial

P (λ) = λ2

[
0 1
−1 0

]
+

[
0 −1
1 0

]
.

Since detP (λ) = (λ2 − 1)2, this polynomial P (λ) has +1 and −1 as eigenvalues,
each with algebraic multiplicity two. Thus P (λ) has neither a T -palindromic nor
a T -anti-palindromic linearization in L1(P ). However, it is possible to construct a
T -palindromic linearization for P (λ) that is not in L1(P ). Starting with the first
companion form C1(λ), one can verify that

2

6

6

4

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

3

7

7

5

· C1(λ) ·

2

6

6

4

1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

3

7

7

5

= λ

2

6

6

4

0 0 −1 0
0 0 0 1
0 1 0 0
−1 0 0 0

3

7

7

5

+

2

6

6

4

0 0 0 −1
0 0 1 0
−1 0 0 0
0 1 0 0

3

7

7

5

is a T -palindromic linearization for P (λ). Using shifted sums it can easily be verified
that this linearization is in neither L1(P ) nor L2(P ).

Example 3.12. Consider the scalar matrix polynomial P (λ) = λ2 − 1 which is
T -anti-palindromic and has the roots ±1. Again, the presence of these eigenvalues
precludes the existence of either a T -palindromic or T -anti-palindromic linearization in
L1(P ). But even more is true. It turns out that P (λ) does not have any T -palindromic
or T -anti-palindromic linearization at all. Indeed, suppose that Lε(λ) = λZ + εZT

was a linearization for P (λ), where ε = ±1; that is, Lε(λ) is T -palindromic if ε = 1
and T -anti-palindromic if ε = −1. Since P (λ) does not have the eigenvalue ∞, neither
does L(λ), and so Z must be invertible. Thus Lε(λ) is strictly equivalent to the pencil
λI + εZ−1ZT . But this being a linearization for P (λ) forces the matrix εZ−1ZT to
have the simple eigenvalues +1 and −1, and hence det εZ−1ZT = −1. However, we
also see that

det εZ−1ZT = ε2 1

det Z
det Z = 1,

a contradiction. Hence P (λ) has neither a T -palindromic linearization nor a T -anti-
palindromic linearization.

One possibility for circumventing the difficulties associated with the eigenvalues
±1 is to first deflate them in a structure-preserving manner, using a procedure that
works directly on the original matrix polynomial. Since the resulting matrix poly-
nomial P (λ) will not have these troublesome eigenvalues, a structured linearization
in L1(P ) can then be constructed. Such structure-preserving deflation strategies are
currently under investigation.

The situation is quite different for ∗-(anti)-palindromic and ∗-even/odd matrix
polynomials, because now the set where pairing degenerates is the entire unit circle
in C, or the imaginary axis (including ∞), respectively. The contrast between having
a continuum versus a finite set where the root pairing degenerates makes a crucial
difference in our ability to guarantee the existence of structured linearizations in
L1(P ). Indeed, consider a regular ∗-palindromic matrix polynomial P (λ) of degree k.
Then the v-polynomial p(x ;Rv) corresponding to an admissible ansatz vector is again
∗-palindromic with k − 1 roots occurring in pairs (λ, 1/λ), by Theorem 2.2. Thus if
k is even, at least one root of p(x ;Rv) must lie on the unit circle. But since the
spectrum of P (λ) is a finite set, it is always possible to choose v so that all the roots
of p(x ;Rv) avoid the spectrum of P (λ). Here is an illustration for the case k = 2.

17



Example 3.13. Consider a regular matrix polynomial P (λ) = λ2A + λB + A∗

which is ∗-palindromic, that is, B = B∗. Choose ζ on the unit circle in C such that ζ
is not an eigenvalue of P (λ). Now choose z ∈ C so that ζ = −z/z. Then v = (z, z)T

satisfies Rv = v, and the associated v-polynomial p(x ;Rv) = zx + z has ζ as its only
root. Therefore the ∗-palindromic pencil

L(λ) = λ

[
zA zB − zA∗

zA zA

]
+

[
zA∗ zA∗

zB − zA zA∗

]
∈ L1(P )

with right ansatz vector v is a (strong) linearization for P (λ) by Theorem 3.8.
The observations made in this section have parallels for ⋆-even/odd structures.

A list of structured linearizations in L1(P ) for ⋆-(anti)-palindromic and ⋆-even/odd
matrix polynomials of degree k = 2, 3 is compiled in Tables 5.1 and 5.2.

3.7. The missing structures. Up to now in section 3 our attention has been fo-
cused on finding structured linearizations only for the eight ⋆ -structures in Table 2.1.
But what about “purely” palindromic, anti-palindromic, even and odd matrix poly-
nomials? Why have they been excluded from consideration? It turns out that these
structures cannot be linearized in a structure preserving way. For example, consider a
regular palindromic polynomial P (λ) of degree k ≥ 2. By [11, Theorem 1.7] a pencil
can only be a linearization for P (λ) if the geometric multiplicity of each eigenvalue of
the pencil is less than or equal to n. On the other hand, any palindromic linearization
has the form L(λ) = λZ + Z, and thus must have the eigenvalue −1 with geometric
multiplicity kn. Analogous arguments exclude structure-preserving linearizations for
anti-palindromic, even, and odd polynomials.

4. Good vibrations from good linearizations. As an illustration of the im-
portance of structure preservation in practical problems, we indicate how the tech-
niques developed in this paper have had a significant impact on computations in an
eigenvalue problem occurring in the vibration analysis of rail tracks under excitation
arising from high speed trains. This eigenvalue problem has the form

(
κA(ω) + B(ω) + 1

κ
A(ω)T

)
x = 0, (4.1)

where A,B are large, sparse, parameter-dependent, complex square matrices with B
complex symmetric and A highly singular. For details of the derivation of this model
see [16] and [17]. The parameter ω is the excitation frequency and the eigenvalue
problem has to be solved over a wide frequency range of ω = 0–5, 000Hz. Clearly,
for any fixed value of ω, multiplying (4.1) by κ leads to the T -palindromic eigenvalue
problem introduced in (1.2). In addition to the presence of a large number of zero and
infinite eigenvalues caused by the rank deficiency of A, the finite nonzero eigenvalues
cover a wide range of magnitudes that increases as the FEM discretization is made
finer. The eigenvalues of the problem under consideration range from 1015 to 10−15,
thereby making this a very challenging numerical problem.

Attempts at solving this problem with the QZ-algorithm without respecting its
structure resulted in computed eigenvalues with no correct digits even in quadruple
precision arithmetic. Furthermore, the symmetry of the spectrum with respect to the
unit circle was highly perturbed [16].

As an alternative, in [16], [17] a T -palindromic linearization for the eigenvalue
problem (4.1) was used. Based on this linearization the infinite and zero eigenvalues
of the resulting T -palindromic pencil could be deflated in a structure preserving way.
The resulting smaller T -palindromic problem was then solved via different methods,
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resulting in eigenvalues with good accuracy in double precision arithmetic; i.e., the
computed eigenvalues were accurate to within the range of the discretization error
of the underlying finite element discretization. Thus physically useful eigenvalues
were determined [16], [17], with no modification in the mathematical model or in the
discretization scheme. The only change made was in the numerical linear algebra, to
methods based on the new structure preserving linearization techniques described in
this paper [19].

Thus we see that the computation of “good vibrations” (i.e., accurate eigenvalues
and eigenvectors) requires the use of “good linearizations” (i.e., linearizations that
reflect the structure of the original polynomial).

5. Conclusions. The numerical solution of structured nonlinear eigenvalue prob-
lems is an important component of many applications. Building on the work in [27], we
have developed a theory that provides criteria for the existence of strong linearizations
that reflect ⋆ -even/odd or ⋆ -(anti)-palindromic structure of a matrix polynomial, and
presented a systematic method to construct such linearizations. As shown in [16], [17],
numerical methods based on these structured linearizations are expected to be more
effective in computing accurate eigenvalues in practical applications.

Acknowledgment. We thank the mathematics departments of the universities of
Manchester, TU Berlin, and Western Michigan, and the Banff International Research
Station for giving us the opportunity to carry out this joint research. We thank
Françoise Tisseur for helpful comments on an earlier draft, and Ralph Byers for several
enlightening discussions on this topic. Finally, we thank three referees for useful
suggestions that helped us to significantly improve an earlier version of this paper.

REFERENCES

[1] H. Abou-Kandil, G. Freiling, V. Ionescu, and G. Jank, Matrix Riccati Equations in Control
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Table 5.1
Structured linearizations for λ2A + λB + C. Except for the parameters r ∈ R and z ∈ C, the

linearizations are unique up to a (suitable) scalar factor. The last column lists the roots of the
v-polynomial p(x ; Mv) corresponding to M = R or M = Σ, respectively.

Structure Structure v L(λ) with ansatz vector v Root of
of P (λ) of L(λ) p(x; Mv)

T -palin-
dromic

T -palin-
dromic

»

1
1

–

λ

»

A B − C
A A

–

+

»

C C
B − A C

–

−1

B = BT

C = AT

T -anti-
palin-

dromic.

»

1
− 1

–

λ

»

A B + C
−A A

–

+

»

−C C
−B − A −C

–

1

T -anti-
palin-

dromic.

T -palin-
dromic

»

1
− 1

–

λ

»

A B + C
−A A

–

+

»

−C C
−B − A −C

–

1

B = −BT

C = −AT

T -anti-
palin-
dromic

»

1
1

–

λ

»

A B − C
A A

–

+

»

C C
B − A C

–

−1

∗-palin-
dromic

∗-palin-
dromic

»

z
z̄

–

λ

»

zA zB − z̄C
z̄A zA

–

+

»

z̄C zC
z̄B − zA z̄C

–

−z/z̄

B = B∗

C = A∗

∗-anti-
palin-
dromic

»

z
− z̄

–

λ

»

zA zB + z̄C
−z̄A zA

–

+

»

−z̄C zC
−z̄B − zA −z̄C

–

z/z̄

T -even T -even

»

0
1

–

λ

»

0 −A
A B

–

+

»

A 0
0 C

–

∞

A = AT

B = −BT

C = CT

T -odd

»

1
0

–

λ

»

A 0
0 C

–

+

»

B C
−C 0

–

0

T -odd T -even

»

1
0

–

λ

»

A 0
0 C

–

+

»

B C
−C 0

–

0

A = −AT

B = BT

C = −CT

T -odd

»

0
1

–

λ

»

0 −A
A B

–

+

»

A 0
0 C

–

∞

∗-even ∗-even

»

i
r

–

λ

»

iA −rA
rA rB + iC

–

+

»

rA + iB iC
−iC rC

–

−ir

A = A∗

B = −B∗

C = C∗
∗-odd

»

r
i

–

λ

»

rA −iA
iA iB + rC

–

+

»

iA + rB rC
−rC iC

–

i

r
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Table 5.2
⋆-palindromic linearizations for the ⋆-palindromic matrix polynomial λ3A + λ2B + λB⋆ + A⋆.

The last column lists the roots of the v-polynomial p(x ; Rv) corresponding to Rv. All ⋆-palindromic
linearizations in L1(P ) for this matrix polynomial are linear combinations of the first two lineariza-
tions in the case ⋆ = T and real linear combinations of the first three linearizations in the case
⋆ = ∗. A specific example is given by the fourth linearization.

v L(λ) with right ansatz vector v Roots of
p(x ; Rv)

2

4

0
1
0

3

5 λ

2

4

0 0 −A⋆

A B 0
0 A 0

3

5 +

2

4

0 A⋆ 0
0 B⋆ A⋆

−A 0 0

3

5 0,∞

2

4

1
0
1

3

5 λ

2

4

A B − A⋆ B⋆

0 A − B⋆ B − A⋆

A 0 A

3

5 +

2

4

A⋆ 0 A⋆

B⋆ − A A⋆ − B 0
B B⋆ − A A⋆

3

5 i,−i

2

4

i
0
−i

3

5 λ

2

4

iA iB + iA∗ iB∗

0 iA + iB∗ iB + iA∗

−iA 0 iA

3

5 +

2

4

−iA∗ 0 iA∗

−iB∗ − iA −iA∗ − iB 0
−iB −iB∗ − iA −iA∗

3

5 1,−1

2

4

1
1
1

3

5 λ

2

4

A B − A⋆ B⋆ − A⋆

A B + A − B⋆ B − A⋆

A A A

3

5 +

2

4

A⋆ A⋆ A⋆

B⋆ − A B⋆ + A⋆ − B A⋆

B − A B⋆ − A A⋆

3

5

−1 ± i
√

3

2

Table 5.3
⋆-even linearizations for the ⋆-even matrix polynomial P (λ) = λ3A + λ2B + λC + D, where

A = −A⋆, B = B⋆, C = −C⋆, D = D⋆. The last column lists the roots of the v-polynomial
p(x ; Σv) corresponding to Σv. All ⋆-even linearizations in L1(P ) for this matrix polynomial are
linear combinations of the first two linearizations in the case ⋆ = T and real linear combinations of
the first three linearizations in the case ⋆ = ∗. A specific example is given by the fourth linearization.

v L(λ) with right ansatz vector v Roots of
p(x ; Σv)

2

4

0
0
1

3

5 λ

2

4

0 0 A
0 −A −B
A B C

3

5 +

2

4

0 −A 0
A B 0
0 0 D

3

5 ∞

2

4

1
0
0

3

5 λ

2

4

A 0 0
0 C D
0 −D 0

3

5 +

2

4

B C D
−C −D 0
D 0 0

3

5 0

2

4

0
i
0

3

5 λ

2

4

0 −iA 0
iA iB 0
0 0 iD

3

5 +

2

4

iA 0 0
0 iC iD
0 −iD 0

3

5 0,∞

2

4

1
0
4

3

5 λ

2

4

A 0 4A
0 C − 4A D − 4B

4A 4B − D 4C

3

5 +

2

4

B C − 4A D
4A − C 4B − D 0

D 0 4D

3

5 2i,−2i
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