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A BLACK-BOX RATIONAL ARNOLDI VARIANT FOR
CAUCHY–STIELTJES MATRIX FUNCTIONS∗

STEFAN GÜTTEL† AND LEONID KNIZHNERMAN‡

Abstract. Rational Arnoldi is a powerful method for approximating functions of large sparse
matrices times a vector. The selection of asymptotically optimal parameters for this method is crucial
for its fast convergence. We present and investigate a novel strategy for the automated parameter
selection when the function to be approximated is of Cauchy–Stieltjes (or Markov) type, such as the
matrix square root or the logarithm. The performance of this approach is demonstrated by numerical
examples involving symmetric and nonsymmetric matrices. These examples suggest that our black-
box method performs at least as well, and typically better, as the standard rational Arnoldi method
with parameters being manually optimized for a given matrix.
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1. Introduction. An important problem arising in science and engineering is
the computation of the matrix-vector product f(A)v , where A ∈ CN×N , v ∈ CN , and
f is a function such that f(A) is defined. The term f(A) is called a matrix function,
and a sufficient condition for f(A) to be defined is that f(z) be analytic in a neighbor-
hood of Λ(A), the set of eigenvalues of A. For more detailed information on matrix
functions and their possible definitions we refer to the monograph by Higham [27].

In most applications, A is very large and sparse (e.g., a finite-difference or finite-
element discretization of a differential operator), so that explicitly computing and
storing the generally dense matrix f(A) is infeasible. In the recent years, polynomial
and rational Krylov methods have proven to be the methods of choice for computing
approximations to f(A)v efficiently, without forming f(A) explicitly. Rational Krylov
methods require the solution of shifted linear systems with A, and the approxima-
tions they deliver are rational matrix functions of the form rn(A)v , with rn being a
rational function of type (n− 1, n− 1) and n� N . Polynomial Krylov methods are
a special case obtained when rn reduces to a polynomial. Although each iteration
of a rational Krylov method may be considerably more expensive than a polynomial
Krylov iteration, rational functions often have superior approximation properties than
polynomials, which may lead to a reduction of the overall Krylov iteration number.

An important pitfall, which possibly prevents rational Krylov methods from being
used more widely in practice, is the selection of optimal poles of the rational func-
tions rn. These poles are parameters that should be chosen based on the function f ,
the spectral properties of the matrix A, and the vector v . While the function f is
usually known a priori, spectral properties of A may be difficult to access when A is
large. Recently, interesting strategies for the automated selection of the poles have
been proposed for the exponential function and the transfer function of symmetric
matrices, see [18] and [19], respectively. The algorithms proposed in these two papers
gather spectral information from quantities computed during the rational Krylov it-
eration, and they only require an estimation of the spectral interval of A. The aim of
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2 S. GÜTTEL AND L. KNIZHNERMAN

this paper is to build on these ideas and to propose a heuristic pole selection strat-
egy for functions of Cauchy–Stieltjes (or Markov) type of non-necessarily symmetric
matrices. Cauchy–Stieltjes functions can be written in the form

f(z) =

∫
Γ

dγ(x)

z − x
(1.1)

with some (complex) measure γ supported on a closed set Γ ⊂ C. Particularly im-
portant examples of such functions are

f1(z) = z−1/2 =

∫ 0

−∞

1

z − x
dx

π
√
−x

,

f2(z) =
e−t
√
z − 1

z
=

∫ 0

−∞

1

x− z
sin(t
√
−x)dx

πx
.

For instance, certain solutions of the equation

Au(t)− d2u

dt2
(t) = g(t)v

can be represented as u(t) = f(A)v with f being a rational function of f1 and
f2 (cf. [15, 17]). Functions of this type also arise in the context of computation of
Neumann-to-Dirichlet and Dirichlet-to-Neumann maps [16, 3], the solution of systems
of stochastic differential equations [2], and in quantum chromodynamics [22]. Another
relevant Cauchy–Stieltjes function is

f3(z) =
log(1 + z)

z
=

∫ −1

−∞

−1/x

z − x
dx;

see [27] for applications of this function. The variant of the rational Arnoldi method
presented here is parameter-free and seems to enjoy remarkable convergence proper-
ties and robustness. We believe that our method outperforms (in terms of required
iteration numbers) any other available rational Krylov method for the approximation
of f(A)v , and we will demonstrate by at a number of representative numerical tests.

This paper is structured as follows. In § 2 we review the rational Arnoldi method
and some of its important properties. In § 3 we present our automated version of the
rational Arnoldi method for functions of Cauchy–Stieltjes type (1.1). The problem of
estimating the error of Arnoldi approximations is dealt with in § 4. In § 5 we study
the asymptotic convergence of our method and compare it to other available methods
for the approximation of f(A)v . Finally, in § 6 we demonstrate the performance of
our parameter-free algorithm for a large-scale numerical example. Throughout this
paper, ‖ · ‖ denotes the Euclidian norm, I is the identity matrix of size N ×N , and
C = C ∪ {∞} is the extended complex plane. Vectors are printed in bold face.

2. Rational Arnoldi method. A popular rational Krylov method for the ap-
proximation of f(A)v is known as the rational Arnoldi method. It is based on the
extraction of an approximation fn = rn(A)v from a rational Krylov space [33, 34]

Qn(A, v) := span

{
pn−1

qn−1
(A)v : pn−1 polynomial of degree ≤ n− 1

}
, (2.1)

qn−1(z) :=

n−1∏
j=1
ξj 6=∞

(z − ξj),
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where the parameters ξj ∈ C (the poles) are different from the eigenvalues Λ(A). Note
that fractions in (2.1) range over the linear space of rational functions of type (n−1, n−
1) with a prescribed denominator qn−1, and that Qn(A, v) reduces to a polynomial
Krylov space if we set all poles ξj =∞. IfQn(A, v) is of full dimension n, as we assume
in the following, we can compute an orthonormal basis Vn = [v1, . . . , vn] ∈ CN×n of
this space. The rational Arnoldi approximation is then defined as

fn := Vnf(An)V ∗n v , An := V ∗nAVn. (2.2)

If n is relatively small, then f(An) can be evaluated easily using algorithms for
dense matrix functions (see [27]). A stable iterative procedure for computing the
orthonormal basis Vn is the rational Arnoldi algorithm by Ruhe [34], which we briefly
review in the following. Let σ be a finite number different from all ξj , and define

Ã := A − σI and ξ̃j := ξj − σ. Note that the rational Krylov space Q̃n(Ã, v) built

with the poles ξ̃j coincides with Qn(A, v). We may therefore equally well construct

an orthonormal basis for Q̃n(Ã, v) as follows:
Starting with v1 = v/‖v‖, in each iteration j = 1, . . . , n one utilizes a modified

Gram–Schmidt procedure to orthogonalize the vector

wj+1 =
(
I − Ã/ξ̃j

)−1
Ãvj (2.3)

against {v1, . . . , vj}, yielding the vector vj+1, ‖vj+1‖ = 1 which satisfies

vj+1hj+1,j = wj+1 −
j∑
i=1

vihi,j , hi,j = v∗i wj+1. (2.4)

Equating (2.3) and (2.4), and collecting the orthogonalization coefficients in Hn =
[hi,j ] ∈ Cn×n, we obtain in the n-th iteration of the rational Arnoldi algorithm a
decomposition

ÃVn
(
In +Hndiag(ξ̃−1

1 , . . . , ξ̃−1
n )
)

+ Ãvn+1hn+1,nξ̃
−1
n eTn = VnHn + vn+1hn+1,ne

T
n ,

or in more compact form after defining Kn := In +Hndiag(ξ̃−1
1 , . . . , ξ̃−1

n ),

ÃVnKn + Ãvn+1hn+1,nξ̃
−1
n eTn = VnHn + vn+1hn+1,ne

T
n , (2.5)

where In denotes the n × n identity matrix and en its last column. Using the con-
vention that ξ̃n = ∞ (i.e., ξn = ∞, which corresponds to a polynomial Krylov step,
cf. [8, 24]), equation (2.5) reduces to

ÃVnKn = VnHn + vn+1hn+1,ne
T
n . (2.6)

The matrix Hn appended with the row hn+1,ne
T
n is an unreduced upper Hessenberg

matrix if the rational Arnoldi algorithm did not break down and all the coefficients
hj+1,j of (2.4) are nonzero, in which case the right-hand side of (2.6) is of full rank
n and therefore Kn is invertible. The matrix An required for computing the rational
Arnoldi approximation (2.2) can be calculated from (2.6) without explicit projection
as

An = V ∗nAVn = V ∗n ÃVn + σIn = HnK
−1
n + σIn. (2.7)
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Remark 2.1. In exact arithmetic the rational Arnoldi approximation (2.2) is
independent of the choice of σ. However, for numerical stability of the rational Arnoldi
algorithm, σ should have a large enough distance to the poles ξj relative to ‖A‖, because
otherwise the pole and the zero in the fraction of (2.3) may “almost cancel”, causing
accuracy loss in the rational Krylov basis [30].

It is well known that the rational Arnoldi approximation fn defined in (2.2) is (in
some sense) a near-optimal approximation for f(A)v from the space Qn(A, v) (see,
e.g., [15, 8, 24]), that is, fn is very close to the orthogonal projection VnV

∗
n f(A)v .

Therefore the poles ξj need to be chosen such that Qn(A, v) contains a good ap-
proximation to f(A)v , and of course, such a choice depends both on the spectral
properties of A and the function f . This necessity for choosing optimal parameters
is a serious problem that prevents rational Arnoldi from being used in practice more
widely. Before discussing our automated pole selection strategy, we list some well-
known properties of the rational Arnoldi approximation (2.2). The interested reader
is referred to [8, 24, 25] for further details.

1. By the definition of a rational Krylov space Qn(A, v) (cf. (2.1)), there exists
a rational function rn of type (n− 1, n− 1) such that

fn = rn(A)v =
pn−1

qn−1
(A)v .

2. This function rn is a rational interpolant for f with prescribed denominator
qn−1 and interpolation nodes Λ(An) = {θ1, . . . , θn}, the so-called rational
Ritz values. Defining the rational nodal function sn of type (n, n− 1),

sn(z) :=

∏n
k=1(z − θk)

qn−1(z)
, (2.8)

by the Hermite–Walsh formula for rational interpolants (see, e.g., [36, Theo-
rem VIII.2] or [6]) we have

rn(z) =

∫
Γ

sn(z)

sn(x)(x− z)
dγ(x),

and therefore

‖f(A)v − rn(A)v‖ ≤ ‖sn(A)v‖ ·
∥∥∥∥∫

Γ

(xI −A)−1

sn(x)
dγ(x)

∥∥∥∥ . (2.9)

3. The term ‖sn(A)v‖ in (2.9) is minimal among all rational functions of the
form s̃n(z) = (zn+αn−1z

n−1 + · · ·+α0)/qn−1(z) (see, e.g., [24, Lemma 4.5]).

3. Automated pole selection. Note that the rational nodal function sn of
(2.8) is explicitly known in the n-th iteration of the rational Arnoldi method: It has
poles ξ1, . . . , ξn−1, and its zeros are the rational Ritz values Λ(An). The aim of an
automated pole selection strategy is, of course, to achieve a smallest possible (bound
for) the approximation error ‖f(A)v − fn‖ at every iteration of the rational Arnoldi
method. In view of (2.9) we will therefore try to make |sn(x)| uniformly large on Γ
(the support of the measure γ in (1.1)) by choosing the next pole ξn ∈ Γ such that

|sn(ξn)| = min
x∈Γ
|sn(x)|.

This choice is inspired by the pole selection strategy proposed in [18, 19], where the
nodal function has to be large on a negative real interval Γ and small on −Γ (the
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spectral interval of a symmetric matrix). In our case we do not necessarily have such
symmetry, but still we can achieve that our nodal rational function sn is large on Γ.
Recall from above that the term ‖sn(A)v‖ in (2.9) is guaranteed to be minimal among
all rational functions with the prescribed poles. This justifies our strategy to minimize
explicitly only the second factor on the right-hand side of (2.9). We expect that sn
will automatically be small on some “relevant subset” of W(A) := {x ∗Ax : ‖x‖ = 1},
the numerical range of A. The notion of “relevant subset” will be discussed in § 5.
In Algorithm 1 we summarize our rational Arnoldi method with automated pole
selection.

————————————————————————————————————–
Algorithm 1. Rational Arnoldi method for f(A)v with automated pole selection.
Input: Function f and associated set Γ (see (1.1)), A ∈ CN×N , v ∈ CN \ {0}.
Output: Rational Arnoldi approximations fj and pole sequence ξ1, ξ2, . . .

1. Set j := 1 and v1 := v/‖v‖.
2. Temporarily set ξj =∞, perform polynomial Krylov step for wj+1

and orthogonalize against v1, . . . , vj (equations (2.3) and (2.4)).
3. Compute the matrix Aj = V ∗j AVj using equation (2.7).
4. If required, compute j-th order Arnoldi approximation fj = Vjf(Aj)V

∗
j v .

5. If required, compute error estimate for fj and possibly stop here.
6. Compute Λ(Aj) = {θ1, . . . , θj} and find minimum ξj ∈ Γ of

|sj(z)|=

∣∣∣∣∣
j∏

k=1

(z − θk)
/
qj−1(z)

∣∣∣∣∣.
7. Perform rational Arnoldi iteration for wj+1 and orthonormalize for vj+1

(eqns. (2.3) and (2.4)).
8. Set j := j + 1 and go to Step 2.

————————————————————————————————————–

Remark 3.1. Note that, in contrast to the algorithms presented in [18, 19], we
do not require any estimation (except for a very rough estimate of ‖A‖ to choose the
parameter σ, see Remark 2.1) for the spectral interval of A. In fact, we will demon-
strate in § 5 and § 6 that our also algorithm performs well for highly nonsymmetric
and nonnormal matrices.

Remark 3.2. In a practical implementation of Algorithm 1 one would use an
a-posteriori error estimator in Step 5 to stop the iteration if ‖f(A)v − fj‖ is below
some tolerance. We will discuss such error estimators in § 4.

Remark 3.3. Typically, the cost for orthogonalization of the Krylov basis vectors,
equations (2.3) and (2.4), is negligible compared with the cost of solving the shifted
linear systems with A. It is recommended to use reorthogonalization to guarantee that
the projection matrix An is accurately computed from the relation (2.7). Techniques
for reducing the number of inner products in the rational Arnoldi algorithm using
so-called auxiliary vectors have been proposed in [24, Ch. 6].

4. Error criteria. In this section we derive some practical estimates for the
approximation error ‖f(A)v − fn‖. Similar techniques can be found in [14, 29, 24].
The error estimators are compared in Figure 4.1 for a simple test matrix.
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4.1. The difference of iterates. Given some delay integer d, a primitive but
often useful estimator for the approximation error is

‖f(A)v − fn‖ ≤ ‖f(A)v − fn+d‖+ ‖fn+d − fn‖
≈ ‖fn+d − fn‖,

provided that the adaptive rational Arnoldi method converges sufficiently fast so that
‖f(A)v − fn+d‖ is relatively small in comparison to ‖f(A)v − fn‖. Note that the
Euclidian norm of the difference of two iterates can be computed cheaply using only
their coordinates in the orthonormal basis Vn+d and Vn, without forming the long
Arnoldi approximation vectors fn+d and fn. We warn that this estimator may be
too optimistic, in particular, when the approximations fn (almost) stagnate for d
iterations or more. This underestimation of the error can be seen in Figure 4.1.

4.2. Exploiting geometric convergence. Another estimate can be derived by
assuming that the error is decaying approximately geometrically (as is typically the
case, see § 5). A similar estimator has been successfully applied in [14, 29]. One starts
by assuming the ideal equalities

‖fn − fn+d‖ = cR−n and ‖fn+d − fn+2d‖ = cR−(n+d),

and defining χj = log ‖fj+d − fj‖. Moreover, one defines

R = exp

(
χn − χn+d

d

)
and c = exp

(
(n+ d)χn − nχn+d

d

)
.

With these quantities we obtain the estimator

‖f(A)v − fn‖ ≤ ‖fn − fn+d‖+ ‖fn+d − fn+2d‖+ · · ·
≈ cR−n(1 +R−d +R−2d + · · · )

=
cR−n

1−R−d
.

The last equality is only valid if R > 1. In practice it may happen that R ≤ 1,
in which case this estimator becomes negative or infinite. This typically indicates an
error increase or stagnation in the iterates, and one should iterate further to reobtain a
reliable estimator. This effect can be seen in Figure 4.1, where the curve corresponding
to this error indicator shows several “gaps”.

4.3. Approximate error bound. An approximate bound for the approxima-
tion error can be derived by replacing A with An in the integrand of (2.9), yielding

‖f(A)v − rn(A)v‖ / ‖sn(A)v‖ ·
∥∥∥∥∫

Γ

(xIn −An)−1

sn(x)
dγ(x)

∥∥∥∥ .
If An is diagonalizable, then this new integral can be approximated by scalar quadra-
ture. We still need to compute ‖sn(A)v‖. Note that sn(A)v is just a scalar multiple
of vn+1, say sn(A)v = δnvn+1. A simple trick to get a hand on this scalar δn is to
run the rational Arnoldi algorithm with a modified matrix and starting vector

Â =

[
A

τ

]
, v̂ =

[
v
1

]
,
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where τ ∈ C is away from Γ and all Ritz values, still performing all inner products
only on the first N components (and hence not changing the orthogonality of Vn).
We therefore have

sn(Â)v̂ =

[
sn(A)v
sn(τ)

]
= δnv̂n+1.

Comparing the last (that is, (N + 1)-st) element of v̂n+1 with sn(τ), we obtain the
desired scaling factor |δn| = ‖sn(A)v‖ as

δn = sn(τ)/[v̂n+1]N+1.

The behavior of the resulting approximate upper bound is shown in Figure 4.1.
Typically, this approximate bound cannot be trusted for small iteration numbers n,
but it becomes more reliable in later iterations when more spectral information about
A has been captured in An.

4.4. Residual-based estimator. As explained in § 2, the matrix An = V ∗nAVn
required for the Arnoldi approximation (2.2) can be computed via An = HnK

−1
n +σIn

without explicit projection. This allows us to use a shifted version of the decomposi-
tion (2.6) in the form

(x̃I −A)Vn = Vn(x̃I −An)− vn+1hn+1,ne
T
nK

−1
n ,

where x̃ = x + σ for an arbitrary x ∈ C. Let us consider a shifted linear system
(x̃I − A)x (x̃) = v and the corresponding rational Arnoldi approximation xn(x̃) =
Vn(x̃In −An)−1V ∗n v . The residual of this approximation satisfies

v − (x̃I −A)xn(x̃) = v − (x̃I −A)Vn(x̃In −An)−1V ∗n v

= v − [Vn(x̃I −An)− vn+1hn+1,ne
T
nK

−1
n ](x̃In −An)−1V ∗n v

= vn+1hn+1,ne
T
nK

−1
n (x̃In −An)−1V ∗n v .

Using the fact that V ∗n v = ‖v‖e1 by construction of the rational Arnoldi algorithm,
and K−1

n (x̃In −An)−1 = (xKn −Hn)−1, we obtain

‖v − (x̃I −A)xn(x̃)‖ = hn+1,n‖v‖ · |eTn (xKn −Hn)−1e1|.

This allows for the definition of a “residual” of a Cauchy–Stieltjes matrix function

residual(f, n) := vn+1hn+1,n

∫
Γ−σ

eTn (xKn −Hn)−1e1 dγ(x),

whose norm is given by

‖residual(f, n)‖ = hn+1,n‖v‖ ·
∥∥∥∥∫

Γ−σ
eTn (xKn −Hn)−1e1 dγ(x)

∥∥∥∥ .
See also [35, 13, 28, 10] for related constructions. In our numerical experiments this
appeared to be a good indicator, being almost proportional to the actual error; see
again Figure 4.1.
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Figure 4.1. Comparison of the error estimators from § 4.1, § 4.2, § 4.3, and § 4.4 for a diagonal
matrix whose eigenvalues are 104 Chebyshev points in [10−3, 103]. The delay integer for the first
two error estimators is chosen as d = 2. The integrals involved in the other two estimators have
been approximated by adaptive Gauss–Kronrod quadrature.

5. Convergence studies. A thorough convergence analysis of our algorithm
appears to be complicated by the interaction between the Ritz values Λ(An) (which
vary in each iteration) and the selected poles {ξj}. Although there is hope of charac-
terizing these two sets asymptotically as equilibrium charges on a condenser (at least
in the case of a symmetric matrix A; see our Remark 5.1), we decided to present here
a numerical comparison of our method with competing approaches for computing ap-
proximations for f(A)v . Our comparison is two-fold. In § 5.1 we compare our method
with two other methods, both of which use asymptotically optimal poles computed
by assuming knowledge of the spectral properties of A. In § 5.2 we then compare our
method to well-established Krylov methods with prescribed pole sequences indepen-
dent of A, namely the polynomial and extended Krylov subspace methods.

5.1. Comparison with asymptotically optimal pole sequences. Our al-
gorithm can be seen as a strategy for constructing the nodal function sn of (2.8) such
that this function is large on Γ and small on some “relevant subset” Σ of the numerical
range W(A). The numerical range is a convenient set for bounding the norm ‖sn(A)‖:
by a theorem of Crouzeix [12] we have

‖sn(A)‖ ≤ 11.08 max
z∈W(A)

|sn(z)|. (5.1)

Unfortunately, bounds based on the numerical range tend to become crude if A is
highly nonnormal. In this case it is no longer clear on which set Σ the function sn
actually needs to be small so that ‖sn(A)‖ is guaranteed to be small. This is the
reason why we use the concept of a “relevant subset” Σ in the following. Although
the convergence bounds below are given in terms of W(A), the reader should keep in
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mind that possibly a smaller subset Σ may be relevant for the actual convergence of
the Krylov methods under consideration.

Assuming that Σ = W(A) and Σ is disjoint from Γ, we may compare the per-
formance of our automated pole selection strategy with that of explicit selection of
(asymptotically) optimal poles ξj . One choice of such poles is so-called generalized
Leja points (or Leja–Bagby points, see [5]), which are constructed as follows: Starting
with a point σ1 ∈ Σ such that maxz∈Σ |z − σ1| is minimal, the points σj+1 ∈ Σ and
ξj ∈ Γ are determined recursively such that with the nodal function

sj(z) =

∏j
i=1(z − σi)∏j−1
i=1 (z − ξi)

the conditions

max
z∈Σ
|sj(z)| = |sj(σj+1)|

min
z∈Γ
|sj(z)| = |sj(ξj+1)|

are satisfied. Note that the function sj defined here would agree with the nodal
function defined in (2.8) at iteration j of the rational Arnoldi method if all the σi
were to coincide with Ritz values θi, and all the poles ξi were the same. Results
from logarithmic potential theory [23, 31] assert that there exists a positive number
cap(Σ,Γ), called the condenser capacity, such that

lim sup
n→∞

(
maxz∈Σ |sn(z)|
minz∈Γ |sn(z)|

)1/n

= e−1/cap(Σ,Γ).

Determining the capacity of an arbitrary condenser (Σ,Γ) is a nontrivial problem.
The situation simplifies if both Σ and Γ are simply connected sets (and not single
points): then by the Riemann mapping theorem (cf. [26, Thm. 5.10h]) there exists a
bijective function Φ that conformally maps the complement of Σ ∪ Γ onto a circular
annulus AR := {w : 1 < |w| < R}. The number R is called the Riemann modulus of
AR and it satisfies

R−1 = e−1/cap(Σ,Γ).

To relate the asymptotic behavior of sn to that of the error ‖f(A)v − rn(A)v‖ we use
(2.9) and (5.1), and obtain

lim sup
n→∞

‖f(A)v − rn(A)v‖1/n ≤ R−1.

In the following examples we demonstrate that our adaptive rational Arnoldi
method (asymptotically) converges at least with rate R−1, i.e., not slower than a
rational Krylov method with asymptotically optimal poles would converge if the set
Σ were known a priori. To this end, we numerically compare our method with two
reference methods, both of which are known to converge asymptotically at least with
rate R−1.

The first reference method is the so-called PAIN (poles and interpolation nodes)
method, which is a two-term recurrence described in [24]

v1 = v/‖v‖,
βjvj+1 = (I −A/ξj)−1(A− σjI)vj , j = 1, . . . , n,
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where the numbers βj are chosen to normalize the vectors vj+1, and σj and ξj are the
generalized Leja points for the condenser (Σ,Γ). The corresponding PAIN approxi-
mation is defined as

f (P)
n := [v1, . . . , vn]f(RnL

−1
n )‖v‖e1,

where e1 ∈ Rn denotes the first unit coordinate vector,

Ln =


1

β1/ξ1 1
. . .

. . .
βn−1/ξn−1 1

 and Rn =


σ1

β1 σ2

. . .
. . .

βn−1 σn

 .
It can be shown that f

(P)
n = r

(P)
n (A)v , where r

(P)
n is the rational interpolant for f

with prescribed poles ξ1, . . . , ξn−1 and interpolation nodes σ1, . . . , σn [24]. Note that
the PAIN method is not spectrally adaptive: both the poles and the interpolation
nodes are chosen a priori and no discrete spectral information about A is taken into
account.

The second reference method is the standard rational Arnoldi method where the
poles ξj are chosen a priori as generalized Leja points. We denote the corresponding

approximations as f
(S)
n . Note that this method chooses the interpolation nodes spec-

trally adaptive as Ritz values associated with the rational Krylov space. It is therefore
an adaptive method for the interpolation nodes, but still the poles are chosen a priori.
The methods under consideration are summarized in Table 5.1.

Table 5.1
Overview of the methods to be compared, all of which compute approximations to f(A)v of the

form rn(A)v , where rn is a rational interpolating function for f .

method interpolation nodes for rn poles of rn

PAIN f
(P)
n generalized Leja generalized Leja

standard rational Arnoldi f
(S)
n adaptive (Ritz values) generalized Leja

adaptive rational Arnoldi fn adaptive (Ritz values) adaptive

The interval case. Let A be a symmetric matrix with Σ = W(A) = [a, b] being
a positive spectral interval. The conformal map Φ that carries the complement of
Γ ∪ Σ onto the annulus AR can be given explicitly in terms of elliptic functions. In
particular, the Riemann modulus R is given as (see [23, § 3])

R = exp

(
π

2

K(
√

1− κ2)

K(κ)

)
, where κ =

√
b/a− 1√
b/a+ 1

(5.3)

and

K(κ) =

∫ 1

0

1√
(1− t2)(1− κ2t2)

dt

is the complete elliptic integral of the first kind1.

1The definition of K(κ) is not consistent in the literature. We stick to the definition used in [32,
Ch. VI]. In Matlab one would type ellipke(kappa^2) to obtain the value K(κ).
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The function to be approximated is f(z) = z−1/2; therefore Γ = (−∞, 0] without
further mention in this section. We first consider a diagonal matrix A1 with N = 104

eigenvalues being scaled and shifted Chebyshev points of the second kind,

λj = a+
cos(πj/(N − 1)) + 1

2
(b− a), j = 0, 1, . . . , N − 1,

in the interval [a, b] = [10−3, 103], and a vector v whose entries are normally dis-
tributed pseudo-random numbers. In Figure 5.1 (top left) we show the convergence of
our adaptive rational Arnoldi method in comparison with the two reference methods
(the PAIN method and standard rational Arnoldi). The theoretical convergence rate
R−1 from (5.3) is indicated by the slope of the dashed line. Note that all the three
methods converge almost linearly with the predicted rate. The reason for the rational
Arnoldi methods behaving like this is that the Chebyshev eigenvalues are denser at
the endpoints of the spectral interval, and almost no spectral adaption takes place
during the first 50 iterations shown here. In some sense, the rational Krylov methods
behave initially as if the spectrum were not discrete; see [6] for a potential theoretic
explanation. We expect our adaptive method to choose roughly the same poles as
were chosen in the generalized Leja case, and the plot below confirms this expectation
by depicting the (smoothed) empirical distribution functions of the first 50 adaptive
poles and generalized Leja poles; the two distributions are visually hard to distinguish.

We next consider a diagonal matrix A2 with N = 104 equispaced eigenvalues

λj = a+ j(b− a)/(N − 1), j = 0, 1, . . . , N − 1,

in the interval [a, b] = [10−3, 103]. In Figure 5.1 (top right) we again show the conver-
gence of the three methods. While the PAIN method still converges linearly with rate
R given by (5.3), the standard rational Arnoldi method is somewhat faster because
the interpolation nodes (Ritz values) “deflate” some of the left-most eigenvalues of A
in early iterations, causing a superlinear convergence speedup (see [6] for an analy-
sis of this effect). The adaptive rational Arnoldi method converges even faster than
standard rational Arnoldi, because the poles of the rational Krylov space are selected
by taking into account the deflation of left-most eigenvalues. The plot of the pole
distribution functions below reveals that the adaptive method has the tendency to
place the poles ξj somewhat farther away from the origin.

Union of intervals. In Figure 5.2 (left) we consider a diagonal matrix A3 whose
spectrum is the union of 10 Chebyshev points on the interval [10−3, 10−1] and 9990
Chebyshev points on [101, 103]. Note that the PAIN method with poles optimized
for the spectral interval [10−3, 103] converges linearly. However, our adaptive method
changes its slope after a few iterations to converge linearly as if the spectral interval
were [101, 103]. Both slopes are depicted in this figure. The spectral adaption becomes
also visible in the pole distribution function (Figure 5.2, bottom left).

Remark 5.1. In view of the behavior of our adaptive rational Arnoldi method for
the above symmetric matrices, we believe that the convergence can be asymptotically
(that is, for a sequence of symmetric matrices growing larger in size and having a joint
limit eigenvalue distribution) compared to min-max rational functions with poles on Γ
and zeros on Σ being constrained Leja points in the sense of [11]. The constraint for
the zeros is given by the interlacing property of Ritz values associated with symmetric
matrices (see, e.g., [7]).
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A Jordan block. The matrix A4 is a single Jordan block

A4 =


1 1

1
. . .

. . . 1
1

 ∈ CN×N ,

and its numerical range is a disk W(A4) = {z : |z−1| ≤ r} with radius r = cos(π/(N+
1)). The conformal mapping of the complement of W(A4) in the slit complex plane
onto an annulus is known in terms of elliptic functions (see [32, p. 293–294]), and the
Riemann modulus of this domain is

R = exp

(
π

4

K(
√

1− κ2)

K(κ)

)
, where κ =

(
c

r
−
√
c2

r2
− 1

)2

.

The resulting convergence of the three methods is shown in Figure 5.2 (right), to-
gether with the theoretical rate R−1. Note that the PAIN method converges as if
the relevant set Σ were indeed the numerical range, but the two rational Arnoldi
methods converge faster due to spectral adaption. In particular, our adaptive method
converges significantly faster.

5.2. Comparison with fixed pole sequences. In this section we will briefly
discuss polynomial and rational Krylov methods with poles prescribed independently
of Σ, and therefore not leading to the optimal convergence rate associated with the
condenser capacity cap(Σ,Γ).

The simplest of these methods is the polynomial Arnoldi method, which is the
special case of rational Arnoldi in which all poles ξj are set to infinity. This method
has the obvious advantage that no linear system solves are required. If A is Hermitian
and we consider the approximation of functions with generating measure supported
on Γ = (−∞, 0], such as f(z) = z−1/2, then the convergence rate of the polynomial
Arnoldi method equals that of the CG method, i.e.,

‖f(A)v − fn‖ ≤ C
(√

κ− 1√
κ+ 1

)n
. C · exp

(
− 2n√

κ

)
, κ =

λmax

λmin
,

where the approximate inequality is valid for large condition numbers κ. Obviously,
convergence can be slow if the condition number κ gets large, and therefore many
Krylov iterations will be required to approximate f(A)v to a prescribed accuracy.
Note that Arnoldi (and also Lanczos) methods for matrix functions require the Krylov
basis Vn to be stored for the final computation of the Arnoldi approximation fn of
(2.2), which renders this method impractical if n is large. Although restarted variants
of the polynomial Arnoldi method for f(A)v have been proposed, which prevent the
dimension of the Krylov space to grow above memory limit (see [20, 1, 21]), the use
of finite poles ξj typically is a worthwhile alternative if linear systems with shifted
versions of A can be solved efficiently.

If the poles alternate between ξ2j = ∞ and ξ2j+1 = 0, we obtain the so-called
extended Krylov subspace method with convergence (see [15] and [29, Theorem 3.4])

‖f(A)v − fn‖ ≤ C
(

4
√
κ− 1

4
√
κ+ 1

)n
. C · exp

(
− 2n

4
√
κ

)
.
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Figure 5.1. Left: Convergence curves (top) and distribution of poles (below) when approxi-
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1 v with different rational Krylov methods. Right: Similar plots for the matrix A2.
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Figure 5.3. Comparison of polynomial rational Arnoldi methods for the approximation of
f(A)v = A−1/2v for the negative 2D Laplacian. The dashed lines indicate the expected linear
convergence slopes.

A computational advantage of the extended Krylov subspace method is that only
the actions of A and A−1 on vectors are required. In particular, if a direct solver is
applicable, only one factorization of A needs to be computed. The convergence of
the polynomial and extended Krylov subspace methods is illustrated in Figure 5.3,
and compared with that of our adaptive rational Arnoldi method. In this figure,
f(z) = z−1/2 and A is the finite-difference discretization of the negative 2D Laplacian
with 100 discretization points in each coordinate direction (i.e., N = 1002). Note
that the predicted convergence rate for the extended Krylov subspace method is only
observable in the first few iterations because superlinear convergence effects take place
when some rational Ritz values start converging to the left-most eigenvalues of A
(which are close to the poles at 0, see [6] for an explanation).

Our last test is more challenging: We consider the computation of the logarithm
log(A)v of a random diagonalizable matrix A ∈ C200×200 having eigenvalues in the
unit disk under the constraint that the distance of each eigenvalue to Γ = (−∞, 0] is
at least 0.1. The eigenvalues of this matrix are shown in Figure 5.4 (left). We remark
that A is highly nonnormal: although the moduli of its eigenvalues are nicely bounded
above and below, it has a condition number of ≈ 2.5×104. To our best knowledge, no
existing convergence theory is able to explain why Algorithm 1 converges so robustly
even for this matrix (see Figure 5.4, right). Note that the usual arguments involving
the numerical range W(A) fail here, as this set is not even disjoint from Γ. We
have failed to implement the extended Krylov subspace method in such a way that it
reproduces the exact solution at least at iteration n = N = 200, as theory predicts.
This instability is probably caused by the (n/2)-fold pole 0 being surrounded by
eigenvalues of A and lying inside the numerical range.
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Figure 5.4. Left: Eigenvalues of a highly nonnormal random matrix A ∈ C200×200. Right:
Convergence of rational Arnoldi for f(A)v = log(A)v , random vector v , with adaptive poles on
Γ = (−∞, 0].

6. A large-scale numerical example with inexact solves. The following
tests are run on a desktop computer with 3.7 GB of RAM, running an AMD Phenom
II X3 705e processor at 2.5 GHz. The software environment is Matlab 7.12.0 (R2011a)
under Ubuntu Release 10.04.

We shall consider the problem of computing the impedance function f(z) = z−1/2

of a discretization A of the convection–diffusion operator

Au = −div (a gradu) + bT gradu

on Ω = [0, 1]3. We assume that a is a uniformly positive and bounded function defined
on Ω, and b = (b1, b2, b3)T is a vector function whose components posses the same
properties. We have discretized this operator by the standard second-order finite
difference scheme with 100 regular interior grid points.

In Figure 6.1 (left) we show the convergence behavior of our adaptive method
and the extended Krylov subspace method for smooth low-contrast conductivity a1

and smooth convective field b, namely

a1(x, y, z) = 1 + exp(x− 2y), b(x, y, z) =

 sin(x+ y)
cos(x+ y)
sin(y + z)

 . (6.1)

In Figure 6.1 (right) we show the results for piecewise constant high-contrast conduc-
tivity a2 and the same b as in (6.1),

a2(x, y, z) =

{
100, if |x| ≤ 0.5 and |y| ≤ 0.6,

1 otherwise.
.

The resulting discretization matrices are of size 106 × 106 and are referred to as A1

and A2, respectively. All components of the vector v are set to 1.
All shifted linear systems are solved with a relative error tolerance of 10−5, which

is sufficiently smaller than our target relative error of 10−4 for the approximation
f(A`)v (` = 1, 2). The linear system solver is BICGSTAB preconditioned by ILU(0).
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Figure 6.1. Left: Convergence curves (top) and distribution of poles (below) when approxi-

mating A
−1/2
1 v . The iteration is stopped when the relative error is below 10−4. The linear systems

involved are solved with a relative error tolerance of 10−5. Right: The same plots for the matrix
A2.

This combination works quite well for the shifted linear systems under consideration,
as is indicated in Table 6.1. The errors of the linear system solves are estimated by
exploiting the almost geometric convergence of BICGSTAB with the estimator pre-
sented in § 4.2 (we chose the delay integer d = 2). As indicated in the last column of
Table 6.1, the measured errors are typically below 10−5, or at least of that order. We
have also tried other combinations of iterative solvers and preconditioners, such as
BICGSTABL, restarted GMRES, GMR, TFQMR, and IDRS(s)2 in combination with
drop-tolerance ILU or Gauss–Seidel preconditioners. The results of these comparisons
are not reported here, but the combination ILU(0) and BICGSTAB consistently out-
performed the others. Moreover, BICGSTAB and ILU(0) are parameter-free methods,
which is important in our case where we try to develop a black-box method. The initial
guess for all linear systems was the vector of all zeroes.

Our adaptive shifts ξj are chosen by a greedy search on a discretization of the
interval [−106,−10−6] with 105 logarithmically equispaced points. We have found
experimentally that this is a sufficiently fine approximation to the continuous set
Γ = (−∞, 0]: Taking more discretization points or increasing the width of the
search interval did not give any visible improvement in the convergence of our adap-
tive method. As can be seen in Table 6.1, the computation time of BICGSTAB
clearly dominates that of the ILU(0) factorization, the latter being more or less shift-
independent. Note how linear systems with a large shift (in modulus) are typically
solved faster than systems with a shift of moderate size. The reason for this obser-

2as available from http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html
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Table 6.1
Solving linear systems with the matrices A1− ξI and A2− ξI using BICGSTAB preconditioned

by ILU(0). The BICGSTAB iteration is terminated when our estimator of § 4.2 indicated a relative
error below 10−5.

matrix shift ξ
ILU(0) BICGSTAB relative

time in s #iterations time in s error
-0e+00 0.39 85 28.5 8.72e-07
-1e-06 0.42 82 27.5 1.31e-06
-1e-04 0.42 82 27.4 1.14e-06

low-contrast -1e-02 0.43 83 27.7 1.84e-06
conductivity -1e+00 0.42 78 26.2 1.43e-05

-1e+02 0.42 55 20.1 1.12e-06
-1e+04 0.43 11 3.4 1.26e-08
-1e+06 0.42 6 1.7 1.33e-12
-0e+00 0.39 71 23.7 2.90e-06
-1e-06 0.42 71 27.3 2.70e-06
-1e-04 0.42 71 26.4 3.49e-06

high-contrast -1e-02 0.74 71 30.9 3.43e-06
conductivity -1e+00 0.43 70 26.4 2.86e-06

-1e+02 0.43 65 25.2 1.19e-06
-1e+04 0.42 35 14.1 2.44e-06
-1e+06 0.43 9 3.7 1.74e-11

vation may be the stronger diagonal dominance of systems with larger shifts, which
renders the ILU(0) preconditioner to be more effective, a well-known effect [9].

Our adaptive method clearly outperforms the extended Krylov subspace method
in terms of required iterations and computation time. For example, in the case of
low-contrast conductivity, the adaptive method requires n = 7 iterations, whereas the
extended Krylov subspace method requires n = 24 iterations (see Figure 6.1, left).
With the conservative assumption that each shifted linear system solve requires about
30 seconds (see Table 6.1), our adaptive method requires at least 6×30 = 180 seconds
computation time (the first iteration only utilizes the vector v1 = v/‖v‖ and does
not require a linear system solve). The extended Krylov subspace method, on the
other hand, requires at least 11 × 30 = 330 seconds (only every second iteration
of this method requires a linear system solve). Note that we have still neglected
the computational costs for orthogonalization and memory management of the long
Krylov basis vectors. These costs are larger for the extended Krylov subspace method,
because the associated Krylov basis is of higher dimension, but in comparison to the
time spent in the BICGSTAB routine these computations are negligible. The gap in
iteration numbers between our adaptive method and the extended Krylov subspace
method becomes even larger for the example with high conductivity contrast: in this
case the methods required 9 versus 43 iterations, respectively (see Figure 6.1, right).

We finally remark that the extended Krylov subspace method does not perform
well in these examples due to the use of an iterative solver which cannot exploit the
fact that only one finite shift ξ = 0 appears. The use of direct methods is typically
prohibitive for 3D problems. For 2D problems, however, the situation is different and
the extended Krylov subspace method in combination with direct solvers may still be
competitive with our adaptive method in terms of computation time. In any case, our
method tends to require lower-dimensional Krylov subspaces, so that our advantage
of lower memory consumption and fewer orthogonalizations still persists.

7. Summary. We have presented a parameter-free rational Arnoldi method for
the efficient computation of certain matrix functions f(A) acting on a vector v . We
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provided numerical evidence that this method converges as least as well as rational
Krylov methods using optimal pole sequences constructed with the knowledge of the
spectrum. In fact, our new method typically even outperforms such methods due
to the spectral adaption of the poles during the iteration. A rigorous convergence
analysis, perhaps involving tools from potential theory as in [7, 6], for explaining
spectral adaption of this rational Arnoldi variant applied with a symmetric matrix,
may be an interesting research problem.

Acknowledgement. The authors are grateful to B. Beckermann, V. Druskin,
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