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HIGHER ORDER CUMULANTS OF RANDOM VECTORS AND APPLICATIONS
TO STATISTICAL INFERENCE AND TIME SERIES

S. RAO JAMMALAMADAKA, T. SUBBA RAO, AND GYÖRGY TERDIK

Abstract. This paper provides a uni�ed and comprehensive approach that is useful in deriving expres-
sions for higher order cumulants of random vectors. The use of this methodology is then illustrated in three
diverse and novel contexts, namely: (i) in obtaining a lower bound (Bhattacharya bound) for the variance-
covariance matrix of a vector of unbiased estimators where the density depends on several parameters,
(ii) in studying the asymptotic theory of multivariable statistics when the population is not necessarily
Gaussian and �nally, (iii) in the study of multivariate nonlinear time series models and in obtaining higher
order cumulant spectra. The approach depends on expanding the characteristic functions and cumulant
generating functions in terms of the Kronecker products of di¤erential operators. Our objective here is
to derive such expressions using only elementary calculus of several variables and also to highlight some
important applications in statistics.

1. Introduction and Review

It is well known that cumulants of order greater than two are zero for random variables which are
Gaussian. In view of this, higher order cumulants are often used in testing for Gaussianity and multivariate
Gaussianity as well as to prove classical limit theorems. These are also used in asymptotic theory of
statistics, such as in Edgeworth series expansions. Consider a scalar random variable X and let us assume
that all its moments, �j = E(Xj); j = 1; 2; : : :, exist. Let the characteristic function of X be denoted by
'X (�) and it then has the series expansion given by

(1.1) 'X (�) = E(e
i�X) = 1 +

1X
j=1

�j
(i�)j

j!
; � 2 R:

From (1.1), we observe (�i)j
�
dj'(�)=d�j

�
�=0

= �j : In other words, the jth derivative of the Taylor series
expansion of 'X (�) evaluated at � = 0 gives the jth moment. The �cumulant generating function,� X (�)
is de�ned as (see eg. Leonov and Shiryaev(1959))

(1.2)  X (�) = ln'X (�) =
1X
j=1

�j
(i�)

j

j!
;

where �j is called as the jth cumulant of the random variableX. As before, we see �j = (�i)j
�
dj X(�)=d�

j
�
�=0

:
Comparing (1.1) and (1.2), one can write the cumulants in terms of moments and vice versa. For example,
�1 = �1; �2 = �2 � (�1)2 etc.. Now suppose the random variable X is normal with mean � and variance
�2, then we know 'X (�) = exp(i�� � �2�2=2) which implies �j = 0 for all j � 3 : We now consider
generalizing the above results to the case when X is a d�dimensional random vector. The de�nition of
the joint moments and the cumulants of the random vector X requires a Taylor series expansion of a
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function in several variables and also its partial derivatives in these variables and they are similar to (1.1)
and (1.2). Though these expansions may be considered straightforward generalizations, the methodology
and the mathematical notation gets quite cumbersome when dealing with the derivatives of characteristic
functions and the cumulant generating functions of random vectors. However we need such expansions
in studying the asymptotic theory in classical multivariate analysis as well as in multivariate nonlinear
time series, (see Subba Rao and Wong (1999)). A uni�ed and streamlined methodology for obtaining such
expressions is desirable, and that is what we attempt to do here.
As an example consider a random sample (X1; X2; : : : ; Xn) from a multivariate normal distribution

with mean vector � and variance covariance matrix �. We know that the sample mean vector X has a
multivariate normal distribution and the sample variance covariance matrix has a Wishart distribution, and
they are independent. However, when the random sample is not from a multivariate normal distribution,
one approach to obtaining such distributions is through the multivariate Edgeworth expansion, whose
evaluation requires expressions for higher order cumulants of random vectors. Further applications of
these, in the time-series context, can be found in the books of Brillinger (2001), Terdik (1999) and the
recent papers of Subba Rao and Wong (1999) and Wong (1997).
Similar results can be found in the works of McCullagh (1987) and Speed (1990), but the techniques we

use here are quite di¤erent and require only knowledge of calculus of several variables instead of Tensor
calculus. Also we believe this to be a more transparent and streamlined approach. Finally, we derive
several new results of interest in statistical inference and time series, using these methods. We derive
Yule-Walker type di¤erence equations in terms of higher order cumulants for stationary multivariate linear
processes. Also derived are expressions for higher order cumulant spectra of such processes, which turn out
to be useful in constructing statistical tests for linearity and Gaussianity of multivariate time series. The
�Information inequality�or the Cramer-Rao lower bound for the variance of an unbiased estimator is well
known for both single parameter and multiple parameter cases. A more accurate series of bounds for the
single parameter case, are given by Bhattacharya (1946) and they depend on all higher order derivatives of
the log-likelihood function. Here we give a generalization of this bound for the multiparameter case, based
on partial derivatives of various orders. We illustrate this with an example where we �nd a lower bound
for the variance of an unbiased estimator of a nonlinear function of the parameters.
In Section 2, we de�ne the cumulants of several random vectors. In Section 3 we consider applications

of the above methods to statistical inference. We de�ne multivariate measures of skewness and kurtosis
and consider multivariate time series. We also obtain properties of the cumulants of the partial derivatives
of log-likelihood function of a random sample (X1; X2; :::Xn) drawn from a distribution F#(x); # 2 
. In
this section we use expressions derived for the partial derivatives to obtain Bhattacharya-type bound, and
illustrate it with an example. In the Appendix we derive the properties of di¤erential operators which are
used in obtaining expressions for the partial derivatives of functions of several vectors. Lastly we express
Taylor series of such functions in terms of di¤erential operators.

2. Moments and cumulantsof random vectors

2.1. Characteristic function and moments of random vectors. Let X be a d dimensional random
vector and let X =

�
X 01; X

0
2

�0
where X1 is of dimension d1 and X2 is of dimension d2 such that d = d1+d2:

Let � =
�
�01; �

0
2

�0
. The characteristic function of X is given by

' (�1; �2) = E exp
�
i
�
X 01�1 +X

0
2�2
��

=
1X

k;l=0

ik+l

k!l!
E
�
X 01�1

�k �
X 02�2

�l
=

1X
k;l=0

ik+l

k!l!
E
�
X
k01 
X
l02

��
�
k1 
 �
l2

�
:
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Here the coe¢ cients of �
k1 
 �
l2 can be obtained by using the K�derivative and the formula (4.6).
Consider the second K�derivative of '

D

(1;1)
�1;�2

' (�1; �2) = D
�2

�
D
�1

' (�1; �2)
�

= ' (�1; �2)

�
@

@�1

�


�

@

@�2

�
=

1X
k;l=1

ik+l�2

(k � 1)! (l � 1)!EX

k�10
1 �
k�11 X
l�102 �
l�12 (X1 
X2) :

Now by evaluating the derivative D
(1;1)�1;�2
' (�1; �2)

���
�1;�2=0

we obtain EX1 
X2, similarly other moments

can be obtained from higher order derivatives. Therefore, the Taylor series expansion of ' (�1; �2) can be
written in terms of derivatives and is given by.

' (�1; �2) =
1X

k;l=0

ik+l

k!l!

�
D

(k;l)
�1;�2

' (�1; �2)
�0����

�1;�2=0

�
k1 
 �
l2 :

We note that in general�
D

(k;l)
�1;�2

' (�1; �2)
����
�1;�2=0

= ik+lEX
k1 
X
l2

6= ik+lEX
l2 
X
k1
=
�
D

(l;k)
�2;�1

' (�1; �2)
����
�1;�2=0

;

which shows that the partial derivatives in this case are not symmetric.
Consider a set of vectors �(1:n) =

�
�01; �

0
2; : : : ; �

0
n

�0
with dimensions [d1; d2; : : : ; dn]. We can de�ne the

operator D
(1;1)�1;�2
given in the Appendix for the partitioned set of vectors �(1:n): This is achieved recursively.

Recall that the K�derivative with respect �j is

D
�j
' = Vec

 
'
@

@�0j

!0
:

De�nition 1. The nth derivative D
n�(1:n) is de�ned recursively by

D
n�(1:n)' = D
�n

�
D
n�1�(1:n�1)

'
�
:

where D
n�(1:n)' is a column vector of the partial di¤erential operator of order n.

We see this is the �rst order derivative of the function which is already a (n�1)th order partial derivative.
The dimension of D
n�(1:n) is d

1[n]
1:n =

Qn
j=1dj ; where 1[n] denotes a row vector having all ones as its entries,

i.e., 1[n] = [1; 1; :::; 1] with dimension n. The order of the vectors in �(1:n) is important.
The following de�nition generalizes to the multivariate case, a similar well-known result for scalar valued

random variables. Here we assume the partial derivatives exist.

De�nition 2. Suppose X(1:n) = (X1; X2; : : : ; Xn) ; is a collection of random (column) vectors with di-
mensions [d1; d2; : : : ; dn]. The Kronecker moment is de�ned by the following K�derivative

E (X1 
X2 � � � 
Xn) = E
Y
n

j=1
Xj = (�i)nD
n�1;�2;:::;�n'X1;X2;:::;Xn

(�1; �2; : : : ; �n)
���
�(1:n)=0

:

We note, the order of the product in the expectations and the derivatives are important, since the
Kronecker moment is not symmetric if the variables X1; X2; � � � ; Xn are di¤erent.
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2.2. Cumulant function and Cumulants of random vectors. We obtain the cumulant Cumn (X) as
the derivative of the logarithm of the characteristic function 'X (�) of X = (X1; X2; : : : ; Xn)

0 and then
evaluate the function at zero to obtain.

(�i)n
@n ln'X (�)

@�1[n]

����
�(1:n)=0

= Cumn (X) = Cumn (X1; X2; : : : ; Xn) ;

where @�1[n]= @�1@�2 � � � @�n: See Terdik (1999) for details.
Now consider the collection of random vectors

X(1:n) = (X1; X2; : : : ; Xn) ;

where each Xi is of order di. The corresponding characteristic function of VecX(1:n) is

'X(1:n)

�
�(1:n)

�
= 'VecX(1:n)

�
Vec�(1:n)

�
= E exp

�
i
�
Vec�(1:n);VecX(1:n)

��
;

where �(1:n) = (�1; �2; : : : ; �n) and d(1:n) = (d1; d2; : : : ; dn). We call the logarithm of the characteristic
function 'VecX(1:n)

�
Vec�(1:n)

�
as the cumulant function and denote it by

 VecX(1:n)

�
Vec�(1:n)

�
= ln'VecX(1:n)

�
Vec�(1:n)

�
:

We write  X(1:n)

�
�(1:n)

�
for  VecX(1:n)

�
Vec�(1:n)

�
. The �rst order K�derivative of the cumulant function

 X(1:n)

�
�(1:n)

�
with respect to to �(1:n) is de�ned as the cumulant of X(1:n): Now we use the operator

D
n�(1:n) = D
�n

�
D
n�1�(1:n�1)

 
�
recursively and the result is a column vector of the partial di¤erentials of

order n; which is �rst order in each variable �j . The dimension of D

n
�(1:n)

is d
1[n]
1:n =

Qn
j=1dj : Now we de�ne

the nth order cumulant of vectors X(1:n) as

De�nition 3.

(2.1) Cumn
�
X(1:n)

�
= (�i)nD
n�(1:n) X(1:n)

�
�(1:n)

����
�(1:n)=0

;

Therefore Cumn
�
X(1:n)

�
is a vector of dimension d

1[n]
1:n containing all possible cumulants of the elements

formed from the vectors X1; X2; : : : ; Xn and the order is de�ned by the Kronecker products de�ned earlier
(see also Terdik, 2002). This de�nition also includes the evaluation of the cumulants where all the random
vectors X1; X2; : : : ; Xn need not to be distinct. In this case the characteristic function depends on the
sum of the corresponding variables of �(1:n) and we use still the de�nition (2.1) to obtain the cumulant.
For example, when n = 1; we have

Cum1(X) = EX;

and when n = 2;

Cum2(X1; X2) = E [(X1 � EX1)
 (X2 � EX2)](2.2)

= VecCov(X1; X2);

where Cov(X1; X2) denotes the covariance matrix of the vectors X1 and X2. To illustrate the above
formulae, let us consider an example.

Example 1. Let X(1;2) =
�
X 01; X

0

2

�0
, and assume X(1;2) has a joint normal distribution with moment�

�0
1
; �0
2

�0
and the variance covariance matrix C(X1;X2)

given by

C(X01;X02)
0 =

�
C1;1 C1;2
C2;1 C2;2

�
:
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Then the characteristic function of X(1;2) is given by

'X(1;2)
(�1; �2) = exp

�
i
�
�0
1
�1 + �

0
2
�2

�
� 1
2

�
�01C1;1�1 + �

0
1C1;2�2 + �

0
2C2;1�1 + �

0
2C2;2�2

��
;

and the cumulant function of X(1;2) is

 X(1;2)
(�1; �2) = ln'X(1;2)

(�1; �2)

= i(�0
1
�1 + �

0
2
�2)�

1

2

�
�01C1;1�1 + �

0
1C1;2�2 + �

0
2C2;1�1 + �

0
2C2;2�2

�
:

Now the �rst order cumulant is

Cum1
�
Xj

�
= �iD
�j'X(1;2)

(�1; �2)
���
�1=�2=0

= �
j
;

and it is clear that any cumulant of order higher than two is zero. One can easily show that the second
order cumulants are the vectors of the covariance matrices, i.e.

Cum2
�
Xj ; Xk

�
= VecCk;j ; j; k = 1; 2:

For instance if j = 2 and k = 1

D
2�1;�2
�02C2;1�1 = D
�2

�
D
�1

�02C2;1�1

�
= VecC2;1:

If j = k = 1, then,

D
�1
�01C1;1�1 = 2Vec

�
�01C1;1

�0
= 2C1;1�1;

and by applying repeatedly D
�1 we obtain

Cum2 (X1; X1) = D�1

�
D�1

�01C1;1�1
�
=2 = VecC1;1:

2.3. Basic Properties of the Cumulants. For convenience of notation, we set the dimensions of
X1; X2; : : : ; Xn equal to d: The cumulants are symmetric in scalar valued case, but not in vectors, for
example Cum2 (X1; X2) 6= Cum2 (X2; X1). Here we have to use permutation matrices (see Appendix for
details) as will be shown below.

Proposition 1. Let p be a permutation of integers (1 : n) and let the function f
�
�(1:n)

�
2 Rd be continu-

ously di¤erentiable n times in all its arguments, then

D
n�p(1:n)f =
�
Id 
Kp(1:n) (d1:n)

�
D
n�(1:n)f:

(1) Symmetry. If d > 1 then the cumulants are not symmetric but satisfy the relation

Cumn(X(1:n)) = K
�1
p(1:n)

�
d[n]
�
Cumn(Xp(1:n));

where p (1 : n)= (p (1) ; p (2) ; : : : ; p (n)) belongs to the set of all possible permutations Pn of the
numbers (1 : n), d[n] = (d; d; :::; d)| {z };

n

and Kp(1:n)

�
d[n]
�
is the permutation matrix (see Appendix,

equation 4.1).
� For constant matrices A and B and random vectors Y 1, Y 2

Cumn+1(AY 1 +BY 2;X(1:n)) = (A
 Idn) Cumn+1(Y 1;X(1:n)) + (B
 Idn) Cumn+1(Y 2;X(1:n));

also

Cumn+1(AY 1;BY 2;X(1:n)) = (A
B
 Idn) Cumn+1(Y 1; Y 2;X(1:n));

assuming that the appropriate matrix operations are valid.
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� For any constant vectors a and b

Cumn+1(a
 Y 1 + b
 Y 2;X(1:n)) = a
 Cumn+1(Y 1;X(1:n)) + b
 Cumn+1(Y 2;X(1:n)):

(2) Independence. If X(1:n) is independent of Y(1:m) where n;m > 0 then

Cumn+m(X(1:n);Y(1:m)) = 0:

In particular if the dimensions are same, then

Cumn(X(1:n) +Y(1:n)) = Cumn(X(1:n)) + Cumn(Y(1:n)):

(3) Gaussianity. The random vector X(1:n) is Gaussian if and only if for all subsets k(1:m) of (1 : n)
is zero i.e.

Cumm(Xk(1:m)
) = 0; m > 2:

For further properties of the cumulants, we need the following Lemma which makes it easier to under-
stand the relations between the moments and the cumulants, (see Barndor¤-Nielsen and Cox, (1989), p.
140).

Remark 1. Let Pn for the set of all partitions K of the integers (1 : n). If K = fb1;b2; : : : ;bmg where
each bj � (1 : n) then jKj = m denotes the size of K: We introduce an ordering among the blocks bj 2 K,
bj � bk if

(2.3)
X
l2bj

2�l �
X
l2bk

2�l;

and equality in (2.3) is possible if and only if j = k: The partition K will be considered as ordered if both, the
elements of a block are ordered inside the block, and the blocks are ordered by the above relation bj � bk also.
We suppose that all partitions K of Pn are ordered. Denote � = �(1:M) =

�
�01; �

0
2; : : : ; �

0
M

�0 2 RN ;where
�j 2 Rdj and N = d

1[n]
1:n . In this case the di¤erential operator D


jbj
�b

is well de�ned because the vector
�b =

�
�0j ; j 2 b

�
denotes an ordered subset of vectors

�
�01; �

0
2; : : : ; �

0
M

�
corresponding to the order in b.

The permutation p (K) of the numbers (1 : n) corresponds to the ordered partition K.(See Andrews, 1976,
for more details on partitions).

We can rewrite the formula of Faà di Bruno given for implicit functions, (see Lukács, (1955)) as follows.

Lemma 1. Let the implicit function f (g (�)), � 2 Rd, where f and g are scalar valued functions and
are di¤erentiable M times. Suppose that � = �(1:M) =

�
�01; �

0
2; : : : ; �

0
M

�0
with dimensions [d1; d2; : : : ; dM ].

Then for n �M

(2.4) D
n�(1:n)f (g (�)) =
nX
r=1

f (r) (g (�))
X
K2Pn
jKj=r

K�1
p(K) (d1:n)

Y


b2K

�
D

jbj
�b

g (�)
�
;

where p (K) is a permutation of (1 : n) de�ned by the partition K, see Remark 1.

We consider particular cases of Equation (2.4) which are useful for proving some properties of cumulants.

2.4. Cumulants in terms of moments and vice versa.

2.4.1. Cumulants in terms of moments. The results obtained here are generalizations of the well known
results given for scalar random variables by Leonov and Shiryaev(1959) (see also Brillinger and Rosenblatt,
1967, Terdik, 1999). To obtain the cumulants in terms of moments let us consider the function f (x) = lnx
and g (�) = 'X(1:n)

�
�(1:n)

�
. The rth derivative of f (x) = lnx is

f (r) (x) = (�1)r�1 (r � 1)!x�r:
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So, the left hand side of Equation (2.4) is the cumulant of X(1:n). Hence we obtain

(2.5) Cumn(X(1:n)) =
nX

m=1

(�1)m�1(m� 1)!
X

L2P(1:n)
jLj=m

K�1
p(L)

�
d(1:n)

�Y


j=1:m
E
Y


k2bj
Xk;

where the second summation is taken over all possible ordered partition L 2P(1:n) with jLj = m, see
Remark 1 for details. The expectation operator E de�ned such that E (X1; X2) = (EX1;EX2) :

2.4.2. Moments in terms of cumulants. Let f (x) = expx and g (�) =  X(1:n)

�
�(1:n)

�
: Hence all the

derivatives of f (x) = expx are equal to expx; and therefore, we have

(2.6)
@n exp (g (�))

@�1@�2 : : : @�n
= exp (g (�))

X
K2Pn

K�1
p(K) (d1:n)

Y


b2K

�
D

jbj
�b

g (�)
�
:

The expression for the moment EX

1[n]
(1:n) is quite general, for example the moment EY


k(1:m)

(1:m) can be obtained

from EX

1[n]
(1:n) , where

(Y 1[k1]
; : : : ; Y m[km]

) = (Y 1; : : : ; Y 1| {z }
k1

; : : : ; Y m; : : : ; Y m| {z }
km

) = X(1:n); say

i.e. the elements in the product Y

k(1:m)

(1:m) are treated as they were distinct.

(2.7) EX

1[n]
(1:n) =

X
L2P(1:n)

K�1
p(L)

�
d(1:n)

�Y


b2L
Cumjbj(Xb);

where the summation is over all ordered partitions L = fb1;b2; : : : ;bkg of (1 : n).

2.4.3. Cumulant of products via products of cumulants. Let XK denote the vector where the entries are

obtained from the partition K, i.e. if K = fb1;b2; : : : ;bmg ; thenXK =
�Q


Xb1 ;
Q


Xb2 ; : : : ;
Q


Xbm

�
:

The order of the elements of the subsets b 2 K and the order of the subsets in K are �xed. Now the cumulant
of the products can be expressed by the cumulants of the individual set of variables Xb =

�
Xj ; j 2 b

�
;

b 2 L; such that K [ L = O, where O denotes the coarsest partition with one subset f(1 : n)g only. Such
partitions L and K are called indecomposable (see Brillinger (2001), Terdik, (1999)).

(2.8) Cumk

��Y

Xb1 ;

Y

Xb2 ; : : : ;

Y

Xbm

��
=

X
K[L=O

K�1
p(L)

�
d(1:n)

�Y


b2L
Cumjbj(Xb);

where Xb denotes the set of vectors from Xs; s 2 b.

Example 2. Let X be a Gaussian random vector with EX = 0, A and B matrices with appropriate
dimensions, and Cov(X;X) = �: Then

(2.9) Cum
�
X 0AX;X 0BX

�
= 2TrA�B0�;

(see Taniguchi, 1991). We can use (2.8) to obtain (2.9) as follows:

Cum
�
X 0AX;X 0BX

�
= Cum2

�
(VecA)

0
X 
X; (VecB)0X 
X

�
=
�
(VecA)

0 
 (VecB)0
�
Cum2 (X 
X;X 
X)

=
�
(VecA)

0 
 (VecB)0
� �
K�12$3 +K

�1
2$4

�
[Vec�
Vec�]

= 2 (Vec�)
0
(A
B)Vec� = 2TrA�B0�:



8 S. RAO JAMMALAMADAKA, T. SUBBA RAO, AND GYÖRGY TERDIK

3. Applications to Statistical Inference

3.1. Cumulants of the log-likelihood function. The above results can be used to obtain the cumulants
of the partial derivatives of the log-likelihood function, see Skovgaard, (1986). These expressions are useful
in the study of the asymptotic theory of statistics.
Consider a random sample (X1; X2; : : : ; XN ) = X 2 RN ; with the likelihood function L (#;X) and let

l (#) denote the log�likelihood function, i.e.

l (#) = lnL (#;X) ; # 2 Rd

It is well known that under the regularity conditions

(3.1) E
@l (#)

@#1

@l (#)

@#2
= �E @

2l (#)

@#1@#2
:

The result (3.1) can be extended to products of several partial derivatives (see McCullagh and Cox, (1986)
for d = 4), who use these expressions in the evaluation of Bartlett�s correction. We can arrive at the result
(3.1) from (2.4) by observing L (#;X) = el(#). Suppose d = 2; we have

@2el(#)

@#1@#2
=
@2L (#;X)

@#1@#2
;

and from (2.4) we have
@2el(#)

@#1@#2
= el(#)

�
@l (#)

@#1

@l (#)

@#2
+

@2l (#)

@#1@#2

�
:

and equating the above two expressions we get

1

L (#;X)

@2L (#;X)

@#1@#2
=
@l (#)

@#1

@l (#)

@#2
+

@2l (#)

@#1@#2
;

The expected value of the left hand side of the above expression is zero, as we are allowed changing the
order of the derivative and the integral, which gives the result (3.1). The same argument leads, more
generally to several partial derivatives

(3.2)
dX
r=1

X
K2Pd
jKj=r

E
Y
b2K

"
@jbjQ
j2b @#j

l (#)

#
= 0;

and this is a consequence of (2.6). Proceeding in a similar fashion assuming the regularity conditions in
higher order and using (2.7) we obtain the cumulant analogue of the above

(3.3)
dX
r=1

X
K2Pd
jKj=r

Cum

 
@jbjQ
j2b @#j

l (#) ;b 2 K
!
= 0:

The equation (3.2) is in terms of the expected values of the derivatives of the log�likelihood function, where
as (3.3) is in terms of the cumulants. For example, suppose we have a single parameter # and let us denote

�4 (m1;m2;m3;m4) = E

�
@

@#
l (#)

�m1
�
@2

@#2
l (#)

�m2
�
@3

@#3
l (#)

�m3
�
@4

@#4
l (#)

�m4

;

then from the formula (3.2) we obtain

(3.4) �4 (0; 0; 0; 1) + 4�4 (1; 0; 1; 0) + 6�4 (2; 1; 0; 0) + 3�4 (0; 2; 0; 0) + �4 (4; 0; 0; 0) = 0:

To obtain (3.4) we proceed as follows. Consider the partitions K 2 P4, if jKj = 1 we have only one partition
(1; 2; 3; 4) ; if jKj = 2, we have 4 terms of type f(1; 2; 3) ; (4)g and 3 terms of type f(1; 2) ; (4; 3)g, if jKj = 3,
we have 6 terms of the type f(1) ; (2) ; (4; 3)g. Now if #1 = #2 = #3 = #4 = #, then m1;m2;m3;m4

shows the number of the elements of the subsets in a partition, for instance (m1;m2;m3;m4) = (2; 1; 0; 0)
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corresponds to the partitions of the type f(1) ; (2) ; (4; 3)g and so on. Hence the result (3.4). McCullagh
and Cox (1986) equ. (10), p. 142, obtained a similar result for cumulants

Cum

�
@4

@#4
l (#)

�
+ 4Cum

�
@

@#
l (#) ;

@2

@#2
l (#)

�
+ 6Cum

�
@

@#
l (#) ;

@

@#
l (#) ;

@2

@#2
l (#)

�
(3.5)

+3Cum

�
@2

@#2
l (#) ;

@2

@#2
l (#)

�
+Cum

�
@

@#
l (#) ;

@

@#
l (#) ;

@

@#
l (#) ;

@

@#
l (#)

�
= 0;

which is a special case of (3.3).

3.1.1. Cumulants of the log-likelihood function, the multiple parameter case. The multivariate extension
( the elements of the parameter vector are vectors as well) of the formula (3.2) can easily be obtained
using Lemma 1. If we partition the vector parameters into n subsets, # = #(1:n) =

�
#01; #

0
2; : : : ; #

0
n

�0
with

dimensions [d1; d2; : : : ; dn] respectively, then it follows

(3.6)
dX
r=1

X
K2Pd
jKj=r

K�1
p(K) (d1:n)E

Y


b2K

�
D

jbj
#b

l (#)
�
= 0;

where #b denotes the subset of vectors
�
#j ; j 2 b

�
: Now, in particular if n = 2 and #1 = #2 = # then (3.6)

gives the well known result

Cov
�
D#l (#) ; D#l (#)

�
= �E

�
D#D



# l (#)

�
;

or in vectorized form, the same can be written as

E
�
D
# l (#)
D



# l (#)

�
= �E

�
D
2# l (#)

�
:

In case n = 4; say and #1 = #2 = #3 = #4 = #; then we have

�
4
(0; 0; 0; 1) + 4�

4
(1; 0; 1; 0) + 6�

4
(2; 1; 0; 0) + 3�

4
(0; 2; 0; 0) + �

4
(4; 0; 0; 0) = 0;

where

�
4
(m1;m2;m3;m4) = E

h
D
# l (#)

i
m1



h
D
2# l (#)

i
m2



h
D
2# l (#)

i
m3



h
D
2# l (#)

i
m4

:

We can obtain a similar expression for the cumulants and it is given by

dX
r=1

X
K2Pd
jKj=r

K�1
p(K) (d1:n) Cumr

�
D

jbj
#b

l (#) ;b 2 K
�
= 0:

3.2. Multivariate Measures of Skewness and Kurtosis for Random Vectors. In this section we
de�ne what we consider are natural measures of multivariate skewness and kurtosis and show their relation
to the measures de�ned by Mardia (1970). Let X be a d�dimensional random vector whose �rst four
moments exist. Let � denote the positive-de�nite variance covariance matrix. The �skewness vector� of
X is de�ned by

�
X
= Cum3

�
��1=2X;��1=2X;��1=2X

�
=
�
��1=2

�
3
Cum3 (X;X;X) ;

and the �total skewness� is

�X =
�

X

2 :
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The �kurtosis vector� of X is de�ned by

�X = Cum4

�
��1=2X;��1=2X;��1=2X;��1=2X

�
=
�
��1=2

�
4
Cum4 (X;X;X;X) :

and the �total kurtosis� is

�X = Tr
�
Vec�1 �X

�
;

where Vec�1 �X is the matrix M such that VecM =�X . The skewness and kurtosis for a multivariate
Gaussian vector X is zero. �

X
is also zero for any distribution which is symmetric. The skewness and

kurtosis are expressed in terms of the moments. Suppose EX = 0; then

(3.7) �
X
=
�
��1=2

�
3
EX
3:

The total skewness �X , which is just the norm square of the skewness vector �X , coincides with the measure
of skewness �1;d de�ned by Mardia (1970. For any set of random vectors, we have

Cum4 (X1:4) = E
Y


X1:4 � Cum2 (X1; X2)
 Cum2 (X3; X4)

�K�1p2$3

�
d[4]
�
Cum2 (X1; X3)
 Cum2 (X2; X4)

�K�1p4$2

�
d[4]
�
Cum2 (X1; X4)
 Cum2 (X2; X3) ;(3.8)

and therefore the kurtosis vector of X can be expressed in terms of the fourth order moments, by noting
X1 = X2 = X3 = X4 = X in the above,

�X =
�
��1=2

�
4
Cum4 (X;X;X;X)

=
�
��1=2

�
4
EX
4 �

�
I+K�1p2$3

�
d[4]
�
+K�1p4$2

�
d[4]
��

�
�
��1=2

�
4
Cum2 (X;X)
 Cum2 (X;X)

=
�
��1=2

�
4
EX
4 �

�
I+K�1p2$3

�
d[4]
�
+K�1p4$2

�
d[4]
��
[Vec Id 
Vec Id] :(3.9)

Mardia (1970), de�ned the measure of kurtosis as

�2;d = E
�
X 0��1X

�2
and this is related to our total kurtosis measure �X as follows

�2;d = �X + d(d+ 2)

= Tr
�
Vec�1 �X

�
+ d(d+ 2):

Indeed

Tr

�
Vec�1

��
��1=2

�
4
EX
4

��
= ETr

�h
��1=2X

i
2 h
��1=2X

i0
2�
= ETr

 ��
��1=2X

�0 �
��1=2X

��
2!
= E

�
X 0��1X

�2
;

We note if X is Gaussian, then �X = 0 and hence �2;d = d(d+ 2):
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3.3. Multiple Linear Time Series. Let Xt be a d dimensional discrete time stationary time series. Let
Xt satisfy the linear representation, (see Hannan, 1970, p. 208)

(3.10) Xt =
1X
k=0

H (k) et�k;

where H (0) is identity,
P
kH (k)k < 1; et are independent and identically distributed random vectors

with Eet = 0; Eete
0
t = �. Let �m+1 (e) = Cumm+1 (et; et; : : : ; et) be the vector d

m+1 � 1. We note
�2 (e) = Vec� and the cumulant of Xt is

Cumm+1
�
Xt; Xt+�1 ; Xt+�2 ; : : : ; Xt+�m

�
=
1X
k=0

H (k)
H (k + �1)
 � � � 
H (k + �m)�m+1 (e)(3.11)

= Cm+1 (�1; �2; : : : ; �m) :

Let Xt satisfy the autoregressive model of order p given by

Xt +A1Xt�1 +A2Xt�2 + � � �+ApXt�p = et;

which can be written as �
I +A1B +A2B

2 + � � �+ApB
p
�
Xt = et:

We assume the coe¢ cients fAjg satisfy the usual stationarity condition (see Hannan, 1970, p. 212), and
proceed

Xt =
�
I +A1B +A2B

2 + � � �+ApB
p
��1

et

=

 1X
k=0

H (k)Bk

!
et;(3.12)

where B is the backshift operator. From (3.10) and (3.12) we have

(3.13)
�
I +A1B +A2B

2 + � � �+ApB
p
� 1X

k=0

H (k)Bk

!
= I;

from which we obtain

H (0) + (H (1) +A1H (0))B + (H (2) +A1H (1) +A2H (0))B
2 + � � �

+ (H (p) +A1H (p� 1) +A2H (p� 2) + � � �+ApH (0))B
p + � � �

+H (p+ 1) +A1H (p) + � � �+
= I:

Equating powers of Bj ; j � 1 we get

(3.14) H (j) +A1H (j � 1) +A2H (j � 2) + � � �+ApH (j � p) = 0; j � 1;
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(here we use the convention H (j) = 0; if j < 0). Let �1 � 1; substituting for H (k + �1) from (3.14) into
(3.11)

Cm+1 (�1; �2; : : : ; �m)

= �
1X
k=0

H (k)
 [A1H (k + �1 � 1) +A2H (k + �1 � 2) + � � �+ApH (k + �1 � p)]


� � � 
H (k + �m)�m+1 (e)

= �
pX
j=1

1X
k=0

H (k)
AjH (k + �1 � j)
H (k + �2)
 � � � 
H (k + �m)�m+1 (e)

= �
pX
j=1

1X
k=0

[Id 
Aj 
 Idm�1 ] [H (k)
H (k + �1 � j)
H (k + �2)
H (k + �m)]�m+1 (e)

=

pX
j=1

(Id 
Aj 
 Idm�1)Cm+1 (�1�j ; �2; : : : ; �m) :

Thus we obtain

(3.15) Cm+1 (�1; �2; : : : ; �m) = �
pX
j=1

(Id 
Aj 
 Idm�1)Cm+1 (�1 � j; �2; : : : ; �m) :

If we put m = 1 in (3.15) we get

C2 (�1) = �
pX
j=1

(Id 
Aj)C2 (�1 � j) ;

which can be written in matrix form

C2 (�1) = �
pX
j=1

AjC2 (�1 � j) ;

which is well known Yule-Walker equation in terms of second order covariances. Therefore we can con-
sider (3.15) as an extension of Yule-Walker equations in terms of higher order cumulants for multivariate
autoregressive models.
The de�nition of the higher order cumulant spectra for stationary time series comes in a natural way.

Consider the time series Xt with (m+ 1)
th order cumulant function

Cumm+1
�
Xt; Xt+�1 ; Xt+�2 ; : : : ; Xt+�m

�
= Cm+1 (�1; �2; : : : ; �m) ;

and de�ne the mth order cumulant spectrum as the Fourier transform of the cumulants

Sm (!1; !2; : : : ; !m) =
1X

�1;�2;:::;�m=�1
Cm+1 (�1; �2; : : : ; �m) exp

0@�i mX
j=1

�j!j

1A ;

provided that the in�nite sum converges. We note here that the connection between the usual matrix
notation for the second order spectrum S2 (!) is that

S2 (!) = Vec [S2 (!)]
0
;

see the (2.2).
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3.4. Bhattacharya-type lower bound for the multiparameter case. In this section we obtain a lower
bound for the variance covariance matrix of an unbiased vector of statistics which is a linear function of
the �rst k partial derivatives. This corresponds to the well known Bhattacharya bound (see Bhattacharya
(1946), Linnik (1970)) for the multiparameter case, which does not seem to have been considered anywhere
in the literature. Consider a random sample (X1; X2; : : : ; Xn) = X 2 Rnd0 , with likelihood function
L (#;X), # 2 Rd. Suppose we have a vector of unbiased estimators, say, bg (X) of g (#) 2 Rd1 . De�ne the
random vectors

�0Df =

�
1

L (#;X)
D
# L (#;X)

0
;

1

L (#;X)
D
2# L (#;X)

0
; : : : ;

1

L (#;X)
D
k# L (#;X)

0
�
;

�0 =
�bg0 (X) ;�0Df� ;

where the dimension of � is d1 + d + d2 + : : : + dk. The second order cumulant between bg (X) and the
derivatives 1

L(#;X)D

j
# L (#;X), (j = 1; 2; : : : ; k) is as follows

Cum

�bg (X) ; 1

L (#;X)
D
j# L (#;X)

�
= Vec

Z h
D
j# L (#;X)

ibg (x)0 dx
=

Z bg (x)
D
j# L (#;X) dx

= D
j# g (#) :

The covariance matrix between bg (X) and 1
L(#;X)D


j
# L (#;X) is calculated using (2.2). The variance matrix

Var
�
�Df

�
is singular because the elements of the derivatives D
j# L (#;X) are not distinct. Therefore we

reduce the vector of derivatives using distinct elements only. To make it precise we �rst consider second
order derivatives. We de�ne the duplication matrix D2;d which reduces the symmetric matrix Vd to the
matrix �2 (Vd) which is the vector of lower triangular elements of Vd. We de�ne D2;d as follows:

D2;d�2 (Vd) = VecVd:

The dimension of �2 (Vd) is d (d+ 1) =2, and D2;d is of d
2 � d (d+ 1) =2. It is easy to see that D02;dD2;d

is non-singular (the columns of D2;d are linearly independent, each row has exactly one nonzero element),
therefore the Moore-Penrose inverse D+2;d of D2;d is

D+2;d =
�
D02;dD2;d

��1
D02;d;

such that

�2 (Vd) = D
+
2;dVecVd;

(see Magnus and Neudecker (1999), Ch. 3 Sec. 8, for details). The operator D
2# is de�ned by

D
2# = Vec
@

@�

@

@�0
;

which is actually
�
@
@�

�
2
: The matrix @

@�
@
@�0 is symmetric and therefore we can use the inverse D

+
2;d of

the duplication matrix

D+2;dD

2
# = �2

�
D
2#

�
;

to get the necessary elements of the derivatives. We can extend this procedure for higher order derivatives
by de�ning

D+k;dD

k
# = �k

�
D
k#

�
;
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where �k
�
D
k#

�
is a vector of the distinct elements of D
k# , listed in the original order in D
k# . Now let

Cg;j = Cov

�bg (X) ; 1

L (#;X)

�
D+j;dD


j
#

�
L (#;X)

�
;

where the entries of Cg;j are those of the entries of the cumulant matrix

Cum

�bg (X) ; 1

L (#;X)

�
D+j;dD


j
#

�
L (#;X)

�
:

Now considering the vector of all distinct and nonzero derivatives,

�0Df =

�
1

L (#;X)
D
# L (#;X)

0
;

1

L (#;X)
D+2;dD


2
# L (#;X)

0
; : : : ;

1

L (#;X)
D+k;dD


k
# L (#;X)

0
�

�0 =
�bg0 (X) ;�0Df� ;

we obtain the generalized Bhattacharya lower bound in the case of multiple parameters. This is obtained
by considering the variance matrix of �0 which is positive semi de�nite which implies

(3.16) Var
�bg (X)��Cg;Df Var ��Df��1C0g;Df � 0;

where the matrix Cg;Df = [Cg;1;Cg;2; : : : ;Cg;k] : The Cramer- Rao inequality is obtained by setting k = 1,
i.e. by considering only the �rst derivative vector.
Let us now consider an example to illustrate the Bhattacharya bound given by (3.16).

Example 3. Let (X1; X2; : : : ; Xn) = X 2 Rnd0 be a sequence of independent Gaussian random vectors with
mean vector # 2 Rd0 and variance matrix Id0 . Suppose we want to estimate the function g (#) = k#k

2 2 R.
Here d = d0; d1 = 1. The unbiased estimator for g (#) is

bg (X) = dX
k=1

�
X
2

k �
1

n

�
;

where Xk is the sample mean computed using the random sample consisting of n observations on the kth

random variable of the random vector X. The variance of the estimator bg (X) is
Var

�bg (X)� = dX
k=1

�
4#2k
n
+
2

n2

�
=
4

n
k#k2 + 2d

n2
:(3.17)

The Cramer-Rao bound for this estimator is 4
n k#k

2 which is strictly less than the actual variance. The
derivatives D
j# L (#;X) for j > 2 are zero. For j = 1; 2 we have

D
# L (#;X) = n
�
X � #

�
L (#;X) ;

D
2# L (#;X) = n2
��
X � #

�
2 � 1

n
Vec Id

�
L (#;X) ;

therefore we obtain (using all the elements of second partial derivative matrix)

e�0Df = � 1

L (#;X)
D
# L (#;X)

0
;

1

L (#;X)
D
2# L (#;X)

0
�

=

 
n
�
X � #

�0
; n2

��
X � #

�
2 � 1

n
Vec Id

�0!
:
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Note that if we consider only the vector of �rst derivatives, then the second element of above vector will
not be included in the lower bound, making the Cramer-Rao bound smaller.
If we use the reduced number of elements for e�0Df , we have

�0Df =

 
n
�
X � #

�0
; n2

�
D+2;d

�
X � #

�
2 � 1

n
D+2;dVec Id

�0!
;

and the variance matrix of �Df will contain

n2C2 = n2Vec�1d2;d2
�
D+2;d

�
2
Cum2

���
X � #

�
2 � 1

n
Vec Id

��
= Vec�1d2;d2

�
D+2;d

�
2 h�
K�1p2$3

�
d[4]
�
+K�1p1$3

�
d[4]
��
(Vec Id)


2
i

= D+2;d
�
Id2 +Kp1$2

�
d[4]
�� �

D+2;d

�0
:

Denote
1

2

�
Id2 +Kp1$2

�
d[4]
��
= Nd;

and then the matrices satisfy

Nd = N
0
d = N

2
d;

Nd = D2;dD
+
2;d;

(see Magnus and Neudecker (1999), Ch. 3 Sec. 7-8, Theorem 11 and 12). We obtain

n2C2 = 2D
+
2;dNd

�
D+2;dNd

�0
= 2D+2;d

�
D+2;d

�0
= 2

�
D02;dD2;d

��1
;

which is invertible. The inverse of the variance matrix of �Df is given by�
Var

�
�Df

���1
=

�
1
nId 0
0 1

2n2D
0
2;dD2;d

�
:

Now to obtain the matrix Cg;Df = [Cg;1;Cg;2] we need

Cum

�bg (X) ; 1

L (#;X)
D
# L (#;X)

�
= D
# g (#)

= D
# #
0# = 2#;

Cg;1 = 2#
0;

and

Cum

�bg (X) ; 1

L (#;X)
�
�
D
2#

�
L (#;X)

�
= 2D+2;dVec Id

C0g;2 = 2D
+
2;dVec Id:

Finally we obtain

Cg;Df Var
�
�Df

��1
C0g;Df =

4

n
k#k2 + 2

n2
(Vec Id)

0
�
D2;dD

+
2;d

�0
D2;dD

+
2;dVec Id

=
4

n
k#k2 + 1

n2
(Vec Id)

0
NdVec Id

=
4

n
k#k2 + 2d

n2
;

which is the Bhattacharya bound and is same as the variance of the statistic bg (X), given by (3.17).
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4. Appendix

4.1. Commutation Matrices. The Kronecker products have the advantage in the sense that we can
commute the elements of the products using linear operators called commutation matrices (see Magnus
and Neudecker (1999), Ch. 3 Sec. 7, for details). We use these operators here in the case of vectors. Let
A be a matrix of order m�n; and the vector VecA0 is a permutation of the vector VecA: Therefore there
exists a permutation matrix Km�n of order mn�mn, called commutation matrix, which is de�ned by
the relation

Km�nVecA = VecA0:

Now suppose if a is m� 1 and b is n� 1 then
Km�n (b
 a) = Km�nVec

�
ab0
�
= Vec

�
ba0
�
= a
 b:

>From now on in the sequel, we shall use a more convenient notation,

Km�n = K (n;m) ;

which means that we are changing the order in a K�product b
 a of vectors b 2Rn and a 2Rm.
Now consider a set of vectors (a1;a2; : : : ;an) with dimensions d(1:n) = (d1; d2; : : : ; dn) respectively.

De�ne the matrix

Kj+1$j
�
d(1:n)

�
=
Y


i=1:j�1
Idi 
K (dj ; dj+1)


Y


i=j+2:n
Idi ;

where
Q

i=1:j stands for the Kronecker product of the matrices indexed by 1 : j = (1; 2; : : : ; j) : Clearly

Kj+1$j (d1:n)
Y


i=1:n
ai =

Y


i=1:j�1
(Idiai)
 (K (dj ; dj+1) (aj 
 aj+1))


Y


i=j+2:n
(Idiai)

=
Y


i=1:j�1
ai 
 aj+1 
 aj 


Y


i=j+2:n
ai:

Therefore one is able to transpose (interchange) the elements aj and aj+1 in a Kronecker product of vectors
by the help of the matrixKj$j+1 (d1:n) : In generalK0j$j+1 (d1:n) = K

�1
j$j+1 (d1:n) butKj+1$j 6= Kj$j+1

because of the dimensions dj+1 and dj are not necessarily equal. If they are equal then Kj+1$j =

Kj$j+1 = K�1j$j+1 = K0j$j+1: We remind that Pn denotes the set of all permutations of the numbers
(1 : n) = (1; 2; : : : ; n) ; if p 2 Pn then p (1 : n)= (p (1) ; p (2) ; : : : ; p (n)) : From this it follows that for each
permutation p (1 : n)= (p (1) ; p (2) ; : : : ; p (n)) ; p 2 Pn, there exists a matrix Kp(1:n) (d1:n) such that

(4.1) Kp(1:n)

�
d(1:n)

�Y


i=1:n
ai =

Y


i=1:n
ap(i);

just because any permutation p (1 : n) can obtained from the product by transposition of neighboring ele-
ments. Since there is an inverse of the permutation p (1 : n), therefore there exists an inverse K�1

p(1:n) (d1:n)

for Kp(1:n) (d1:n) as well. Note that the entries of d1:n are not necessary equal, they are the dimensions of
the vectors ai; i = 1; 2; : : : ; n which is �xed. The following example shows thatKp(1:n) (d1:n) is uniquely de-
�ned by the permutation p (1 : n) and the set d1:n: The permutation p2!4 is the product of two interchanges
p2 !3 and p3 !4;i.e.

Kp2!4
(d1:4) = Kp3 !4

(d1; d3; d2; d4)Kp2 !3
(d1:4) = (Id1 
 Id3 
Kd4�d2) (Id1 
Kd3�d2 
 Id4) ;

This process can be followed for any permutation p (1 : n) and for any set d1:n of the dimensions.
In particular transposing two elements only, j and k, in the product will be denoted by Kpj$k

(d1:n). It
will not be confusing to use both notations Kj$k and Kpj$k

also Kj!k and Kpj!k
for the same operators.

It can be seen that

(4.2) K0j$k = K
�1
j$k = Kk$j :

Let A be m� n and B be p� q matrices, it is well known that
K1$2 (m; p) (A
B)K1$2 (q; n) = B
A:
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The same argument to the case of vectors Kronecker product leads to the technic of permuting matrices
in a Kronecker product by the help of commutation matrix Kp.
Using the above notation we can write

Vec (A
B) = (In 
K (m; q)
 Ip)VecA
VecB
= K2$3 (n;m; q; p)VecA
VecB:(4.3)

4.2. Di¤erential operators. First we introduce the Jacobian matrix and higher order derivatives. Let
� = (�1; �2; : : : ; �d)

0 2 Rd; and let � (�) = [�1 (�) ; �2 (�) ; : : : ; �m (�)]0 be a vector valued function which
is di¤erentiable in all its arguments (here and elsewhere 0 denotes the transpose). The Jacobian matrix of
� is de�ned by

D�� =
@�

@�0
= � (�)

�
@

@�1
;
@

@�2
; : : : ;

@

@�d

�
=

2666664
@�1
@�1

@�1
@�2

� � � @�1
@�d

@�2
@�1

. . .
...

...
. . .

...
@�m
@�1

� � � � � � @�m
@�d

3777775 ;
here, and later on, the di¤erential operator @=@�j is acting from right to left keeping the matrix calculus
valid. We can write this in a vector form as follows:

De�nition 4. The operator D
� is de�ned as

D
� � = Vec

�
@�

@�0

�0
= Vec

2666664
@�1
@�1

@�1
@�2

� � � @�1
@�d

@�2
@�1

. . .
...

...
. . .

...
@�m
@�1

� � � � � � @�m
@�d

3777775
0

;

which is a column vector of order md.

We refer to D
� as K�derivative and we can also write D


� as a Kronecker product.

D
� � = Vec

�
�
@

@�0

�0
= Vec

�
@

@�
�0
�

= [�1 (�) ; �2 (�) ; : : : ; �m (�)]
0 

�
@

@�1
;
@

@�2
; : : : ;

@

@�d

�0
:

If we repeat the di¤erentiation D
� twice, we obtain

D
2� � = D
�

�
D
� �

�
= Vec

��
�
 @

@�

�
@

@�0

�0
= �


�
@

@�

�
2
= �
 @

@�
2
;

and in general (suppose the di¤erentiability k times), the kth K�derivative is given by

D
k� � = D
�

�
D
k�1� �

�
= [�1 (�) ; �2 (�) ; : : : ; �m (�)]

0 

�
@

@�1
;
@

@�2
; : : : ;

@

@�d

�0
k
;

which is a column vector of order mdk, containing all possible partial derivatives of entries of � according

to the Kronecker product
�

@
@�1

; @
@�2

; : : : ; @
@�d

�0
k
:
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In the following, we give some additional properties of this operator D
� when applied to products of
several functions. Let K3$2 (m1;m2; d) denote the commutation matrix of size m1m2d�m1m2d, changing
the order in a Kronecker product of three vectors of dimension (m1;m2; d) (see the Appendix for details),
such that the second and third places are interchanged. For example if a1;a2;a3 are vectors of dimension
m1;m2; d respectively then we have K3$2 (m1;m2; d) as the matrix de�ned such that

K3$2 (m1;m2; d) (a1 
 a2 
 a3) = a1 
 a3 
 a2:

Property 1 (Chain Rule). If � 2 Rd; �
1
2 Rm1 and �

2
2 Rm2 then

(4.4) D
�

�
�
1

 �

2

�
= K�13$2 (m1;m2; d)

��
D
� �1

�

 �

2

�
+ �

1


�
D
� �2

�
;

where K3$2 (m1;m2; d) denotes the commutation matrix. This Chain Rule (4.4) can be extended to prod-
ucts of several functions. If �

k
2 Rmk ; k = 1; 2; : : : ;M then

D
�

Y


(1:M)
�
k
=

MX
j=1

K�1pM+1!j
(m1:M ; d)

�Y


(1:j�1)
�
k


h
D
� �j (�)

i


Y


(j+1:M)
�
k

�
;

here the commutation matrix KpM+1!j
(m1:M ; d) permutes the vectors of dimension (m1:M ; d), in the Kro-

necker product according to the permutation pM+1!j of the integers (1 :M + 1) = (1; 2; : : : ;M + 1).

Consider the special case, � (�) = �
k. Di¤erentiating according to the de�nition 1 gives

D
� �

k = Vec

 
@�
k

@�0

!0
= �
k 


�
@

@�1
;
@

@�2
; : : : ;

@

@�d

�0

=

0@k�1X
j=0

Kj+1$k
�
d[k]
�1A��
(k�1) 
 Id� ;(4.5)

where d[k] = [d; d; : : : ; d]| {z }
k

.

Now suppose � (�) = x0
k�
k where the vector x is a vector of constants. Now � is a scalar valued
function. By using the Property 1 and after di¤erentiating r times we obtain

(4.6) D
r� x0
k�
k = k (k � 1) � � � (k � r + 1)
h
(x0�)

k�r
x
r

i
:

The reason for (4.6) is that the Kronecker product x0
k is invariant under the permutation of its component
vectors x; i.e.

x0
lKj+1!l
�
d[l]
�
= x0
l;

for any l and j; so that

x0
k

0@k�1X
j=0

Kj+1!k
�
d[k]
�1A = kx0
k;

and thus we obtain (4.6). In particular if r = k

D
k� x0
k�
k = k!x
k:
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4.3. Taylor series expansion of functions of several variables. Let � (�) = � (�1; �2; : : : ; �d) and
assume � is di¤erentiable several times in each variable. Here our object is to expand � (�) in Taylor series,
and the expression is given in terms of di¤erential operators given above. We use this expansion later to
de�ne the characteristic function and the cumulant functions in terms of the di¤erential operators. Let
� = �(1:d) = (�1; �2; : : : ; �d)

0 2 Rd: It is well known that the Taylor series of � (�) is

(4.7) � (�) =
1X

k1;k2;:::;kd=0

1

k!
c (k)�k;

where the coe¢ cients are

c (k) =
@�k� (�)

@�k

����
�=0

;

here we used the notation

k = (k1; k2; : : : ; kd) ; k! = k1!k2! : : : kd!;

�k =
dY
j=1

�
kj
j ; @�

k = @�k11 @�
k2
2 � � � @�

kd
d :

The Taylor series (4.7) can be written in a more informative form for our purposes, namely,

� (�) =
1X
m=0

1

m!
c (m; d)

0
�
m;

where c (m; d) is a column vector, which is the derivative (K�derivative) of the function � given by

c (m; d) =
�
D
m� � (�)

����
�=0

:

4.3.1. Taylor series in terms of di¤erential operators. We have

 (�) =

1X
k1;k2;:::;kd=0

1

k!
c (k)�k

=
1X
m=0

1

m!

mX
k1;k2;:::;kd=0

�kj=m

m!

k!
c (k)�k;

this can be re-written in the form

 (�) =
1X
m=0

1

m!
c (m; d)

0
�
m;

where c (m; d) is a column vector

c (m; d) =
�
D
m�  (�)

����
�=0

;

with appropriate entries from the vectors fc (k) ;�kj = mg ; the dimension of c (m; d) is same as �
m, i.e.
dm: To obtain the above expansion we proceed as follows. Let x 2 Rd be a real vector and consider

(x0�)
m
=

0@ dX
j=1

xj�j

1Am

=
mX

k1;k2;:::;kd=0
�kj=m

m!

k!
xk�k;
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and we can also write

(x0�)
m
= (x0�)


m
=
�
x
m

�0
�
m:

Therefore

mX
k1;k2;:::;kd=0

�kj=m

m!

k!
xk�k =

�
x
m

�0
�
m:

The entries of the vector c (m; d) correspond to the operator
@�k

@�k
having the same symmetry as xk;

therefore if x
m is invariant under some permutation of its factors then c (m; d) is invariant as well. From
Equation (4.6) we obtain that

c (m; d) =
�
D
m�  (�)

����
�=0

:
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