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Abstract

Our object in this paper is to study the temperature variations in the Antarctic
Peninsula using multiple regression models with correlated errors admitting ARMA
models with nonGaussian innovations. We found that the fitted models adequately
describe the variations. The data we consider are minimum/maximum monthly
temperatures recorded at the Faraday station by the British Antarctic Survey for
the period from January 1951 to December 1995. The time series models considered
here are novel in the sense that the linear ARMA models have innovations which
have extreme value distributions, and the maximum likelihood estimation described
here can be widely used in many disciplines.

The time series models we fitted indicate that the mean of the minimum tem-
peratures is likely to increase over the next 50 years and the temperatures will
be above 0oC during the summer months which means that the melting season
will increase, creating more climatic and ecological problems. Although the mean
temperature is reported to have increased by 2.5oC we believe that the maximum
temperatures have remained unchanged over the past 45 years. This has led to a
decrease in the diurnal temperature range which has also been observed in many
other parts of the globe.

The influence of human activity on climate is still unknown but our ability
to perturb the ozone layer is an established fact. We established a relationship
between minimum monthly temperatures and ozone levels and found they are highly
negatively correlated (at a lag of one month) implying that the higher levels of
ozone in the air keep temperatures low. This resulted in a new time series model
relating the minimum temperatures to ozone levels. After appropriate statistical
tests, we have come to the conclusion that the observed increase in the minimum
temperatures is a consequence of human activity rather than natural causes and
so a reduction in the production of “greenhouse gases” could lead to a decrease in
minimum temperatures, thereby reducing the adverse effect of global warming in
the Antarctic Peninsula.

Keywords: Antarctic pensinsula, ozone levels, temperatures, time series

models
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2 G. L. Hughes and T. Subba Rao

1. Introduction

The data considered here are minimum monthly temperatures from the Faraday
research station on the Antarctic Peninsula from January 1951 to December 1995.
The data set consists of 540 observations.

This particular station is of interest because it has the longest continuous occu-
pation of any British station to date. It has been observed that, over the past 50
years, the annual mean temperatures at this station have risen by approximately
2.5oC (British Antarctic Survey (BASa), (2002)) and the small fringing ice shelves
around the Antarctic Peninsula are retreating (Hulbe, (1997)). The change in local
climate is also demonstrated by profound ecological changes.

Ice shelves are platforms of floating ice which are hundreds of meters thick.
Today they comprise about 2% of Antarctic ice and they form where inland glaciers
and ice sheets discharge into the ocean. Mass is lost primarily by iceberg calving
at the seaward ice cliff and secondarily by melting at the lower surface. Changes
in local climate affect ice shelf mass balance, that is, the difference between the
mass of ice gained and lost by the shelf, and therefore the size of the shelf and the
location of its calving front.

An increase in atmospheric temperature, if large enough to push summer tem-
peratures above freezing point, will increase mass loss directly by increasing melt-
ing at the upper surface. Warmer sea surface temperatures (SST) may accompany
warmer air temperatures and this could also increase the rate of ice shelf melting.
There are also indirect effects of warmer air temperatures that can hasten the decay
of ice shelves.

The effects of CO2-induced climate warming on Antarctica have been studied
using numerical models that simulate ice flow and changes in ice sheet and ice shelf
size over time (Huybrechts and Oerlemans, (1990) and Budd et al, (1994)). One
prediction of the models is that the glaciers and ice shelves of the Peninsula are
lost.

Although the mean air temperature is reported to have increased by 2.5oC, we
believe that it may be the minimum temperatures which have increased rather than
the maximum temperatures and our analysis in this paper supports this belief.

An increase in minimum temperatures could have a more dramatic effect on
the surroundings than an overall increase in temperatures. Clearly if the minimum
temperatures rise so that they are consistently above freezing point then the ice
shelves will lose mass directly, and indirectly, very quickly. The length of time
surface ice melts, or the ‘melt season’, has been shown to be particularly important
in the break-up of ice shelves.

There is clearly a connection between warming around the Antarctic Peninsula
and the collapse of Peninsula ice shelves and, unless there is a change in the ob-
served warming trend, further retreats of fringing of ice shelves along the Antarctic
Peninsula are inevitable. It is therefore important to forecast how quickly the tem-
peratures are going to increase above melting point as this is vital to the break-up
of ice shelves. Clearly if the minimum summer temperatures increase above 0oC
the melt season will be tremendously long and the ice shelves are likely to become
very unstable. Our study attempts to analyse the trend in the minimum monthly
temperatures and forecast when these minima are expected to be greater than the
melting point in the summer months. We consider both maximum monthly tem-
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Figure 1. Minimum monthly temperatures at the Faraday station (1951-1995)
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Figure 2. Boxplot by month of minimum monthly temperatures

peratures and minimum monthly temperatures, though our main emphasis is on
minimum temperatures.

2. Data analysis of Minimum Monthly Temperatures

In figure 1, the minimum monthly temperature series from January 1951 to De-
cember 1995 is plotted and we see the winter temperatures have been increasing
rapidly while the summer temperatures have been increasing more slowly or re-
maining constant, consequently it appears that the range of the series has been
decreasing over time. The increasing trend appears to be linear.

The boxplots of the minimum monthly temperature data by month where month
1 is January, month 2 is February and so on is given in figure 2. Clearly there is a
yearly cycle but it is also seen that there is a much larger spread of temperatures
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Figure 3. Boxplot by year of minimum monthly temperatures

in the winter months, that is, from June to August. There is some indication that
the variance is changing with the season. During the winter months there are no
‘extreme values’ lying outside of the ‘whisker’ on the boxplots. The whisker shown
is 1.5 times the inter-quartile range. Extreme values only exist for February to
May and these are only on the lower temperature side, implying that the extreme
temperatures are lower and not higher than the median. The boxplot of the mini-
mum monthly temperatures from the Faraday station by year where year 1 is 1951
up to year 45 which is 1995 is given in figure 3. There are two big decreases in
median values in years 3 and 9 corresponding to years 1953 and 1959. The upper
whisker of the boxplots are reasonably level but the lower whiskers fluctuate by a
considerable amount, with the amount of variation in temperatures decreasing over
the years. The median of the boxplots also seem to have increased over time.

3. Data analysis of Maximum Monthly Temperatures

We now analyse the maximum monthly temperatures to see whether there is any
asymmetric climate warming of the Faraday Station. A plot of the maximum
monthly temperature data is given in figure 4. The box plots by month and by
year of this data are given in figures 5 and 6 respectively.

The range of this series, (−8oC, 10oC) , is quite small compared to the minimum
monthly temperatures. There is not a significant change over time compared to
the minimum temperatures. From the box plot given in figure 5, we see that there
is possibly a yearly cycle and in most months some extreme values have occurred.
Figure 6 shows that there does not appear to be any significant changes over the
45 year period. The median and range of values over the 45 years seems to have
remained quite constant.

From the above preliminary data analysis, we see that minimum temperatures
are exhibiting more dynamic behaviour. In the following we briefly discuss the
estimation of multiple regression models where the errors are correlated and the
innovations have extreme value distributions.
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Figure 4. Maximum monthly temperatures at the Faraday station (1951-1995)
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Figure 5. Boxplot by month of maximum monthly temperatures

4. Multiple Regression with Correlated Errors

In this section we consider the maximum likelihood estimation of the parameters
of a classical multiple regression model with correlated errors, when the errors
satisfy an Autoregressive Moving Average (ARMA) model with innovations having
a Generalised Extreme Value (GEV) distribution (see appendix A). Suppose we
observe the time series {yt}, where yt is given by

yt =

r
∑

j=0

βjxj,t + et; t = 1, . . . , n (4.1)
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Figure 6. Boxplot by year of maximum yearly temperatures

where {et} satisfy the stationary ARMA(p, q) model
(

1 + φ1B + φ2B
2 + · · · + φpB

p
)

et =
(

θ1B + θ2B
2 + · · · + θqB

q
)

ηt

or equivalently φp (B) et = θq (B) ηt (4.2)

where {ηt} are independent, identically distributed random variables where each
ηt has the converse GEV(γ, µ, σ) distribution. We assume the regressor variables
{xjt} are non random and the time series {et} generated by (4.2) is stationary and
the model is invertible. Using (4.2) we can write (4.1) as

yt =
r
∑

j=0

βjxj,t + φp (B)
−1
θq (B) ηt (4.3)

or, equivalently,

ηt = θq (B)
−1
φp (B)



yt −

r
∑

j=0

βjxj,t



 ; (t = 1, 2, ..., n) . (4.4)

Let s = max (p, q) . Assuming the probability density function (pdf) of ηt is given
by

fη (y) =
1

σ
exp

{

−

[

1 + γ

(

−y + µY

σ

)]− 1
γ

}

[

1 + γ

(

−y + µY

σ

)]−(1+ 1
γ )

;

for 1 + γ

(

−y + µY

σ

)

> 0 (4.5)

we can write the conditional log-likelihood function of (ηs+1, ηs+2, ..., ηn) as

l
(

η;β, φ, θ, γ, µ, σ
)

= − (n− s) log σ −

(

1

γ
+ 1

) n
∑

t=s+1

log

[

1 + γ

(

µ− ηt

σ

)]

−

n
∑

t=s+1

[

1 + γ

(

µ− ηt

σ

)]− 1
γ

(4.6)
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provided 1 + γ
(

µ−ηt

σ

)

> 0 for each t, where β = (β0, β1, ..., βs), φ = (φ1, φ2, ..., φp),
θ = (θ1, θ2, ..., θp). In situations where E (et) 6= 0 and xj,t = 0, we can set β0 = 0
since the mean of the converse GEV distribution is non-zero. This avoids over
parameterisation. We note ηt in (4.6) is unobservable and the estimation of the
parameters β, φ, θ, γ, µ, σ can only be done using iterative techniques which requires
the evaluation of first order and second order partial derivatives with respect to
the above parameters. This in turn requires obtaining an initial set of estimates.
We require the second order partial derivatives for the calculation of the Fishers
Information matrix. In the following we describe the steps for obtaining the initial
estimates of the parameters.

1. First estimate the regression parameters, β, by the method of ordinary least

squares (OLS). Let β̂ be such an estimate.

2. Obtain

êt = yt −

r
∑

j=0

β̂jxj,t; (t = 1, 2, . . . , n; β0 = 0).

Test the residuals {êt} for zero correlation (see Brockwell and Davis, (1996)).
If we reject the null hypothesis we fit an ARMA(p, q) model to the various
{êt} using the Hannan-Rissanen (1982) method (c.f. Brockwell and Davis,
(1996)). The orders p and q are chosen using Bayes Information Criterion
(BIC). Let p̂ and q̂ be the chosen orders.

3. Using (4.4) we obtain the estimated residuals

η̂t = θ̂q (B)
−1
φ̂p (B)



yt −

r
∑

j=0

β̂jxj,t



 ; t ≥ 1 + p̂+ q̂. (4.7)

The residuals, {η̂t} , are tested for Gaussianity using the standard skewness
and kurtosis measures (see D’Agostino and Stephens, (1996)). If we reject
the null hypothesis, we have to search for an appropriate distribution. Since
we are considering in this paper the minimum and maximum temperatures a
natural family of distributions are extreme value distributions. The parame-
ters γ, µ and σ of the converse GEV distribution are estimated (Prescott and
Walden, 1980) from the residuals {η̂t} using the computer program xtremes
(see Reiss and Thomas, (1997)).

The estimates obtained from the above steps will now be used as initial estimates
for our iterative procedure. If we denote the parameter values by θ, and θ(m) be
the estimate of the parameter vector θ at stage m, then the updated estimate is
given by

θ(m+1) = θ(m) +

[

−
∂2l

∂θ(m)∂θ(m)′

]−1
∂l

∂θ(m)
,

where l is the log-likelihood function.

Let I (θ) = E
[

− ∂2l
∂θ∂θ′

]

be the Fisher’s information matrix. Then for large

n an appropriate expression for the variance-covariance matrix of θ̂ is given by

Article submitted to Royal Society



8 G. L. Hughes and T. Subba Rao

Var
(

θ̂
)

≈ I−1 (θ). The elements of the information matrix for the parameters

of the model (4.1) where the log-likelihood function is given by (4.6) are given
in Appendix B, which we use to estimate the standard errors of the estimates
of the parameters. We assume that for large n that θ̂ has a multivariate normal
distribution.

5. Time Series Model for the Minimum Temperatures

From the earlier data analysis, we see that there is a linear trend, and periodicity
in the data. Since the data is monthly, we expect the periodicity will be equal to
12 months.

The model we consider for the minimum monthly temperatures {yt} is

yt =

r
∑

j=0

βjt
j +

k
∑

j=1

[Aj cos (ωjt) +Bj sin (ωjt)] + et; (β0 = 0) ;

(5.1)

where

p
∑

j=0

φjet−j =

q
∑

j=0

θjηt−j ; φ0 = θ0 = 1; (5.2)

ηt ∼ conv GEV (γ, µ, σ) .

After fitting an appropriate model as described before, we propose a test for
testing the goodness of fit of the residuals.

If the frequencies {ωj} of the model (5.1) are assumed to be known, then the
model (5.1) becomes a particular case of (4.1); otherwise we have to estimate the
frequencies {ωj}. We use the method proposed by Quinn and Fernandes (1991)
for estimating the frequencies and the Kavalieris and Hannan (1994) algorithm for
choosing the number of frequencies. We don’t give details here. We briefly describe
the algorithm for estimating the parameters, including {ωj}, in the following steps.

(a) Estimation procedure

1. Estimate {βj} by the method of ordinary least squares. Let
{

β̂j

}

be the

estimates.

2. Estimate the residuals, {ςt} say,

ς̂t = yt −

r
∑

j=0

β̂jt
j .

Estimate the frequencies, {ωj} , and the number of frequencies using the
Quinn and Fernandes algorithm to the residuals. Then obtain the new resid-
uals

êt = yt −

r
∑

j=0

β̂jt
j −

k
∑

j=1

[

Âj cos (ω̂jt) + B̂j sin (ω̂jt)
]

.
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3. Using the Hannan-Rissanen algorithm (1982) fit an ARMA(p, q) model to
{êt} . Let

η̂t = θ̂−1
q (B) φ̂p (B) êt.

Test for the independence and Gaussianity of {η̂t}. If the assumption of
Gaussianity is rejected,we assume that the converse GEV distribution is ap-
propriate and proceed using the maximum likelihood method given in section
4 for estimating β, φ, θ, γ, µ, σ. Here we assume {Aj , Bj , ωj} are known and
that maximisation is done with respect to the rest of the parameters. The
orders p and q are chosen using the BIC.

The variances of the final estimates are calculated using both the observed
information matrix and the expected information matrix using the expressions given
in Appendix B.

By the search procedure we described, we found that the series can be best
described by a linear trend, one periodic component (with a 12 month cycle) and
an AR(1) model for the errors, and the innovations described by a converse GEV
distribution.

The final model obtained is

yt = 0.008388
(0.0027,0.0026)

t+ 10.621 cos(0.52291t)

+2.5115 sin(0.52291t) + et;

et − 0.59171
(0.031,0.032)

et−1 = ηt;

ηt ∼ converse GEV

(

−0.12415
(0.019,0.026)

, −4.309
(0.59,0.58)

, 3.7238
(0.12,0.12)

)

(5.3)

The numbers in parentheses are standard errors of the estimates, the first cal-
culated from the observed information matrix and the second from the expected
information matrix. The observed information matrix is the Hessian of the negative
log-likelihood, evaluated at the maximum of the likelihood. Its inverse provides a
good approximation to the variance-covariance matrix of the estimators. The ex-
pected information matrix is the expected value of the above Hessian. The good
agreement between these two standard errors suggests that the estimation method
is working satisfactorily.

(b) Goodness of fit test by Probability Plots

A probability plot is a graphical technique for assessing whether or not a data
set follows a given distribution. Our object here is to test for the goodness of fit of
the residuals {η̂t} to confirm that our assumption that they follow a converse GEV
distribution is appropriate. Suppose the random variable X has a converse GEV
distribution with parameters (γ, µ, σ) , then if

pt = P (X ≤ xt) = 1 − exp

{

−

[

1 +
σ

γ
(µ− xt)

]− 1
γ

}

and

γ log [− log (1 − pt)] = − log

[

1 +
σ

γ
(µ− xt)

]
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Figure 7. Validation plot

then the plot
{

− log
[

1 + σ
γ (µ− xt)

]}

against γ log [− log (1 − pt)] is a validation

plot. Let (η1, η2, . . . , ηn) be a random sample from a Converse GEV(γ, µ, σ), and
let
(

η(1), η(2), . . . , η(n)

)

, be its order statistics. Let pt = t−0.5
n , t = 1, 2, . . . , n. If we

plot Yt = − log
[

1 + σ̂
γ̂

(

µ̂− η(t)

)

]

against Xt = γ̂ log [− log (1 − pt)] where γ̂, µ̂, σ̂

are the maximum likelihood estimates, η̂t is the estimate of ηt, and the observations
(Yt, Xt) fall on a straight line passing through the origin. This confirms that our
assumption about the distribution is appropriate. We give a plot for our data in
figure 7. There is one outlier which corresponds to the minimum temperature in
May 1958 (this was recorded as -21.613oC).

Consider the model (5.3) and we have (assuming the parameters are known)

E (yt) = βt+A cos(ωt) +B sin(ωt) +
1

1 + φ1

[

µ+
σ

γ
−
σ

γ
Γ (1 − γ)

]

.

Let ŷt be the estimate of E (yt) when the parameters are replaced by their maximum
likelihood estimates. By replacing ŷt for t = 1, 2, . . . , 1000, we observe that the
estimated (expected) minimum temperatures will be above 0oC during the summer
months indicating that there will be a longer melt season and this is suspected to
be a primary contributing factor to major ice shelf break-ups (web: NASA, (2002)).

(c) Prediction of the Minimum Temperatures

Consider the time series {yt} , where yt satisfies the model

yt = β1t+A cos (ωt) +B sin (ωt) + et;

et + φ1et−1 = ηt; ηt ∼ conv GEV (γ, µ, σ) (5.4)
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Figure 8. One step ahead forecasts of {yt} from t = 528

Suppose we have observations {ys, s ≤ t0} , then the minimum mean square error
forecast of yt0+l (l = 1, 2, . . .) is given by

yt0 (l) = E (yt0+l | ys, s ≤ t0)

= β1 (t0 + l) +A cos (ω (t0 + l)) +B sin (ω (t0 + l)) + et0 (l) ;

et0 (l) = −φ1et0 (l − 1) + E (ηt)

E (ηt) = µ+
σ

γ
Γ (1 − γ) .

When l = 1,
[E (yt0+1 − yt0 (1))]

2
= σ2

η.

Usually we replace the parameters with their least squares estimates. For our
forecasting purposes, we used the data given by the first 528 observations, and
calculated the forecasts for the next twelve observations. The refitted model using
the 528 observations is given by

yt = 0.0091036t+ 10.652 cos (0.52287t) + 2.45 sin (0.52287t) + et;

et − 0.59228et−1 = ηt;

ηt ∼ conv GEV (−0.1248,−4.3573, 3.7454) .

The mean square error of the one step ahead forecast over the next 12 data points
found to be 9.358.

The plots of the data and the forecasts obtained from the model are given in
figure 8. Both the fit and the forecasts seem to indicate that the model fitted is
adequate for the minimum temperatures.

6. Model for the Maximum Temperatures

As pointed out earlier, the range of the series is (−8oC, 10oC) , which is quite small
compared to the minimum monthly temperatures. From the plot of the series, we
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12 G. L. Hughes and T. Subba Rao

cannot see any significant trend in the series. There is a yearly cycle, and from
the boxplot (figure 5) we see that there are extremes in the summer months (Jan-
uary, February and March) and in the winter months (June, July and August).
The extremes in summer months may cause melting of the ice shelves. In view of
these observations we do not include a trend component in the model. Since we
are analysing the maxima, it is natural for us to assume that the innovations have
a Generalised Extreme Value distribution, GEV(γ, µ, σ) . We use the same proce-
dure for estimating the model as before. The time series model for the maximum
temperature is found to be

yt = 1.6218 cos(0.52337t) + 0.42645 sin(0.52337t) + et;

et ∼ GEV (−0.26568, 1.7449, 1.7199) .

It is interesting to note that the errors {et} are mutually independent, but non-
Gaussian. This is in contrast to the minimum temperature data, which has corre-
lated errors and has a linear trend and implies that the diurnal temperature range
is decreasing and that asymmetric climate change is occurring in the Antarctic
Peninsula.

Since the minimum temperatures are increasing and the maximum temperatures
are remaining constant over the same period we believe the changes in minimum
temperatures are more significant. In the following section we investigate this data
further and see whether there is any relationship to ozone levels.

7. Effect of Ozone Levels on Minimum Monthly
Temperatures

The influence of the human race on climate is still a matter for study and spec-
ulation, but the ability to perturb the ozone layer is an established fact. In this
paper we aim to see if the amount of ozone in the stratosphere in the Antarctic
Peninsula has a direct relationship to the minimum temperatures. If this can be
established then it can be deduced that human activity does play some role in
increasing the temperatures in the Antarctic Peninsula and future temperatures
can be predicted with more certainty. Mean monthly ozone levels at the Faraday
station are available from September 1957 to February 2002 (web: BASb, (2002)).
These stratospheric ozone concentrations are recorded in Dobson units (DU) using
a Dobson ozone spectrophotometer. This instrument tells us how much ozone there
is in the atmosphere by comparing the intensities of two wavelengths of ultra-violet
light from the sun. It is, therefore, not possible to make regular measurements of
ozone during the Antarctic winter because the station is in darkness. Consequently,
readings are missing for May, June and July each year. Readings are also missing
for August 1958, 1959, 1969, 1970 and 1971 and April 1967. Therefore, there are
396 data points in this series spread over 534 months. We denote the ozone levels
by {xt}.

Missing values in August 1958, 1959, 1969, 1970 and 1971 are substituted with
the August average over the 44 years, that is, 284 and April 1967 is substituted
with the April average over the 44 year period, that is, 294. May, June and July
for each year are substituted with the yearly average of that year, because there
is significant random variation within each year. The series thus obtained, after
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Figure 9. Ozone levels at the Faraday station (1957-2001)

substituting missing values, is denoted by {x′t, t = 1, 2, . . . , 534}. Our object here
is to find whether there is any significant relationship between ozone levels and
the temperatures. In order to achieve this goal, we detrended and deseasonalised
the series and then examined the cross correlation between the detrended and de-
seasonalised series. From the plots of the minimum temperatures (figure 1) and
the ozone levels (figure 9), we see that there is a decrease in ozone levels during
the years 1989 to 2001 and during the same period there is a steady increase in the
minimum temperatures.

Using a similar methodology as described in previous sections for estimating the
frequencies we observed that there are five dominant periods corresponding to 12
months, 11.7 months, 6 months, 4 months and 36 years and 9 months. The period
corresponding to 12 months is the most dominant in the series as in minimum
temperatures.

The model which fits best for the ozone levels is of the form

x′t = 341.39 − 0.14967t+Bt + et (7.1)

where {et} are independent random variables each distributed as normal with mean
zero and standard deviation 17.50. Given that these observations are mean levels,
the assumption of normality seems to be reasonable and is confirmed by standard
tests. The seasonal component Bt is given by

Bt = 16.462 cos (0.51805t) + 0.019499 sin (0.51805t)

−10.077 cos (1.0444t) + 15.541 sin (1.0444t)

−8.0281 cos (0.01425t) − 2.5313 sin (0.01425t) (7.2)

−2.6676 cos (1.5664t) + 6.1399 sin (1.5664t)

−4.3673 cos (0.53481t) + 7.2745 sin (0.53481t)

Since the data on ozone levels are available from September 1957 onwards, to stan-
dardise the two data sets (for differencing purposes) we considered new shifted
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series:

x
(2)
t = x̂′t + 0.14967 (t+ 1)

y
(2)
t = y′t − 0.008388 (t+ 81)

where {x̂′t} is the series obtained from {x′t} given by (7.1) after deleting the intercept
and the cyclical component Bt, and similarly y′t is the series obtained from yt after

deleting the trend and seasonal components. The sample correlation between x
(2)
t

and y
(2)
t , ρ

x
(2)
t y

(2)
t

(s) , (s = 0, 1, 2, . . .) have been computed. The absolute maximum

occurred at lag s = 1 and the value is −0.129. The corresponding Z statistic is

Z =
∣

∣

∣
ρ̂

x
(2)
t y

(2)
t

(1)
∣

∣

∣

√

√

√

√

(N − 2)

1 − ρ̂2

x
(2)
t y

(2)
t

(1)
= 2.384

where N = 339 which suggests that there is a significant negative correlation at this
lag. This indicates that higher ozone levels decrease the minimum temperatures
and therefore prevent warming. The ozone is destroyed by gases such as CO2 and
CFC’s and reducing these means the ozone levels remain high and the minimum
temperatures low. It can also be seen that there is a positive correlation between
temperatures and time when we regress only on time. This indicates that the
temperature has increased over time but the reason for this is not clear. Ozone
levels may be one factor in this jigsaw as we see below.

We now consider the regression of yt on xt−1 for the period from October 1957
to December 1995 (giving us 459 observations).

yt = αxt−1 + βt+ et; (7.3)

where {et} satisfies the ARMA(p, q) model

φp (B) et = θq (B) ηt; ηt ∼ conv GEV
(

γ, µ, σ2
)

(7.4)

In the model (7.3), the series yt and xt are deseasonalised only. The best model is
found to be

yt = −0.0156520
(0.0087,0.0025)

(

x′t−1 −B(t−1)+1

)

+ 10.621 cos(0.52291 (t+ 81))

+2.5115 sin(0.52291 (t+ 81)) + et;

where et = 0.58152
(0.034,0.032)

et−1 + ηt; t = 1, 2, . . . , 459

ηt ∼ conv GEV

(

−0.12507
(0.018,0.026)

,−2.8159
(1.2,0.49)

, 3.6817
(0.11,0.12)

)

. (7.5)

We have added 1 on to the time component in the periodic terms in Bt−1 and 81 on
to the seasonal component corresponding to the minimum monthly temperatures.
This is required because the sinusoids were estimated starting at t = 1 (Septem-
ber 1957 for the ozone data and January 1951 for the temperature data). From
the model (7.5), we see that high ozone levels lead to lower minimum tempera-
tures and so decreasing the greenhouse gases should reduce the minimum monthly
temperatures.
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From the above model, we can conclude that the minimum monthly tempera-
tures appear to be increasing over time, but perhaps not as dramatically as was
first thought. This increase in temperature appears to be determined only by the
amount of ozone in the atmosphere since the time trend coefficient is not found to be
significant. This indicates that increasing temperatures in the Antarctic Peninsula
are caused by human activity and not by a natural phenomena.
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Appendix A. Extreme Value Distributions

Suppose we have a sequence of independent, identically distributed random vari-
ables with cumulative distribution function F (x). Let Mn = max (X1, X2, . . . Xn).
Then

Pr {Mn ≤ x} = Fn (x)

and for constants an > 0, and bn so that as n −→ ∞

Pr

{

(Mn − bn)

an
≤ x

}

= Fn (anx+ bn) → H (x) . (A 1)

When H (x) is of the form

H (x;µX , σ, γ) = exp

{

−

[

1 + γ

(

x− µX

σ

)]− 1
γ

}

, 1 + γ

(

x− µX

σ

)

> 0

we say the distribution is an Generalised Extreme Value (GEV) distribution. Here
µ is a location parameter, σ > 0 is a scale parameter and γ is the shape parameter.
The above distribution is very often used in modelling data from various disciplines
(see for example, Smith (2001). The three special cases of H (x) are Gumbel,
Frechet and Weibull which are obtained by choosing the parameter γ appropriately.
The maximum likelihood estimation of these parameters (µ, γ, σ) was considered
by Prescott and Walden (1980).

The expected value and variance of the random variable X with the above
distribution are given by

E (X) =

{

ξ + σ
γ Γ (1 − γ) ; γ < 1

µ+ %σ; γ = 0

V ar (X) =

{

σ2

γ2

[

Γ (1 − 2γ) − Γ2 (1 − γ)
]

; γ < 1
2

σ2π2

6 ; γ = 0
(A 2)

(Laycock et al, (1990)) where ξ = µ− σ
γ and % is the Euler’s constant.

We are often interested in the probabiliy distribution ofMin (−x1,−x2, . . . ,−xn) =
−Max (x1, x2, . . . , xn) which is given by

FY (y) = 1 − exp

{

−

[

1 + γ

(

−y + µY

σ

)]− 1
γ

}

; 1 + γ

(

−y + µY

σ

)

> 0
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where µy = −E (X) , and the corresponding probability density function is given
by

fY (y) =
1

σ
exp

{

−

[

1 + γ

(

−y + µY

σ

)]− 1
γ

}

[

1 + γ

(

−y + µY

σ

)]−(1+ 1
γ )

;

1 + γ

(

−y + µY

σ

)

> 0 (A 3)

The distribution (A 3) is known as the converse Generalised Extreme Value distri-
bution, Conv GEV(γ, µ, σ) . The mean of Y is given by

E (Y ) = ξ −
σ

γ
Γ (1 − γ)

and the variance of Y is given by (A 2).

Appendix B. Information Matrix

We need the following expectations for evaluating the elements of the information
matrix. Let

vt = 1 + γ

(

µ− ηt

σ

)

where the random variable ηt has a converse GEV distribution with parameters
(γ, µ, σ) . We can show (see Hughes (2002))

E
[

vk
t

]

= Γ (1 − kγ)

E
[

vk
t log vt

]

= −γΓ (1 − kγ)ψ (1 − kγ)

where ψ is the digamma function given by

ψ (z) =
Γ′ (z)

Γ (z)

and

ψ (1) = −%

ψ (n) = −%+
n−1
∑

j=1

j−1; n ≥ 2, n integer

ψ (2 + z) =
1

1 + z
+ ψ (1 + z)

ψ (1 + z) = −%+

∞
∑

j=1

z

j (j + z)
; z 6= −1,−2,−3, . . .
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where % denotes Euler’s constant. Furthermore,

E [log vt] = γ%

E
[

v−1
t log vt

]

= −γΓ (1 + γ)



−%+

∞
∑

j=1

γ

j (j + γ)





E
[

v
−1/γ
t log vt

]

= γΓ (2) (%− 1)

E
[

v
−(1+1/γ)
t log vt

]

= −γΓ (2 + γ)





1

1 + γ
− %+

∞
∑

j=1

γ

j (j + γ)





E
[

v
−(2+1/γ)
t log vt

]

= −γΓ (2 + 2γ)





1

1 + 2γ
− %+

∞
∑

j=1

2γ

j (j + 2γ)





E
[

vk
t log vt (µ− ηt)

]

= σΓ (1 − kγ)ψ (1 − kγ) − σΓ (1 − γ (k + 1))ψ (1 − γ (k + 1))

E
[

v
−(1+1/γ)
t log vt (µ− ηt)

]

= σΓ (2 + γ)ψ (2 + γ) + σ%− σ

E
[

vk
t (log vt)

2
]

= γ2Γ′′ (1 − kγ)

E
[

v
−1/γ
t (log vt)

2
]

= γ2

[

π2

6
+ %2 − 2%

]

E
[

vk
t (µ− ηt)

]

= −
σ

γ
Γ (1 − kγ) +

σ

γ
Γ (1 − γ (k + 1))

E
[

η2
t

]

=

(

µ+
σ

γ

)2

− 2
σ

γ

(

µ+
σ

γ

)

Γ (1 − γ) +
σ2

γ2
Γ (1 − 2γ)

We can use these expressions to obtain the elements of Fisher’s Information
Matrix. The second derivatives of ηt are given below

E

[

∂ηt

∂βl

∂ηt

∂βk

]

=
[

θ−1(B)φ(B)xlt

] [

θ−1(B)φ(B)xkt

]

E

[

∂ηt

∂φl

∂ηt

∂φk

]

=
∞
∑

j=0

ϕjϕ|k−l|+jV ar (ηt) +





∞
∑

j=0

ϕj





2

E [ηt]
2

E

[

∂ηt

∂θl

∂ηt

∂θk

]

=

∞
∑

j=0

τjτ|k−l|+jV ar (ηt) +





∞
∑

j=0

τj





2

E (ηt)
2

E

[

∂ηt

∂φl

∂ηt

∂βk

]

= −θ−1(B)φ(B)xktφ
−1(1)E [ηt]

E

[

∂ηt

∂θl

∂ηt

∂βk

]

= θ−1(B)φ(B)xktθ
−1(1)E [ηt]

E

[

∂ηt

∂θl

∂ηt

∂φk

]

= −

∞
∑

j=0

τjϕ|k−l|+jV ar (ηt) −

∞
∑

j=0

τj

∞
∑

m=0

ϕmE [ηt]
2
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and the expected value of the first derivatives are

E

[

∂ηt

∂βk

]

= −θ−1(B)φ (B)xkt (k = 1, ..., r)

E

[

∂ηt

∂φk

]

= φ−1(1)E (ηt) (k = 1, ..., p)

E

[

∂ηt

∂θk

]

= −θ−1(1)E (ηt) (k = 1, ..., q)

and the expected values of the second derivatives are

E

[

∂2ηt

∂φl∂βk

]

= −θ−1(B)xk,t−l

E

[

∂2ηt

∂θl∂βk

]

= −θ−2(B)φ(B)xkt

E

[

∂2ηt

∂θl∂φk

]

= −θ−1(1)φ−1 (1)E (ηt)

E

[

∂2ηt

∂θl∂θk

]

= 2θ−2(1)E (ηt) .

and

E

[

∂2l

∂βl∂βk

]

=
− (1 + γ)

2

σ2
Γ (1 + 2γ)

n
∑

t=s+1

[

θ−1(B)φ(B)xlt

] [

θ−1(B)φ(B)xkt

]

E

[

∂2l

∂φl∂βk

]

=
− (1 + γ)

2

σ2
Γ (1 + 2γ)

n
∑

t=s+1

(

−θ−1(B)φ(B)xktφ
−1(1)E [ηt]

)

E

[

∂2l

∂θl∂βk

]

=
− (1 + γ)

2

σ2
Γ (1 + 2γ)

n
∑

t=s+1

θ−1(B)φ(B)xktθ
−1(1)E [ηt]

E

[

∂2l

∂φl∂φk

]

=
− (n− s) (1 + γ)

2

σ2
Γ (1 + 2γ)







∞
∑

j=0

ϕjϕ|k−l|+jV ar (ηt) +





∞
∑

j=0

ϕj





2

E (ηt)
2







E

[

∂2l

∂θl∂φk

]

=
(n− s) (1 + γ)

2

σ2
Γ (1 + 2γ)





∞
∑

j=0

τjϕ|k−l|+jV ar (ηt) +
∞
∑

j=0

τj

∞
∑

m=0

ϕmE (ηt)
2





E

[

∂2l

∂θl∂θk

]

=
− (n− s) (1 + γ)

2

σ2
Γ (1 + 2γ)







∞
∑

j=0

τjτ|k−l|+jV ar (ηt) +





∞
∑

j=0

τj





2

E (ηt)
2







E

[

∂2l

∂βk∂γ

]

=

(

γ2 + γ + 1
)

σγ2
Γ (1 + γ)

n
∑

t=s+1

E

[

∂ηt

∂βk

]

−
(1 + γ)

2

σγ2
Γ (1 + 2γ)

n
∑

t=s+1

E

[

∂ηt

∂βk

]

+
1

γσ
Γ (2 + γ)ψ (2 + γ)

n
∑

t=s+1

E

[

∂ηt

∂βk

]
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1

n− s
E

[

∂2l

∂φk∂γ

]

=

(

γ2 + γ + 1
)

σγ2
Γ (1 + γ)E

[

∂ηt

∂φk

]

−
(1 + γ)

2

σγ2
Γ (1 + 2γ)E

[

∂ηt

∂φk

]

+
1

γσ
Γ (2 + γ)ψ (2 + γ)E

[

∂ηt

∂φk

]

1

n− s
E

[

∂2l

∂θk∂γ

]

=

(

γ2 + γ + 1
)

σγ2
Γ (1 + γ)E

[

∂ηt

∂θk

]

−
(1 + γ)

2

σγ2
Γ (1 + 2γ)E

[

∂ηt

∂θk

]

+
1

γσ
Γ (2 + γ)ψ (2 + γ)E

[

∂ηt

∂θk

]

1

n− s
E

[

∂2l

∂µ∂γ

]

= −

(

γ2 + γ + 1
)

σγ2
Γ (1 + γ) +

(1 + γ)
2

σγ2
Γ (1 + 2γ)

−
1

γσ
Γ (2 + γ)ψ (2 + γ) ;

1

n− s
E

[

∂2l

∂σ∂γ

]

= −

(

γ2 + 2γ + 2
)

σγ3
Γ (1 + γ) +

(

1 + γ

σγ3

)

+
(1 + γ)

2

σγ3
Γ (1 + 2γ) −

1

γ2σ
Γ (2 + γ)ψ (2 + γ) −

1

γ2σ
%;

1

n− s
E

[

∂2l

∂γ2

]

=
−2

γ2
%+

2
(

γ2 + γ + 1
)

γ4
Γ (1 + γ) +

(γ + 1) (γ − 1)

γ4

−
(γ + 1)

2

γ4
Γ (1 + 2γ) −

2

γ2
ψ (2) −

1

γ2

[

ψ(1) (2) + ψ (2)
2
]

+
2

γ3
[Γ (2 + γ)ψ (2 + γ) − ψ (2)] ;

1

n− s
E

[

∂2l

∂µ2

]

=
− (γ + 1)

2

σ2
Γ (1 + 2γ) ;

1

n− s
E

[

∂2l

∂σ2

]

= −
1

σ2γ2
+

2 (1 + γ)

σ2γ2
Γ (1 + γ) −

(1 + γ)
2

σ2γ2
Γ (1 + 2γ)

1

n− s
E

[

∂2l

∂µ∂σ

]

= −
(1 + γ)

2

σ2γ
Γ (1 + 2γ) +

(1 + γ)

σ2γ
Γ (1 + γ) .

E

[

∂2l

∂βk∂µ

]

=
(1 + γ)

2

σ2
Γ (1 + 2γ)

n
∑

t=s+1

E

[

∂ηt

∂βk

]

1

n− s
E

[

∂2l

∂φk∂µ

]

=
(1 + γ)

2

σ2
Γ (1 + 2γ)E

[

∂ηt

∂φk

]

1

n− s
E

[

∂2l

∂θk∂µ

]

=
(γ + 1)

2

σ2
Γ (1 + 2γ)E

[

∂ηt

∂θk

]
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E

[

∂2l

∂βk∂σ

]

=
(1 + γ)

2

σ2γ
Γ (1 + 2γ)

n
∑

t=s+1

E

[

∂ηt

∂βk

]

−
(1 + γ)

σ2γ
Γ (1 + γ)

n
∑

t=s+1

E

[

∂ηt

∂βk

]

1

n− s
E

[

∂2l

∂φk∂σ

]

=
(1 + γ)

2

σ2γ
Γ (1 + 2γ)E

[

∂ηt

∂φk

]

−
(1 + γ)

σ2γ
Γ (1 + γ)E

[

∂ηt

∂φk

]

1

n− s
E

[

∂2l

∂θk∂σ

]

=
(1 + γ)

2

σ2γ
Γ (1 + 2γ)E

[

∂ηt

∂θk

]

−
(1 + γ)

σ2γ
Γ (1 + γ)E

[

∂ηt

∂θk

]

.
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